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Abstract

Non-intrusive load monitoring (NILM) is a promising and cost-e�ective approach 

incorporating techniques that infer individual applications' energy consumption 

from aggregated consumption providing insights and transparency on energy 

consumption data. The largest potential of NILM lies in industrial applications 

facilitating key bene�ts like energy monitoring and anomaly detection without 

excessive submetering. However, besides the lack of feasible industrial time series 

data, the key challenge of NILM in industrial applications is the scarcity of labeled 

data, leading to costly and time-consuming work�ows. To overcome this issue, 

we develop an active learning model using real-world data to intelligently select 

the most informative data for expert labeling. We compare three disaggregation 

algorithms with a benchmark model by e�ciently selecting a subset of training data 

through three query strategies that identify the data requiring labeling. We show that 

the active learning model achieves satisfactory accuracy with minimal user input. Our 

results indicate that our model reduces the user input, i.e., the labeled data, by up 

to 99% while achieving between 62 and 80% of the prediction accuracy compared 

to the benchmark with 100% labeled training data. The active learning model 

is expected to serve as a foundation for expanding NILM adoption in industrial 

applications by addressing key market barriers, notably reducing implementation 

costs through minimized worker-intensive data labeling. In this vein, our work lays 

the foundation for further optimizations regarding the architecture of an active 

learning model or serves as the �rst benchmark for active learning in NILM for 

industrial applications.

Keywords  Active learning, Energy e�ciency, Machine learning, Non-intrusive load 

monitoring, Smart energy management
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Introduction

�e ongoing digitalization and the use of digital technologies such as machine learning 

has allowed smart service systems to become a core of technological developments [12, 

13, 24]. Notably, the potential of smart energy management is increasingly recognized and 

�nds its way into research and practice [1, 37, 38, 80]. �is is due to the sustained increas-

ing electrical energy demand in today’s applications, ranging from personal devices to 

industrial applications, which is expected to increase by approximately 85% over the next 

two decades [1, 55]. Especially energy-intensive industrial nations such as Germany, where 

the industrial sector is responsible for around 45% of the electrical energy consumption 

[11], need to act to achieve e�cient energy usage [64]. Consequently, companies introduce 

smart energy management to enforce energy reduction [1, 78]. Non-Intrusive Load Moni-

toring (NILM) is an emerging approach to enable more sophisticated smart energy man-

agement [4, 18, 48]. NILM estimates the power consumption of individual applications 

from aggregated power measurements [29, 31]. In contrast to intrusive load monitoring, 

NILM equalizes the implementation of expensive submetering while providing valuable 

information for energy-saving decision-making [18, 25]. Use cases of NILM include energy 

monitoring, demand side management, peak shaving, job scheduling and anomaly, and 

fault detection for saving energy [6, 29, 37]. For example, early detection of those faults or 

anomalies with the help of NILM avoids economic, energy, and environmental losses due 

to, e.g., maintenance cost reduction, machine fault reduction, increased spare part life, or 

the identi�cation of ine�cient applications [29].

Current NILM research focuses on technical and data science dimensions, including 

mathematical optimization and supervised and unsupervised machine learning algo-

rithms [5, 18]. Unsupervised algorithms are suitable when labeled data is absent, but 

their accuracy remains typically lower than supervised algorithms as those are trained 

on labeled data [18, 29]. �e primary application area of NILM is smart energy monitor-

ing in the residential sector [25, 46, 67, 81]. However, although NILM has existed for 

decades, it has not been widely adopted in industrial applications [18, 29, 32]. �e rea-

sons are NILM’s complexity and the lack of industrial data labels for promising super-

vised algorithms [21]. Nevertheless, labeling new data in an industrial environment 

requires domain-speci�c knowledge, is time-consuming and expensive to obtain—thus 

often unattractive in practice [21, 76]. Labeling in the context of NILM means determin-

ing the disaggregated applications from the total electrical energy consumption and to 

what extent they were used at the given timestamp.

Consequently, the objective of this work is to reduce labeling e�orts. �erefore, 

research introduced the concept of active learning [30, 65], which is applied in various 

disciplines [4, 19, 33, 45, 62]. Active learning is a machine learning approach in which 

experts query the unlabeled data with the highest level of informativeness to subse-

quently provide targeted feedback to the learning algorithm to improve its performance 

[19, 51]. In the context of NILM, the labeled data is used for training the disaggrega-

tion algorithms that predict the energy consumption of the individual applications. In 

other domains besides NILM such as anomaly detection in industrial time series data 

or quality control for visual defect inspection, previous research has shown the poten-

tial of active learning to reduce the labeling e�ort [33, 63, 71, 79]. In this regards, previ-

ous work using active learning for NILM has mainly focused on residential loads and 

residential buildings, whereby active learning was able to achieve a reduction in data 
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labeling of up to 90% [30, 68, 70]. Nevertheless, research considering industrial appli-

cations has so far fallen short, as industrial applications present complex consumption 

patterns due to the varying number of heterogeneous loads and NILM algorithms neces-

sitate extensive labeled datasets, which are scarce in industrial settings [21, 33]. �ere-

fore, this work integrates an active learning model into NILM for industrial applications. 

Reducing the e�ort, especially in an industrial environment, increases the attractiveness 

of NILM. �is enables smart energy management and therefore favors companies eco-

logically and economically. Hence, we pose the following research question (RQ):

How does an active learning model perform compared to established supervised learn-

ing models in NILM systems for industrial applications?

To answer our RQ, we develop an active learning model using the HIPE data set based 

on a real-world production plant [14]. We implement our model to validate the under-

lying concept of reducing the labeling e�ort. Our methodology is based on the Cross-

Industry Standard Process for Data Mining (CRISP-DM). �e proposed model does not 

replace existing NILM techniques. Instead, it complements its techniques by signi�-

cantly reducing data labeling and user e�ort while maintaining appropriate disaggrega-

tion accuracies. Hence, we reduce the concerns about the cost of NILM and make them 

more applicable for reducing energy consumption.

�is work contributes to research and practice in three ways:

 	• First, we combine the two research streams on NILM for industrial applications [29, 

38] and the research on active learning [19, 36].

 	• Second, we develop an active learning model, de�ne the best-performing architecture 

depending on the disaggregation algorithms to separate individual applications’ 

energy consumption, and compare three query strategies to select a subset of the 

training data e�ciently.

 	• �ird, the resulting active learning model fosters the introduction of a cost-e�ective 

NILM system that enables practitioners to save energy through smarter energy 

management and contribute to cleaner production.

�e remainder is structured as follows: In Section “�eoretical background”, we explain 

the foundations of active learning and examine previous research. In Section “Method 

development”, we present our research approach and the design of the active learning 

model. In Section “Data and evaluation”, we introduce the data set and the evaluation 

metrics. Afterward, in Section “Results”, we show the results based on a comparison 

with a benchmark and a sensitivity analysis. We discuss the results obtained and point 

out further research in Section “Discussion” before concluding in Section “Conclusion”.

Theoretical background

Active learning

Due to the limits of NILM, active learning is a promising approach to enhance NILM´s 

usage, especially in industrial applications with high electrical energy demand [1, 36]. 

Active learning is a sub�eld of machine learning that excels through interactively querying 

input of an expert system named as an oracle (often a human annotator), that provides the 

corresponding labels for model training [19]. A de�ned algorithm, called an active learner, 

queries the data based on an unlabeled data pool from which it expects better learning 
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success. An active learning model consists of two main components, as shown in Fig. 1: 

a query engine that selects the data instances from the unlabeled pool and the oracle that 

provides the labels [22, 47]. Hence, the idea is to select a minimum amount of unlabeled 

data instances to learn from that are annotated by a domain expert, maximizing the learn-

ing ability [65, 75]. In the context of active learning, the goal of the query is to select the 

data instances with the greatest information content so that the resources of the expert 

system (i.e., oracle) are used e�ciently [33]. Goernitz et al. [27] identify the appropriate 

query strategy as the central challenge of active learning. In this way, the domain expert is 

not occupied with the distinction of data that contribute less to the success of the de�ned 

machine learning problem but can focus on data that signi�cantly advance the training 

process [59]. Common use cases for active learning are speech recognition and medical 

classi�cation. �us, active learning is adopted in scenarios where data is abundant, but 

labels are complex, time-consuming, or expensive to obtain [65].

Literature provides many query strategies for unlabeled instance selection, divided 

into three streams [45]: Membership query synthesis, pool-based sampling, and stream-

based sampling. Membership query synthesis is a strategy for generating queries based 

on some membership criteria for labeling. However, this approach is unsuitable for 

NILM due to the complexity of accurately simulating realistic appliance signatures [18, 

36]. In pool-based sampling, queries are selectively drawn from an unlabeled data pool 

(Fig. 1). Based on the level of informativeness, all samples are ranked and then used for 

training. Stream-based sampling is similar to pool-based sampling, besides it queries the 

samples individually [65]. Overall, pool-based sampling, which involves assessing and 

ranking the informativeness of all samples within a substantial unlabeled dataset before 

selecting the most valuable ones for labeling, is best suited for NILM. It e�ectively man-

ages extensive datasets, prioritizes the most informative samples for model training, 

and targets scenarios where many unlabeled samples are collected simultaneously [19]. 

Within the pool-based sampling, several speci�c query strategies have been identi�ed 

as useful for NILM: naive query, extreme query, and cluster-based query strategy [19]. 

�e naive query strategy involves randomly selecting samples from the unlabeled pool 

for labeling. While it does not actively prioritize informative instances, it serves as a 

baseline for evaluating the e�ectiveness of more sophisticated strategies. �e extreme 

query strategy focuses on selecting samples with extreme or outlier feature values. In 

the context of NILM, these extreme instances often correspond to unique or rare appli-

ance events and labeling them can signi�cantly enhance the model's ability to recognize 

and disaggregate such events. Lastly, the cluster-based query strategy involves cluster-

ing the unlabeled data based on feature similarity and selecting representative samples 

Fig. 1  Active learning—Pool-based sampling scenario
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from each cluster for labeling. �is ensures that the model learns from a diverse set of 

appliance signatures, improving its generalization across di�erent appliance types [27, 

33, 65].

Related work

Hitherto, research regarding NILM focuses on technical aspects (e.g., mathematical opti-

mization, pattern recognition, and machine learning) to improve NILM applications [5, 

37, 67]. An open-source NILM Toolkit was proposed to enable an empirical comparison 

across the disaggregation algorithms [7]. Providing a complete pipeline from data sets to 

performance metrics, the NILM Toolkit lowers the entry barrier for NILM research [e.g., 

32, 38, 75]. Nevertheless, the application domains and the temporal resolution of the avail-

able data show only slight variations over the data sets. Table 1 shows that research and 

data on NILM focus on household settings and mainly consider residential buildings [e.g., 

3, 40, 43]. �e reasons for the lack of industrial data are three-fold: First, most compa-

nies do not collect granular electricity data on an application level. Second, even if they 

do so, they rarely publish their data [38]. �ird, household data is more accessible to 

aggregate due to less complex applications and, therefore, more straightforward to trans-

fer between households. While researchers acknowledge NILM´s importance in industry, 

data collected from industrial applications are rare and mainly comprise data with a low-

frequency sample rate [50, 83]. Only a few articles provide an industrial perspective [e.g., 9, 

32, 38, 50]. In the industrial sector, the assumptions made for NILM di�er from residential 

houses. In commercial buildings, the base load of applications tends to be higher than in 

households [9]. Hence, this implies that most low-frequency methods would fail to disag-

gregate the respective portion of electrical energy.

Nevertheless, research shows that NILM algorithms can replace resource-consuming 

submeter hardware in the industrial context [32]. However, this does not tackle the issue 

of having too much data lacking class labels in the industrial sector. Against this back-

drop, and often having limited resources for manual labeling, a combination of active 

learning with NILM systems is a promising approach [30, 36]. �is is mainly due to the 

Table 1  Focus of NILM’s application and the combination of active learning in research

References Residential focus Industrial

focus

Active

learning

Public

data set

Kolter and Johnson [43] ✔ – – ✔
Anderson et al. [3] ✔ – – ✔
Kelly and Knottenbelt [40] ✔ – – ✔
Holweger et al. [34] ✔ – – ✔
Wu et al. [75] ✔ – – ✔
Langevin et al. [46] ✔ – – ✔
Werthen-Brabants et al. [73] ✔ – – ✔
Timplalexis et al. [69] ✔ – – ✔
Jin [36] ✔ – ✔ ✔
Guo et al. [30] ✔ – ✔ ✔
Todic et al. [70] ✔ – ✔ ✔
Tanoni et al. [68] ✔ – ✔ ✔
Batra et al. [9] ✔ ✔ – ✔
Holmegaard and Baun Kjaergaard [32] – ✔ – –

Martins et al. [50] – ✔ – ✔
Kalinke et al. [38] – ✔ – ✔
– Not ful�lled; ✔ ful�lled
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fact that NILM data in industrial applications refers to easy-to-obtain energy data (e.g., 

using installed sub-meters or in-system meters used for energy monitoring) as opposed 

to common hardly accessible mechanical data or process data [33]. Hence, NILM com-

bined with active learning is gaining attention for industrial energy management [67]. 

In this vein, Guo et al. [30] present an active deep learning NILM method using discrete 

wavelet transform features​. It targets large-scale datasets by actively selecting the most 

valuable power signal samples to label, either in a pool-based or stream-based query 

strategy. �e authors form a mixed dataset from three public NILM datasets (covering 

residential loads) to evaluate the active learning query strategies. �e approach reduces 

the labeling costs, i.e., 33% fewer labeled samples are needed than the supervised base-

line​ model. Similarly, Jin [36] proposes an active learning framework to enhance NILM 

by interactively querying users for minimal class label information based on a k-Nearest 

Neighbors classi�er. �e framework is validated using the BLUED dataset covering resi-

dential loads. �is approach reduces the manual labeling burden, achieving similar dis-

aggregation performance while requiring up to 90% fewer user inputs. Compared to Guo 

et al. [30], focusing on feature extraction and sample selection strategies, Jin [36] empha-

sizes minimal user interaction to decrease labeling costs. On step further, Todic et al. 

[70] adapt a deep learning disaggregation model for NILM using active learning and 

compare di�erent query strategies. �e authors use the public available REFIT dataset 

which consists of four residential appliances. �e results show that with active learning, 

the model achieves comparable accuracy using only 5–15% of the training data, greatly 

lowering labeling costs. Similar results are achieved by Tanoni et al. (2024b) as they pro-

pose a combined weakly supervised and active learning approach. �ey validate their 

architecture using two public datasets, each covering residential loads from di�erent 

households. �e combined approach reduced the amount of labeling required by almost 

90%. All in all, the combination of NILM and active learning could reduce the labeling 

e�ort by up to 90% while delivering similar disaggregation results [30, 36, 68].

In sum, research shows the potential of using active learning to reduce labeling costs. 

While existing research on NILM and active learning focuses on residential buildings, 

only a few works consider an industrial perspective as described in the previous para-

graph [67]. �e reasons are that, �rst, industrial environments present intricate aggre-

gate consumption patterns due to the vast number of heterogeneous electrical loads, 

complicating the accurate disaggregation of individual load signatures. Second, super-

vised NILM algorithms necessitate extensive labeled datasets, which are scarce in 

industrial settings as they require domain-speci�c expertise, making the process both 

time-consuming and costly, thereby deterring practical implementation [21, 33]. How-

ever, given the promising approaches, combined methods could foster NILM’s dis-

semination within smart energy management in the industrial sector to enforce energy 

reduction. Consequently, this work investigates the performance of active learning in 

combination with NILM for industrial applications.

Method development

Research approach

A suitable methodology is necessary to address the RQ and benchmark our model 

against established NILM models for industrial applications. To meaningfully compare 

di�erent models, we derived a �ve-step process from the CRISP-DM and the guidelines 
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by Müller et al. [53] for extensive data analysis. Generally, the CRISP-DM provides a 

standardized process in six steps: “Business Understanding”, “Data Understanding”, 

“Data Preparation”, “Modeling”, “Evaluation”, and “Deployment” [74]. We explain our 

derived process steps in the following:

Business understanding  We adapt the initial �rst step of the CRISP-DM to compare 

di�erent models and, hence, infer a benchmark problem in terms of the underlying busi-

ness understanding. �is is in line with the RQ of how an active learning model performs 

compared to established supervised learning models in NILM systems for industrial 

applications. Relevant to our benchmark problem, we collect domain-speci�c knowl-

edge about model performance in NILM systems for industrial applications. We intro-

duce domain-speci�c knowledge in Section “�eoretical Background”, providing the 

theoretical background for NILM and active learning and examining previous research 

approaches. For the benchmark, we use the NILM Toolkit API as described in Sect. 2.3, 

a standard for reproducible comparisons of energy disaggregation algorithms [7, 61]. We 

further compare it with three di�erent applied algorithms (i.e., Mean algorithm, Com-

binatorial Optimization algorithm, Sequence to Sequence algorithm) for the load disag-

gregation. �ose three algorithms and their selection justi�cation are further explained in 

Section “Active learning architecture”. After selecting the benchmark model for compari-

son, we modify the CRISP-DM again by introducing our performance evaluation mea-

sures, as explained in Section “Data description and preparation”, before proceeding with 

data understanding.1

Data understanding  �is step has not been modi�ed. �e underlying dataset consists of 

smart meter readings from ten industrial applications and the readings of the main terminal 

of a power electronics plant. Data is available for three months with a 5 s resolution. Our 

study includes exploratory data analysis, explained in Section “Data and Evaluation”.

Data preparation:  �is step was not modi�ed either. We prepare the data by converting 

it to HDF format and slicing the time period considered. Afterward, we interpolate the 

missing data and reduce noise in the main terminal. Last, we shrink the data set (Section 

“Data description and preparation”). �is procedure ensures high data quality for reliable 

results.

Modeling, comparison & evaluation  In these steps, we implement and train our active 

learning model (see Section “Results”). Within this phase, we de�ne the active learn-

ing architecture with its components, as illustrated in Section “Active learning architec-

ture”. It includes query strategies and algorithm training. �e modeling step is performed 

iteratively and completed when all models'parameters have been optimized. To increase 

reproducibility, the resulting parameters of the models are in the respective Table 5 (i.e., 

machine learning report card according to Kühl et al. [44]) in Appendix A. Subsequently, 

we validate the designed active learning model. Afterward, we evaluate the results against 

a benchmark using four established performance evaluation measures (Sect. 4.3). �e 

benchmark is based on all available training data with the same sampling rate as the active 

1 Note, the dataset was already at our disposal when we started with our study. Hence, we did not include “Data Col-
lection” to our derived process. Nevertheless, this step could be set in parallel with the de�nition of the performance 
measure to allow a general process application and to enable further studies starting without available datasets.
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learning model. Hence, within the benchmark, we assume that 100% of the initially unla-

beled training data is labeled and then used for the subsequent disaggregation predic-

tions. We use the same three disaggregation algorithms as in the active learning model 

for these predictions.

Deployment:  �is step largely coincides with the deployment step in the original CRISP-

DM, which involves the framework of the productive operation. Besides the discussion 

chapter, we disregard the last step for most of this work because it is out of scope. We 

discuss our results and present derived implications for policy, research, and commercial 

application in Section “Discussion”.

In this vein, our results solve the de�ned problem with our RQ and close the CRISP-DM 

process cycle.

Active learning architecture

To realize the active learning architecture within the research step “Modeling, Compari-

son & Evaluation”, we combine an unsupervised model with a supervised model involv-

ing a feedback module by building on Das et al. [19] and Pimentel et al. [59]. We extract 

further information from the data with the unsupervised model’s help, increasing the 

data’s e�cient usage. Figure 2 illustrates the architecture’s components.

Unsupervised model

We base the selection of the unsupervised model on the taxonomy of deep learning 

approaches for anomaly detection [57]. �us, we utilize an Autoencoder (AE) which 

outperforms the compared methods [57]. AEs are trained using unsupervised learning 

on unlabeled training data. �e AE consists of two di�erent neural network types, an 

encoder and a decoder, with a so-called bottleneck in between. �e encoder takes the 

unlabeled data D = {x1, ..., xn}, where D is a data set with n observations and xi ∈ R
d, 

as an input vector to compress it from a high-dimensional input space to a lower dimen-

sion, called latent space. �e decoder reconstructs the input vector from the low-dimen-

sional latent representation [17]. �ey learn the reconstructions close to their original 

input, thus ignoring the noise in the data [28]. �e di�erence between the original input 

Fig. 2  Components of the active learning architecture depicting an unsupervised model, a budget constraint 

feedback module, and a supervised model
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vector and the reconstructed vector is called reconstruction error. For AE-based anom-

aly detection, we use the reconstruction error as the anomaly score [2, 46]. Data with 

high reconstruction errors are considered anomalies. �e purpose of the unsupervised 

model is to provide model information that rates each data point’s anomaly score [4].

Feedback module

�e feedback module serves as a labeling entity for the training data. �e module’s 

output represents a set of labeled data (x, y) as shown in Fig.  2. �e unlabeled train-

ing data and the described unsupervised model form the input. Hence, the feedback 

module consequently has access to the anomaly scores. �e feedback module consists 

of the query strategy and an expert system, i.e., oracle (Fig. 2). �e budget represents the 

capacity constraint that determines the output of labeled data and hence the capacity 

of the expert system [19]. First, the query strategy selects a subset Ds = {x1, ..., xn} of 

the input training data based on the information provided by the unsupervised model. 

Subsequently, the data are labeled by the expert system. To achieve the highest impact 

of the limited labeling capacity, active learning aims to maximize the informativeness 

of the labeled data for the following supervised model [19, 36]. Again, labeling means 

determining the connected applications and to what extent they were used at the given 

timestamp. Within this work, the expert system is simulated. We assume the expert sys-

tem is �awless, always assigning the correct data labels [82].

We compare naive, extreme, and cluster queries introduced by [27], as illustrated in 

Fig. 3 and previously described in Sect. 2.1. Naive queries describe the random selec-

tion of data instances as part of the unlabeled training data. Additional information 

like anomaly scores is not considered. Consequently, only a few anomalies are queried, 

proportional to the budget. Extreme queries select the data most likely to be anoma-

lies based on their anomaly score. Hence, this query strategy uses the information pro-

vided by the unsupervised model and queries them in descending order until the budget 

is reached. �is strategy is advantageous if the proportion of anomalies in the training 

data set is small since this allows for �nding as many supposedly informative anomalies 

Fig. 3  Graphical comparison of the naive, extreme, and cluster query strategies
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as possible [19, 59]. Cluster queries focus on selecting data equally from di�erent clus-

ters of the provided data set regardless of the density of each cluster. �e latent space is 

divided into clusters using, e.g., a k-means clustering algorithm [19]. �us, this query 

prevents a disproportionate sample selection [27].

Supervised model

�e supervised model uses the labeled data for training. We use three di�erent algo-

rithms (i.e., Mean algorithm, Combinatorial Optimization algorithm, Sequence to 

Sequence algorithm) for the load disaggregation. First, the Mean algorithm estimates the 

output usage of an application to be the mean computed over the training data. As stated 

by previous work, the Mean algorithm is a strong benchmark for evaluating other dis-

aggregation algorithms [20, 32]. Second, we use the Combinatorial Optimization (CO) 

algorithm, which also serves as a baseline algorithm in existing NILM literature [10, 31, 

60]. �e assumption is that each application can be in a given state (1 of K where K is a 

small number), where each state has an associated power consumption [8]. �e objec-

tive of the CO algorithm is to assign states to applications so that the di�erence between 

the aggregate power reading and the sum of power usage distributed over the di�erent 

applications is minimized. �ird, we consider Sequence to Sequence (Seq2Seq) learn-

ing. Seq2Seq learning is a neural network that uses 1-dimensional convolutions to map 

an input sequence to a variable length output sequence and delivers promising results 

in research [26, 77]. �is approach trains one deep neural network per application and 

learns its behavior based on input data sequences. Seq2Seq is suitable for load disaggre-

gation in NILM and outperforms classical algorithms [16, 77].

Data and evaluation

Public datasets

Publicly available energy-related data sets primarily consist of energy data of residential 

or o�ce buildings, with a granularity of ten or more minutes [14, 58] such as the UK-

DALE [40], the BLUED [3], or the REDD-dataset [43].

Commercial data sets are far less publicly available [14]. To the best of our knowl-

edge, only four have been released to date—two for commercial buildings and two for 

industrial applications. �e EnerNOC data set collected data across di�erent commer-

cial buildings with a 5-min resolution [52]. �e BERDS data set provides the energy 

consumption data of applications at a 15-min resolution in a commercial building [49]. 

Neither data set contains high-frequency sampled data. Hence, both have limited appli-

cability for NILM. For industrial applications, only two publicly accessible data sets 

suitable for NILM research exist. First, the IMBELD data set contains six industrial 

applications [50]. �e monitored machines are solely applications in terms of energy 

consumption with two possible states, “on” and “o�”. Second, the HIPE data set is an 

industrial energy data set and the most comprehensive one released so far [14]. Since 

this work focuses on removing barriers regarding NILM’s adoption in industrial applica-

tions, we use the HIPE data set due to its high data quality and realistic applicability.

Data description and preparation

�e HIPE data set contains smart meter readings of ten industrial applications and the 

main terminal’s readings over three months at a 5-s resolution from a power-electronics 
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plant. �e plant produces electronic systems for battery systems in small batches, i.e., 

less than 1000 pieces. �e data is collected via high-resolution smart meters and sam-

pled with a frequency of 0.2 Hz containing various electrical quantities like active, reac-

tive, and apparent power. �e load signature of the monitored applications ranges from 

simple, with two possible states, to complex, with continuously variable states. Table 2 

gives an overview of the applications considered in the HIPE dataset and their respec-

tive energy consumption. �e di�erent applications’ usage and energy consumption vary 

strongly, and their usage depends on each other (Appendix B). Such dependencies are 

unusual for a household setting and are characteristic of industry data [38, 43].

�e raw data set has been pre-processed to remove measurement errors. However, the 

measurements are not equidistant, i.e., the time between subsequent measurements var-

ies. Usually, the temporal resolution of the data points is about 5 s. Nevertheless, there 

are cases where the time between successive data points is several minutes due to main-

tenance. To tackle that issue, the data points between these outliers have been interpo-

lated to achieve equal distances between the measurements. �is ensures uniformity in 

the dataset, facilitating more accurate analyses. To reduce existing noise included in the 

load pro�le, the main terminal and the submetered applications are leveled by subtract-

ing the baseload from the main terminal. �is enhances the clarity of the data by reduc-

ing �uctuations unrelated to the primary signals of interest. �e data was collected from 

2017–10-01 to 2018- 01–01. �e machines did not run at the end of December, and the 

3rd of October is a German holiday. In turn, we limit the period from 2017–10-04 to 

2017–12–21, matching the used time frame in previous research [14].

Performance evaluation measures

Evaluating the disaggregation performance for NILM requires performance evaluation 

measures–PEMs [4, 41, 66]. Nalmpantis and Vrakas [54] and Klemenjak et al. [42] pro-

vide an overview of the most commonly-used PEMs split into two categories. �e �rst 

category is based on the comparison between the observed aggregate power signal and 

the reconstructed signal after disaggregation. Within this category, they mention the 

Table 2  Overview of the applications, their description and their respective energy consumption 

within the HIPE dataset [14]

Application Description Total en-

ergy con-

sumption 

[kWh]

Chip press Heat treatment of surfaces under high pressure, e.g., for multi-layered 

printed circuit board

246.26

Chip saw Separation of chips of a silicon wafer 51.40

High-temperature 

oven

Fixing layers for thick-�lm technology (heats up to 1200 °C) 250.14

Pick and place unit Placement of electronic components such as resistors and microcontrollers 

on a printed circuit board

60.64

Screen printer Printing of material layers to interconnect electronic components 63.46

Soldering oven Components soldering to the printed circuit board 186.95

Vacuum oven Oven with a vacuum chamber 10.83

Vacuum pump 1 Auxiliary machine to generate vacuum for other machines such as the Pick 

and Place Unit

271.41

Vacuum pump 2 Auxiliary machine to generate vacuum for other machines such as the Pick 

and Place Unit

65.71

Washing machine Cleaning of the printed circuit board at the end of the production line 81.74
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Root-Mean-Square Error (RMSE), the Mean Absolute Error (MAE), and the Normal-

ized Disaggregation Error (NDE). �e second category describes how e�ectively the dis-

aggregated signal signatures are assigned to the application signatures. �e main PEMs 

used are Precision, Recall, and the resulting F-Score. �e F-Score provides a balance 

between precision, i.e., the ratio of correctly assigned signatures to the total number of 

assigned signatures, and recall, i.e., the ratio of correctly assigned signatures to the total 

number of actual signatures [33]. Table 3 shows the PEMs, including their formal de�ni-

tions, units, value ranges, and optima.

Fi and Ai are the predicted and actual values for a data instance i, N  is the sample 

size, and A is the mean of all actual values Ai. �e value range represents a right-hand 

in�nite closed interval including the value “0” for each metric. Each PEM exhibits dif-

ferent characteristics, leading to di�erent outcomes of prediction accuracy. With the 

RMSE, comparing applications with high di�erences in power consumption (i.e., a high-

temperature oven and a LED light bulb) is challenging [34, 54]. Hence, we also consider 

the NDE as it normalizes the squared error of a single application by the total energy of 

the signal (Klemenjak et al. [42]). �e MAE is well-known in signal processing and is 

similar to the RMSE [41, 42]. However, unlike the RMSE, the MAE does not penalize 

outliers with quadratic weight. Outlier sensitivity is essential, as high deviations between 

predicted and actual values are not bene�cial for NILM. To further evaluate the perfor-

mance of the proposed active learning algorithm, it is necessary to detect whether an 

application is on or o�. Hence, as a fourth PEM, we apply the F-Score [8]. Furthermore, 

as the F-Sore is unitless, it provides an intuitive understanding of the PEMs for readers 

unfamiliar with this subject. As selecting the best-suited PEM is not trivial, comparing 

several PEMs is preferable [66].

Results

Comparison to benchmark

First, we show the active learning model’s results before introducing the benchmark mod-

el’s prediction results. Following, we contrast the scores of the three tested disaggregation 

algorithms of the active learning model with the results of the benchmark model. For this 

comparison we only consider the values of the best-performing query strategy.

In general, the cluster query strategy outperforms both the naive and extreme query 

strategies over all tested permutations and across all considered PEMs, as shown in 

Appendix E. Looking at the individual mean values across all ten appliances, we can sur-

mise signi�cant di�erences between them. A one-way ANOVA test, which tests the means 

of several groups for equality [23], shows at a signi�cance level of 0.1 that at least one mean 

Table 3  Overview of the performance evaluation measures used for the disaggregation 

performance

Measures Abbreviation Equation Unit, value range Optimal value

Root-mean-square error RMSE
√

∑

N

i=1
(Fi−Ai)2

N

kW h, [0, ∞) 0

Mean absolute error MAE 1

N

∑
N

i=1
|Fi − Ai| kW h, [0, ∞) 0

Normalized disaggregation 

error

NDE
∑

N

i=1
(Fi−Ai)2

∑
N

i=1
Ai

2

kW h, [0, ∞) 0

F-score F-score 2×P recicion×Recall

P recicison×Recall
[0, 1] 1
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is statistically signi�cantly di�erent from the others (see Appendix E for details). Limit-

ing the number of queried samples per cluster prevents the feedback module from picking 

too much data from one cluster while still considering outliers with high anomaly scores 

and thus using samples from the entire latent space. In contrast, the naive query selects a 

majority of the samples from high-density clusters with low anomaly scores and little ben-

e�t to the active learning model, the extreme query selects isolated outliers which are less 

common and lead to poor reconstruction. Hence, for the comparison to the benchmark, 

we solely consider the results of the cluster query strategy.

Figure 4 displays the disaggregation performance of the active learning model using 

a budget size of 1% of the data for training the disaggregation algorithm. �e Seq2Seq 

algorithm achieves the best average prediction performance across all considered PEMs 

(RMSE = 335.88, F-Score = 0.33, MAE = 99.75, NDE = 0.83) compared to the CO (RMSE 

= 530.95, F-Score = 0.32, MAE = 129.74, NDE = 1.62) and the Mean (RMSE = 554.09, 

F-Score = 0.25, MAE = 343.76, NDE = 1.09). Furthermore, conducting another one-way 

ANOVA test for all three algorithms, a 1% budget, the cluster query strategy and MAE 

as a PEM for each application, resulted in a p-value of 0.03 which shows strong statistical 

signi�cance of the algorithm selection assuming again a signi�cance level of 0.1. We note 

that the standard deviation of the algorithms varies considerably. Across all PEMs, the 

Seq2Seq algorithm shows the widest spread of possible results. In contrast, the Mean 

algorithm barely shows any volatility. By design, the Seq2Seq algorithm has more �ex-

ibility than the optimization problem of CO and the Mean disaggregation. �e boxplots 

visualize this behavior of the algorithms.

Table 6 in Appendix C contains the average benchmark values displaying the best in 

bold print. �is benchmark only consists of the results of the Seq2Seq algorithm since 

it received the best disaggregation performance across all considered PEMs. �e disag-

gregation performance of the benchmark model shows that even with the best possible 

preconditions, i.e., the fully labeled training data and the most suitable algorithm, the 

data set is di�cult to disaggregate. �ese observations support previous research �nd-

ings from other studies [38]. �e scores for the respective PEMs di�er among the indi-

vidual applications mainly depending on the pattern of their load pro�le. As visualized 

in Appendix B, certain applications stand out because of their especially good or poor 

disaggregation performance. As with the benchmark model, the active learning model 

Fig. 4  Active learning prediction results using 1% budget size and ten iterations presented as RMSE, MAE, F-score, 

and NDE performance evaluation metrics
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bene�ts some applications more than others. Appendix D shows the ratio when compar-

ing the results of the active learning model against the benchmark model. In most cases, 

the scores of the active learning model are lower than the benchmark model. However, 

in the case of the high-temperature oven, scores are similar with a ratio above 0.9 or 

even equal in the case of the Pick and Place Unit.

We focus on comparing the average disaggregation results across all measured appli-

cations, thus the arithmetic mean. Table 4 shows the scores of both the benchmark and 

active learning models. �e benchmark model achieves better scores on all PEMs, with 

the active learning model using the best algorithm (Seq2Seq) reaching around 70% of its 

accuracy. �e CO and Mean algorithm scores display the di�culty of disaggregating the 

load pro�le of the considered data set.

Sensitivity analysis

Figure  5 compares the disaggregation performance of the proposed active learning 

model against the benchmark. Analogous to the benchmark, we solely pick the best-

performing algorithm of the active learning model for comparison against the bench-

mark. We use a sensitivity analysis varying the budget size between 0.1% and 5% of the 

total training data to investigate to what extent a variation in the budget size in�uences 

the performance of the active learning model. Total data points correspond from 1,054 

to 52,705 queries of unlabeled data that are then labeled through the expert system. 

Essentially, the budget can be considered a special hyperparameter of the active learning 

model that needs to be optimized. However, the goal of this work is not to minimize the 

number of queried samples or to achieve the best possible prediction performance but 

to reduce the use of the expert system to a feasible level while still achieving satisfactory 

disaggregation results. For most PEMs, the �rst three budget sizes signi�cantly impact 

Table 4  Mean prediction results for 1% budget size comparing the benchmark model with the 

active learning model and considered algorithms

Algorithm RMSE F-score MAE NDE

Benchmark model Seq2Seq 279.53 0.47 72.41 0.65

Active learning model Seq2Seq 335.88 0.34 99.75 0.83

Active learning model CO 530.95 0.32 129.74 1.62

Active learning model Mean 554.01 0.25 343.76 1.09

Fig. 5  Comparison of the active learning model with a varying budget size (0.1, 0.5, 1, 2 and 5%) and benchmark 

prediction results on the whole data set
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the disaggregation results, then slowing down towards the benchmark. As anticipated, 

the disaggregation results of the active learning model get closer to the benchmark as 

the budget size increases without fully reaching it.

Depending on the budget, disaggregation accuracies span from 23.1% to 90.1% for all con-

sidered PEMs. �e initial budget of 0.1% receives poor scores showing the di�culty of dis-

aggregating when only training on a very small sample of labeled data. We obtain a strict 

monotonically increasing shape of the accuracy with an increased budget for all PEMs. With 

RMSE and NDE, the disaggregation accuracy increases at the beginning but then reaches 

a plateau a little below 80% and a little above 80%, respectively. From there on, both scores 

increase only slowly. In contrast, the MAE indicates a di�erent behavior with a slow increase 

initially but enhancing between 0.5% and 5%. �e growth rate slows down marginally after-

ward with a continuously increasing budget size. For the F-score, it appears that the increase 

of the score is somewhat slow and steady compared to the other PEMs. Yet, as with all other 

PEMs, a positive trend can be recognized as the budget increases.

Discussion

Results interpretation

Researchers are aware of the importance of NILM in industrial applications [18, 50, 61]. 

Although the potential bene�ts of applying this technology to industrial devices have 

been recognized since the �eld’s inception, most NILM studies focus on the residential 

sector [42, 56]. �is focus is mainly due to the complexity of industrial applications and 

the lack of available labeled energy data.

Based on the stated RQ on how an active learning model performs compared to estab-

lished supervised learning models in NILM systems for industrial applications, our 

results show that the present active learning model can e�ectively reduce the labeling 

e�ort for NILM by up to 99% while still achieving between 62 and 80% of the prediction 

performance compared to a benchmark with 100% labeled training data. �is trade-o� 

between prediction performance and labeling e�ort is remarkable, as in industrial set-

tings, these labels typically require domain-speci�c knowledge, are time-consuming, and 

are expensive to obtain; thus, they are often unattractive in practice [33]. �e design of 

the active learning model that allows this statement consists of an unsupervised model, 

a feedback module, and a supervised model. We show that the cluster query strategy is 

superior, achieving up to 50% better results than the other two strategies (i.e., naive and 

extreme queries). We found the Seq2Seq algorithm signi�cantly better for load disag-

gregation than the CO and Mean algorithms. To examine the shape of the disaggrega-

tion results over di�erent budget constraints for the feedback module, we use sensitivity 

analysis and vary the budget size in discrete steps between 0.1% and 5.0%. �e sensitivity 

analysis shows no obvious answer as to which tested budget size is the most feasible for 

the given use case. Hence, the larger the budget size, the higher the cost and the better 

the disaggregation results. Furthermore, if the goal is to minimize the budget by 0.1%, 

corresponding to 1,054 queried data points in our case, the disaggregation results are 

comparatively poor. In addition, the maximum slope of the ratio of the active learning 

model to the benchmark lies at di�erent budget sizes across the PEMs used. However, 

to indicate which budget size is appropriate in this context, we de�ne a budget size of 

1%, corresponding to 10,541 data points, since at this level, a plateau is reached for both 

the RMSE and the NDE. Using this budget of only 1% of the training data for this active 
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learning model, we achieve over 70% disaggregation accuracies compared to the bench-

mark using 100% labeled training data in 3 out of 4 PEMs.

Theoretical implications

First, this work contributes to the existing literature by consolidating two research 

streams: �e research on NILM for industrial applications [29, 38] and the research on 

active learning as a novel machine learning method [19, 36, 54]. Yet, no research has 

been conducted on active learning for NILM using industrial applications. �erefore, we 

attempt to close this gap by combining these two technologies. Second, we develop an 

active learning model and establish the best-suited disaggregation algorithms. Based on 

previous research on anomaly detection for industrial applications using active learning, 

we adjust the existing model for NILM and design the respective architecture [22]. For 

this particular use case, the cluster query strategy is superior to naive and extreme que-

ries and works best for training the disaggregation algorithm. �e best-performing algo-

rithm is the Seq2Seq disaggregation, beating both CO and Mean. Both decisions align 

with previous �ndings from similar research [38]. �ird, we contribute to an energy-e�-

cient industrial production by overcoming the barrier of the lack of industrial data labels 

for promising supervised algorithms. In this vein, we enable broader use of NILM and, 

consequently, energy conservation by tracking energy consumption patterns, identify-

ing ine�cient applications, and enabling smarter energy management [1]. Fostering the 

usage of NILM in industrial applications equalizes the implementation of expensive sub-

metering, which is more economical while providing valuable information for energy-

saving decision-making [18]. Fourth, our work can be discussed from a higher and more 

abstract level in the context of Watson et al. [72]’s energy informatics framework. Our 

active learning model represents an information system itself positioned between the 

framework’s supply and demand side. However, one could argue that our active learn-

ing model does not necessarily manage the balancing of supply and demand side on its 

own, but it can be e�ectively applied on either the demand or supply side. �e derived 

insights into demand or supply side characteristics, i.e., submeter consumption, subse-

quently enable other information systems to manage supply and demand with demand 

response measures for example. Doing that, our model helps digitizing the framework’s 

‘sensor networks’ and ‘sensitized objects’ by providing insights that formerly where lim-

ited to installing additional hardware. Further, our model incorporates the framework’s 

‘stakeholders’ not only as consumers, suppliers, or the government but as actual input 

providers through labeling tasks that e�ectively in�uence the information systems per-

formance and behavior. In sum, our work contributes to closing the gap of hitherto 

scarcely researched and applied NILM in industrial applications. We provide valuable 

information on how to select the disaggregation algorithm in this case and the reasons 

for the usually more di�cult disaggregation. Yet, the most signi�cant contribution is 

the active learning model’s architecture which contributes to implementing NILM e�-

ciently. �is developed model can be the foundation for further optimizations regarding 

the architecture of an active learning model or serve as a benchmark.

Practical implications

Although NILM is recognized in the industrial sector, no NILM systems are implemented 

for this use case [38]. �erefore, our active learning approach provides practical guidance 
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for its e�cient implementation. Our research is conducted under near-real-world condi-

tions. We use the HIPE dataset, which consists of real production plant measurements, 

not laboratory conditions. �e dataset includes the main terminal and does not rely on 

virtual main meters. However, our research setting implies that we have to deal with a lot 

of noise in the data, which makes accurate load disaggregation di�cult. To clarify, the dis-

aggregation of industrial loads with only one metering point is unrealistic [32]. �erefore, 

sub-metering is necessary according to the size of the industrial plant.

First, the proposed active learning model can provide intelligent advice on which 

devices should be submetered. �e active learning model selects the most informative 

data points based on an unlabeled data set. During the initial queried data points, the 

active applications indicate a high value to the disaggregation results, providing a solid 

basis for additional submetering. Making smart decisions about which devices to sub-

meter directly impacts the e�ort required to implement NILMs. For example, it reduces 

the equipment cost and the time required for the complex installation of submeters 

in an industrial setting [32]. Second, our analysis of the HIPE dataset shows that the 

equipment in the production plant is only in use during the working week. �e week-

end energy demand is only the base load. �erefore, there is a signi�cant di�erence 

between the energy consumed on weekends and weekdays. �us, the day of the week 

is an important feature to consider when performing load disaggregation. �is explains 

why the disaggregation results are worse when considering the whole data set includ-

ing several more holidays and weekends, as previous results with di�erent data splits 

show. Industrial sites behave similarly across industries, with only about 10% running 

on weekends or holidays. Hence, these usage patterns can be exploited by considering 

separate models for weekdays and weekends, thus improving the overall disaggregation 

performance of active learning models. �ird, the designed active learning model leads 

to a cost-e�ective NILM system in practice. In addition to the possibility of using easily 

collected energy consumption data (e.g., with installed sub-meters or in-system meters 

used for energy monitoring), the expert system combined with human annotators can 

be e�ciently used to optimize both the prediction performance and the budget for the 

feedback module. When implementing an active learning system, it can consequently 

be deduced that, in addition to the technical aspects, the involvement of employees and 

their expertise in the daily work�ow should also be considered. Hence, we expect these 

results to increase the interest and implementation of such systems as pilot projects. 

Industrial sites often consume several orders of magnitude more energy than residen-

tial buildings, and thus the expected return on investment for NILM is greater. �e pre-

sented active learning architecture reduces the labeling e�ort, removing one of the key 

barriers to adopting NILMs in industrial applications. For example, practitioners could 

use NILM for failure prediction, leading to cost savings and increased equipment e�-

ciency, or for emission reduction and energy savings through smarter energy manage-

ment [13]. Consequently, a wider use of NILM could help practitioners to save energy 

and costs and contribute to a cleaner and more sustainable production. Fourth, our 

work �ts well in the broader context of energy management systems and digitals being 

used for industrial (energy) data monitoring. Energy management systems typically sup-

port a functionality known as'virtual meters'or'virtual datapoints', where non-existent 

or unconnected meters are extrapolated through basic mathematical calculations (e.g., 

calculating the energy consumption of a particular �oor based on the overall building 
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consumption minus the consumption of other �oors). Our proposed approach repre-

sents a natural extension of the virtual meters concept, o�ering over time varying, thus 

more accurate, insights obtained through NILM techniques. �is extension can serve 

as a facilitator for various monitoring applications, including submetering of equipment 

and the derivation of consumption, costs, and emissions associated with products in a 

manufacturing setting. Such information is essential for reporting practices as required 

for sustainability reporting and compliance with ISO 50001 energy management systems 

standards [35]. Moreover, by incorporating our identi�ed consumption data into digi-

tal twins, our approach has the potential to enhance production planning, asset man-

agement, and other related processes. We conclude that the proposed active learning 

is suitable to replace traditional submetering, although it has de�cits in disaggregation 

compared to established supervised learning models. �e signi�cant time and resource 

savings compensate for this shortcoming.

Limitations and further research

Naturally, our work is subject to limitations but o�ers prospects for further research.

 	• First, although the proposed active learning model has shown its potential to 

reduce labeling e�orts signi�cantly, the prediction is still inferior to established 

supervised learning models in NILM systems. Providing accurate predictions to 

support decision-making processes is essential, potentially leading to energy savings. 

Yet, even though we have created a solid basis for algorithm comparison, further 

research can apply di�erent (hyperparameter) tuning techniques, such as halving 

grid search to improve the current prediction performance. For instance, we focus 

on three query strategies and three disaggregation algorithms. Also, we split the 

data set into train and test data to ensure comparability with previous studies on the 

data, allowing a high bias and variance since we are not using cross-validation [38]. 

Testing additional algorithms or using cross-validation may increase the prediction 

performance and, thus, impact the current design of the active learning model.

 	• Second, by design, active learning models assume that the expert system is infallible 

and indefatigable. �is assumption may be unrealistic in many real-world settings, 

especially when utilizing a human annotator as an oracle. Human experts working 

under quality and time pressures in a heavily e�ciency-driven setting may make 

human errors, distorting the labels used to train the supervised model to correctly 

learn and disaggregate the loads. In many real-world applications, multiple imperfect 

predictors may have di�ering qualities. Hence, to increase the feasibility of the active 

learning model, future research could sprinkle random misjudgments. Given this, 

future research could build on Zhu and Yang [82], who developed a concept that 

distinguishes between human expert systems of di�erent levels of reliability. While 

such approaches can represent real-world circumstances in a more detailed manner, 

they also increase the complexity of designing an optimal query strategy. Hence, 

in addition to the selection of the examples to be queried, it is necessary to assign 

them to the respective expert systems [33]. Further, instead of adding randomness, 

a proactive learning model could be proposed, bridging the gap between traditional 

active learning and more practical real-world scenarios [36]. Extending active 

learning to proactive learning aims to predict true labels given the risk estimates and 

the noisy output of predictors.
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 	• �ird, we could not achieve maximally precise results due to hardware limitations. 

�e computation power allowed only ten iterations, four PEMs, and smaller budget 

sizes. Further research might address these issues by replicating our study on high-

performance hardware. 

 	• Fourth, as with any data-driven endeavor, the availability and use of data are a 

limitation of our study. �us, we evaluated and tested our active learning approach 

only on a single data set of ten industrial applications, limiting the transferability 

and generalization of our results. �e same as for the data set holds true for various 

other industrial applications in which the explanatory power of energy data for 

disaggregation might di�er. Although Chen et al. [15] state that “data on energy 

consumption of manufacturing machines also contains the information on the 

conditions of [manufacturing] machines” and Kaymakci et al. [39] identify particular 

useful results for energy data of a laser punching machine, we call for extending our 

research to other industrial applications.

 	• Fifth, our work compared a subset of available NILM approaches and neglected 

others like unsupervised clustering or self-supervised learning as well as the 

integration into overarching approaches such as federated learning. We recommend 

for future research to expand the scope of considered NILM approaches to receive a 

more holistic picture about performance improvements.

Conclusion

�e industrial sector is a major consumer in terms of electrical energy consumption. 

Hence, there is signi�cant potential for realizing cost and energy savings through NILM. 

However, the implementation of NILM is hindered by the availability of data labels and 

high labeling costs. In this work, we present an active learning model to reduce the label-

ing e�ort for NILM in industrial applications and implement it using the HIPE dataset 

based on a real production plant using a derived research process based on CRISP-DM 

[14]. In this sense, we are the �rst to combine active learning with NILM for an indus-

trial setting. We evaluated the proposed method by applying it to the HIPE dataset to 

answer the stated RQ of how an active learning model performs compared to established 

supervised learning models in NILM systems for industrial applications. We apply bud-

get sizes ranging from 0.1% to 5% of the available data as training data for the active 

learning model. We compared the disaggregation predictions with a benchmark using 

NILMTK and established supervised learning models trained on 100% of the available 

data. To tune the active learning model, we selected the best-performing query strate-

gies and algorithms for the architecture of our models. By allowing our model to choose 

the data it learns from, we signi�cantly reduce the number of labeled training instances 

required while achieving comparable disaggregation predictions. Our results indicate 

that a budget size of 1% is a good �t for real-world applications since the labeling e�ort 

is signi�cantly reduced while maintaining an average (i.e., by up to 99% reduction) of 

over 70% accuracy compared to the benchmark. �ese results demonstrate practical rel-

evance as the cost and accuracy concerns of NILM can be addressed and consequently 

may lead to broader adoption of NILM in industrial applications. �is fosters energy 

e�ciency by tracking energy consumption patterns and the identi�cation of ine�cient 

applications enabling smarter energy management. Further, our work can serve as a 

foundation for more active learning methods being applied in the context of NILM.
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Appendices

Appendix A

See Table 5.

Table 5  Model card based on Kühl et al. [44]

General 

information

Problem statement Performance comparison of an active learning model and established 

supervised learning models in NILM systems for industrial applications 

based on a classi�cation problem

Data gathering Pre-de�ned data set called HIPE, which contains smart meter readings 

of ten industrial applications and the main terminal over three months 

from a power-electronics plant run by the Karlsruhe Institute of Tech-

nology [14]

Sampling Pool-based sampling (c.f. 2.1) using time frame from 2017–10-04 to 

2017–12-21

Data quality Generally high, it does not contain any missing values such as NULL or 

similar error values. But the data measurements are not equidistant

Data pre-processing 

methods

c.f. Section “Data description and preparation”

Feature engineering 

and vectorizing

c.f. Section “Data description and preparation”

Hardware and con�gu-

ration for calculation

Linux Virtual Machine running Ubuntu 20.04

32 Cores, 32 GB RAM

Python 3.10.4 using JupyterLab

All Performance evaluation 

measure for hyperpa-

rameter tuning

Disaggregation performance of all applications considered in the HIPE 

data set

Unsuper-

vised model 

(AE)

Parameter optimization Yes Search space Layers [1, 10];

Batch size [22 , 210];

Epochs [5, 100]

Data split Not applicable

Algorithm Feed Forward Neural Network

Performance evaluation 

measure for training

MSE

Package Keras API using Tensor�ow 2.9.1

Additional information Adam as optimizer; Exponential Linear Unit as activation functions for 

the encoder layers and a linear activation function for the bottleneck; 

Sigmoid activation function for the last layer of the decoder

Supervised 

model 

(Seq2Seq)

Parameter optimization Sensitivity analysis c.f. 5.2.; search space: 0.1%—5.0% budget size

Data split 78/22 split to ensure comparability to previous studies on the same 

data set

Algorithm Seq2Seq, CO, Mean

Performance evaluation 

measure for training

RMSE, MAE, F-score, NDE

Package NILMTK API v0.4.2

Additional information Not applicable
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Appendix B

See Figs. 6, 7, 8.

Fig. 8  Weak disaggregation of HIPE applications

 

Fig. 7  Strong disaggregation of HIPE applications

 

Fig. 6  Week load pro�le of HIPE applications
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Appendix C

See Table 6.

Appendix D

See Fig. 9.

Appendix E

Further statistical signi�cance testing conducting a one-way ANOVA test for all query 

strategies, a 1% budget, using the Seq2Seq algorithm and MAE as a PEM for each applica-

tion, resulted in a p-value of 0.11 which shows a slight signi�cance for a signi�cance level 

of 0.1 (see Fig. 10).

In contrast, conducting another one-way ANOVA test for all algorithms, a 1% budget, 

the cluster query strategy and MAE as a PEM for each application, resulted in a p-value of 

0.03 which shows strong statistical signi�cance of the algorithm selection assuming again 

a signi�cance level of 0.1.

Table 6  Benchmark prediction results

Application RMSE F-score MAE NDE

Chip press 1012.80 0.26 285.91 0.48

Chipsaw 105.67 0.45 26.17 0.78

High temperature oven 275.97 0.50 72.19 0.28

Pick and place unit 60.29 0.99 32.02 0.81

Screen printer 83.45 0.68 35.59 0.69

Soldering oven 376.50 0.53 52.14 0.45

Vacuum oven 164.64 0.15 6.50 0.95

Vacuum pump 1 208.42 0.80 121.11 0.58

Vacuum pump 2 124.15 0.25 30.96 1.01

Washing machine 383.37 0.16 61.50 0.51

Mean 279.53 0.47 72.41 0.65

The bold printed value per column indicates the best average benchmark value in terms of the underlying PEM

Fig. 9  Active learning model compared to benchmark using F-score

 



Page 23 of 26Fabri et al. Energy Informatics            (2025) 8:54 

Author contributions

L.F.: Investigation, Data Curation, Methodology, Visualization, Writing—Original draft. D.L.: Conceptualization, 

Investigation, Data Curation, Supervision, Methodology, Visualization, Writing—Original draft, Writing—Reviewing 

& Editing. L.S.: Conceptualization, Investigation, Data Curation, Software, Supervision, Methodology, Visualization, 

Writing—Original draft, Writing—Reviewing & Editing. S.W.: Conceptualization, Investigation, Data Curation, Supervision, 

Methodology, Visualization, Writing—Original draft, Writing—Reviewing & Editing.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials

Data is provided within the manuscript or supplementary information �les.

Declarations

Ethical Approval and Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The authors declare that they have no known competing �nancial interests or personal relationships that could have 

appeared to in�uence the work reported in this paper.

Received: 9 January 2025 / Accepted: 8 April 2025

References

1.	 Ali M, Prakash K, Hossain MA, Pota HR (2021) Intelligent energy management: Evolving developments, current challenges, 

and research directions for sustainable future. J Clean Prod 314:127904. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​j​c​l​e​p​​r​o​.​2​0​2​​1​.​1​2​​7​9​0​4

2.	 An J, Cho S (2015) Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on 

IE 2(1):1–18. ​h​t​t​p​:​/​​/​d​m​.​s​​n​u​.​a​c​.​​k​r​/​s​​t​a​t​i​c​​/​d​o​c​s​​/​t​r​/​s​n​​u​d​m​-​​t​r​-​2​0​1​5​-​0​3​.​p​d​f.

3.	 Anderson KD, Ocneanu A, Carlson DR, Rowe AG, Mario B (2012) BLUED A fully labeled public dataset for event-based non-

intrusive load monitoring research. Proceedings of the 2nd KDD workshop on data mining applications in sustainability 

(7):1–5.

4.	 Angelis G-F, Timplalexis C, Krinidis S, Ioannidis D, Tzovaras D (2022) NILM applications: Literature review of learning 

approaches, recent developments and challenges. Energy and Buildings 261:111951. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​e​n​b​u​i​​l​d​.​2​0​

2​​2​.​1​1​​1​9​5​1

5.	 Bao K, Ibrahimov K, Wagner M, Schmeck H (2018) Enhancing neural non-intrusive load monitoring with generative adver-

sarial networks. Energy Inform. https://doi.org/10.1186/s42162-018-0038-y

6.	 Barth L, Hagenmeyer V, Ludwig N, Wagner D (2018) How much demand side �exibility do we need? In: Proceedings of the 

Ninth International Conference on Future Energy Systems; 12 06 2018 15 06 2018: Karlsruhe Germany. New York, NY, USA: 

ACM

7.	 Batra N, Kelly J, Parson O, Dutta H, Knottenbelt W, Rogers A et al. (2014a) NILMTK. In: Crowcroft J, Penty R, Le Boudex J-Y, 

Shenoy P. Proceedings of the 5th international conference on Future energy systems; 11 06 2014 13 06 2014: Cambridge 

United Kingdom. New York, NY, USA: ACM

8.	 Batra N, Kukunuri R, Pandey A, Malakar R, Kumar R, Krystalakos O et al (2019) Towards reproducible state-of-the-art energy 

disaggregation. In: Proceedings of the 6th ACM International Conference on Systems for Energy-E�cient Buildings, Cities, 

and Transportation; 13 11 2019 14 11 2019: New York NY USA. New York, NY, USA: ACM

9.	 Batra N, Parson O, Berges M, Singh A, Rogers A (2014b) A comparison of non-intrusive load monitoring methods for com-

mercial and residential buildings

10.	 Batra N, Singh A, Whitehouse K (2015) If You Measure It, Can You Improve It? Exploring The Value of Energy Disaggrega-

tion. In: Culler D, Agarwal Y, Mangharam R. Proceedings of the 2nd ACM International Conference on Embedded Systems 

for Energy-E�cient Built Environments; 04 11 2015 05 11 2015: Seoul South Korea. New York, NY, USA: ACM

Fig. 10  Naive query prediction performance compared to cluster query

 

https://doi.org/10.1016/j.jclepro.2021.127904
http://dm.snu.ac.kr/static/docs/tr/snudm-tr-2015-03.pdf
https://doi.org/10.1016/j.enbuild.2022.111951
https://doi.org/10.1016/j.enbuild.2022.111951
https://doi.org/10.1186/s42162-018-0038-y


Page 24 of 26Fabri et al. Energy Informatics            (2025) 8:54 

11.	 BDEW (2024) Nettostromverbrauch nach Verbrauchergruppen. Bundesverband der Energie- und Wasserwirtschaft

12.	 Bertolini M, Mezzogori D, Neroni M, Zammori F (2021) Machine Learning for industrial applications: A comprehensive 

literature review. Expert Syst Appl 175:114820. https://doi.org/10.1016/j.eswa.2021.114820

13.	 Beverungen D, Müller O, Matzner M, Mendling J, vom Brocke J (2019) Conceptualizing smart service systems. Electron 

Markets 29(1):7–18. https://doi.org/10.1007/s12525-017-0270-5

14.	 Bischof S, Trittenbach H, Vollmer M, Werle D, Blank T, Böhm K (2018) HIPE In: Proceedings of the Ninth International Confer-

ence on Future Energy Systems; 12 06 2018 15 06 2018: Karlsruhe Germany. New York, NY, USA: ACM; 

15.	 Chen H, Fei X, Wang S, Lu X, Jin G, Li W, et al (2014) Energy Consumption Data Based Machine Anomaly Detection. In: 2014 

Second International Conference on Advanced Cloud and Big Data; 20.11.2014–22.11.2014: Huangshan, China: IEEE

16.	 Chen K, Wang Q, He Z, Chen K, Hu J, He J (2018) Convolutional sequence to sequence non-intrusive load monitoring. J 

Eng 2018(17):1860–1864. https://doi.org/10.1049/joe.2018.8352

17.	 Chevrot A, Vernotte A, Legeard B (2022) CAE: Contextual auto-encoder for multivariate time-series anomaly detection in 

air transportation. Comput Secur 116:102652. https://doi.org/10.1016/j.cose.2022.102652

18.	 Cui J, Jin Y, Yu R, Okoye MO, Li Y, Yang J et al (2022) A robust approach for the decomposition of high-energy-consuming 

industrial loads with deep learning. J Clean Prod 349:131208. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​j​c​l​e​p​​r​o​.​2​0​2​​2​.​1​3​​1​2​0​8

19.	 Das S, Wong W-K, Dietterich T, Fern A, Emmott A (2016) Incorporating Expert Feedback into Active Anomaly Discovery. In: 

2016 IEEE 16th International Conference on Data Mining (ICDM); 12.12.2016 - 15.12.2016: Barcelona, Spain: IEEE

20.	 Desai S, Alhadad R, Mahmood A, Chilamkurti N, Rho S (2019) Multi-state energy classi�er to evaluate the performance of 

the NILM algorithm. Sensors (Basel, Switzerland). https://doi.org/10.3390/s19235236

21.	 Feng C, Tian P (2021) Time Series Anomaly Detection for Cyber-physical Systems via Neural System Identi�cation and 

Bayesian Filtering. In: Zhu F. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining; 14 

08 2021 18 08 2021: Virtual Event Singapore: ACM Special Interest Group on Management of Data; ACM Special Interest 

Group on Knowledge Discovery in Data. New York,NY,United States: Association for Computing Machinery

22.	 Finder I, Sheetrit E, Nissim N (2022) A time-interval-based active learning framework for enhanced PE malware acquisition 

and detection. Comput Secur 121:102838. https://doi.org/10.1016/j.cose.2022.102838

23.	 Fisher RA (1925) Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh

24.	 Flores-García E, Hoon Kwak D, Jeong Y, Wiktorsson M (2024) Machine learning in smart production logistics: a review of 

technological capabilities. Int J Prod Res. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​8​0​/​0​0​​2​0​7​5​4​​3​.​2​0​2​4​​.​2​3​8​​1​1​4​5

25.	 Garcia FD, Souza WA, Diniz IS, Marafão FP (2020) NILM-based approach for energy e�ciency assessment of household 

appliances. Energy Inform. https://doi.org/10.1186/s42162-020-00131-7

26.	 Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN (2017) Convolutional Sequence to Sequence Learning. Proceedings of 

the 34th International Conference on Machine Learning 1243–52. ​h​t​t​p​:​/​​/​p​r​o​c​​e​e​d​i​n​g​​s​.​m​l​​r​.​p​r​e​​s​s​/​v​7​​0​/​g​e​h​r​​i​n​g​1​​7​a​.​h​t​​m​l​?​r​e​​f​=​

h​t​t​p​​s​:​/​/​​g​i​t​h​u​b​h​e​l​p​.​c​o​m.

27.	 Goernitz N, Kloft M, Rieck K, Brefeld U (2013) Toward supervised anomaly detection. Journal of Arti�cial Intelligence 

Research 46:235–262. https://doi.org/10.1613/jair.3623

28.	 Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press, Cambridge, Massachusetts, London, England

29.	 Gopinath R, Kumar M, Prakash Chandra Joshua C, Srinivas K (2020) Energy management using non-intrusive load monitor-

ing techniques–State-of-the-art and future research directions. Sustain Cities Soc 62:102411. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​s​c​s​.​

2​0​2​0​.​1​0​2​4​1​1​​​​​​​

30.	 Guo L, Wang S, Chen H, Shi Q (2020) A load identi�cation method based on active deep learning and discrete wavelet 

transform. IEEE Access 8:113932–113942. https://doi.org/10.1109/ACCESS.2020.3003778

31.	 Hart GW (1992) Nonintrusive appliance load monitoring. Proc IEEE 80(12):1870–1891. https://doi.org/10.1109/5.192069

32.	 Holmegaard E, Baun Kjaergaard M (2016) NILM in an Industrial Setting: A Load Characterization and Algorithm Evaluation. 

In: 2016 IEEE International Conference on Smart Computing (SMARTCOMP); 18.05.2016 - 20.05.2016: St Louis, MO, USA: 

IEEE.

33.	 Holtz D, Kaymakci C, Leuthe D, Wenninger S, Sauer A (2025) A data-e�cient active learning architecture for anomaly 

detection in industrial time series data. Flex Serv Manuf J. https://doi.org/10.1007/s10696-024-09588-0

34.	 Holweger J, Dorokhova M, Bloch L, Ballif C, Wyrsch N (2019) Unsupervised algorithm for disaggregating low-sampling-rate 

electricity consumption of households. Sustainable Energy, Grids and Networks 19:100244. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​s​e​g​a​

n​.​2​0​1​9​.​1​0​0​2​4​4​​​​​​​

35.	 International Organization for Standardization (2018) ISO 50001:2018: Energy management systems-Requirements with 

guidance for use: Second Edition; 2.

36.	 Jin X. Active Learning Framework for Non-Intrusive Load Monitoring: Preprint; 2016. National Renewable Energy Lab. 

(NREL), Golden, CO (United States) NREL/CP-5500–66273.

37.	 Jing J, Di H, Wang T, Jiang N, Xiang Z (2025) Optimization of power system load forecasting and scheduling based on 

arti�cial neural networks. Energy Inform. https://doi.org/10.1186/s42162-024-00467-4

38.	 Kalinke F, Bielski P, Singh S, Fouché E, Böhm K (2021) An Evaluation of NILM Approaches on Industrial Energy-Consump-

tion Data. In: Proceedings of the Twelfth ACM International Conference on Future Energy Systems; 28 06 2021 02 07 2021: 

Virtual Event Italy. New York, NY, USA: ACM

39.	 Kaymakci C, Wenninger S, Sauer A (2021) Energy anomaly detection in industrial applications with long short-term 

memory-based autoencoders. Procedia CIRP 104:182–187. https://doi.org/10.1016/j.procir.2021.11.031

40.	 Kelly J, Knottenbelt W (2015) The UK-DALE dataset, domestic appliance-level electricity demand and whole-house 

demand from �ve UK homes. Scienti�c data 2:150007. https://doi.org/10.1038/sdata.2015.7

41.	 Klemenjak C (2018) On performance evaluation and machine learning approaches in non-intrusive load monitoring. 

Energy Inform. https://doi.org/10.1186/s42162-018-0051-1

42.	 Klemenjak C, Makonin S, Elmenreich W (2021) Investigating the performance gap between testing on real and denoised 

aggregates in non-intrusive load monitoring. Energy Informatics. https://doi.org/10.1186/s42162-021-00137-9

43.	 Kolter ZJ, Johnson MJ (2011) REDD: A Public Data Set for Energy Disaggregation Research. Workshop on data mining 

applications in sustainability (SIGKDD) 25:59–62

44.	 Kühl N, Hirt R, Baier L, Schmitz B, Satzger G (2021) How to conduct rigorous supervised machine learning in information 

systems research the supervised machine learning report card. CAIS 48(1):589–615.https://doi.org/10.17705/1CAIS.04845

https://doi.org/10.1016/j.eswa.2021.114820
https://doi.org/10.1007/s12525-017-0270-5
https://doi.org/10.1049/joe.2018.8352
https://doi.org/10.1016/j.cose.2022.102652
https://doi.org/10.1016/j.jclepro.2022.131208
https://doi.org/10.3390/s19235236
https://doi.org/10.1016/j.cose.2022.102838
https://doi.org/10.1080/00207543.2024.2381145
https://doi.org/10.1186/s42162-020-00131-7
http://proceedings.mlr.press/v70/gehring17a.html?ref=https://githubhelp.com
http://proceedings.mlr.press/v70/gehring17a.html?ref=https://githubhelp.com
https://doi.org/10.1613/jair.3623
https://doi.org/10.1016/j.scs.2020.102411
https://doi.org/10.1016/j.scs.2020.102411
https://doi.org/10.1109/ACCESS.2020.3003778
https://doi.org/10.1109/5.192069
https://doi.org/10.1007/s10696-024-09588-0
https://doi.org/10.1016/j.segan.2019.100244
https://doi.org/10.1016/j.segan.2019.100244
https://doi.org/10.1186/s42162-024-00467-4
https://doi.org/10.1016/j.procir.2021.11.031
https://doi.org/10.1038/sdata.2015.7
https://doi.org/10.1186/s42162-018-0051-1
https://doi.org/10.1186/s42162-021-00137-9
https://doi.org/10.17705/1CAIS.04845


Page 25 of 26Fabri et al. Energy Informatics            (2025) 8:54 

45.	 Kumar P, Gupta A (2020) Active learning query strategies for classi�cation, regression, and clustering: a survey. J Comput 

Sci Technol 35(4):913–945. https://doi.org/10.1007/s11390-020-9487-4

46.	 Langevin A, Carbonneau M-A, Cheriet M, Gagnon G (2022) Energy disaggregation using variational autoencoders. Energy 

and Buildings 254:111623. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​e​n​b​u​i​​l​d​.​2​0​2​​1​.​1​1​​1​6​2​3

47.	 Li Y, Guo L (2007) An active learning based TCM-KNN algorithm for supervised network intrusion detection. Comput Secur 

26(7–8):459–467. https://doi.org/10.1016/j.cose.2007.10.002

48.	 Liu Y, Ma J, Xing X, Liu X, Wang W (2022) A home energy management system incorporating data-driven uncertainty-

aware user preference. Appl Energy 326:119911. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​a​p​e​n​e​​r​g​y​.​2​0​​2​2​.​1​​1​9​9​1​1

49.	 Maasoumy M, Sanandaji BM, Poolla K, Vincentelli AS (2013) BERDS-BERkeley EneRgy Disaggregation Data Set. Proceedings 

of the Workshop on Big Learning at the Conference on Neural Information Processing Systems (NIPS) (7).

50.	 Martins PBdM, Nascimento VB, Freitas ARd, Bittencourt e Silva P, Pinto RGD (2018) Industrial Machines Dataset for Electrical 

Load Disagreggation. IEEE DataPort.https://doi.org/10.21227/cg5v-dk02

51.	 Mehrotra KG, Mohan CK, Huang H (2017) Anomaly Detection Principles and Algorithms. Springer International Publishing, 

Cham

52.	 Miller C, Meggers F (2017) The Building Data Genome Project: An open, public data set from non-residential building 

electrical meters. Energy Procedia 122:439–444. https://doi.org/10.1016/j.egypro.2017.07.400

53.	 Müller O, Junglas I, vom Brocke J, Debortoli S (2016) Utilizing big data analytics for information systems research: chal-

lenges, promises and guidelines. Eur J Inf Syst 25(4):289–302. https://doi.org/10.1057/ejis.2016.2

54.	 Nalmpantis C, Vrakas D (2019) Machine learning approaches for non-intrusive load monitoring: from qualitative to quanti-

tative comparation. Artif Intell Rev 52(1):217–243. https://doi.org/10.1007/s10462-018-9613-7

55.	 Newell R, Raimi D, Villanueva S, Prest B (2021) Global Energy Outlook 2021: Pathways from Paris. Ressources for the Future 

(8). ​h​t​t​p​s​:​​/​/​m​e​d​​i​a​.​r​f​f​​.​o​r​g​​/​d​o​c​u​​m​e​n​t​s​​/​R​F​F​_​G​​E​O​_​2​​0​2​1​_​R​e​p​o​r​t​_​1​.​p​d​f.

56.	 Norford LK, Leeb SB (1996) Non-intrusive electrical load monitoring in commercial buildings based on steady-state and 

transient load-detection algorithms. Energy and Buildings 24(1):51–64. https://doi.org/10.1016/0378-7788(95)00958-2

57.	 Pang G, Shen C, Cao L, van Hengel A, den (2022) Deep Learning for Anomaly Detection. ACM Comput Surv 54(2):1–38. 

https://doi.org/10.1145/3439950

58.	 Pereira L, Nunes N (2018) Performance evaluation in non-intrusive load monitoring: Datasets, metrics, and tools—A 

review. WIREs Data Min Knowl Discovery. https://doi.org/10.1002/widm.1265

59.	 Pimentel T, Monteiro M, Veloso A, Ziviani N (2020) Deep Active Learning for Anomaly Detection. In: 2020 International 

Joint Conference on Neural Networks (IJCNN): 2020 conference proceedings; 7/19/2020 - 7/24/2020: Glasgow, United 

Kingdom: Institute of Electrical and Electronics Engineers; IEEE Computational Intelligence Society; International Neural 

Network Society. Piscataway, NJ, USA: IEEE

60.	 Ramadan R, Huang Q, Bamisile O, Zalhaf AS (2022) Intelligent home energy management using Internet of Things plat-

form based on NILM technique. Sustainable Energy, Grids and Networks 31:100785. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​s​e​g​a​n​.​2​0​2​2​.​1​

0​0​7​8​5​​​​​​​

61.	 Reddy R, Garg V, Pudi V (2020) A feature fusion technique for improved non-intrusive load monitoring. Energy Inform. 

https://doi.org/10.1186/s42162-020-00112-w

62.	 Ren P, Xiao Y, Chang X, Huang P-Y, Li Z, Gupta BB et al (2022) A survey of deep active learning. ACM Comput Surv 

54(9):1–40. https://doi.org/10.1145/3472291

63.	 Rožanec JM, Trajkova E, Dam P, Fortuna B, Mladenić D (2022) Streaming machine learning and online active learning for 

automated visual inspection. IFAC-PapersOnLine 55(2):277–282. https://doi.org/10.1016/j.ifacol.2022.04.206

64.	 Saba CS, Ngepah N (2022) Convergence in renewable energy sources and the dynamics of their determinants: An insight 

from a club clustering algorithm. Energy Rep 8:3483–3506. https://doi.org/10.1016/j.egyr.2022.01.190

65.	 Settles B (2010) Active Learning Literature Survey. University of Wisconsin, Madison, 52. ​h​t​t​p​s​:​​/​/​m​i​n​​d​s​.​w​i​s​​c​o​n​s​​i​n​.​e​d​​u​/​h​a​n​​d​

l​e​/​1​7​​9​3​/​6​​0​6​6​0.

66.	 Shmueli K, Koppius OR (2011) Predictive analytics in information systems research. MIS Q 35(3):553. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​2​3​0​

7​/​2​3​0​4​2​7​9​6​​​​​​​

67.	 Tanoni G, Principi E, Squartini S (2024a) Non-Intrusive Load Monitoring in industrial settings: A systematic review. Renew 

Sustain Energy Rev 202:114703. https://doi.org/10.1016/j.rser.2024.114703

68.	 Tanoni G, Sobot T, Principi E, Stankovic V, Stankovic L, Squartini S (2024b) A weakly supervised active learning framework 

for non-intrusive load monitoring. Integrated Computer-Aided Engineering 32(1):39–56. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​2​3​3​/​I​C​A​-​2​4​0​7​

3​8​​​​​​​

69.	 Timplalexis C, Angelis G-F, Krinidis S, Ioannidis D, Tzovaras D (2022) Low frequency residential non-intrusive load moni-

toring based on a hybrid feature extraction tree-learning approach. Energy Sources, Part A: Recovery, Utilization, and 

Environmental E�ects 44(1):493–514. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​8​0​/​1​5​​5​6​7​0​3​​6​.​2​0​2​2​​.​2​0​4​​6​6​6​3

70.	 Todic T, Stankovic V, Stankovic L (2023) An active learning framework for the low-frequency non-intrusive load monitoring 

problem. Appl Energy 341:121078. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​a​p​e​n​e​​r​g​y​.​2​0​​2​3​.​1​​2​1​0​7​8

71.	 van Leeuwen R, Koole G (2023) Anomaly detection in univariate time series incorporating active learning. Journal of 

Computational Mathematics and Data Science 6:100072. https://doi.org/10.1016/j.jcmds.2022.100072

72.	 Watson, Boudreau, Chen (2010) Information Systems and Environmentally Sustainable Development: Energy Informatics 

and New Directions for the IS Community. MIS Quarterly 34(1):23.https://doi.org/10.2307/20721413

73.	 Werthen-Brabants L, Dhaene T, Deschrijver D (2022) Uncertainty quanti�cation for appliance recognition in non-intrusive 

load monitoring using Bayesian deep learning. Energy and Buildings 270:112282. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​e​n​b​u​i​​l​d​.​2​0​2​​2​.​1​

1​​2​2​8​2

74.	 Wirth R, Hipp J (2000) CRISP-DM: Towards a standard process model for data mining. In: Proceedings of the 4th Interna-

tional Conference on the Practical Applications of Knowledge Discovery and Data Mining

75.	 Wu Z, Wang C, Peng W, Liu W, Zhang H (2021) Non-intrusive load monitoring using factorial hidden markov model based 

on adaptive density peak clustering. Energy and Buildings 244:111025. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​e​n​b​u​i​​l​d​.​2​0​2​​1​.​1​1​​1​0​2​5

76.	 Yu Z, Kaplan Z, Yan Q, Zhang N (2021) Security and privacy in the emerging cyber-physical world: a survey. IEEE Communi-

cations Surveys & Tutorials 23(3):1879–1919. https://doi.org/10.1109/COMST.2021.3081450

https://doi.org/10.1007/s11390-020-9487-4
https://doi.org/10.1016/j.enbuild.2021.111623
https://doi.org/10.1016/j.cose.2007.10.002
https://doi.org/10.1016/j.apenergy.2022.119911
https://doi.org/10.21227/cg5v-dk02
https://doi.org/10.1016/j.egypro.2017.07.400
https://doi.org/10.1057/ejis.2016.2
https://doi.org/10.1007/s10462-018-9613-7
https://media.rff.org/documents/RFF_GEO_2021_Report_1.pdf
https://doi.org/10.1016/0378-7788(95)00958-2
https://doi.org/10.1145/3439950
https://doi.org/10.1002/widm.1265
https://doi.org/10.1016/j.segan.2022.100785
https://doi.org/10.1016/j.segan.2022.100785
https://doi.org/10.1186/s42162-020-00112-w
https://doi.org/10.1145/3472291
https://doi.org/10.1016/j.ifacol.2022.04.206
https://doi.org/10.1016/j.egyr.2022.01.190
https://minds.wisconsin.edu/handle/1793/60660
https://minds.wisconsin.edu/handle/1793/60660
https://doi.org/10.2307/23042796
https://doi.org/10.2307/23042796
https://doi.org/10.1016/j.rser.2024.114703
https://doi.org/10.3233/ICA-240738
https://doi.org/10.3233/ICA-240738
https://doi.org/10.1080/15567036.2022.2046663
https://doi.org/10.1016/j.apenergy.2023.121078
https://doi.org/10.1016/j.jcmds.2022.100072
https://doi.org/10.2307/20721413
https://doi.org/10.1016/j.enbuild.2022.112282
https://doi.org/10.1016/j.enbuild.2022.112282
https://doi.org/10.1016/j.enbuild.2021.111025
https://doi.org/10.1109/COMST.2021.3081450


Page 26 of 26Fabri et al. Energy Informatics            (2025) 8:54 

77.	 Zhang C, Zhong M, Wang Z, Goddard N, Sutton C (2018) Sequence-to-Point Learning With Neural Networks for Non-

Intrusive Load Monitoring. Proceedings of the AAAI Conference on Arti�cial Intelligence, 32(1). ​h​t​t​p​s​:​​/​/​o​j​s​​.​a​a​a​i​.​​o​r​g​/​​i​n​d​e​x​​.​p​

h​p​/​​a​a​a​i​/​a​​r​t​i​c​​l​e​/​v​i​​e​w​/​1​1​​8​7​3.​https:/​/doi.org/10.1609/aaai.v32i1.11873 

78.	 Zhang J, Lyu Y, Li Y, Geng Y (2022) Digital economy: An innovation driving factor for low-carbon development. Environ 

Impact Assess Rev 96:106821. https://doi.org/10.1016/j.eiar.2022.106821

79.	 Zhao T, Zheng Y, Wu Z (2022) Improving computational e�ciency of machine learning modeling of nonlinear processes 

using sensitivity analysis and active learning. Digital Chemical Engineering 3:100027. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​d​c​h​e​.​2​0​2​2​.​1​

0​0​0​2​7​​​​​​​

80.	 Zheng Z, Sha�que M, Luo X, Wang S (2024) A systematic review towards integrative energy management of smart grids 

and urban energy systems. Renew Sustain Energy Rev 189:114023. https://doi.org/10.1016/j.rser.2023.114023

81.	 Zhou X, Feng J, Li Y (2021) Non-intrusive load decomposition based on CNN–LSTM hybrid deep learning model. Energy 

Rep 7:5762–5771. https://doi.org/10.1016/j.egyr.2021.09.001

82.	 Zhu Y, Yang K (2019) Tripartite active learning for interactive anomaly discovery. IEEE Access 7:63195–63203. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​

g​/​1​0​.​1​1​0​9​/​A​C​C​E​S​S​.​2​0​1​9​.​2​9​1​5​3​8​8​​​​​​​

83.	 Zoha A, Gluhak A, Imran MA, Rajasegarar S (2012) Non-intrusive load monitoring approaches for disaggregated energy 

sensing: a survey. Sensors (Basel, Switzerland) 12(12):16838–16866. https://doi.org/10.3390/s121216838

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional a�liations.

https://ojs.aaai.org/index.php/aaai/article/view/11873
https://ojs.aaai.org/index.php/aaai/article/view/11873
https://doi.org/10.1609/aaai.v32i1.11873
https://doi.org/10.1016/j.eiar.2022.106821
https://doi.org/10.1016/j.dche.2022.100027
https://doi.org/10.1016/j.dche.2022.100027
https://doi.org/10.1016/j.rser.2023.114023
https://doi.org/10.1016/j.egyr.2021.09.001
https://doi.org/10.1109/ACCESS.2019.2915388
https://doi.org/10.1109/ACCESS.2019.2915388
https://doi.org/10.3390/s121216838

	Fostering non-intrusive load monitoring for smart energy management in industrial applications: an active machine learning approach
	Lukas Fabri, Daniel Leuthe, Lars-Manuel Schneider, Simon Wenninger
	Nutzungsbedingungen / Terms of use:
	CC BY 4.0  


