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Abstract. We present the concept of an efficiency and coordination
advisor for autonomic computing approaches for dynamic optimization
problems. The problem scenarios targeted contain recurring tasks that
our advisor identifies over several runs of the autonomous system thus
giving it some limited way to “look into the future”. If the solutions
created by the autonomous agents are much worse than the optimally
possible solution, the advisor creates exception rules for the agents that
make the wrong decisions for the recurring tasks. This allows them to
do better decisions in the future in very specific situations while still
retaining all advantages of the autonomic computing approach.

Our experiments with dynamic instances of the pickup and delivery prob-
lem that have recurring tasks in it show that with our advisor approach
we can improve substantially instances that result in suboptimal behav-
ior of the autonomous agents without advisor. Our advisor approach is
also successful if the recurring tasks change over time.

1 Introduction

The goal of autonomic computing is to develop concepts for systems that are able
to adapt themselves to the usage that is made of them and to the environment in
which they are placed (see [8]). An autonomic computing system does not have
to be monolithic, it can consist of a number of autonomic components that are
usually called agents. And the idea of a group of more or less autonomous agents
solving problems more or less continuously given to them from the outside in a
more or less cooperative manner is part of another area from its early beginnings,
namely the area of multi-agent systems (see [14]).

But, as our phrasing of the last sentence suggests, not every multi-agent
system concept fitting the description can be considered an autonomic computing
system. The aspect of autonomy of the agents can range from not even perceiving
other agents (and naturally not communicating with them and therefore not
taking any commands from them, see [3] as an example that cooperation can



be achieved without even seeing or hearing your colleagues) to accepting clearly
defined tasks from another agent (and being autonomous only in the selection
of the method to fulfill it, as, for example, in [14]).

One problematical aspect that is well known but for which we do not really
find convincing solutions are dynamically changing problems that essentially
require the multi-agent system to look into the future in order to achieve optimal
(or even just very good) problem solutions. An instance of this aspect that was
created by the multi-agent system itself was already observed in [14], but a
very good example for the relevance of this problem in the real world is given
in [5]. A group of autonomous agents where their interactions allow for self-
configuration of the whole system (i.e. an autonomic computing system)) is
currently seen as the best (and perhaps only) way to at least be able to deal
with dynamic changes in problem instances, so that solutions are found and
performed. However, with regard to self-optimization of such a system the results
are often not very convincing, i.e. looking back it often becomes obvious that
there are much better solutions than the one that emerged during the run of
the system. This is not surprising, since looking into the future is not exactly an
ability that is easy to achieve.

But if we look at how experienced humans solve such problems, like, for
example, transportation problems like pick-up and delivery (see [12]), then we
have to observe that very often their solutions are rather good, as if they could
really look into the future. This is due to the fact that in real-life dynamic
problems we often find quite a few recurring problem parts (tasks) that humans
are able to detect and then create a general problem solution around solutions
that are (near) optimal for the recurring tasks. While this comes with the risk
that from time to time the overall solution gets worse for a little time – if, for
example, an expected recurring task does not occur when expected – the overall
performance over longer periods of time is usually better than what a purely
reactive solution approach achieves.

In this paper, we present an approach for autonomic computing systems con-
sisting of groups of autonomous agents that mimics the idea of learning recurring
tasks and pro-actively expecting these tasks to improve the overall problem solv-
ing behavior of the group, while still preserving the features of such groups that
allow to do local decisions and to react to dynamic changes in the problem
instance to solve. Our approach centers around the idea of an advisor (called
efficiency and coordination advisor: ECA) that collects the local history of the
agents, detects global task patterns that are recurring and that are currently
solved far from optimal, and provides the agents with advice in form of excep-
tion rules that the agents can add to their own problem solving behavior. In
contrast to a central control (and therefore the nearly total loss of autonomy
of the agents), the advisor only communicates with the agents when they are
ready, its advice can be ignored by the agents (and will be ignored when it is not
useful anymore), the agents can still work without it or if it crashes, and every
problem solving decision is still locally done by each agent.



Our experimental evaluation of the ECA approach with a group of au-
tonomous agents based on the pollination approach (see [7]) with instances of
the pickup and delivery problem showed substantial improvements for examples
where the autonomous agents without ECA are known to produce suboptimal
solutions. Even for randomly created examples (with recurring tasks) there were
improvements and the approach is also able to deal with changing recurring
tasks.

This paper is organized as follows: After this introduction, in Section 2 we
present basic definitions about the general problem setting for the autonomic
computing systems we are interested in. In Section 3, we present the general
description of our efficiency and coordination advisor approach, that we instan-
tiate in Section 4 to solving dynamic pickup and delivery problems. In Section 5,
we present the experimental evaluation of our proof-of-concept system in this
application domain, followed by a discussion of the related work in Section 6.
Section 7 concludes the paper and presents some ideas for future work.

2 Basic Definitions

In this section, we introduce the general scheme we will instantiate to describe
our agents and we will provide basic notations about the general problem setting
our agents are supposed to solve.

A very generic definition of an agent Ag is as a 4-tuple

Ag = (Sit, Act,Dat, fAg)

where Sit is the set of situations the agent can face (i.e. its possible view of
the environment), Act is the set of actions Ag can perform, Dat the set of
possible values of the agent’s internal data areas and fAg : Sit × Dat → Act
the agent’s decision function, describing how Ag selects an action based on
its current situation and the current value of its internal data areas (i.e. its
perceptions of the world and its current knowledge status). This assumes that
we have an action for every combination of activities the agent can do (which
can always be realized in a model). If fAg is not much influenced by the value
of Dat, then Ag is called reactive.

A multi-agent system (MAS) is then a group of agents A, denoted by A =
{Ag1,...,Agn}, that share an environment Env. As already stated, the agents in
A might all have different sets of situations, actions and internal data area values
and they naturally can also have different decision functions.

The general structure of problems for a set A we are interested in consists of
tasks out of a set T that are announced to A (or members of it) at some times
within a given time interval Time to form a run instance for the system A. And
there will be a sequence of run instances that A has to solve. We can think
about a run instance as being all the tasks A has to solve at a particular day,
for example, and a sequence of run instances as the tasks to solve over several
days. Naturally, a task for a concrete application will be described by a group of



features, but for our purposes generic tasks and the time of their announcement
is enough.

Formally, we describe a run instance as a sequence

((ta1, t1), (ta2, t2), . . . , (tam, tm))

with tai ∈ T , ti ∈ Time and ti ≤ ti+1. A sequence of run instances of length k
is then described as

((ta11, t11), (ta21, t21), ..., (tam11, tm11)), . . . ,
((ta1k, t1k), (ta2k, t2k), ..., (tamkk, tmkk))

A solution sol generated by A for a run instance is again a sequence

sol = ((ta′1,Ag′1, t′1), (ta′2,Ag′2, t′2), . . . , (ta′m,Ag′m, t′m))

where ta′i ∈ {ta1, . . . , tam}, ta′i 6= ta′j for all i 6= j, Ag′i ∈ A, t′1 ≤ t′i+1, t′i ∈ Time.
A tuple (ta′i,Ag′i,t′i) means that task ta′i will be started by Ag′i at time t′i. Solving
ta′i might require a sequence of actions by Ag′i.

Again, depending on the application there might be additional restrictions,
for example if not every agent can perform every task, we need that Ag′i can
indeed perform ta′i. But note that {t1, ..., tm} and {t′1, ..., t′m} do not have to be
related in any way, i.e. tasks do not have to be immediately started by one of
the agents when they are announced. This, at least theoretically, allows for the
possibility that the agents in A can be more than purely reactive.

Usually, users of A associate with a solution sol a quality qual(sol), which
again is dependent on the particular application a user is interested in and the
agents in A have been created for. And with the concept of solution quality
naturally comes the wish that A produces a solution that is of optimal qual-
ity. Under some circumstances creating an A that produces optimal solutions is
easy, but under many circumstances it is difficult (for example, finding an op-
timal solution might be a NP-complete problem for the particular application)
or even impossible. If a task ta can arrive at any point in time within Time,
then the requirement that all tasks need to be started within Time (which of-
ten is enhanced by the additional requirement that all tasks need to be fulfilled
within Time) will often lead to non-optimal solutions, since in order to create
an optimal solution not only has A to be able to find optimal solutions quickly,
it also has to be able to “look into the future”, so that a new incoming task can
be assigned to the best agent (with respect to global optimality of the solution),
while other tasks are already executed by the agents. These are the kind of run
instances that are of interest to us in the following.

3 The Efficiency and Coordination Advisor Approach

As stated in the previous sections, in this paper we are interested in multi-agent
systems that solve run instances for which at least some of the tasks are an-
nounced to the agents later than other tasks, i.e. there is at least one ti such



that ti < ti+1 (and usually there are more than just one such ti). Since the agents
do not know at the beginning of the interval Time what all tasks will be, it is
in most cases impossible to solve the whole (developing) run instance optimally
and therefore system developers have concentrated on creating multi-agent sys-
tems for such tasks that have other important properties, like robustness against
failure or low communication costs, to name just a few. Most of these properties
are associated with a high autonomy of the agents, where the individual agents
have only local views of the environment and therefore favor reactive behavior
(see [10] or [4]). Also, agents in the system might be developed by different peo-
ple and autonomy is a plus in such situations, again, because with autonomy
comes less problems getting the developers to cooperate so that the agents co-
operate. But, naturally, the quality of the solution created by the agents is still
very important!

In this section, we will present an approach that enhances multi-agent sys-
tems for the stated type of problems to allow for better solutions over a sequence
of run instances while preserving the other properties of the system, if the fol-
lowing conditions are fulfilled:

– each agent’s decision function can be extended to deal with so-called excep-
tion rules (that will be stored in the agent’s internal data areas),

– each agent is able to “dump” a history of its behavior to a central collection
unit at least once during a run instance,

– a sequence of run instances must have a (sub)set of similar tasks in (nearly)
each instance of the sequence.

While the first two conditions usually are easily achieved, the third condition
seems very restrictive. But in everyday life, there are many problems that fulfill
this condition. Delivery companies usually have daily recurring tasks together
with one-of-a-kind tasks, to give just one example.

The proposed approach to improve the performance of a team of agents A =
{Ag1,...,Agn} is to add to A a special agentAgECA (Efficiency and Coordination
Advisor) that collects the history of all agents, creates a global view of the
history of A (and the environment around A), identifies sequences of tasks that
are recurring and that A did not solve very well, creates advice for the individual
agents how they should tackle the tasks from the identified sequence, and makes
this advice available in the form of the already mentioned exception rules3. In the
following, we will present the interaction scheme between the Agis and AgECA

more precisely and look at each of the actions of AgECA in more detail. Figure 1
gives a graphical representation of the general interaction scheme.

3 AgECA does not have to be a new agent, it can also be a role of one of the Agi

or all agents in A can share performing the actions of AgECA. But this requires
extensive communication between the Agi and might require more computing power
in an Agi than is possible in a particular application. A stationary agent with lots
of computing power and occasional communication with the Agis is a reasonable
extension to many existing systems for the problem we are interested in, which is
why we present our approach in this manner.
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Fig. 1. Typical interaction of an agent with AgECA

3.1 Using AgECA

AgECA is an agent that can be seen as an external analysis tool for the agents
in A, looking out for opportunities to improve the efficiency of A by providing
coordination advice. As a consequence, its set SitECA centers around the com-
munication with members of A and its set DatECA represents the data received
from the Agi and the intermediate results by AgECA’s actions towards creat-
ing advice for the Agis. Its decision function fECA creates the following steps
represented by the indicated actions out of ActECA

4:

1. While A performs a run instance, AgECA performs
receive(Agi, ((s1i ,d1

i ,a1
i ),...,(so

i ,do
i ,ao

i ))) for each agent Agi when Agi is able
to communicate.
Hi = ((s1i ,d1

i ,a1
i ),...,(so

i ,do
i ,ao

i )), with sl
i ∈ Siti, dl

i ∈ Dati, al
i ∈ Acti, is the

history of agent Agi since the sequence of run instances started.

4 The steps also implicitly define what SitECA and DatECA have to contain.



2. trans(H1,...,Hn) creates the global history GHist out of the received his-
tories of all agents, which essentially contains the sequence of run instances
(ri1,...,rik) = ((ta11,t11), ...,(tam11,tm11)),...,((ta1k,t1k),...,(tamkk,tmkk)) A
has solved so far and the solution solj for each run instance rij that A
created for it.

3. extract(GHist) extracts out of the system history – more precisely the
sequence (ri1,...,rik) – a sequence of recurring tasks (tarec

1 ,...,tarec
p ).

4. opt((tarec
1 ,...,tarec

p )) computes from this sequence the optimal solution

optrec = ((tarec
1 ,Ag′rec

1 , t
′rec
1 ), ..., (tarec

p ,Ag′rec
p , t

′rec
p ))

where Ag′rec
j ∈ A and t

′rec
j ∈ Time, if tarec

1 ,..., tarec
p were the only tasks A

had to perform and they would be all known at the beginning of Time.
5. advneeded(optrec,GHist) compares qual(optrec) with the quality qual(last)

of the last emergent solution last for the tasks (tarec
1 ,...,tarec

p ) A created. If

qual(last)/qual(optrec) > qualthresh

the work of AgECA is done until new information arrives, since A performs
well. Else, the following actions are performed:
(a) derive(optrec,(tarec

1 ,...,tarec
p ),GHist, last) creates for each agent Agi a

set Ri of exception rules, where Ri can be empty.
(b) for each agent Agi, send(Agi,Ri) is performed the next time commu-

nication with Agi is possible. Note that Figure 1 might be a little bit
deceiving with regard to how much time can be between derive and
send.

Naturally, concrete realizations of these actions ofAgECA depend on the concrete
application problem and on the realization of the Agis, including their normal
cooperation scheme. But the actions extract and derive allow for different
general ways how they can be realized and in the following subsections we will
discuss them further and then close this section with some comments on the
other actions.

3.2 Extracting recurring tasks

In principle, there are several ways to find recurring tasks in a sequence of run
instances. But for many applications, the problem is a little bit more complicated
than just finding tasks that occur in each run instance. For these applications,
we are not only interested in tasks that are identical in all run instances but
also in tasks for which there are similar tasks in all (or at least most) of the
run instances. To use delivery problems, the task of delivering something to
a particular house in a street is usually not very different from delivering to a
neighboring house, so that having one delivery each day to one of the two houses
should put this delivery task into the sequence of recurring tasks.

More precisely, we assume the existence of a similarity measure sim : T ×
T → IR+ that is used by the action extract. Then clustering of the tasks in



ri1,...,rik according to sim can be used to identify the recurring tasks in these run
instances5. Again, there are several known clustering methods. One of them, that
we found useful for our problem because it does not require to be given initially
the number of clusters it should produce, is Sequential Leader Clustering (see
[6]). Sequential Leader Clustering in its basic original form works on the tasks
in ri1,...,rik one after the other. If up to task ta in one of the rij it has produced
the clusters C1,...,Cx with ci ∈ Ci being the representative of the cluster Ci,
then we compute sim(ta,ci) for all clusters. If cluster Cq is the one with the
biggest similarity to ta, then ta is added to Cq if sim(ta,cq) > clustthresh for
a given parameter clustthresh. If it is added, then it needs to be checked if the
representative for Cq has to be changed. How the representative is determined
depends on how a task is described. If ta is not similar enough to any of the
clusters, then a new cluster Cx+1 = {ta} is created.

If C1,...,Cx is the result of the clustering process, then the next step is to
determine all clusters that are big enough to indicate that they represent recur-
ring tasks. With k run instances, these are all clusters Ci with |Ci| ≥ minocc ·k,
with 0 < minocc ≤ 1 a user determined parameter. If C ′1,...,C ′y are all clusters
fulfilling this condition, then we put the c′i ∈ C ′i with sim(c′i,ci) is minimal into
the set of recurring tasks. If there are C ′i with |C ′i| ≥ (1 +minocc) · k, this indi-
cates that the task represented by this cluster is usually occurring several times
in the run instance and this means that we do not only put the c′i ∈ C ′i with
sim(c′i,ci) is minimal into the set of recurring tasks, but also the c′′i ∈ C ′i − {c′i}
with sim(c′′i ,ci) minimal (and so on, if |C ′i| ≥ (2 +minocc) · k, etc.)

It should be noted that for applications where the recurring tasks can change
over time, this approach for realizing extract should not use all k run instances
from the beginning of A’s work, since most probably after some time the set of
recurring tasks will become very small or even empty. In such cases, a parameter
kmax should be defined and only the run instances rik−kmax

,rik−kmax+1,...,rik
should be used in the clustering and kmax is used in the conditions using minocc.
While a change in the recurring tasks obviously will not immediately be noticed
(again, doing that would require to really being able to look into the future), at
the latest kmax run instances after the change AgECA will be aware of the change
and will create new advice for the agents in A. Naturally, if new changes happen
faster than kmax run instances, AgECA will not be able to detect recurring tasks
very well and A will have to rely on the basic decision making of its agents
without advice.

3.3 Deriving exception rules

Deriving advice for the agents in A from optrec and last depends on what kind
of exception rules the agents in A can handle. In general, there are two possible
aims for exception rules: they can be used to encourage an agent to take on a
certain task or they can be used to detract an agent from taking a certain task.

5 Naturally, all other techniques from the area of data mining that are able to find
recurring event sequences in data could also be used.



And in a MAS, this opens a wide spectrum of possibilities. But for the kind of
problems we are interested in, detraction from a task is the only possibility, since
it is not easily possible to encourage an agent to do a task that it cannot know
about, because it will only be announced to it later. A detraction rule should be
rather specific about the circumstances when an agent should follow it, so that it
really is only an exception and, for example, the not-occurrence of an expected
task will not block an agent for too long, if an exception rule was created to
detract this agent from other tasks in anticipation of the expected task. Specific
circumstances in rules can also allow for not having to come up with a conflict
resolution mechanism for the agents that deals with determining what to do if
several exception rules are applicable to a situation.

An exception rule for an agent Agi has the form condexc(s, d)→ ¬ata, with
s ∈ Siti, d ∈ Dati and ata ∈ Acti (with ata indicating the action to start
performing task ta). The effect of such a rule on Agi’s behavior can be described
as creating a variant f ′Agi

of Agi’s decision function fAgi
.

An exception rule to detract the agent from its “normal” action ata (as
indicated by ¬ata) creates

f ′Agi
(s′, d′) =

{
fAgi(s

′, d′), if condexc(s′, d′) = false
a′, with a′ 6= ata, else

The action a′ should be the action that Agi would take without knowing that
task ta needs to be done.

Detracting an agent from an action is a rather weak influence, since the agent
is only told what not to do and still needs to figure out what to do. But since
we want to preserve the basic decision making of the agents as much as possible,
this is exactly the right thing to do. Note that condexc can be defined so that the
agent’s current Dat-value does not matter, which allows AgECA to give advice
to agents it does not know much about. But including the current Dat-value will
allow for better targetting of the exception.

For AgECA to decide which exception rule to create for which agent, we
need to compare the optimal solution optrec and the last solution last. If optrec

= ((ta1
1,Ag1

1 ,t11),...,(ta1
p,Ag1

p,t1p)) and last = ((ta2
1,Ag2

1 ,t21),...,(ta2
p,Ag2

p,t2p)), then
AgECA looks for the first j with ta1

j 6= ta2
j or Ag1

j 6= Ag2
j . Since solutions are

sorted according to the ti-values, this is really the first assignment of a task to
an agent for which the agents in A deviated from the optimal solution for the
recurring tasks.

The created exception rule is then for agent Ag2
j and naturally has the form

condexc(s′, d′) → ¬ata2
j
. For determining condexc(s′, d′), AgECA looks up in

GHist the triple (s, d, ata2
j
) that represents in the history of Ag2

j the point when
it chose to do ata2

j
. condexc(s′, d′) is then an abstraction of s and d that is appli-

cation dependent and tries to cover not only an activation of ta2
j , but the whole

cluster from the extract step of which ta2
j is a member.

For the application we present in Section 4, this exception rule for Ag2
j was

all we created in one working cycle of AgECA. But for other applications it



might be better to test what the agents in A will do after the exception rule is
communicated. If AgECA knows enough about the agents in A, it can simulate
what new solution A would produce for the recurring tasks and if this new
solution last′ is still too bad, the above rule creation steps can be repeated until
the emergent solution of A is good enough and then all rules created using the
simulation are communicated to the real agents in A.

3.4 Other actions

The action trans can be very easily realized if the environment Env is known to
AgECA and the only events happening are the announcement of tasks and the
actions taken by the agents in A. Without a readily available global view, trans
essentially has to create some kind of environment “map” out of the perceptions
of the Agi as represented by their local view on the situations they encountered.
In this case, it is also possible that not all tasks will be observed, simply because
no agent might be in a situation to observe a particular task being announced.
This is one of the reasons why we do not want to require that a recurring task
has to appear in every run instance.

The action opt requires AgECA to have an optimization system for the ap-
plication that handles the static optimization problem to the dynamic problem
that A tries to solve. While this optimizer does not have to look into the future,
the static optimization problem still can be very difficult. If it is very difficult
or if the time between run instances is short, then it can be necessary to only
search for a very good solution for the recurring task sequence instead of the
optimal one (and perhaps to have a lower qualthresh-value).

Determining the emergent solution created by A for the recurring tasks is in
no way trivial. First of all, often there will be other tasks mixed in into fulfilling
the recurring tasks and in the last run instance not all of the recurring tasks
might have really occurred (the size of the clusters representing the recurring
tasks can be smaller than k!). The fact that the agents fulfill other tasks while
fulfilling the recurring tasks means that we cannot determine the quality based
on measuring what really happened. For example, between fulfilling two tasks of
the recurring task set in a transportation domain, an agent might have to drive
to a far off location to fulfill a not recurring task in a particular run instance. If
we would add the total traveled distance of this agent between the two recurring
tasks to the travel cost (if this is our quality criterion) then the emergent solution
is guaranteed to look bad although in other run instances the recurring tasks
are solved well.

But for such an application we can provide a lower bound for what the cost is
that would emerge, if there were no additional tasks, namely just the distance the
agent has to travel after the first recurring task to start performing the second
one. And such lower bounds are possible to be determined for many applications
and many quality criteria. And if the quality of such a lower bound is far from
the optimum, then advice from AgECA will be useful for many run instances.

Given that last and its quality are already an approximation it is now also
easy to solve the problem of a recurring task (or a task sufficiently similar) not



occurring in the last run instance. AgECA determines which agent fulfills the
task in the emergent solution by going back one more run instance (or several).
And from there it is also able to determine at what place of the order of tasks for
this agent it will perform the task. So, bad results of A for the recurring tasks
are due to the wrong agents performing certain tasks or due to a particular agent
performing “its” tasks in a bad order.

4 Instantiating the ECA Approach to the PDP

In this section, we present the pickup and delivery problem (PDP) as an in-
stantiation of the general problem class our ECA approach aims at. We then
present the digital semiochemical coordination approach (DSC), instantiated for
the PDP, as the autonomic computing approach that we want to improve by
using the ECA and we instantiate our concepts from the last section for the
DSC for solving the PDP.

4.1 The Pickup and Delivery Problem

The general pickup and delivery problem (see [12]) is a well-known problem class
that has instantiations like transportation problems in logistics, delivering meals
or medication to patients in hospitals or delivering parts in manufacturing plants.
Many of these instantiations fulfill the requirements for our ECA approach, i.e.
not all tasks to perform are known at the beginning of a run instance and there
are tasks that appear in many run instances. Additionally, the transportation
agents usually come back to a depot after a run instance, which then can be
used to house the ECA.

In the following, we will instantiate the pickup and delivery problem with
time windows, which generalizes PDP to require delivery within a task dependent
time frame. A task taPDP for this problem consists of a location lpickup where a
package needs to be picked up, a location ldelivery where the package has to be
dropped off, the needed capacity ncap and times tstart and tend in Time defining
the time window in which both pickup and delivery have to happen, i.e. taPDP =
(lpickup,ldelivery,ncap,tstart,tend). Consequently, an agent Ag needs a transport
capacity capAg and to perform a task it has to first do the pickup and then the
delivery. In general, if ncap for a task is smaller than capAg, then the agent can
do other pickups and deliveries between a pickup and the necessary delivery. In
our examples in the next section we will set ncap and capAg for all tasks and
agents so that this is not possible. We also do not allow agents to switch tasks
between them, if they have already done the pickup.

4.2 DSC for the Pickup and Delivery Problem

There are many possible ways how groups of transport agents can perform run
instances of pickup and delivery tasks. One concept that focuses a lot at achieving
a high autonomy of the individual agents and the resulting resilience of the



Fig. 2. A “bad” pickup and delivery run instance

whole system is the digital semiochemical coordination approach of [7], which
generalizes pheromone-based stygmergic approaches, allowing for a wide variety
of types of (digital) chemicals to be used between agents of the same type and
different types to achieve effects that are beneficial for chemical emitters or
receivers or both.

A MAS for pickup and delivery problems was already the example application
for DSC in [7] and in the following we will only briefly introduce this applica-
tion, concentrating on the decision making of the agents, which will be modified
by the ECA. A DSC-based system achieves coordination between transporta-
tion agents Ag1,...,Agn solely using digital semiochemicals that are propagated
through the environment the agents are acting in. This environment is essen-
tially a map organized in grids (see Figure 2) and an Agi can “access” all digital
semiochemicals of the grid field it is currently located on, which naturally has
to be considered a very local view for agents.

A task taPDP is given to the system by “creating” two emitter agents in the
environment, one at lpickup emitting a so-called synomone (a type of semiochem-
ical) that specifies the location and the transportation requirements, i.e. ncap
and tend, and one at ldelivery also specifying the task via a synomone. In our
experiments, the task announcement was done at tstart. All such synomones are
propagated through the environment and each grid receiving them stores their
existence and intensity. The intensity of a chemical is reduced after certain time
periods, which is why an emitter agent repeats the synomone emission from time
to time until it has been served by a transportation agent. The two synomones
for a task are accumulative, i.e. two doses of one of it are combined. So, the
overall intensity of a particular chemical on a grid can vary quite a bit over
time.

A transportation agent Agi “smells” all chemicals at its current location and
computes a so-called utility for each task represented. At a location, there can
be the following types of semiochemicals around a particular task:

– the synomones indicating the pickup and delivery locations of the task with
a certain intensity (as already stated),



– an allomone (another type of semiochemical) emitted by the pickup emitter
after a transportation agent has picked up the load, which indicates to other
agents that the task has been started,

– a pheromone emitted by another transportation agent that has passed by
this location (or very near to it) with the intention of performing the task6.

The utility for a particular task for agent Agi at this moment is then as
follows:

– The utility is 0, if either there is an allomone from the pickup emitter indi-
cating that an agent (not Agi) has started the task or there is a pheromone
from another transportation agent for the task.

– The utility has a pre-defined maximum value, if Agi has already started this
task, i.e. it has done the pickup part.

– Otherwise, the utility is between 0 and the pre-defined maximum value pro-
portional to the intensity of the synomone and the nearness of the current
time to tend of the task (if we have time windows active; for more details,
please refer to [7]).

After an Agi has computed the utility for all tasks it perceives, it selects the
task with the highest utility and moves directly towards the emitter representing
this task.

The DSC approach is a typical example for a system of autonomous agents
that our approach targets. The transportation agents use mainly local infor-
mation in their decision making, the system as a whole is very robust, since
the breakdown of an agent might lower the efficiency of the whole system but
does not lead to a general system breakdown and after the pheromones of a
brokendown agent have vanished the system has adapted to have one agent less
available.

4.3 ECA for DSC for PDP

Before we instantiate our ECA concept, we first need to define the quality qual
of a solution that our ECA concept wants to improve. There are many possible
candidate functions for PDP, like minimizing the distance traveled by the trans-
portation agents or the time needed to complete all tasks. For our experiments
we used a function that combines several measures of interest for a PDP. For a
solution sol, we have

qual(sol) =
100000

κqualdist(sol) + λqualorder(sol) + µqualtw(sol)

where κ, λ and µ are weight parameters and qualdist(sol) is the distance traveled
by all Agi according to sol, qualorder(sol) is the penalty accumulated by sol for

6 Note that pheromones are semiochemicals that are used between agents of the same
type, in contrast to the other types of semiochemicals used in a system based on
DSC.



fulfilling tasks in a different order than their announcement to the system and
qualtw(sol) is the penalty for sol for all tasks that are not completed within the
time window for the task. The motivation for the 100000 is to end up with qual-
values that are larger than 1. For qualorder, we sum up the difference between
the start times of all pairs of tasks ta1 and ta2 where the start time of ta1 is
before ta2, but in sol we have that ta2 is finished before ta1. And for qualtw, we
sum up the difference between finishing time for a task and tend, if the finishing
time is later than the intended end time. Obviously, the three criteria are not
aligning well with each other, so that many solutions have rather similar qual-
values, which makes the task for our ECA harder (since it is less likely to have a
big difference in quality between the emergent solution and the optimal solution;
note also that penalizing for tasks not done in order also favors making decisions
based on local information, favoring the standard autonomous system, again).
Note that for this qual-function higher values represent better solutions.

The actions receive and trans for the instantiation of AgECA required us
to create out of the history of the travels of the Agi and their “smell” perceptions
a description of the announced tasks7. With having the run instances available
in the form (ri1,...,rik), we can identify the recurring tasks using the following
function sim:

sim(ta1, ta2) = αEd(lpickup,1, lpickup,2)+
αEd(ldelivery,1, ldelivery,2)+
β|ncap1 − ncap2|+
γ(|tstart,1 − tstart,2|+ |tend,1 − tend,2|)

where α, β, and γ are weight parameters and Ed((x1, y1),
(x2, y2)) is the Euclidean distance of two locations. extract then employs Se-
quential Leader Clustering as described before.

For realizing the action opt, we needed a way to create the optimal solution
for the recurring tasks. While PDP is rather well researched, nevertheless we were
not able to find a public-domain optimizer for it, so that we implemented our
own branch-and-bound-based optimizer for our proof-of-concept system. This
optimizer is not very sophisticated and as a result we were quite limited in the
size of problems it could tackle (in acceptable time). But as we show in Section 5,
it was good enough to demonstrate the abilities of our ECA approach.

For determining the qual-value of the emergent solution, we computed qualdist

by using the direct distances between the emitter agents for the recurring tasks,
as described in Section 3.4. The qualorder- and qualtw-values are directly avail-
able out of the last run instance containing the particular recurring tasks, but
obviously qualtw can be heavily influenced by the non-recurring tasks of this run
instance.
7 We also could have simply provided the task announcements to AgECA, but we

wanted to prove that it is possible to create out of the local perceptions an appropri-
ate global picture for AgECA. Due to lack of space and because the detailed process
is not of much consequence for the experiments, we do not go into any more detail
regarding these two actions.



Our instantiation of derive had to be able to detract an agent from a partic-
ular task, resp. all tasks that are similar to it. For DSC we added an additional
step to the utility computation. A synomone is compared to the abstracted
synomone of an exception rule and – if the comparison shows that they are
sufficiently similar – does not consider the synomone, i.e. a bad utility value is
assigned to it8. This is done for all synomones that were similar enough to any of
the exception rules an agent has, but for each synomone-rule-pair we had a time
limit after the first application of the rule after which the rule was not applied
to this synomone anymore.

The abstracted synomone to a task that should not be taken by an agent
consists of the elements lpickup, ncap and tstart of the task. To determine the
similarity of a synomone representing a concrete task ta1 to the abstracted syn-
omone ab with lpickup,ab, ncapab and tstart,ab, we compute the value

distsem(ab, ta1) = Ed(lpickup,ab, lpickup,1)+
|ncapab − ncap1|+
|tstart,ab − tstart,1|

If distsem is below a given threshold semthresh, then the associated rule is
applied.

5 Experimental Evaluation

To evaluate the system described in the last section and with it the usefulness
of our ECA approach, we performed several experiments evaluating different
aspects of the approach. Creating sequences of run instances that allow such
evaluations is not a straightforward task, since the ECA approach only makes
sense for sequences of run instances that have some recurring tasks. This means
that on the one hand side we have to “construct” such run instance sequences
to allow our approach to have a chance, but this construction also needs to
ensure that there is enough randomness involved to allow the argument that the
approach will work for many instances of the problem.

For all our sequences of run instances with names beginning with “craft” or
“rand” (see Table 1) we started with a sequence of tasks that forms the set of
recurring tasks the ECA should identify. For each run instance in the sequence
each of these tasks (or a slight modification of it within sim) is included in the
instance with a given probability (95%, except for the craft-4-1 variants, where
the probability was 100%). Then some randomly created tasks were added to
each of the instances, the number of these tasks chosen randomly from between
10 to 30 percent of the number of intended recurring tasks. The length of the
sequence of run instances that forms a scenario in Table 1 depends on the number
of intended recurring tasks (indicated by the Arab number in the name), namely
10 run instances for the scenarios with 4 recurring tasks, 20 for 6 recurring tasks
and 40 runs for 8.
8 In our implementation, we multiplied the “normal” utility by 0, which eliminated

the synomone and therefore the represented task from consideration.



Table 1. Results for not-changing recurring tasks

Scenario -ECA +ECA Impr.

craft-4-I 1319.37 1415.51 7.29%

craft-4-I-TW 210.94 240.31 13.92%

craft-6-I 704.06 797.63 13.29%

craft-6-I-TW 140.46 170.41 21.32%

rand-6-I 627.26 737.41 17.56%

rand-6-II 566.05 726.69 28.38%

rand-8-I 177.96 186.05 7.49%

rand-8-II 181.08 185.41 2.39%

The ECA approach is intended to improve the performance of the base DSC
system. If this base system already performs well, there is not much to improve.
Therefore we tested two kinds of scenarios, namely scenarios crafted to not
being solved well (“craft-X”) and scenarios with a randomly created sequence
of intended recurring tasks (“rand-X”). The scenarios with 4 and 6 recurring
tasks are done on a 10x10 grid, while all scenarios with 8 recurring tasks are
situated on a 20x20 grid. Figure 2 illustrates the crafted sequence of recurring
tasks for craft-4-I. The d grid node is the depot for the transportation agents.
As in all of our scenarios, we use two transportation agents. The basic set of
tasks are ta1 = (4,6,20,25,30), ta2 = (3,5,20,25,25), ta3 = (2,7,20,50,55) and ta4

= (1,7,20,50,55). We used here the grid node number from the figure instead of
coordinates to make it easier to envision the tasks on the grid. The basic DSC
system solves these base tasks (if no other tasks are there) by having both agents
go to the lower right corner to perform tasks ta1 and ta2 and then both agents
move to the upper left corner to do the other two tasks, getting quite some
late delivery penalties (if we enforce the given time windows). A better strategy
would have only one agent go down into the lower right corner doing ta1 and
ta2, while the other agent waits in the depot until ta3 and ta4 are announced
and then it performs those two tasks. The crafted recurring task sequence for
the craft-6-X scenarios used a similar weakness of the basic DSC system.

For all scenarios, we used the following parameter settings: qualthresh was
set to 95%, clustthresh = semthresh = 20, minocc = 0.7, kmax = 20, κ = 1, λ
= 15, µ = 0 (except for the X-TW scenarios, which enforce the time windows,
then we used µ = 3), α = 0.3, β = 0.1, and γ = 0.3. The time limit for rule
application by a transportation agent was 100.

As our experiments reported in Table 1 show, the ECA approach leads to
quite some improvements for most scenarios. Remember that a higher qual-
value (in columns -ECA, i.e. without use of the ECA, and +ECA, i.e. with using
advice) means a better solution. Even some of the scenarios with a randomly
created set of recurring tasks have a two digit percentage improvement. And
the two scenarios enforcing the time windows for the deliveries show higher
improvements than the examples that do not enforce the time windows, which is



Table 2. Detailed results of an evaluation run for the scenario craft-6-I

Run -ECA +ECA Rule
Instance Created

1 568.18 568.18

2 1000.00 1000.00

3 581.39 581.39

4 694.44 694.44

5 1388.89 1388.89

6 343.64 343.64

7 543.48 543.48 TRUE

8 427.35 467.29 TRUE

9 645.16 636.94 TRUE

10 751.88 617.28 TRUE

11 588.24 806.45 TRUE

12 602.41 699.30

13 952.38 1136.36

14 800.00 980.39 TRUE

15 1000.00 1449.28

16 613.49 884.96

17 769.23 1123.59

18 1020.41 1136.36

19 609.76 826.45

20 316.47 358.42

a very good result since PDP with time windows is more difficult to solve (and
therefore more likely to not being solved well by just DSC).

Naturally, due to having (randomly created) non-recurring tasks in each run
instance, the advise of the ECA does not lead to improvements for every run
instance that A tackles. Table 2 presents the detailed results of the sequence of
run instances for craft-6-I. The ECA starts providing advice after having seen 7
run instances and, as column “Rule created” indicates, it immediately provides
advice to one of the agents. Consequently, for run instance 8 we see the first
time a difference between the system with and without the ECA and we see
an improvement by 40. The next 4 run instances all see additional exception
rules created by the ECA, with instances 9 and 10 having the system with ECA
performing worse than the system without it, run instance 10 substantially so.
But after that, the system with ECA performs better than the system without.

Table 2 also shows that the randomly created non-recurring tasks result
indeed in rather different run instances, as indicated by the quality of the created
solutions. Without using the ECA, the quality is between 316 and 1388, which
means that the transportation agents used substantially different routes in their
solutions. And since the ECA does not influence much the non-recurring tasks,
we also see a rather broad solution spectrum between run instances, if it is used.

It should be noted that we could have used the fact that most of the run
instances are solved better after the ECA has created the appropriate exception



Table 3. Results for changing recurring tasks

Scenario -ECA +ECA Impr.

chang-6-I 836.45 956.74 14.38%

chang-6-II 800.74 936.90 17.00%

chang-6-III 728.74 874.22 19.96%

rules to boost the improvements reported in Table 1 by simply having more
run instances in a scenario. But we think that the chosen numbers of runs are
sufficient to show that the ECA approach is successful!

An important aspect of real life transportation problems of the kind we are
interested in is that the set of recurring tasks can change over time (for example,
a company might loose a customer contributing to the recurring task set or new
such customers might be added). Our ECA approach is able to deal with this
and we demonstrate this by the experiments in Table 3. Scenario chang-6-I
consists of 20 run instances using one set of 6 recurring tasks (the instances
were created with additional random tasks and probabilities for the recurring
tasks as described before). Then follow 12 run instances created using a different
randomly created set of 6 recurring tasks, after which follow another 20 runs with
the first set of recurring tasks. The number 12 for the second set of run instances
was chosen, because it is just too small to allow for a change in advice by the
ECA. For chang-6-II, we use the same sets of recurring tasks as in chang-6-
I, but have 24 instead of 12 run instances before changing “back”. As can be
seen by the improvement in the improvement between chang-6-I and chang-6-
II, if the “change” is for long enough then the ECA can adapt the agents to
it. Finally, chang-6-III has 3 blocks of run instances using 3 different (random)
sets of recurring tasks, each set for 20 run instances. Again, the ECA shows its
usefulness.

Overall, our experimental evaluation shows that our ECA approach is able
to provide the autonomous agents with good advice, without destroying the
important and useful properties of the underlying agent coordination approach
that are necessary to deal with the dynamic nature of the problem.

6 Related Work

The integration of a closed-loop control system, as realized by the ECA, on
top of a basic system, which not necessarily has to be a MAS, is a well-known
practice originating mainly from control theory. The intention is to overcome the
limits of the basic system in guaranteeing an output of a desired quality, in other
words to fulfill a desired quality of service (QoS), for dynamic problems itself.
Central to this general concept is a device that regulates the output of the basic
system (in this case the desired quality of an emergent solution created by A)
by adjusting or adapting the system, if the monitored output violates predefined
boundaries or thresholds. Instantiations of this general concept can be found
in several areas affiliated to multi-agent systems, differing in their strength of



central control, their internal realization of the control loop, and in their ability
to look into future.

In the area of autonomic computing, an instantiation is presented by the
general framework of an autonomic manager (AM) [8], even though on a very
coarse-grained level. An AM is a device that reactively controls multiple managed
elements, such as processors, databases, or servers and thus focuses more on the
optimal performance of IT infrastructures. In contrast to the ECA, the AM acts
comparable to a central controller performing a very strong regulation and thus
limits the autonomy of the managed elements to a minimal level. In literature,
various instantiations of this management framework can be found in different
application areas, e.g. power management or data centers.

Another instantiation of the general concept is the observer/controller (O/C)
approach [2] in the area of organic computing, even though this instantiation
also remains very general itself. This approach equally serves as a framework
recommending which functions should be implemented to realize a control loop
for the optimization of a self-organizing emergent system. An implementation of
this framework is applied to a traffic light control scenario [11] and an evaluation
is performed that presents the benefits of the approach compared to traditional
systems. Due to the generic description, the ECA fits into this framework, even
if it exceeds its capabilities.

In the area of distributed artificial intelligence an instantiation can be found
by the management-by-exception approach [13]. Similar to the ECA, this ap-
proach tackles the performance of MASs for dynamic optimization problems, at
the present time limited to job shop scheduling problems only. If the manager
agent (instantiating the control system) detects a violation of the mean flow
time of a job (an exception) by monitoring the finished jobs in fixed intervals, it
takes over control and orders the shop agents (machines) to work with a fixed
strategy that is known to be performing best, as long as the flow time reaches
an acceptable range again. Similar to the ECA, the goal is to allow as much
flexibility as possible by keeping the time of central control as short as possible,
while ensuring an acceptable overall system’s performance. However, the man-
agement agent does not learn from the past and does not adjust the behavior of
the shops on a fine granular level.

Whereas all the approaches mentioned above mainly use classical feedback
or reactive control, in [1] a model-based control framework is presented that uses
limited lookahead control (LLC) to optimize the forecast behavior of the basic
system over a limited prediction horizon. The framework is applied to processor
power management and distributed signal classification. The online controller
within the framework predicts from the current state all possible (or at least a set
of) future system states based on a stochastic model up to a prediction horizon
and based on that choses a control action that optimizes given constraints. This
process is repeated whenever a new system state is available. In contrast to the
ECA, this online controller is however not able to adapt the basic system to cope
with future situations on its own but controls the system in every situation. The
ability to look into the future is based on a stochastic model and not on the



actual history. Although the authors state that this model can be obtained via
supervised learning where the system is first simulated for various environmental
inputs, in contrast to the ECA, the online controller is not able to autonomously
adapt its control actions to significantly changed situations that are not covered
by the model.

Many approaches for dynamic optimization problems in multi-agent systems
are by contrast very specific to the problem. For the PDP, such an approach
is presented in [9], where the authors propose a model that incorporates events
that occur with a high frequency into the generation of vehicle routes. Routes
are planned in a fashion that allows the vehicles to fulfill requests at locations
with a high demand without altering the routes. However, the system does not
observe past runs to learn from experience which locations frequently generate
more requests than others but relies on a predefined stochastic distribution of
events. The ECA not only predicts based on past experience but also adapts to
changes in the distribution of requests.

When focusing on solutions for a specific dynamic problem, online-algorithms
as e.g. presented in [15] are employed. These approaches usually calculate an
optimal solution for all problems known at a specific time with a traditional
optimization algorithm and apply this solution before calculating the next one
for the newly arrived requests. In that case, no learning takes place whatsoever
and solutions applied once are not used the next time a similar situation is
encountered.

None of the aforementioned approaches has the (limited) ability to look into
the future and based on that to adapt the basic agents to cope with similar
future situations on their own without violating performance boundaries again.
Learning of behavior is a technique that is widely applied in multi-agent systems
(we already mentioned [3] as one example), but the emphasis in these approaches
is on achieving a goal, which in our scenario would be fulfilling one task, not
many constantly changing goals. And either all agents are centrally controlled by
the learner or each agent tries to figure out its role on its own. Thus, in the long
run, the time the ECA influences the control of the whole system is significantly
less compared to the other approaches. Because the agents additionally have
the chance of acting autonomously, the difference between a controller and an
adviser concept becomes obvious.

7 Conclusion and Future Work

We presented the efficiency and coordination advisor approach that provides
an autonomic computing system solving dynamic optimization problems with
a limited capability to look into the future, if the problem instances to solve
contain recurring tasks. By having the advisor provide individual agents with
exception rules, these agents will not react to certain tasks for a given time,
allowing other agents to perform these tasks while being available for later tasks
for which they are better suited.



Our experimental evaluation showed that examples that are known to be
solved not well by the basic system are much better solved when using our advisor
approach. Even randomly created examples (with recurring tasks) profited from
our approach and it is also able to deal with changes in the set of recurring tasks.

In the future, we want to improve our existing system with a better optimizer
allowing for more complex run instances. Naturally, using the ECA approach for
other autonomic computing concepts is also on our to-do list. Additionally, there
are more possibilities for advice than just telling an agent to ignore a task, like
encouraging an agent to go to a place without it accepting a task.
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