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algorithms with a benchmark model by efficiently selecting a subset of training data
through three query strategies that identify the data requiring labeling. We show that
the active learning model achieves satisfactory accuracy with minimal user input. Our
results indicate that our model reduces the user input, i.e,, the labeled data, by up

to 99% while achieving between 62 and 80% of the prediction accuracy compared
to the benchmark with 100% labeled training data. The active learning model

is expected to serve as a foundation for expanding NILM adoption in industrial
applications by addressing key market barriers, notably reducing implementation
costs through minimized worker-intensive data labeling. In this vein, our work lays
the foundation for further optimizations regarding the architecture of an active
learning model or serves as the first benchmark for active learning in NILM for
industrial applications.
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Introduction

The ongoing digitalization and the use of digital technologies such as machine learning
has allowed smart service systems to become a core of technological developments [12,
13, 24]. Notably, the potential of smart energy management is increasingly recognized and
finds its way into research and practice [1, 37, 38, 80]. This is due to the sustained increas-
ing electrical energy demand in today’s applications, ranging from personal devices to
industrial applications, which is expected to increase by approximately 85% over the next
two decades [1, 55]. Especially energy-intensive industrial nations such as Germany, where
the industrial sector is responsible for around 45% of the electrical energy consumption
[11], need to act to achieve efficient energy usage [64]. Consequently, companies introduce
smart energy management to enforce energy reduction [1, 78]. Non-Intrusive Load Moni-
toring (NILM) is an emerging approach to enable more sophisticated smart energy man-
agement [4, 18, 48]. NILM estimates the power consumption of individual applications
from aggregated power measurements [29, 31]. In contrast to intrusive load monitoring,
NILM equalizes the implementation of expensive submetering while providing valuable
information for energy-saving decision-making [18, 25]. Use cases of NILM include energy
monitoring, demand side management, peak shaving, job scheduling and anomaly, and
fault detection for saving energy [6, 29, 37]. For example, early detection of those faults or
anomalies with the help of NILM avoids economic, energy, and environmental losses due
to, e.g., maintenance cost reduction, machine fault reduction, increased spare part life, or
the identification of inefficient applications [29].

Current NILM research focuses on technical and data science dimensions, including
mathematical optimization and supervised and unsupervised machine learning algo-
rithms [5, 18]. Unsupervised algorithms are suitable when labeled data is absent, but
their accuracy remains typically lower than supervised algorithms as those are trained
on labeled data [18, 29]. The primary application area of NILM is smart energy monitor-
ing in the residential sector [25, 46, 67, 81]. However, although NILM has existed for
decades, it has not been widely adopted in industrial applications [18, 29, 32]. The rea-
sons are NILM’s complexity and the lack of industrial data labels for promising super-
vised algorithms [21]. Nevertheless, labeling new data in an industrial environment
requires domain-specific knowledge, is time-consuming and expensive to obtain—thus
often unattractive in practice [21, 76]. Labeling in the context of NILM means determin-
ing the disaggregated applications from the total electrical energy consumption and to
what extent they were used at the given timestamp.

Consequently, the objective of this work is to reduce labeling efforts. Therefore,
research introduced the concept of active learning [30, 65], which is applied in various
disciplines [4, 19, 33, 45, 62]. Active learning is a machine learning approach in which
experts query the unlabeled data with the highest level of informativeness to subse-
quently provide targeted feedback to the learning algorithm to improve its performance
[19, 51]. In the context of NILM, the labeled data is used for training the disaggrega-
tion algorithms that predict the energy consumption of the individual applications. In
other domains besides NILM such as anomaly detection in industrial time series data
or quality control for visual defect inspection, previous research has shown the poten-
tial of active learning to reduce the labeling effort [33, 63, 71, 79]. In this regards, previ-
ous work using active learning for NILM has mainly focused on residential loads and
residential buildings, whereby active learning was able to achieve a reduction in data
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labeling of up to 90% [30, 68, 70]. Nevertheless, research considering industrial appli-
cations has so far fallen short, as industrial applications present complex consumption
patterns due to the varying number of heterogeneous loads and NILM algorithms neces-
sitate extensive labeled datasets, which are scarce in industrial settings [21, 33]. There-
fore, this work integrates an active learning model into NILM for industrial applications.
Reducing the effort, especially in an industrial environment, increases the attractiveness
of NILM. This enables smart energy management and therefore favors companies eco-
logically and economically. Hence, we pose the following research question (RQ):

How does an active learning model perform compared to established supervised learn-
ing models in NILM systems for industrial applications?

To answer our RQ, we develop an active learning model using the HIPE data set based
on a real-world production plant [14]. We implement our model to validate the under-
lying concept of reducing the labeling effort. Our methodology is based on the Cross-
Industry Standard Process for Data Mining (CRISP-DM). The proposed model does not
replace existing NILM techniques. Instead, it complements its techniques by signifi-
cantly reducing data labeling and user effort while maintaining appropriate disaggrega-
tion accuracies. Hence, we reduce the concerns about the cost of NILM and make them
more applicable for reducing energy consumption.
This work contributes to research and practice in three ways:

« First, we combine the two research streams on NILM for industrial applications [29,
38] and the research on active learning [19, 36].

+ Second, we develop an active learning model, define the best-performing architecture
depending on the disaggregation algorithms to separate individual applications’
energy consumption, and compare three query strategies to select a subset of the
training data efficiently.

+ Third, the resulting active learning model fosters the introduction of a cost-effective
NILM system that enables practitioners to save energy through smarter energy
management and contribute to cleaner production.

The remainder is structured as follows: In Section “Theoretical background’, we explain
the foundations of active learning and examine previous research. In Section “Method
development’, we present our research approach and the design of the active learning
model. In Section “Data and evaluation’, we introduce the data set and the evaluation
metrics. Afterward, in Section “Results’, we show the results based on a comparison
with a benchmark and a sensitivity analysis. We discuss the results obtained and point
out further research in Section “Discussion” before concluding in Section “Conclusion”.

Theoretical background

Active learning

Due to the limits of NILM, active learning is a promising approach to enhance NILM s
usage, especially in industrial applications with high electrical energy demand [1, 36].
Active learning is a subfield of machine learning that excels through interactively querying
input of an expert system named as an oracle (often a human annotator), that provides the
corresponding labels for model training [19]. A defined algorithm, called an active learner,
queries the data based on an unlabeled data pool from which it expects better learning
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success. An active learning model consists of two main components, as shown in Fig. 1:
a query engine that selects the data instances from the unlabeled pool and the oracle that
provides the labels [22, 47]. Hence, the idea is to select a minimum amount of unlabeled
data instances to learn from that are annotated by a domain expert, maximizing the learn-
ing ability [65, 75]. In the context of active learning, the goal of the query is to select the
data instances with the greatest information content so that the resources of the expert
system (i.e., oracle) are used efficiently [33]. Goernitz et al. [27] identify the appropriate
query strategy as the central challenge of active learning. In this way, the domain expert is
not occupied with the distinction of data that contribute less to the success of the defined
machine learning problem but can focus on data that significantly advance the training
process [59]. Common use cases for active learning are speech recognition and medical
classification. Thus, active learning is adopted in scenarios where data is abundant, but
labels are complex, time-consuming, or expensive to obtain [65].

Literature provides many query strategies for unlabeled instance selection, divided
into three streams [45]: Membership query synthesis, pool-based sampling, and stream-
based sampling. Membership query synthesis is a strategy for generating queries based
on some membership criteria for labeling. However, this approach is unsuitable for
NILM due to the complexity of accurately simulating realistic appliance signatures [18,
36]. In pool-based sampling, queries are selectively drawn from an unlabeled data pool
(Fig. 1). Based on the level of informativeness, all samples are ranked and then used for
training. Stream-based sampling is similar to pool-based sampling, besides it queries the
samples individually [65]. Overall, pool-based sampling, which involves assessing and
ranking the informativeness of all samples within a substantial unlabeled dataset before
selecting the most valuable ones for labeling, is best suited for NILM. It effectively man-
ages extensive datasets, prioritizes the most informative samples for model training,
and targets scenarios where many unlabeled samples are collected simultaneously [19].
Within the pool-based sampling, several specific query strategies have been identified
as useful for NILM: naive query, extreme query, and cluster-based query strategy [19].
The naive query strategy involves randomly selecting samples from the unlabeled pool
for labeling. While it does not actively prioritize informative instances, it serves as a
baseline for evaluating the effectiveness of more sophisticated strategies. The extreme
query strategy focuses on selecting samples with extreme or outlier feature values. In
the context of NILM, these extreme instances often correspond to unique or rare appli-
ance events and labeling them can significantly enhance the model's ability to recognize
and disaggregate such events. Lastly, the cluster-based query strategy involves cluster-
ing the unlabeled data based on feature similarity and selecting representative samples

(@)

Update Model ———h

Oracle
Query
Label
Data Pool
(unlabeled) <
Model Xi
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Fig. 1 Active learning—Pool-based sampling scenario
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from each cluster for labeling. This ensures that the model learns from a diverse set of
appliance signatures, improving its generalization across different appliance types [27,
33, 65].

Related work

Hitherto, research regarding NILM focuses on technical aspects (e.g., mathematical opti-
mization, pattern recognition, and machine learning) to improve NILM applications [5,
37, 67]. An open-source NILM Toolkit was proposed to enable an empirical comparison
across the disaggregation algorithms [7]. Providing a complete pipeline from data sets to
performance metrics, the NILM Toolkit lowers the entry barrier for NILM research [e.g.,
32, 38, 75]. Nevertheless, the application domains and the temporal resolution of the avail-
able data show only slight variations over the data sets. Table 1 shows that research and
data on NILM focus on household settings and mainly consider residential buildings [e.g.,
3, 40, 43]. The reasons for the lack of industrial data are three-fold: First, most compa-
nies do not collect granular electricity data on an application level. Second, even if they
do so, they rarely publish their data [38]. Third, household data is more accessible to
aggregate due to less complex applications and, therefore, more straightforward to trans-
fer between households. While researchers acknowledge NILM s importance in industry,
data collected from industrial applications are rare and mainly comprise data with a low-
frequency sample rate [50, 83]. Only a few articles provide an industrial perspective [e.g., 9,
32, 38, 50]. In the industrial sector, the assumptions made for NILM differ from residential
houses. In commercial buildings, the base load of applications tends to be higher than in
households [9]. Hence, this implies that most low-frequency methods would fail to disag-
gregate the respective portion of electrical energy.

Nevertheless, research shows that NILM algorithms can replace resource-consuming
submeter hardware in the industrial context [32]. However, this does not tackle the issue
of having too much data lacking class labels in the industrial sector. Against this back-
drop, and often having limited resources for manual labeling, a combination of active
learning with NILM systems is a promising approach [30, 36]. This is mainly due to the

Table 1 Focus of NILM's application and the combination of active learning in research

References Residential focus Industrial Active Public
focus learning data set
Kolter and Johnson [43] v - - v
Anderson et al. [3] v - - v
Kelly and Knottenbelt [40] v - - v
Holweger et al. [34] v - - v
Wu et al. [75] v - - 4
Langevin et al. [46] v - - v
Werthen-Brabants et al. [73] v - - v
Timplalexis et al. [69] v - - v
Jin [36] v - v v
Guo et al. [30] v - v v
Todic et al. [70] v - v v
Tanoni et al. [68] v v v
Batra et al. [9] v - 4

Holmegaard and Baun Kjaergaard [32]
Martins et al. [50]

Kalinke et al. [38]

- Not fulfilled; ¥ fulfilled
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fact that NILM data in industrial applications refers to easy-to-obtain energy data (e.g.,
using installed sub-meters or in-system meters used for energy monitoring) as opposed
to common hardly accessible mechanical data or process data [33]. Hence, NILM com-
bined with active learning is gaining attention for industrial energy management [67].
In this vein, Guo et al. [30] present an active deep learning NILM method using discrete
wavelet transform features. It targets large-scale datasets by actively selecting the most
valuable power signal samples to label, either in a pool-based or stream-based query
strategy. The authors form a mixed dataset from three public NILM datasets (covering
residential loads) to evaluate the active learning query strategies. The approach reduces
the labeling costs, i.e., 33% fewer labeled samples are needed than the supervised base-
line model. Similarly, Jin [36] proposes an active learning framework to enhance NILM
by interactively querying users for minimal class label information based on a k-Nearest
Neighbors classifier. The framework is validated using the BLUED dataset covering resi-
dential loads. This approach reduces the manual labeling burden, achieving similar dis-
aggregation performance while requiring up to 90% fewer user inputs. Compared to Guo
et al. [30], focusing on feature extraction and sample selection strategies, Jin [36] empha-
sizes minimal user interaction to decrease labeling costs. On step further, Todic et al.
[70] adapt a deep learning disaggregation model for NILM using active learning and
compare different query strategies. The authors use the public available REFIT dataset
which consists of four residential appliances. The results show that with active learning,
the model achieves comparable accuracy using only 5-15% of the training data, greatly
lowering labeling costs. Similar results are achieved by Tanoni et al. (2024b) as they pro-
pose a combined weakly supervised and active learning approach. They validate their
architecture using two public datasets, each covering residential loads from different
households. The combined approach reduced the amount of labeling required by almost
90%. All in all, the combination of NILM and active learning could reduce the labeling
effort by up to 90% while delivering similar disaggregation results [30, 36, 68].

In sum, research shows the potential of using active learning to reduce labeling costs.
While existing research on NILM and active learning focuses on residential buildings,
only a few works consider an industrial perspective as described in the previous para-
graph [67]. The reasons are that, first, industrial environments present intricate aggre-
gate consumption patterns due to the vast number of heterogeneous electrical loads,
complicating the accurate disaggregation of individual load signatures. Second, super-
vised NILM algorithms necessitate extensive labeled datasets, which are scarce in
industrial settings as they require domain-specific expertise, making the process both
time-consuming and costly, thereby deterring practical implementation [21, 33]. How-
ever, given the promising approaches, combined methods could foster NILM’s dis-
semination within smart energy management in the industrial sector to enforce energy
reduction. Consequently, this work investigates the performance of active learning in
combination with NILM for industrial applications.

Method development

Research approach

A suitable methodology is necessary to address the RQ and benchmark our model
against established NILM models for industrial applications. To meaningfully compare
different models, we derived a five-step process from the CRISP-DM and the guidelines
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by Miiller et al. [53] for extensive data analysis. Generally, the CRISP-DM provides a
standardized process in six steps: “Business Understanding’; “Data Understanding’,
“Data Preparation’, “Modeling’, “Evaluation’, and “Deployment” [74]. We explain our

derived process steps in the following:

Business understanding We adapt the initial first step of the CRISP-DM to compare
different models and, hence, infer a benchmark problem in terms of the underlying busi-
ness understanding. This is in line with the RQ of how an active learning model performs
compared to established supervised learning models in NILM systems for industrial
applications. Relevant to our benchmark problem, we collect domain-specific knowl-
edge about model performance in NILM systems for industrial applications. We intro-
duce domain-specific knowledge in Section “Theoretical Background”, providing the
theoretical background for NILM and active learning and examining previous research
approaches. For the benchmark, we use the NILM Toolkit API as described in Sect. 2.3,
a standard for reproducible comparisons of energy disaggregation algorithms [7, 61]. We
further compare it with three different applied algorithms (i.e., Mean algorithm, Com-
binatorial Optimization algorithm, Sequence to Sequence algorithm) for the load disag-
gregation. Those three algorithms and their selection justification are further explained in
Section “Active learning architecture” After selecting the benchmark model for compari-
son, we modify the CRISP-DM again by introducing our performance evaluation mea-
sures, as explained in Section “Data description and preparation’, before proceeding with
data understanding.’

Data understanding This step has not been modified. The underlying dataset consists of
smart meter readings from ten industrial applications and the readings of the main terminal
of a power electronics plant. Data is available for three months with a 5 s resolution. Our
study includes exploratory data analysis, explained in Section “Data and Evaluation”.

Data preparation: This step was not modified either. We prepare the data by converting
it to HDF format and slicing the time period considered. Afterward, we interpolate the
missing data and reduce noise in the main terminal. Last, we shrink the data set (Section
“Data description and preparation”). This procedure ensures high data quality for reliable
results.

Modeling, comparison & evaluation In these steps, we implement and train our active
learning model (see Section “Results”). Within this phase, we define the active learn-
ing architecture with its components, as illustrated in Section “Active learning architec-
ture” It includes query strategies and algorithm training. The modeling step is performed
iteratively and completed when all models'parameters have been optimized. To increase
reproducibility, the resulting parameters of the models are in the respective Table 5 (i.e.,
machine learning report card according to Kiihl et al. [44]) in Appendix A. Subsequently,
we validate the designed active learning model. Afterward, we evaluate the results against
a benchmark using four established performance evaluation measures (Sect. 4.3). The
benchmark is based on all available training data with the same sampling rate as the active

Note, the dataset was already at our disposal when we started with our study. Hence, we did not include “Data Col-
lection” to our derived process. Nevertheless, this step could be set in parallel with the definition of the performance
measure to allow a general process application and to enable further studies starting without available datasets.
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learning model. Hence, within the benchmark, we assume that 100% of the initially unla-
beled training data is labeled and then used for the subsequent disaggregation predic-
tions. We use the same three disaggregation algorithms as in the active learning model
for these predictions.

Deployment: This step largely coincides with the deployment step in the original CRISP-
DM, which involves the framework of the productive operation. Besides the discussion
chapter, we disregard the last step for most of this work because it is out of scope. We
discuss our results and present derived implications for policy, research, and commercial
application in Section “Discussion”

In this vein, our results solve the defined problem with our RQ and close the CRISP-DM
process cycle.

Active learning architecture

To realize the active learning architecture within the research step “Modeling, Compari-
son & Evaluation’, we combine an unsupervised model with a supervised model involv-
ing a feedback module by building on Das et al. [19] and Pimentel et al. [59]. We extract
further information from the data with the unsupervised model’s help, increasing the
data’s efficient usage. Figure 2 illustrates the architecture’s components.

Unsupervised model

We base the selection of the unsupervised model on the taxonomy of deep learning
approaches for anomaly detection [57]. Thus, we utilize an Autoencoder (AE) which
outperforms the compared methods [57]. AEs are trained using unsupervised learning
on unlabeled training data. The AE consists of two different neural network types, an
encoder and a decoder, with a so-called bottleneck in between. The encoder takes the
unlabeled data D = {1, ..., z,, }, where D is a data set with n observations and z; € R,
as an input vector to compress it from a high-dimensional input space to a lower dimen-
sion, called latent space. The decoder reconstructs the input vector from the low-dimen-
sional latent representation [17]. They learn the reconstructions close to their original
input, thus ignoring the noise in the data [28]. The difference between the original input

Unlabeled Training Data

D= (X X} B“dlget
Unsupervised Model Model Information Feedback Module
(Anomaly Scores) e
> Query Tmin?;cllgeDma Expert
Autoencoder Strategy D,= X1y} System

Labeled Training Data
D= {(x1, Y1) (¥ Y)}

A 4

Active Model
|_ ______________ 1
. Legend: 1 Supervised
I —p Information/data flow : Model
1 mpBudget constraint .
U L
Prediction §

Fig. 2 Components of the active learning architecture depicting an unsupervised model, a budget constraint
feedback module, and a supervised model



Fabri et al. Energy Informatics (2025) 8:54 Page 9 of 26

vector and the reconstructed vector is called reconstruction error. For AE-based anom-
aly detection, we use the reconstruction error as the anomaly score [2, 46]. Data with
high reconstruction errors are considered anomalies. The purpose of the unsupervised
model is to provide model information that rates each data point’s anomaly score [4].

Feedback module

The feedback module serves as a labeling entity for the training data. The module’s
output represents a set of labeled data (z,y) as shown in Fig. 2. The unlabeled train-
ing data and the described unsupervised model form the input. Hence, the feedback
module consequently has access to the anomaly scores. The feedback module consists
of the query strategy and an expert system, i.e., oracle (Fig. 2). The budget represents the
capacity constraint that determines the output of labeled data and hence the capacity
of the expert system [19]. First, the query strategy selects a subset D, = {21, ..., 2, } of
the input training data based on the information provided by the unsupervised model.
Subsequently, the data are labeled by the expert system. To achieve the highest impact
of the limited labeling capacity, active learning aims to maximize the informativeness
of the labeled data for the following supervised model [19, 36]. Again, labeling means
determining the connected applications and to what extent they were used at the given
timestamp. Within this work, the expert system is simulated. We assume the expert sys-
tem is flawless, always assigning the correct data labels [82].

We compare naive, extreme, and cluster queries introduced by [27], as illustrated in
Fig. 3 and previously described in Sect. 2.1. Naive queries describe the random selec-
tion of data instances as part of the unlabeled training data. Additional information
like anomaly scores is not considered. Consequently, only a few anomalies are queried,
proportional to the budget. Extreme queries select the data most likely to be anoma-
lies based on their anomaly score. Hence, this query strategy uses the information pro-
vided by the unsupervised model and queries them in descending order until the budget
is reached. This strategy is advantageous if the proportion of anomalies in the training

data set is small since this allows for finding as many supposedly informative anomalies

Naive Query

(a) ® eeece e e 00000 0 00 0 0 @We® @ o 4o 4 eb tD
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Extreme Query

(b) e eo 0o o ©0 00000 0 00 0 0 000 o o 4o OB AV

0‘.0 0.2 074 076 0.’9 l.’O
Normalized anomaly score

Cluster Query
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Fig. 3 Graphical comparison of the naive, extreme, and cluster query strategies
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as possible [19, 59]. Cluster queries focus on selecting data equally from different clus-
ters of the provided data set regardless of the density of each cluster. The latent space is
divided into clusters using, e.g., a k-means clustering algorithm [19]. Thus, this query
prevents a disproportionate sample selection [27].

Supervised model

The supervised model uses the labeled data for training. We use three different algo-
rithms (i.e, Mean algorithm, Combinatorial Optimization algorithm, Sequence to
Sequence algorithm) for the load disaggregation. First, the Mean algorithm estimates the
output usage of an application to be the mean computed over the training data. As stated
by previous work, the Mean algorithm is a strong benchmark for evaluating other dis-
aggregation algorithms [20, 32]. Second, we use the Combinatorial Optimization (CO)
algorithm, which also serves as a baseline algorithm in existing NILM literature [10, 31,
60]. The assumption is that each application can be in a given state (1 of K where K is a
small number), where each state has an associated power consumption [8]. The objec-
tive of the CO algorithm is to assign states to applications so that the difference between
the aggregate power reading and the sum of power usage distributed over the different
applications is minimized. Third, we consider Sequence to Sequence (Seq2Seq) learn-
ing. Seq2Seq learning is a neural network that uses 1-dimensional convolutions to map
an input sequence to a variable length output sequence and delivers promising results
in research [26, 77]. This approach trains one deep neural network per application and
learns its behavior based on input data sequences. Seq2Seq is suitable for load disaggre-
gation in NILM and outperforms classical algorithms [16, 77].

Data and evaluation

Public datasets

Publicly available energy-related data sets primarily consist of energy data of residential
or office buildings, with a granularity of ten or more minutes [14, 58] such as the UK-
DALE [40], the BLUED [3], or the REDD-dataset [43].

Commercial data sets are far less publicly available [14]. To the best of our knowl-
edge, only four have been released to date—two for commercial buildings and two for
industrial applications. The EnerNOC data set collected data across different commer-
cial buildings with a 5-min resolution [52]. The BERDS data set provides the energy
consumption data of applications at a 15-min resolution in a commercial building [49].
Neither data set contains high-frequency sampled data. Hence, both have limited appli-
cability for NILM. For industrial applications, only two publicly accessible data sets
suitable for NILM research exist. First, the IMBELD data set contains six industrial
applications [50]. The monitored machines are solely applications in terms of energy
consumption with two possible states, “on” and “oftf” Second, the HIPE data set is an
industrial energy data set and the most comprehensive one released so far [14]. Since
this work focuses on removing barriers regarding NILM’s adoption in industrial applica-
tions, we use the HIPE data set due to its high data quality and realistic applicability.

Data description and preparation
The HIPE data set contains smart meter readings of ten industrial applications and the

main terminal’s readings over three months at a 5-s resolution from a power-electronics
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plant. The plant produces electronic systems for battery systems in small batches, i.e.,
less than 1000 pieces. The data is collected via high-resolution smart meters and sam-
pled with a frequency of 0.2 Hz containing various electrical quantities like active, reac-
tive, and apparent power. The load signature of the monitored applications ranges from
simple, with two possible states, to complex, with continuously variable states. Table 2
gives an overview of the applications considered in the HIPE dataset and their respec-
tive energy consumption. The different applications’ usage and energy consumption vary
strongly, and their usage depends on each other (Appendix B). Such dependencies are
unusual for a household setting and are characteristic of industry data [38, 43].

The raw data set has been pre-processed to remove measurement errors. However, the
measurements are not equidistant, i.e., the time between subsequent measurements var-
ies. Usually, the temporal resolution of the data points is about 5 s. Nevertheless, there
are cases where the time between successive data points is several minutes due to main-
tenance. To tackle that issue, the data points between these outliers have been interpo-
lated to achieve equal distances between the measurements. This ensures uniformity in
the dataset, facilitating more accurate analyses. To reduce existing noise included in the
load profile, the main terminal and the submetered applications are leveled by subtract-
ing the baseload from the main terminal. This enhances the clarity of the data by reduc-
ing fluctuations unrelated to the primary signals of interest. The data was collected from
2017-10-01 to 2018- 01-01. The machines did not run at the end of December, and the
3rd of October is a German holiday. In turn, we limit the period from 2017-10-04 to
2017-12-21, matching the used time frame in previous research [14].

Performance evaluation measures

Evaluating the disaggregation performance for NILM requires performance evaluation
measures—PEMs [4, 41, 66]. Nalmpantis and Vrakas [54] and Klemenjak et al. [42] pro-
vide an overview of the most commonly-used PEMs split into two categories. The first
category is based on the comparison between the observed aggregate power signal and
the reconstructed signal after disaggregation. Within this category, they mention the

Table 2 Overview of the applications, their description and their respective energy consumption
within the HIPE dataset [14]

Application Description Total en-
ergy con-
sumption
[kWh]

Chip press Heat treatment of surfaces under high pressure, e.g., for multi-layered 246.26

printed circuit board

Chip saw Separation of chips of a silicon wafer 51.40

High-temperature Fixing layers for thick-film technology (heats up to 1200 °C) 250.14

oven

Pick and place unit  Placement of electronic components such as resistors and microcontrollers ~ 60.64
on a printed circuit board

Screen printer Printing of material layers to interconnect electronic components 63.46

Soldering oven Components soldering to the printed circuit board 186.95

Vacuum oven Oven with a vacuum chamber 10.83

Vacuum pump 1 Auxiliary machine to generate vacuum for other machines such as the Pick 27141
and Place Unit

Vacuum pump 2 Auxiliary machine to generate vacuum for other machines such as the Pick 65.71

and Place Unit
Washing machine Cleaning of the printed circuit board at the end of the production line 81.74
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Root-Mean-Square Error (RMSE), the Mean Absolute Error (MAE), and the Normal-
ized Disaggregation Error (NDE). The second category describes how effectively the dis-
aggregated signal signatures are assigned to the application signatures. The main PEMs
used are Precision, Recall, and the resulting F-Score. The F-Score provides a balance
between precision, i.e., the ratio of correctly assigned signatures to the total number of
assigned signatures, and recall, i.e., the ratio of correctly assigned signatures to the total
number of actual signatures [33]. Table 3 shows the PEMs, including their formal defini-
tions, units, value ranges, and optima.

F; and A; are the predicted and actual values for a data instance i, N is the sample
size, and A is the mean of all actual values A;. The value range represents a right-hand
infinite closed interval including the value “0” for each metric. Each PEM exhibits dif-
ferent characteristics, leading to different outcomes of prediction accuracy. With the
RMSE, comparing applications with high differences in power consumption (i.e., a high-
temperature oven and a LED light bulb) is challenging [34, 54]. Hence, we also consider
the NDE as it normalizes the squared error of a single application by the total energy of
the signal (Klemenjak et al. [42]). The MAE is well-known in signal processing and is
similar to the RMSE [41, 42]. However, unlike the RMSE, the MAE does not penalize
outliers with quadratic weight. Outlier sensitivity is essential, as high deviations between
predicted and actual values are not beneficial for NILM. To further evaluate the perfor-
mance of the proposed active learning algorithm, it is necessary to detect whether an
application is on or off. Hence, as a fourth PEM, we apply the F-Score [8]. Furthermore,
as the F-Sore is unitless, it provides an intuitive understanding of the PEMs for readers
unfamiliar with this subject. As selecting the best-suited PEM is not trivial, comparing
several PEMs is preferable [66].

Results

Comparison to benchmark

First, we show the active learning model’s results before introducing the benchmark mod-
el’s prediction results. Following, we contrast the scores of the three tested disaggregation
algorithms of the active learning model with the results of the benchmark model. For this
comparison we only consider the values of the best-performing query strategy.

In general, the cluster query strategy outperforms both the naive and extreme query
strategies over all tested permutations and across all considered PEMs, as shown in
Appendix E. Looking at the individual mean values across all ten appliances, we can sur-
mise significant differences between them. A one-way ANOVA test, which tests the means

of several groups for equality [23], shows at a significance level of 0.1 that at least one mean

Table 3 Overview of the performance evaluation measures used for the disaggregation

performance
Measures Abbreviation Equation Unit, value range Optimal value
Root-mean-square error RMSE ~ kW h, [0, 00) 0
[y (Fi—Ay?
N
Mean absolute error MAE % EN |F; — Ay KWh, [0, 00) 0
i=1 i
Normalized disaggregation NDE ZN (F—A;)2 EWh, [0, c0) 0
i=1
error B v a—
Zi:l A2
F-score F-score 2X Precicion X Recall [O/ 1] 1

Precicison X Recall
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is statistically significantly different from the others (see Appendix E for details). Limit-
ing the number of queried samples per cluster prevents the feedback module from picking
too much data from one cluster while still considering outliers with high anomaly scores
and thus using samples from the entire latent space. In contrast, the naive query selects a
majority of the samples from high-density clusters with low anomaly scores and little ben-
efit to the active learning model, the extreme query selects isolated outliers which are less
common and lead to poor reconstruction. Hence, for the comparison to the benchmark,
we solely consider the results of the cluster query strategy.

Figure 4 displays the disaggregation performance of the active learning model using
a budget size of 1% of the data for training the disaggregation algorithm. The Seq2Seq
algorithm achieves the best average prediction performance across all considered PEMs
(RMSE =335.88, F-Score =0.33, MAE =99.75, NDE =0.83) compared to the CO (RMSE
=530.95, F-Score =0.32, MAE =129.74, NDE =1.62) and the Mean (RMSE =554.09,
F-Score =0.25, MAE =343.76, NDE =1.09). Furthermore, conducting another one-way
ANOVA test for all three algorithms, a 1% budget, the cluster query strategy and MAE
as a PEM for each application, resulted in a p-value of 0.03 which shows strong statistical
significance of the algorithm selection assuming again a significance level of 0.1. We note
that the standard deviation of the algorithms varies considerably. Across all PEMs, the
Seq2Seq algorithm shows the widest spread of possible results. In contrast, the Mean
algorithm barely shows any volatility. By design, the Seq2Seq algorithm has more flex-
ibility than the optimization problem of CO and the Mean disaggregation. The boxplots
visualize this behavior of the algorithms.

Table 6 in Appendix C contains the average benchmark values displaying the best in
bold print. This benchmark only consists of the results of the Seq2Seq algorithm since
it received the best disaggregation performance across all considered PEMs. The disag-
gregation performance of the benchmark model shows that even with the best possible
preconditions, i.e., the fully labeled training data and the most suitable algorithm, the
data set is difficult to disaggregate. These observations support previous research find-
ings from other studies [38]. The scores for the respective PEMs differ among the indi-
vidual applications mainly depending on the pattern of their load profile. As visualized
in Appendix B, certain applications stand out because of their especially good or poor
disaggregation performance. As with the benchmark model, the active learning model
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500 — 300
% 450 % 250
2 = 200
400
150 .
e
100 =
Seq2Seq co Mean Seq2Seq co Mean
Algorithm Algorithm
L6 —
035 14
2 . @
8 =)
] g 12
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1
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- o
Seq2Seq co Mean Seq2Seq co Mean
Algorithm Algorithm

Fig. 4 Active learning prediction results using 1% budget size and ten iterations presented as RMSE, MAE, F-score,
and NDE performance evaluation metrics
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Table 4 Mean prediction results for 1% budget size comparing the benchmark model with the
active learning model and considered algorithms

Algorithm RMSE F-score MAE NDE
Benchmark model Seq2Seq 279.53 047 7241 0.65
Active learning model Seq2Seq 335.88 034 99.75 0.83
Active learning model Cco 530.95 032 129.74 1.62
Active learning model Mean 554.01 0.25 343.76 1.09
- ‘x . 100%
1%}
E 200 E 50!
100 ‘
0 — ol | .
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Fig. 5 Comparison of the active learning model with a varying budget size (0.1,0.5, 1, 2 and 5%) and benchmark
prediction results on the whole data set

benefits some applications more than others. Appendix D shows the ratio when compar-
ing the results of the active learning model against the benchmark model. In most cases,
the scores of the active learning model are lower than the benchmark model. However,
in the case of the high-temperature oven, scores are similar with a ratio above 0.9 or
even equal in the case of the Pick and Place Unit.

We focus on comparing the average disaggregation results across all measured appli-
cations, thus the arithmetic mean. Table 4 shows the scores of both the benchmark and
active learning models. The benchmark model achieves better scores on all PEMs, with
the active learning model using the best algorithm (Seq2Seq) reaching around 70% of its
accuracy. The CO and Mean algorithm scores display the difficulty of disaggregating the
load profile of the considered data set.

Sensitivity analysis

Figure 5 compares the disaggregation performance of the proposed active learning
model against the benchmark. Analogous to the benchmark, we solely pick the best-
performing algorithm of the active learning model for comparison against the bench-
mark. We use a sensitivity analysis varying the budget size between 0.1% and 5% of the
total training data to investigate to what extent a variation in the budget size influences
the performance of the active learning model. Total data points correspond from 1,054
to 52,705 queries of unlabeled data that are then labeled through the expert system.
Essentially, the budget can be considered a special hyperparameter of the active learning
model that needs to be optimized. However, the goal of this work is not to minimize the
number of queried samples or to achieve the best possible prediction performance but
to reduce the use of the expert system to a feasible level while still achieving satisfactory
disaggregation results. For most PEMs, the first three budget sizes significantly impact
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the disaggregation results, then slowing down towards the benchmark. As anticipated,
the disaggregation results of the active learning model get closer to the benchmark as
the budget size increases without fully reaching it.

Depending on the budget, disaggregation accuracies span from 23.1% to 90.1% for all con-
sidered PEMs. The initial budget of 0.1% receives poor scores showing the difficulty of dis-
aggregating when only training on a very small sample of labeled data. We obtain a strict
monotonically increasing shape of the accuracy with an increased budget for all PEMs. With
RMSE and NDE, the disaggregation accuracy increases at the beginning but then reaches
a plateau a little below 80% and a little above 80%, respectively. From there on, both scores
increase only slowly. In contrast, the MAE indicates a different behavior with a slow increase
initially but enhancing between 0.5% and 5%. The growth rate slows down marginally after-
ward with a continuously increasing budget size. For the F-score, it appears that the increase
of the score is somewhat slow and steady compared to the other PEMs. Yet, as with all other
PEMs, a positive trend can be recognized as the budget increases.

Discussion

Results interpretation

Researchers are aware of the importance of NILM in industrial applications [18, 50, 61].
Although the potential benefits of applying this technology to industrial devices have
been recognized since the field’s inception, most NILM studies focus on the residential
sector [42, 56]. This focus is mainly due to the complexity of industrial applications and
the lack of available labeled energy data.

Based on the stated RQ on how an active learning model performs compared to estab-
lished supervised learning models in NILM systems for industrial applications, our
results show that the present active learning model can effectively reduce the labeling
effort for NILM by up to 99% while still achieving between 62 and 80% of the prediction
performance compared to a benchmark with 100% labeled training data. This trade-off
between prediction performance and labeling effort is remarkable, as in industrial set-
tings, these labels typically require domain-specific knowledge, are time-consuming, and
are expensive to obtain; thus, they are often unattractive in practice [33]. The design of
the active learning model that allows this statement consists of an unsupervised model,
a feedback module, and a supervised model. We show that the cluster query strategy is
superior, achieving up to 50% better results than the other two strategies (i.e., naive and
extreme queries). We found the Seq2Seq algorithm significantly better for load disag-
gregation than the CO and Mean algorithms. To examine the shape of the disaggrega-
tion results over different budget constraints for the feedback module, we use sensitivity
analysis and vary the budget size in discrete steps between 0.1% and 5.0%. The sensitivity
analysis shows no obvious answer as to which tested budget size is the most feasible for
the given use case. Hence, the larger the budget size, the higher the cost and the better
the disaggregation results. Furthermore, if the goal is to minimize the budget by 0.1%,
corresponding to 1,054 queried data points in our case, the disaggregation results are
comparatively poor. In addition, the maximum slope of the ratio of the active learning
model to the benchmark lies at different budget sizes across the PEMs used. However,
to indicate which budget size is appropriate in this context, we define a budget size of
1%, corresponding to 10,541 data points, since at this level, a plateau is reached for both
the RMSE and the NDE. Using this budget of only 1% of the training data for this active
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learning model, we achieve over 70% disaggregation accuracies compared to the bench-
mark using 100% labeled training data in 3 out of 4 PEMs.

Theoretical implications

First, this work contributes to the existing literature by consolidating two research
streams: The research on NILM for industrial applications [29, 38] and the research on
active learning as a novel machine learning method [19, 36, 54]. Yet, no research has
been conducted on active learning for NILM using industrial applications. Therefore, we
attempt to close this gap by combining these two technologies. Second, we develop an
active learning model and establish the best-suited disaggregation algorithms. Based on
previous research on anomaly detection for industrial applications using active learning,
we adjust the existing model for NILM and design the respective architecture [22]. For
this particular use case, the cluster query strategy is superior to naive and extreme que-
ries and works best for training the disaggregation algorithm. The best-performing algo-
rithm is the Seq2Seq disaggregation, beating both CO and Mean. Both decisions align
with previous findings from similar research [38]. Third, we contribute to an energy-effi-
cient industrial production by overcoming the barrier of the lack of industrial data labels
for promising supervised algorithms. In this vein, we enable broader use of NILM and,
consequently, energy conservation by tracking energy consumption patterns, identify-
ing inefficient applications, and enabling smarter energy management [1]. Fostering the
usage of NILM in industrial applications equalizes the implementation of expensive sub-
metering, which is more economical while providing valuable information for energy-
saving decision-making [18]. Fourth, our work can be discussed from a higher and more
abstract level in the context of Watson et al. [72]’s energy informatics framework. Our
active learning model represents an information system itself positioned between the
framework’s supply and demand side. However, one could argue that our active learn-
ing model does not necessarily manage the balancing of supply and demand side on its
own, but it can be effectively applied on either the demand or supply side. The derived
insights into demand or supply side characteristics, i.e., submeter consumption, subse-
quently enable other information systems to manage supply and demand with demand
response measures for example. Doing that, our model helps digitizing the framework’s
‘sensor networks’ and ‘sensitized objects’ by providing insights that formerly where lim-
ited to installing additional hardware. Further, our model incorporates the framework’s
‘stakeholders’ not only as consumers, suppliers, or the government but as actual input
providers through labeling tasks that effectively influence the information systems per-
formance and behavior. In sum, our work contributes to closing the gap of hitherto
scarcely researched and applied NILM in industrial applications. We provide valuable
information on how to select the disaggregation algorithm in this case and the reasons
for the usually more difficult disaggregation. Yet, the most significant contribution is
the active learning model’s architecture which contributes to implementing NILM effi-
ciently. This developed model can be the foundation for further optimizations regarding
the architecture of an active learning model or serve as a benchmark.

Practical implications
Although NILM is recognized in the industrial sector, no NILM systems are implemented
for this use case [38]. Therefore, our active learning approach provides practical guidance
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for its efficient implementation. Our research is conducted under near-real-world condi-
tions. We use the HIPE dataset, which consists of real production plant measurements,
not laboratory conditions. The dataset includes the main terminal and does not rely on
virtual main meters. However, our research setting implies that we have to deal with a lot
of noise in the data, which makes accurate load disaggregation difficult. To clarify, the dis-
aggregation of industrial loads with only one metering point is unrealistic [32]. Therefore,
sub-metering is necessary according to the size of the industrial plant.

First, the proposed active learning model can provide intelligent advice on which
devices should be submetered. The active learning model selects the most informative
data points based on an unlabeled data set. During the initial queried data points, the
active applications indicate a high value to the disaggregation results, providing a solid
basis for additional submetering. Making smart decisions about which devices to sub-
meter directly impacts the effort required to implement NILMs. For example, it reduces
the equipment cost and the time required for the complex installation of submeters
in an industrial setting [32]. Second, our analysis of the HIPE dataset shows that the
equipment in the production plant is only in use during the working week. The week-
end energy demand is only the base load. Therefore, there is a significant difference
between the energy consumed on weekends and weekdays. Thus, the day of the week
is an important feature to consider when performing load disaggregation. This explains
why the disaggregation results are worse when considering the whole data set includ-
ing several more holidays and weekends, as previous results with different data splits
show. Industrial sites behave similarly across industries, with only about 10% running
on weekends or holidays. Hence, these usage patterns can be exploited by considering
separate models for weekdays and weekends, thus improving the overall disaggregation
performance of active learning models. Third, the designed active learning model leads
to a cost-effective NILM system in practice. In addition to the possibility of using easily
collected energy consumption data (e.g., with installed sub-meters or in-system meters
used for energy monitoring), the expert system combined with human annotators can
be efficiently used to optimize both the prediction performance and the budget for the
feedback module. When implementing an active learning system, it can consequently
be deduced that, in addition to the technical aspects, the involvement of employees and
their expertise in the daily workflow should also be considered. Hence, we expect these
results to increase the interest and implementation of such systems as pilot projects.
Industrial sites often consume several orders of magnitude more energy than residen-
tial buildings, and thus the expected return on investment for NILM is greater. The pre-
sented active learning architecture reduces the labeling effort, removing one of the key
barriers to adopting NILMs in industrial applications. For example, practitioners could
use NILM for failure prediction, leading to cost savings and increased equipment effi-
ciency, or for emission reduction and energy savings through smarter energy manage-
ment [13]. Consequently, a wider use of NILM could help practitioners to save energy
and costs and contribute to a cleaner and more sustainable production. Fourth, our
work fits well in the broader context of energy management systems and digitals being
used for industrial (energy) data monitoring. Energy management systems typically sup-
port a functionality known as'virtual meters'or'virtual datapoints', where non-existent
or unconnected meters are extrapolated through basic mathematical calculations (e.g.,
calculating the energy consumption of a particular floor based on the overall building
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consumption minus the consumption of other floors). Our proposed approach repre-
sents a natural extension of the virtual meters concept, offering over time varying, thus
more accurate, insights obtained through NILM techniques. This extension can serve
as a facilitator for various monitoring applications, including submetering of equipment
and the derivation of consumption, costs, and emissions associated with products in a
manufacturing setting. Such information is essential for reporting practices as required
for sustainability reporting and compliance with ISO 50001 energy management systems
standards [35]. Moreover, by incorporating our identified consumption data into digi-
tal twins, our approach has the potential to enhance production planning, asset man-
agement, and other related processes. We conclude that the proposed active learning
is suitable to replace traditional submetering, although it has deficits in disaggregation
compared to established supervised learning models. The significant time and resource
savings compensate for this shortcoming.

Limitations and further research
Naturally, our work is subject to limitations but offers prospects for further research.

« First, although the proposed active learning model has shown its potential to
reduce labeling efforts significantly, the prediction is still inferior to established
supervised learning models in NILM systems. Providing accurate predictions to
support decision-making processes is essential, potentially leading to energy savings.
Yet, even though we have created a solid basis for algorithm comparison, further
research can apply different (hyperparameter) tuning techniques, such as halving
grid search to improve the current prediction performance. For instance, we focus
on three query strategies and three disaggregation algorithms. Also, we split the
data set into train and test data to ensure comparability with previous studies on the
data, allowing a high bias and variance since we are not using cross-validation [38].
Testing additional algorithms or using cross-validation may increase the prediction
performance and, thus, impact the current design of the active learning model.

+ Second, by design, active learning models assume that the expert system is infallible
and indefatigable. This assumption may be unrealistic in many real-world settings,
especially when utilizing a human annotator as an oracle. Human experts working
under quality and time pressures in a heavily efficiency-driven setting may make
human errors, distorting the labels used to train the supervised model to correctly
learn and disaggregate the loads. In many real-world applications, multiple imperfect
predictors may have differing qualities. Hence, to increase the feasibility of the active
learning model, future research could sprinkle random misjudgments. Given this,
future research could build on Zhu and Yang [82], who developed a concept that
distinguishes between human expert systems of different levels of reliability. While
such approaches can represent real-world circumstances in a more detailed manner,
they also increase the complexity of designing an optimal query strategy. Hence,
in addition to the selection of the examples to be queried, it is necessary to assign
them to the respective expert systems [33]. Further, instead of adding randomness,
a proactive learning model could be proposed, bridging the gap between traditional
active learning and more practical real-world scenarios [36]. Extending active
learning to proactive learning aims to predict true labels given the risk estimates and
the noisy output of predictors.
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« Third, we could not achieve maximally precise results due to hardware limitations.
The computation power allowed only ten iterations, four PEMs, and smaller budget
sizes. Further research might address these issues by replicating our study on high-
performance hardware.

+ Fourth, as with any data-driven endeavor, the availability and use of data are a
limitation of our study. Thus, we evaluated and tested our active learning approach
only on a single data set of ten industrial applications, limiting the transferability
and generalization of our results. The same as for the data set holds true for various
other industrial applications in which the explanatory power of energy data for
disaggregation might differ. Although Chen et al. [15] state that “data on energy
consumption of manufacturing machines also contains the information on the
conditions of [manufacturing] machines” and Kaymakci et al. [39] identify particular
useful results for energy data of a laser punching machine, we call for extending our
research to other industrial applications.

« Fifth, our work compared a subset of available NILM approaches and neglected
others like unsupervised clustering or self-supervised learning as well as the
integration into overarching approaches such as federated learning. We recommend
for future research to expand the scope of considered NILM approaches to receive a

more holistic picture about performance improvements.

Conclusion

The industrial sector is a major consumer in terms of electrical energy consumption.
Hence, there is significant potential for realizing cost and energy savings through NILM.
However, the implementation of NILM is hindered by the availability of data labels and
high labeling costs. In this work, we present an active learning model to reduce the label-
ing effort for NILM in industrial applications and implement it using the HIPE dataset
based on a real production plant using a derived research process based on CRISP-DM
[14]. In this sense, we are the first to combine active learning with NILM for an indus-
trial setting. We evaluated the proposed method by applying it to the HIPE dataset to
answer the stated RQ of how an active learning model performs compared to established
supervised learning models in NILM systems for industrial applications. We apply bud-
get sizes ranging from 0.1% to 5% of the available data as training data for the active
learning model. We compared the disaggregation predictions with a benchmark using
NILMTK and established supervised learning models trained on 100% of the available
data. To tune the active learning model, we selected the best-performing query strate-
gies and algorithms for the architecture of our models. By allowing our model to choose
the data it learns from, we significantly reduce the number of labeled training instances
required while achieving comparable disaggregation predictions. Our results indicate
that a budget size of 1% is a good fit for real-world applications since the labeling effort
is significantly reduced while maintaining an average (i.e., by up to 99% reduction) of
over 70% accuracy compared to the benchmark. These results demonstrate practical rel-
evance as the cost and accuracy concerns of NILM can be addressed and consequently
may lead to broader adoption of NILM in industrial applications. This fosters energy
efficiency by tracking energy consumption patterns and the identification of inefficient
applications enabling smarter energy management. Further, our work can serve as a

foundation for more active learning methods being applied in the context of NILM.
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Table 5 Model card based on Kihl et al. [44]

General Problem statement
information

Data gathering

Sampling
Data quality

Data pre-processing
methods

Feature engineering
and vectorizing
Hardware and configu-
ration for calculation

All Performance evaluation
measure for hyperpa-
rameter tuning

Unsuper- Parameter optimization
vised model
(AE)

Data split

Algorithm

Performance evaluation
measure for training

Package
Additional information

Supervised  Parameter optimization
model Data split
(Seq2Seq)

Algorithm

Performance evaluation
measure for training

Package
Additional information

Performance comparison of an active learning model and established
supervised learning models in NILM systems for industrial applications
based on a classification problem

Pre-defined data set called HIPE, which contains smart meter readings
of ten industrial applications and the main terminal over three months
from a power-electronics plant run by the Karlsruhe Institute of Tech-
nology [14]

Pool-based sampling (cf. 2.1) using time frame from 2017-10-04 to
2017-12-21

Generally high, it does not contain any missing values such as NULL or
similar error values. But the data measurements are not equidistant

c.f. Section “Data description and preparation”
cf. Section “Data description and preparation”

Linux Virtual Machine running Ubuntu 20.04
32 Cores, 32 GB RAM
Python 3.10.4 using JupyterLab

Disaggregation performance of all applications considered in the HIPE
data set

Yes Search space Layers [1, 10];
Batch size [22, 2107
Epochs [5, 100]

Not applicable

Feed Forward Neural Network

MSE

Keras APl using Tensorflow 2.9.1

Adam as optimizer; Exponential Linear Unit as activation functions for
the encoder layers and a linear activation function for the bottleneck;
Sigmoid activation function for the last layer of the decoder

Sensitivity analysis c.f. 5.2,; search space: 0.1%—5.0% budget size

78/22 split to ensure comparability to previous studies on the same
data set

Seq2Seq, CO, Mean
RMSE, MAE, F-score, NDE

NILMTK APl v0.4.2
Not applicable
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Appendix B
See Figs. 6,7, 8.
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Appendix C
See Table 6.

Table 6 Benchmark prediction results

Application RMSE F-score MAE NDE
Chip press 1012.80 0.26 28591 048
Chipsaw 105.67 0.45 2617 0.78
High temperature oven 27597 0.50 72.19 0.28
Pick and place unit 60.29 0.99 32.02 0.81
Screen printer 8345 0.68 35.59 0.69
Soldering oven 376.50 0.53 52.14 045
Vacuum oven 164.64 0.15 6.50 0.95
Vacuum pump 1 20842 0.80 121.11 0.58
Vacuum pump 2 124.15 0.25 30.96 1.01
Washing machine 38337 0.16 61.50 0.51
Mean 279.53 047 7241 0.65

The bold printed value per column indicates the best average benchmark value in terms of the underlying PEM

Appendix D
See Fig. 9.
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Fig. 9 Active learning model compared to benchmark using F-score

Appendix E

Further statistical significance testing conducting a one-way ANOVA test for all query
strategies, a 1% budget, using the Seq2Seq algorithm and MAE as a PEM for each applica-
tion, resulted in a p-value of 0.11 which shows a slight significance for a significance level
of 0.1 (see Fig. 10).

In contrast, conducting another one-way ANOVA test for all algorithms, a 1% budget,
the cluster query strategy and MAE as a PEM for each application, resulted in a p-value of
0.03 which shows strong statistical significance of the algorithm selection assuming again
a significance level of 0.1.
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