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Abstract 
Smallholder farming in West Africa faces various challenges, such as limited 
access to seeds, fertilizers, modern mechanization, and agricultural climate 
services. Crop productivity obtained under these conditions varies signifi-
cantly from one farmer to another, making it challenging to accurately esti-
mate crop production through crop models. This limitation has implications 
for the reliability of using crop models as agricultural decision-making sup-
port tools. To support decision making in agriculture, an approach combining 
a genetic algorithm (GA) with the crop model AquaCrop is proposed for a 
location-specific calibration of maize cropping. In this approach, AquaCrop is 
used to simulate maize crop yield while the GA is used to derive optimal pa-
rameters set at grid cell resolution from various combinations of cultivar pa-
rameters and crop management in the process of crop and management op-
tions calibration. Statistics on pairwise simulated and observed yields indicate 
that the coefficient of determination varies from 0.20 to 0.65, with a yield de-
viation ranging from 8% to 36% across Burkina Faso (BF). An analysis of the 
optimal parameter sets shows that regardless of the climatic zone, a base tem-
perature of 10˚C and an upper temperature of 32˚C is observed in at least 50% 
of grid cells. The growing season length and the harvest index vary signifi-
cantly across BF, with the highest values found in the Soudanian zone and the 
lowest values in the Sahelian zone. Regarding management strategies, the fer-
tility mean rate is approximately 35%, 39%, and 49% for the Sahelian, Sou-
dano-sahelian, and Soudanian zones, respectively. The mean weed cover is 
around 36%, with the Sahelian and Soudano-sahelian zones showing the highest 
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variability. The proposed approach can be an alternative to the conventional 
one-size-fits-all approach commonly used for regional crop modeling. More-
over, it has the potential to explore the performance of cropping strategies to 
adapt to changing climate conditions. 
 

Keywords 
Smallholder Farming, AquaCrop, Genetics Algorithm Optimization, Maize, 
Burkina Faso 

 

1. Introduction 

West Africa is characterized by a tropical climate that varies from humid condi-
tions in the coastal areas to arid and semi-arid conditions in the Sahel region [1] 
[2]. In this region, agriculture plays a central role in food security. The importance 
of agriculture in West Africa goes beyond food production since it also encom-
passes income generation, employment opportunities, and its contributions to 
economic stability and rural development [3] [4]. Food production comes essen-
tially from smallholder farmers, making them essential for food security and rural 
livelihoods [5]. Indeed, smallholder farming system is predominantly based on 
indigenous farming practices. Although the primary objective of this agricultural 
system is to produce for consumption needs of the families, the surplus may be 
sold to generate additional income for their livelihood [6]. However, smallholder 
farmers in West Africa face numerous challenges, including limited access to seeds, 
fertilizers, pesticides, modern mechanization as well as lack of useful agricultural 
climate services making them more vulnerability to climate change and variability 
[3] [7]. 

Smallholder farming systems are predominantly rainfed with mixed cropping 
and shifting cultivation areas. Therefore, they are strongly influenced by climate 
change and variability with the strongest impact in the Sahel region [8]. This re-
gion is experiencing a high rainfall variability and climate change with changing 
precipitation patterns, and droughts. Consequently, this is leading to water scar-
city for food production. In light of this climate context and the population 
growth, the Sahel is facing severe and structural food security challenges. To ad-
dress food production challenges, it is urgent to develop and implement effective 
climate adaptation strategies and promote sustainable farming practices [7] [9] 
[10]. Among adaptation strategies, agricultural decisions such as when to start 
planting are essential tools that can be beneficial for smallholder farmers [11] [12]. 

Smallholder farming practices are thus mainly influenced by local climate and 
farmers’ incomes. They rely on locally available crop seeds for planting and avail-
ability of machines and labor for farming actions such as sowing, ploughing, and 
harvesting [13] [14]. Due to the lack of local climate information for the ongoing 
season, smallholder farmers rely on indigenous knowledge to sharpen their farm-
ing practices. In order to support this agricultural system, it is crucial to develop 
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approaches which can support the development of local climate information aim-
ing to help farmers prepare for and respond to climate-related challenges [15] 
[16].  

Efforts have been made to provide tailored agricultural information but the 
availability of small-scale information remains a challenge for researcher. For in-
stance, in the Sahel, smallholder farmers rely on seasonal climate forecasts for 
planting and harvesting schedules [17] [18]. These forecasts provide information 
about expected rainfall patterns, such as the onset and the duration of the rainy 
season, and the risk on long dry spell occurrence [19] [20]. However, these climate 
services issued by the West African regional climate outlook forums are still not 
tailored for sub-district scale uses, particularly in the context of smallholder farm-
ing system [21] [22]. Also, it is quite uncommon to find sub-district crop moni-
toring and crop yield forecast information provided by Regional Climate Centers 
and National Meteorological Services [23] [24]. The main contributing factor to 
this issue is the lack of adequate crop and management data at finer spatial scale. 
This emphasizes the pressing need to obtain crop information at the sub-district 
scale, which can be further served as valuable input for models in agricultural im-
pact studies or tools aiming at generating crop and location-specific information 
to support smallholder farming in West Africa.  

Burkina Faso’s economy and food production are primarily based on rainfed ag-
riculture [25]. More than 70% of the population, mainly from rural areas, is engaged 
in subsistence farming with millet, sorghum, and maize as the main staple crops 
[26] [27]. In addition, it serves as the main source of income for the rural popula-
tion, therefore, ensuring food security is the main challenge for the country [28]. 

Using Burkina Faso as a regional focus, this study aims to support agrometeor-
ological decision making in West Africa by proposing an approach to derive sub-
district crop and location-specific information for impact studies in agriculture. 
Our approach combines a genetic algorithm (GA) with a dynamic crop model and 
observed maize yields to determine suitable crop and management parameters at 
a 0.44˚ grid resolution. This work provides a reliable framework for optimizing 
location-specific cultivation parameters across the region’s agroecological zones. 
The paper structure is as follows: Section 2 describes the study area, data, and 
methodology; Section 3 presents the results; and Section 4 discusses these results 
and summarizes the key findings.  

2. Material and Methods 
2.1. Study Area 

Burkina Faso (BF) is a landlocked country in West Africa. It is located between 
9˚20' and 15˚05' North latitude, 5˚30' West longitude, and 2˚20' East longitude 
(Figure 1). It is bordered by six countries: Mali to the north, Niger to the east, 
Benin to the southeast, Togo and Ghana to the south, and Côte d’Ivoire to the 
southwest. Located in the Sahel region, it experiences a distinct wet season and 
dry season driven by the West African Monsoon [29]. 
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Figure 1. Study domain and spatial distribution of the annual precipitation of the period 
1991-2020 (data source: ANAM-BF, 2022). 

 
The timing and intensity of the monsoon strongly affect rainfall patterns during 

the wet season. The aforementioned occurs from May to October and lasts three 
months in the North and up to six months in the South. The annual cumulative 
rainfall varies between 300 mm in the North and less than 1200 mm [30] with 
three climatic zones: Sahelian zone (rainfall less than 300 mm), Soudano-sahelian 
zone (rainfall between 300 mm and 900 mm), and Soudanian zone (rainfall greater 
than 900 mm). The irregular distribution of rainfall has consequences for rainfed 
agriculture. In fact, the observed changes in planting dates, the occurrence of long 
dry spells, and the limited water availability for crop growth are the climate-re-
lated limiting factors for food production [31]. 

2.2. AquaCrop Model 

Crop models are developed to address various challenges and objectives in the 
field of crop production and management. Efforts have led to the development of 
more advanced models, some of which are more focused on the plot-plant scale, 
while others, like AquaCrop, are more focused on the canopy-level scale and serve 
as management tools to assist in decision making. 

The AquaCrop model has been developed by the Food and Agriculture Organi-
zation (FAO) of the United Nations [32]. It is specifically designed to simulate and 
optimize crop production, with a particular emphasis on water management in ag-
riculture, particularly for water-sensitive crops [32]. The model considers various 
factors, such as planting date, climate, available soil water, field management, and 
crop-specific parameters, in order to simulate crop growth and development. Cli-
mate data used in the model typically includes daily rainfall, minimum (Tn) and 
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maximum (Tx) air temperature, reference crop evapotranspiration (ETo), and 
mean annual carbon dioxide concentration (CO2). By making adjustments to pa-
rameters such as planting date, agronomic practices, and crop-specific location pa-
rameters, users can determine the most efficient strategies for enhancing crop 
yields and water use efficiency [33]. The following AquaCrop chart illustrates the 
key elements of the soil-plant-atmosphere continuum and the parameters that influ-
ence phenology, canopy cover, transpiration, biomass production, and yield (Figure 
2). In this study, the open-source AquaCrop Fortran code from the FAO website 
(available at https://www.fao.org/aquacrop/software/aquacrop-gisen#c518675) has 
been compiled on a Unix-like operating system and then used for simulation at 
the grid cell resolution of 0.44˚ × 0.44˚ across BF. 

 

 
Figure 2. Main components of the soil-plant-atmosphere continuum in AquaCrop 
(from [34]). 

2.3. Climate Data 

Daily climate data for the period 1983-2020 are used in this study, including precip-
itation, minimum and maximum temperature, dew point temperature at 2 m, and 
surface net solar radiation. Except for precipitation data, climate data were retrieved 
from ERA5, the fifth generation of global climate reanalysis data from the European 
Centre for Medium-Range Weather Forecasts [35] [36]. The data are accessible on 
Copernicus Climate Data Store  
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-lev-
els?tab=overview). ERA5 has been widely validated and successfully applied in ag-
ricultural climate impact studies [37] [38]. 

Precipitation data is obtained by merging measurements from rain gauges with 
satellite precipitation data. In Burkina Faso, the rain gauge network consists of 
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nearly 134 observation stations, which include synoptic, climatological, agrome-
teorological, and rain gauges that have long-term series of data. To ensure data 
quality, stations with large data gaps (greater than 5% on a daily basis) for the 
considered period are removed, resulting in 97 rain gauges for the merging pro-
cess (Figure 3). Satellite data are from the version 3.1 of the Tropical Applications 
of Meteorology using SATellite data and ground-based observations (TAMSAT 
v3.1) [39]. Previous research comparing seven satellite precipitation datasets has 
shown that TAMSAT performed better on a daily basis in Burkina Faso [40]. For 
merging the precipitation data from the selected rain gauges with TAMSAT data, 
bias correction and interpolation methods were employed throughout the Climate 
Data Tools (https://iri.columbia.edu/our-expertise/climate/tools/cdt/), an R-based 
software developed by the International Research Institute for Climate and Soci-
ety (IRI). The empirical quantile mapping method [41] was used to compute the 
bias correction factor between station observations and TAMSAT estimates at the 
station location, while the regression kriging [42] was used as the interpolation 
method aiming to capture the spatial dependence of the residuals. These methods 
have been extensively used for operational applications [43] [44]. 

 

 
Figure 3. Spatial distribution of the selected rain gauges. 

2.4. Deriving Reference Crop Evapotranspiration (ETo) 

ETo is a critical parameter for crop water requirement estimation and therefore for 
the soil water balance of the crop root zone. To estimate ETo, air temperature, rela-
tive humidity or dewpoint temperature, solar radiation, wind speed, and elevation 
data are required [45]. However, in Burkina Faso, only ten weather observation sta-
tions (synoptic stations) with long-term data records for these weather parameters 
are available. To address the specific need of ETo for this study, ERA5 gridded data 
at a resolution of 0.44˚ × 0.44˚ along with a Digital Elevation Model Data  

https://doi.org/10.4236/as.2025.161006
https://iri.columbia.edu/our-expertise/climate/tools/cdt/


M. Waongo et al. 
 

 

DOI: 10.4236/as.2025.161006 95 Agricultural Sciences 
 

(https://srtm.csi.cgiar.org/srtmdata) have been used to calculate ETo, using the 
FAO-Penman-Monteith Equation (1) following [45]. ERA5 reanalysis at this reso-
lution provides physically consistent meteorological variables for ETo calculations 
while aligning with the district-level crop yield data available for model validation. 

 
( ) ( )

( )
2

2

9000.408
273

1 0.32

n s aR G u e e
TETo

u

γ

γ

×∆× − + × × × −
+=

∆ + × + ×
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where: Rn is the net radiation flux density on the crop surface (MJ∙m−2∙d−1); G is 
the soil heat flux density (MJ∙m−2∙d−1); T is the average daily air temperature (˚C); 
u2 is the wind speed at 2 m high (m∙s−1); es is the saturation vapor pressure (kPa); 
ea is the actual vapor pressure (kPa); Δ is the slope of vapor pressure-temperature 
curve (kPa∙˚C−1) and γ is the psychometric constant (kPa∙˚C−1).  

2.5. Soil Information 

Soil hydraulic characteristics such as the upper limit of volumetric water holding 
capacity (FC), the lower limit of water holding capacity (PWD), drainage coeffi-
cient (τ), and hydraulic conductivity at saturation (Ksat) are necessary for running 
AquaCrop. Soil parameters including organic carbon and the fractions of clay, silt, 
and sand were obtained from the latest version (2.0) of the Harmonized World 
Soil Database (HWSD) [46]. For a given grid cell at a resolution of 0.44˚ × 0.44˚ 
in the study area, these retrieved soil parameters were used to calculate textural 
classes based on the USDA classification, and then summarized to determine the 
dominant soil texture for each of the soil layers. Computed soil textures are then 
used to derive soil hydraulic characteristics such as the upper limit of volumetric 
water-holding capacity (FC), the lower limit of water-holding capacity (PWD), 
drainage coefficient (τ), and hydraulic conductivity at saturation (Ksat), which are 
necessary for running AquaCrop [34]. The hydraulic characteristics for the dom-
inant soil texture were based on the FAO database implemented in AquaCrop. In 
this study, the maximum depth of the soil was set to 1.5m for maize crop rooting, 
which corresponds to the first six layers in HWSD v2.0. 

2.6. Observed Crop Yield 

In crop simulation, the availability of observed crop yield data is crucial to ensure 
that crop models accurately represent local agricultural conditions. We obtained 
maize crop production and cultivated areas from the Direction Générale des 
Etudes et des Statistiques Sectorielles of the Burkina Faso Ministry of Agriculture, 
Animal Resources and Fisheries. These data are available at the province level, 
covering the 45 provinces in Burkina Faso, and span the period from 2009 to 2022. 
We performed crop yield calculations (kg/ha) at a resolution of 0.44˚ × 0.44˚. The 
yield for a specific grid cell is calculated using a composite weighted average that 
considers all provinces that share the same grid. The cultivated areas of the rele-
vant provinces were used as the weights in Equation (2). 

 ( ) ( ) ( )1 1
1

n
grid i province iiY kg ha w Y kg ha− −

=
⋅ = × ⋅∑  (2) 
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where Ygrid (kg/ha) represents the gridded crop yield, Yprovince(i) represents the crop 
yield in province i, wi represents the fraction of cultivated area of province i within 
the grid cell, and n represents the number of provinces that share the area of the 
grid cell. 

2.7. The Parameter Set for Calibration 

Calibration is a systematic process of optimizing model parameters to minimize 
the difference between simulated outputs and observed data, thereby improving 
model accuracy for specific environmental conditions. For crop models, this pro-
cess involves adjusting biophysical parameters and management practices to bet-
ter reflect local farming conditions. In this study, we employed a Genetic Algo-
rithm optimization approach to calibrate selected maize crop and management 
parameters. The calibration methodology combines mathematical optimization 
with local agricultural knowledge. Specifically, the parameter selection and bound-
aries were driven by the specific challenges of Sahelian agriculture and constrained 
by local maize varieties and well-documented agronomic practices from the Insti-
tut de l’Environnement et de Recherches Agricoles (INERA) in Burkina Faso 
(Olaoye et al., 2009). 

The crop parameters were initially drawn from the generic maize crop file in 
AquaCrop [32], while the growing period durations were established based on the 
main maize cultivar categories in use in Burkina Faso: short-duration (75 - 80 
days), medium-duration (90 - 100 days), and long-duration (105 - 120 days) vari-
eties [47] [48]. Similarly, plant density parameters computed based on row spac-
ing and plant spacing along rows were established based on comprehensive field 
surveys on agronomic practices of the main cultivars used in smallholder farming 
systems across Burkina Faso [49] [50]. As sowing stratey, row spacing was fixed 
at 0.80 m, while plant spacing along rows varied from ~0.25 m to 0.50 m according 
to cultivars. The phenological development stages, which determine the length of 
the growing period, were parameterized according to [32] and [51]. Among man-
agement parameters, we prioritized the calibration of relative weed cover and soil 
fertility stress coefficients, as these factors show high spatial and temporal varia-
bility in smallholder farming systems and significantly impact crop water produc-
tivity [52]. The following Table 1 summarizes the key parameter set selected for 
calibration. The calibration approach ensures that our optimized parameters rep-
resent not just mathematically optimal solutions but also practically viable recom-
mendations grounded in local agricultural reality. 

 
Table 1. Selected crop and management parameters. 

Types Parameters Minimum values Maximum values 

Crop 

Growing period length 80 days 120 days 

Base temperature 8 12 

Upper temperature 30 35 

Number of plants  25,000 plants/ha 45,000 plants/ha 
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Continued 

Crop 

Length of building 
up of Harvest Index 

20 days 40 days 

Reference Harvest 
Index (HIo) 

20% 45% 

Management 
Soil fertility rate 20% 80% 

Relative cover of weed 10% 80% 

2.8. The Genetic Algorithm (GA) Approach 

Genetic algorithms (GAs) are adaptive heuristic search algorithms inspired by the 
principles of natural selection. They are based on genetic mechanisms such as se-
lection, crossover, and mutation [53] [54]. Unlike traditional search methods, they 
are particularly suitable for global optimization problems that involve finding the 
best solution within a large and complex space [55]. However, the performance of 
GAs is heavily influenced by a number of factors, one of the most pivotal being 
the objective function used [56]. In this study, the genetic algorithm (GA) is com-
bined with a designed objective function (fobj) to optimize parameter sets for lo-
cation-specific calibration of maize crops. The calibration process through the ob-
jective function performs simulations at a grid cell resolution of 0.44˚ × 0.44˚ us-
ing AquaCrop’s open-source Fortran code as a subroutine within the GA. For 
each grid cell, climate and soil data remain constant across GA iteration steps, 
while selected crop and management parameters are optimized according to the 
objective function. 

The objective function takes into account two performance metrics, namely the 
coefficient of determination (R2) and the Relative Absolute Error (RAE). These 
two statistics are calculated based on the observed yield and the simulated yield 
using the AquaCrop model. R2, RAE and fobj are expressed as the following Equa-
tion (3). To ensure the significance of the Pearson linear correlation (R), the p-
value has been set to a maximum of 5%. These statistical measures guide the GA 
in optimizing location-specific crop and management parameters for maize culti-
vation across Burkina Faso. Ultimately, the success of a GA requires a thorough 
understanding of the problem landscape and depends on the careful combination 
of multiple objective functions to achieve a balanced approach for the optimiza-
tion tasks [57]. 
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where Oi and Pi represent the observed and simulated yields for the i-th cropping 
season, respectively. Oavg and Pavg indicate the mean values of observed and simu-
lated yields for the n cropping seasons of the simulation. 

In this study, the optimization process aims to maximize fobj. The highest values 
of fobj correspond to those close to zero (dark blue area), as depicted in Figure 4. 
Hence, a set of optimal parameter swill yield an RAE close to zero and R2 close to 
one. 

 

 
Figure 4. Values of the objective function. The red rectangle represents the area of the 
optimal solution. 

 
The flowchart in Figure 5 depicts the different steps in the process of location-

specific crop calibration using a GA. A member of a GA population of candidate 
solutions is a vector of eight crop and management parameters. For each member, 
once the growing duration parameter is known through the GA selection process, 
it is used to derive the comprehensive phenology of the crop. This step completes 
the user-defined parameters set required to set up the crop file essential for Aqua-
Crop simulation. 

3. Results 
3.1. Inputs Data Analysis 

Different types and sources of data have been preprocessed to obtain the required 
input data for AquaCrop runs. From the soil data, the soil fraction of silt, clay, 
sand, and organic content has been transformed into soil textural classes. The re-
sults shown in Figure 6 indicate that there are a total of 7 USDA soil textural 
classes across Burkina Faso. Sandy loam, sandy clay loam, and clay are the domi-
nant soil textures for all the layers considered, with sandy loam being the most 
prevalent in the northern half of the country while sandy clay loam and clay dom-
inate the south and southwest regions. The soil depth less than 60 cm is more 
heterogeneous compared to the layers ranging from 80 cm to 150 cm. 
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Daily ETo has been computed based on the FAO-Penman-Monteith method 
and using ERA5 reanalysis data and further re-gridded at a resolution of 0.44˚ × 
0.44˚. The results on the long-term mean (period 1981-2020) spatial variation of 
ETo indicate that it ranges from 5 mm/day to 8 mm/day throughout the country 
(Figure 7(a)). It shows a North-South gradient, with the highest values observed 
in the northern part and the lowest values in the southern part of the country. 

Maize crop yields for the 45 provinces in Burkina Faso from 2009 to 2022 have 
been re-gridded and used for the calibration process. The average crop yields 
across the country range from 0.5 t/ha to 2.5 t/ha (Figure 7(b)). The lowest yields 
are located in Northern half of BF, while the highest are found in the southwestern 
part of Burkina Faso. 

 

 
Figure 5. Flowchart illustrating the steps in location-specific maize crop calibration using 
a GA. 
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Figure 6. Soil textural classes for the six (6) soil layers. The dominant soil texture is shown at 0.44˚ 
grid-cell resolution. 
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Figure 7. Spatial distribution of ETo (a) and maize crop yield (b) in BF at grid cell 
resolution. 

3.2. Global Optimum Search in the GA Process 

The combination of AquaCrop and a Genetic Algorithm (GA) has been imple-
mented in a total of 156 grid-cells. The main objective is to find the global opti-
mum in the search space, thereby maximizing the fitness. The fitness values are 
calculated through the fitness function which is based on a specific set of param-
eters heuristically chosen at each step of the GA. Figure 8 illustrates the GA pro-
cess for a randomly selected set of grid cells. Overall, the results indicate that the 
global optimum is achieved after at least the 20th generation. The value of the 
global optimum obtained through the GA process ranges from −0.65 to −0.15 
(Figure 8(b) and Figure 8(c)), whereas theoretically, the optimal value should be 
zero, indicating a perfect match between simulated and observed yield. Figure 
8(c) demonstrates a scenario of rapid convergence towards the global optimum, 
while Figure 8(a) and Figure 8(d) depict slower convergence. Figure 8(b) repre-
sents a hybrid case with slow convergence until the 60th generation, followed by 
rapid convergence. 
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Figure 8. GA process for a selected set of grid cells. The dotted line represents the maximum fitness value computed 
from the 50 ensemble members at each generation of the GA, while the dash-dotted line represents the ensemble 
mean for each generation. 

3.3. Performance Metrics of AquaCrop Calibration for Maize  
Cropping in BF 

For a given grid cell, the coefficient of determination (Figure 9(a)) and the rel-
ative absolute error (Figure 9(b)) were calculated using pairwise simulated and 
observed yield data for the period 2009-2022. The simulated yield was per-
formed using AquaCrop in combination with the optimal crop and manage-
ment location-specific parameter sets obtained throughout the GA crop calibra-
tion processes. Our findings reveal that the coefficient of determination (R2) 
varies from 0.20 to 0.65, whereas the yield deviation (RAE) varied from 8% to 
36% across the country. Notably, the southwestern part of the country exhibits 
the highest R2 values, while the northern part exhibits the lowest values. Among 
the 156 grid cells, approximately 60% show yield deviations within the range of 
21% to 30%. 

3.4. Set of Calibrated Parameters Across the Climatic Zone in BF 

Crop and management parameters derived from the GA process of location-spe-
cific calibration for maize cropping have been analyzed for the three climatic 
zones in BF. The results show that regardless of the climatic zone, a base temper-
ature of 10˚C and an upper temperature of 32˚C are required for at least 50% of 
grid cells (Figure 10(a) and Figure 10(b)). The duration of the growing season 
(Figure 10(c)) and the harvest index (Figure 10(f)) vary significantly among the 
three climatic zones, with the highest values found in the Soudanian zone and the 
lowest values in the Sahelian zone. The mean plant sowing density (Figure 10(d)) 
is approximately 31,000 plants per hectare, but there is considerable variability 
within each climatic zone. The flowering duration (Figure 10(j)) is consistent 
across the three climatic zones, lasting about 2 to 3 weeks. Crop development 
stages (Figure 10(g), Figure 10(h) and Figure 10(i)) show a similar trend in var-
iability as the duration of the growing season. In terms of management strategies, 
the overall fertility rate parameters range from 20% to 55%, with mean values of 
35%, 39%, and 49% for the Sahelian, Soudano-sahelian, and Soudanian zones, re-
spectively (Figure 10(e)). The mean weed cover (Figure 10(e)) is approximately 
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36%, with the Sahelian and Soudano-sahelian zones showing high variability and 
the Soudanian zone showing low variability. 

 

 
Figure 9. location-specific performance of maize crop calibration. The coefficient of 
determination (a) and the Relative Absolute Error (RAE) (b) were calculated pairwise 
using simulated and observed maize yields. 

4. Discussion and Conclusions 

In West Africa, smallholder farming is characterized by high rainfall variability 
and significant variation in crop cultivars and soil conditions. This means that a 
one-size-fits-all approach is not effective for estimating crop yield. Our paper fo-
cuses on calibrating crop maize (as one of the most important staple crops) to 
account for the diverse agroecological conditions faced by smallholder farmers in 
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this region. At the local level, climate conditions are not uniform, and there are 
differences in cultivars, soils and cropping practices, resulting in high variability 
in crop yield. It is important to consider this variability in order to accurately es-
timate crop yield. Figure 9(a) and Figure 9(b) in this paper demonstrate the spa-
tial variability in simulated crop yield when local climate conditions and manage-
ment are taken into account. Previous studies have also highlighted the signifi-
cance of local conditions and management in yield variability [58]-[60]. Accurate 
yield estimation is crucial for agricultural production, policy-making in food se-
curity, and the adoption of cropping technologies. 

Furthermore, Figure 10(e) illustrates the predominance of poor to moderate 
soil fertility, as well as sparse to approximately half weed cover, which are distinct 
characteristics of smallholder farming in the study area. This cropping context 
has been observed in West Africa, particularly in the Sahel region, over the past 
few decades. While large-scale yield estimation provides an overall view of agri-
cultural productivity, it often overlooks the local characteristics of the region, 
resulting in a lack of understanding of the extent of yield variability [61]. When  

 

 

https://doi.org/10.4236/as.2025.161006


M. Waongo et al. 
 

 

DOI: 10.4236/as.2025.161006 105 Agricultural Sciences 
 

 
Figure 10. Crop and management optimal parameters for maize cropping in the three climatic zones in Burkina 
Faso. Statistics for each climatic zone are calculated by considering all grid cells that belong to the respective zone. 

 

ever possible, it is important to take into account tailored crop and management 
strategies to accommodate the diversity of smallholder farmers and their prac-
tices. This finally contributes to better agricultural decision-making. 

In this study, the choice of a GA approach is due to its ability to handle complex, 
non-linear problems with a large solution space [55]. The use of GA allows for the 
exploration of various combinations of cultivar parameters, soils and crop man-
agement, which would be impractical or time-consuming with traditional, manual 
calibration methods. However, the definition of the objective function is critical 
in GA since it guides the optimization process. It can vary depending on the spe-
cific problem. The optimization process described in this paper is not solely fo-
cused on maximizing crop yield. Instead, it aims to simultaneously maximize the 
pairwise correlation between simulated and observed yield while minimizing the 
deviation between simulated and observed yield. Previous studies have explored 
various optimization objectives. Reference [10] investigated maximizing crop 
yield while minimizing its inter-annual variability. Reference [62] focused on 
maximizing the sum of relative crop yields, while [56] employed a multi-objective 
function to enhance crop yield prediction accuracy.  

In the agricultural productivity perspective, the GA approach can help identify 
strategies that optimize cropping resources, aligning with the principles of sus-
tainable agriculture. In addition, it presents a notable reliance on data, including 
weather data, soil and management information, and crop yield data. This data-
driven approach is essential for accurate modeling and optimization, emphasizing 
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the importance of data collection efforts in the fields of agriculture.  
Using the dynamic crop model AquaCrop in the core process of the GA ap-

proach enables the accounting for complex and nonlinear interactions between 
various environmental factors, including temperature, precipitation, soil condi-
tions, and management practices. This allows for a more accurate simulation of 
crop yield in the optimization process. The varying convergence speeds observed 
across grid cells (Figure 8) can be attributed to the spatially heterogeneous nature 
of three key factors: local climate variability, soil condition complexity, and man-
agement practice variations. These factors create distinct optimization landscapes 
for each grid cell, consequently influencing the algorithm’s efficiency in identify-
ing optimal solutions. Despite varying convergence rates, the GA approach demon-
strates computational efficiency by achieving parameter optimization within ap-
proximately 100 generations for most grid cells, and AquaCrop successfully sim-
ulates annual crop yield with a deviation of less than 30% for the majority of the 
grid cells when using these optimized parameters. However, it is important to note 
that the quality of input data significantly impacts the success of this approach. In 
this particular study, the reference maize crop yield is based on the official agri-
cultural survey database at the district level rather than a research experimental 
field. Additionally, it is worth mentioning that the GA optimization process can 
be time-consuming, especially when dealing with input data at a finer spatial res-
olution, leading to a large number of grid cells. However, when computer re-
sources are available, GA can take advantage of parallel processing capabilities, 
allowing for the execution of multiple simulations simultaneously and reducing 
the time required to find optimal solutions. 

In conclusion, this paper presents an approach to address the location-specific 
calibration of maize crop yield. This is achieved by using a genetic algorithm in 
combination with the dynamic crop model AquaCrop. The approach yields opti-
mal cultivar parameters and management practices that are tailored to specific 
locations and can adapt to climate variability. The findings can be used to support 
better adapted agricultural decisions (e.g., the decision about the planting time), 
thereby contributing to the promotion of sustainable and resilient agriculture in 
smallholder farming. Potential extensions of this research should explore crop-
ping strategies to adapt to changing climate conditions. Additionally, it can be 
further used to explore the local implications in agricultural policies in the Sahel 
region dominated by smallholder farming. 
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