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Abstract

Model checking is known as an automatic verification technique which can be
applied very efficiently. Formalisation of medical guidelines in Asbru enables us
to apply formal verification on medical guidelines. In this deliverable we show,
how model checking can be applied to Asbru plans. After a short survey, which
model checking techniques are suitable for verification of Asbru, we show how
a finite state model can be constructed from Asbru plans and how they can
automatically compiled. Further, we discuss what kind of properties can be
verified with model checking.
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Chapter 1

Introduction

Model checking is a verification technique, which is used to verify that a given
finite state model satisfies a property specified as temporal logic formula. In
contrast to interactive verification this technique is usually fully automatic, i.e.
the verification process itself needs no user interaction. Since its introduction
1986 by Clarke, Emerson and Sistla[1], model checking has evolved to a suc-
cessful and reliable verification technique, which is further developed by a big
research community.

In the Protocure I project we were developing only the interactive verification
of Asbru. After this project was accomplished and we gained much experience
with the verification of Asbru, we decided to investigate the use of alternative
verification techniques. Although, interactive verification is the central theme
of our research within the scope of the Protocure II project, investigating other
alternative verification techniques is also a topic for the Protocure II project.
According to the formal semantics of Asbru, hierarchical plans that model the
protocol are represented by state charts. State charts are hierarchical state
transition systems and are highly suitable for model checking. Also both inter-
active theorem proving and model checking are using linear temporal logic for
the formulation of properties. Therefore, the idea of applying model checking
to the verification of Asbru models seems a logical choice. In the beginning we
decided to realize a flexible and a pragmatic solution in order to evaluate these
approach. Already first experiments with model checking of Asbru produced
very promising results. So, we decided to go even further and apply model
checking to the verification of a wide range of properties, i.e. structural and
medical properties. Further, we also applied model checking for critiquing of
medical guidelines. In this technical report we will deliver a detailed insight
in the different aspects of model checking technique used for the verification of
Asbru. Parts of this work were previously published in [2] and [3].

In Section 2 we will give an introduction to temporal logic which builds the
basis for the verification of Asbru. Section 3 compares different model checking



CHAPTER 1.

techniques and their tools, which are potentially suitable for the verification of
Asbru. The choice of an appropriate model checking tool is the most crucial
decision in the whole process. It is particularly difficult to make because there
are so many tools for this popular verification technique.

The key to the verification by model checking is the construction of a finite
state model of the verified system. Section 4 gives a detailed description of
this process and discusses the correctness of results. In many cases the con-
struction of semantically equivalent finite state model for an Asbru model is
done automatically and is not an expensive step. Nevertheless, Asbru makes it
possible to construct models which are infinite in state space and can not be
straightly mapped on a finite state transition system. In this case another level
of abstraction is needed. Section 5 discusses the implications on the verification
process done by the application of an abstraction to the original model. The
well known counter example guided abstraction refinement (CEGAR) process
is shortly discussed and the link to the verification of Asbru properties is estab-
lished. Section 6 explains how the compiler works and Section 7 describes the
main classes of properties we considered for the verification by model checking
(important parts of this are also discussed in deliverable D4.2¢ of the Protocure
1T project). Section 8 summarizes the general results we achieved by implement-
ing this approach. Section 9 explains how the whole approach of model checking
of Asbru can be enhanced by considering medical background knowledge. Dur-
ing the verification of many medical properties we have made experiences show-
ing how important it is to consider the additional medical knowledge during the
verification. Section 10 summarizes this deliverable.

All of the model checking verification results, which are a big part of work-
package 4.3, are presented in Deliverable 4.2¢ [4] together with the verification
results of the interactive verification.
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Chapter 2

Temporal Logic

As medical management is a time-oriented process, diagnostic and treatment
actions described in guidelines are performed in a temporal setting. It has been
shown previously that the step-wise, possibly iterative, execution of a guideline
can be described precisely by means of temporal logic [5]. This is a modal
logic, where relationships between worlds in the usual possible-world semantics
of modal logic is understood as time order.

Medical guidelines can be interpreted as a Kripke structure M over a set of
atomic propositions A P, which formally is defined as a four tuple M = (S, Sp, R, L)
where

S is a finite set of states.

e Sy C S is the set of initial states.

e RC S xS is a transition relation that must be total, i.e., for every s € §
there is a state s’ € S such that R(s,s’).

e L :S — 247 ig a function that labels each state with the set of atomic
propositions true in that state.

A path in the model M from a state s is an infinite sequence m = sys18s .. . such
that so = s and R(s;, s;4+1) holds for all i > 0. With 7 we denote the suffix of
7 starting at s;.

2.1 Branching-time Logic

The logic typically used for specifying properties of the Kripke structures is
branching-time logic or Computation Tree Logic (CTL) [6, 7, 8]. This logic
uses atomic propositions and Boolean connectives (e.g., =, V,A) to build up
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more complicated expressions for describing properties of states. Furthermore,
CTL formulas can be composed of path quantifiers and temporal operators for
describing properties of computation trees, i.e., the tree that is formed by des-
ignating a state in the Kripke structure as the initial state and then unwinding
the structure into an infinite tree according to the transition relation R with
the initial state as root. The path quantifiers are A and E to specify that all of
the paths or some of the paths starting at a specific state have some property.
The temporal operators describe properties of a path through the tree. The five
temporal operators used are X, G, F, U, and R. With X being true if ¢ holds
in the next state, Gy if ¢ holds in the current state and all future states, Fo if
© holds in some state in the future (or is true in the current state), U if ¢
holds until ¢ holds, i.e., there is a state on the path where ¥ holds and in every
preceding state ¢ holds, and @R if ¥ holds along the path up to and including
the first state where ¢ holds, however ¢ is not required to hold eventually.

In CTL there are two types of formulas: state formulas, which are true in a
specific state, and path formulas, which are true along a specific path. The
syntax of state and path formulas is defined as follows:

e Each atomic proposition is a state formula.
e If f and g are state formulas, then —f, fV g, and f A g are state formulas.
e If f is a path formula, then Ef and A f are state formulas.

e If f and g are state formulas, then Xf, Gf, Ff, fUg, and fRg are path
formulas.

The semantics of CTL is defined with respect to a Kripke structure M. Given
a state formula f, the notation M, s = f denotes that f holds in state s of the
Kripke structure M. Assuming that fi; and fy are state formulas and ¢g; and go
are path formulas, the relation = can be defined inductively as shown in Figure
2.1.

2.2 Fairness Constraints

Additionally to the choice of CTL or LTL, one also has to consider the issue
of fairness. In the case of medical guidelines, we are only interested in the
correctness along fair computation paths. This means that we assume that
medical actions that depend on a manual interaction with a physician are not
ignored indefinitely by the physician. For example, obtaining the value of a
medical quantity or initiating a medical action. Such properties cannot be
directly specified in CTL. In case we need to deal with fairness in CTL, we
modify the semantics as given in Figure 2.1 slightly and refer to the logic by
fair semantics. A fairness constraint can be an arbitrary set of states, usually
represented by a logical formula. A fair path is then a path that contains an
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2.3. LINEAR TEMPORAL LOGIC CHAPTER 2.

M,skE=p & pe L(s)

M,S':_'fl ~ M,Sl;éfl

M,sEfivfy & M,sk=fior M,skE fo

M,sEfinfa & M,skEfirand M,s = fo

M,s = Eg < there is a path 7 from s such that M, s | ¢;

M,s = Ag < for every path 7 starting from s such that M, s = ¢;

M, 7 fi < s is the first state of 7 and M, s = f1

M, 7 = —¢1 & Moo

MaE=EgVg < MaEgor MrmEg

MaEgNhNg < MaEgand M,s =g

M, =Xg1 & MrlEaq

M,7m =Fq & there exists a k > 0 such that M, 7% |= ¢

M, 7= Gg & forall k> 0,M, 7% =g

M,m =g, Ugs < there exists a k > 0 such that M, 7% |= gy and
forall 0 < j <k, M, 7 = g1

M,7 =g Rgs < there exists a k > 0 such that M, 7" |= g; and

forall 0 < j <k, M, 7’ |= go

Figure 2.1: Semantics of CTL with f; and f> representing state formulas and
g1 and go representing path formulas

element of each fairness constraint infinitely often. The path quantifiers are
restricted to fair paths. We write M, s =p f to indicate that the state formula
f is true in state s in the Kripke structure M under the fair semantics. For
the fairness semantics, only the first, fifth, and sixth clause in Figure 2.1 are
modified into:

M,s =pp < there exists a fair path starting from s and p € L(s)
M,s =rp Eg1 < there exists a fair path 7 from s such that M, s Er g1
M,s Ep Agr < for all fair paths 7 starting from s such that M, s Er g1

2.3 Linear Temporal Logic

Linear Temporal Logic (LTL) provides operators for describing events along a
single computation path. Each formula is of the form A f, with f being a path
formula, which is either an atomic proposition or inductively defined as —f,
fVvg fng Xf,Ff, Gf, or fRg with f, g formulas.

The semantics of LTL with respect to a Kripke structure M is shown in Figure
2.2. The notation M, s = f means that f holds at state s in the Kripke structure
M. Similarly, in case f is a path formula, M, s |= f means that f holds along
path 7w in the Kripke structure M. A path 7 in M is defined as an infinite
sequence T = $pS183 ... such that so = s and R(s;, s;+1) holds for all i > 0.
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TEDp

T fi
TEfiVfe
T fiAfe
W':Xfl
mE=Ffi
7= Gfi
7= iUf2

7 = fiRf2

s is the first state of m and p € L(s)

T S

TEfiormE fo

7 fiand 7 = fo

™ E fi

there exists a k > 0 such that 7* Efi

for all k > 0,7% = f1

there exists a k > 0 such that 7% E f2 and
forall 0 < j <k, 7/ = f1

there exists a k > 0 such that 7% E f1 and
forall 0 < j <k, 7/ |= fo

teeeeeee

¢

Figure 2.2: Semantics of LTL

With 7¢ we denote the suffix of 7 starting at s;. We will often shorten M, s = f
to s = f as the model M is clear from the context.
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Chapter 3

Comparison of Model
Checking Techniques and
Tools

To verify a property practically all model checking algorithms compute the
whole state space of the model. The need of this computation is usually the
main disadvantage of model checking compared to other verification techniques,
as the state space can grow exponentially to the number of used variables or
concurrent components (this problem is also called state explosion problem).

There are various newer model checking techniques that reduce the run-time
complexity of the verification and therefore help to counter the state explosion
problem. On the other hand, to our knowledge no existing technique is capable
of eliminating this problem entirely. In Section 3.1 we compare complexity issues
of LTL and CTL model checking. The following Sections 3.2 to 3.6 discuss
some different model checking techniques and tools. The chapter concludes in
Section 3.7 with a comparison of the applicability of different model checking
tools with respect to Asbru. For more details about model checking in general
we recommend [9].

3.1 Model Checking Complexity Issues

The complexity of model-checking with LTL and CTL formulas is well under-
stood. Suppose we are given a program of size n and temporal specification
of size m. For a CTL formula, model checkers run in O(mn) [1], whereas,
for LTL formulas, the complexity is O(n2™) [10]. The latter (probably) can-
not be improved as model checking with LTL has been found to be PSPACE-
complete. The linear-branching model checking problem has been found to be

10



3.2. AUTOMATA BASED MODEL CHECKING CHAPTER 3.

EXPSPACE-hard [11], making it strictly more difficult than model checking
LTL formulas alone. Note that this result heavily relies on the blowup of LTL
formulas to automata, which suggests that it would be possible to find a better
result if one restricts the form of LTL formulas.

The relative low computational complexity of CTL has made it the industrial
standart for model checking for decades. However, the discussion whether to
use CTL or linear-time temporal logic (LTL) for model checking is far from
over, as LTL is usually more intuitive and is better suited as a specification
language. For example, recently, Vardi [12] revived this discussion by summing
up the advantages of linear-time frameworks in terms of expressiveness, com-
positionality, property-specific abstractions, uniformity and the use of bounded
model checking (cf. Section 3.5).

Clearly, LTL is not the only alternative logic that can be applied for model
checking. For example, alternating time temporal logic [13, 14] has been studied
in the context of model checking for open systems and games in which there
is an alternation between moves. However, a complete overview of alternative
logics is beyond the scope of this deliverable.

3.2 Automata based Model Checking

Automata based model checking is usually used to verify LTL properties. It
uses Biichi-Automatons [15], which are in principle an extension of finite state
automata to use infinite words as input. The principle of automata based model
checking is to compute an Biichi-Automaton for the system and another for the
negated LTL property[16]. The check, whether the property is valid is then
reduced to the check, whether the intersection of both automata is empty. This
technique can be further enhanced by heuristics such as partial order reduction
and by exploiting symmetry to reduce the state explosion.

One of the most popular automata based model checking tools is SPIN [17]
which was developed by Holzmann and Peled at Bell Laboratories since 1980
and is freely available since 1991. SPIN makes use of partial order reduction and
is mainly used for verification of asynchronous systems and in particular commu-
nication protocols. It features a rich C-like input language called PROMELA
which explicitly supports channel and message passing. SPIN is able, beside
verifying LTL properties, to detect deadlocks and unreachable code.

3.3 Symbolic Model Checking

Symbolic Model Checking was invented around 1987 and is commonly consid-
ered as a breakthrough in model checking techniques [18, 19]. The idea behind
symbolic model checking is to use a boolean encoding for the state transition
system and the set of states. The size of this encoding is greatly reduced by
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representing sets of states and the state transition system by BDDs (Binary
Decision Diagrams) [20], which are traditionally used to represent boolean func-
tions. The algorithm for symbolic model checking uses fixpoint operators, which
operate on the BDDs.

The introduction of symbolic model checking was very successful in the last
decade in the research community as well as in industry application. It is
especially common in the verification of hardware designs.

One of the most popular tools for symbolic model checking is the Symbolic
Model Verifier, SMV [19]. The original SMV was developed at Carnegie Mellon
University (and therefore often called CMU SMV). It is a CTL model checking
tool that supports fairness and the use of modules. CMU SMYV is currently
not further developed, the latest update is November 2001. A branch of SMV
is developed by the Cadence Berkeley Labs and is commonly called Cadence
SMV. It supports CTL and LTL model checking, bounded model checking (see
Section 3.5) and has a variety of special techniques, e.g. for refinement verifica-
tion, temporal case splitting, symmetry reductions, data type reductions, and
uninterpreted functions. Another branch of SMV is NuSMV [21]. It is also an
extension of the original CMU SMV and supports features similar to Cadence
SMV. All three variants support the same input language of the original CMU
SMYV which is described in [22].

Another model checking tool which supports symbolic model checking is SAL
(Symbolic Analysis Laboratory) [23], which is developed by a cooperation of
SRI International, Stanford University, UC Berkely and Verimag. Besides sym-
bolic model checking, this tool supports explicit-state model checking, witness-
producing model checking (not discussed here), and bounded model checking
(see Section 3.5).

3.4 Timed Model Checking

Timed model checking is used for the verification of real-timed systems where
time and timing issues play an important part. In comparison to other model
checking techniques, where all variables can only have discreet values, timed
model checking has to deal with continuous time values. This increases com-
plexity and difficulty of the model checking algorithms for such systems.

A popular tool for timed model checking is Uppaal [24], developed at the Uni-
versities of Uppsala and Aalborg. It uses timed automata extended with data
types as bounded integers, arrays, etc. Other tools for timed model checking
are Kronos, Raven and Verus.

Similar, but more general, to timed model checking is model checking of hybrid
systems, which can contain both, discreet and continuous values. A model
checking tool for such systems is HyTech [25], developed by Henzinger, Ho and
Wong-Toi.
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3.5 Bounded Model Checking

As discussed in the previous Sections, symbolic model checking is often based on
the use of Binary Decision Diagrams (BDD). This approach has been very suc-
cessful in the last decade, which can be observed by the fact that this technique
is used on a wide industrial scale. Nonetheless, BDDs may grow exponentially,
which restricts the size of the model that can be verified efficiently.

An alternative technique that can be used is so-called Bounded Model Checking
(BMC), which is based on propositional SAT solving [26]. This technique was
first introduced by Biere et al. [27] in 1999. So far, it has been shown that
the BMC may be used to verify systems that could not be verified with BDD
techniques. However, at the same time, problems exist that can be solved more
efficiently using BDD techniques.

The idea of BMC is to search for a counter-model in executions of whose length is
bounded by some constant k. Typically, the model checker iterates from 0 to the
pre-defined upper bound & and terminates once it has found a counter-example.
As a consequence, this method is incomplete as the smallest counter-example
may be beyond the upper bound provided by the user. Experiments have shown
that if the counter-example can be found within a bound of around 60 or 80
cycles, depending on the SAT solver and the model, BMC outperforms BDD
approaches.

Tools that support bounded model checking are for example SMV and SAL Both
tools were described more closely in Section 3.3. Results of our experiments with
bounded model checking are described in Section 8.2.

3.6 Modular Model Checking

In model checking literature, the approach of verifying a restricted part of the
system (i.e., the protocol consistent with medical practice) is called modular
verification (cf. [28]). In the assumed-guarantee paradigm, the specification of
a module consists of a specification of guaranteed behavior assuming that the
system behaves in a certain way, i.e., the assumed behavior. In our work, the
assumed behavior is written down in a linear temporal logic and the guaranteed
behavior in branching temporal logic. The assume-guarantee assertions are
written down as [p]M (v)), meaning that the branching temporal formula
holds in the computation tree that consists of all computations of the program,
described by M, that satisfy the linear temporal formula ¢. Because we have
a mixture of linear and branching formulas, this has been named the linear-
branching model checking problem [11].

Modular model checking is for example supported by SMV, which is described
in Section 3.3.
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3.7 Suitable Model Checking Tools for Asbru

To evaluate the possibilities of model checking of Asbru-plans we needed an
appropriate model checking tool. Considering the work, which is necessary to
find a good representation of Asbru-plans in a model checkers input language,
program a compiler (which is a necessity considering the size of most practical
relevant Asbru-plans) and test the model checker with practical relevant exam-
ples, we decided to concentrate in this work package on a single model checking
tool. Yet, as we wanted to be as flexible as possible, we needed a tool which
offered us the possibility to use many different technologies. This is especially
interesting as there existed no research about model checking of clinical guide-
lines at the beginning of our work and it was not predictable, which techniques
would be most successful and which not. Also, another requirement on the tool
we used was, that it was stable and successfully tested for practical applications.

The first decision we had to make was, whether we wanted to use timed model
checking or not. Timed model checking offers us the ability to check the rich
time annotations, which are possible in Asbru. But on closer inspection timed
model checking of Asbru plans has some problems: A disadvantage of timed
model checking is, that all tools for timed model checking rely only on a single
model checking technique which are specialized on timed systems. Tools like
SMV or SAL offer a much broader scope of techniques and promise much better
applicability for systems or properties, which are not time dependent. Also, one
of our goals was to provide a fully automatic translation of Asbru models. As
the evaluation of many time annotations relies on history, a suitable abstraction
for the history must be found. This is hard to do generic. As time was not
relevant in all properties for the breastcancer case study, which we used for this
project, we decided against using timed model checking. Nevertheless, timed
model checking is an interesting technique which could be very relevant for the
verification of time dependent properties of Asbru models.

We chose SMV as tool for verification with Asbru. As mentioned above, it is a
popular, stable and technically mature tool, which offers much flexibility, as it
supports many different model checking techniques. Of all non timed tools we
considered, SMV seems to us the best choice for verification of Asbru.
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Chapter 4

Construction of a finite
state model

The crucial point in model checking and verification in general is the computa-
tion of an optimal abstraction of the examined system. Recently, much research
has concentrated on tackling the state explosion problem. A variety of abstrac-
tion techniques have been developed, for example [29], [30], [31], [32] and [33].
An important observation is the basis for these investigations: there are different
aspects in the concrete model that have no impact on the checked property and
can be abstracted in such a way that the size of the model is drastically reduced,
but the property is still safely verified, i.e. the satisfaction of a property over
the abstract model implies its satisfaction over the concrete model.

Fortunately, the definition of the formal semantics of Asbru is done using state
charts, see [34]. State charts are hierarchical state transition systems and there-
fore their semantics can be very intuitively represented by finite state transition
systems. Although state charts only represent the definition of the semantics
and the Asbru semantics itself is implemented in KIV using parallel programs of
the dynamic logic ITL (Interval Temporal Logic)[35], the equivalence between
both is guaranteed and we have not to bother about it.

The Asbru model of a medical protocol consists for the most part of the defini-
tions of Asbru plans which model the control structure of the protocol. Their
semantics is defined by means of state charts, as mentioned before, and do not
represent a big problem to express using finite state transition systems (even no
abstraction is needed). Nevertheless, one can ask about the patient data input
during the execution of plans. In order to make verification results more general
we do not restrict the Asbru model to some specific patient group or with other
words we do not introduce the patient model. This means patient data input
has nondeterministic nature. Although sometimes it makes sense to restrict the
model by adding some medical knowledge about the behavior of patients etc.

15
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Though a bit difficult to implement, the SMV model of Asbru plans is finite
and no abstraction is needed in order to represent it as a finite state model. On
the other hand, the patient data input, which has an impact on the execution
of plans, is potentially infinite and therefore must sometimes be abstracted to
make it suitable for model checking. Fortunately Asbru supports abstraction
of patient data in an appropriate way. Therefore making patient data finite is
not a problem. Still it can become a difficult issue if we have Asbru conditions
with time annotations in the model. In this case we have to apply a generic
abstraction, which is realized in the context of state charts (modeling behavior
of Asbru models) using well known concept of environment. We will address
issues concerning data input to Asbru plans in the section about environment.

In the following section we will consider the detailed representation of the seman-
tics of a general Asbru plan using finite state transition system in its ultimate
form, i.e. SMV notation.

intensive—
teratment—
manual

less—intensive
treatment—| lintm
manual

Figure 4.1: Asbru plan locally-advanced-BC

4.1 Finite state model of Asbru plans

For the better understanding of the finite state model of Asbru plans we will
also shortly review some relevant parts of the Asbru semantics, for more details
on the semantics we refer to [34]. Using concrete examples from the breast
cancer case study we will explain the construction of finite state model for the
plan state model, different types of plan execution controls as well as modeling
some special features of Asbru.

Consider an example from chapter 3 of breast cancer guideline, see Fig. 4.1.
Plan locally-advanced-BC' is the highest plan in the whole plan hierarchy of
chapter 3. It has two sub plans intm and lintm. The plan body type of locally-
advanced-BC plans is anyorder with wait-for intm, i.e. after the plan is activated
it begins to activate its children sequentially (as far as the candidates become
ready) but in a nondeterministic order. According to the formal semantics of
Asbru this behavior is modeled by the state chart represented on Fig. 4.2.

The hierarchical state automaton, represented in Fig. 4.2, starts in the state
Inactive and switches to the state Considered as far as the signal Consider is
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Inactive
Selection Execution :
onsiderec+e Activated
F

( Possib@—%( Ready)

Terminated

locally_advancedBC_Control

Rejected

not S -
—| Setup_Reject
P_A
——( Parent_Aborted

P_C
Parent_Completef

L=~y
not F - -
-—| Filter_Reject

Aborted Complete@
“~(Condition_tiggered
*=(_Parent_Aborted )
*2(_Parent_Completed

SC : consider

F : [satisfied(filter_tp)]

E : activate[..]/..

S : [satisfied(setup_tp)]

A : [satisfied(abort_tp)]

C : [satisfied(complete_tp) AND ..]
RA : retry

Figure 4.2: State chart modeling behavior of the plan locally-advanced-BC

received from the parent plan and so forth. If the state Ready is reached the
plan waits for the signal Activate from its parent in order to be activated. In
the state Activated the sub state called locally-advanced-BC-Control becomes
active. This state is represented by a state chart which models the control of
the plan locally-advanced-BC and is responsible for the broadcasting/unicasting
Consider-/Activate-signals to the sub plans according to sub plans execution
strategy (sequentially, in any order, unordered or in parallel). All of the condi-
tion are generated for every plan and included in the SMV model. The following
SMV code represents the definitions of the conditions for the locally-advanced-

BC plan:

DEFINE

loadp_is_terminated := (loadp_state = rejected) | (loadp_state = aborted) |
(loadp_state = completed);

loadp_is_aborted := (loadp_state = rejected) | (loadp_state = aborted);

loadp_consider_condition := 1;

loadp_filter_condition := diagnosis = locally-advanced-BC;
loadp_setup_condition := 1;

loadp_activate_condition := (1);
loadp_parentterm_condition := 0;

loadp_reject_condition := loadp_parentterm_condition |

loadp_abort_condition := 0;
loadp_complete_multi_condition

loadp_complete_condition :

(loadp_state = considered & !loadp_filter_condition);
loadp_abort_multi_condition

:= loadp_abort_condition | loadp_parentterm_condition |
loadp_child_is_aborted;

1;
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loadp_waitfor_condition := intmp_state=completed;

loadp_is_in_selection_phase := (loadp_state = considered) | (loadp_state = possible) |
(loadp_state = ready);

loadp_retry_condition := 0;

loadp_child_is_aborted := intmp_is_aborted;

loadp_ifthen_condition := 1;

For example, according to the definition of the loadp_complete_multi_condition,
the plan can complete only if its complete condition is satisfied and the wait
for strategy is taken into account. The definition of the loadp_waitfor_condition
requires the completion of the intm sub plan in order the parent can complete.
The boolean value of those conditions triggers in specific states various transi-
tions of plan state. Corresponding to the state chart in Figure 4.2 the transition
relation for the plan state variable loadp_state is defined as follows (using SMV
syntax representation):

MODULE load_plan(loadp_state,loadp_parentterm_condition,loadp_consider_condition,
loadp_filter_condition,loadp_is_terminated,loadp_is_in_selection_phase,
loadp_setup_condition,loadp_reject_condition,loadp_activate_condition,
loadp_abort_multi_condition,loadp_complete_multi_condition,
loadp_retry_condition)

ASSIGN
init(loadp_state) := inactive;
next(loadp_state) := case

loadp_parentterm_condition : inactive;
loadp_is_terminated & loadp_retry_condition : considered;
loadp_state = inactive & loadp_consider_condition : considered;
loadp_is_in_selection_phase & loadp_reject_condition : rejected;
loadp_state = considered & loadp_filter_condition : possible;
loadp_state = possible & loadp_setup_condition : ready;
loadp_state = ready & loadp_activate_condition : activated;
loadp_state = activated & loadp_complete_multi_condition : completed;
loadp_state = activated & loadp_abort_multi_condition : aborted;
1 : loadp_state;

esac;

In case of locally-advanced-BC plan both conditions loadp_consider_condition
and loadp_activate_condition are just set to I, i.e. true, because this plan is
the highest in the hierarchy and has no parent plan. But, for example, these
conditions for the plan intm depend on Consider/Activate signals of the parent
plan load:

intmp_consider_condition := (loadp_control_consider_signal = intm) |
(loadp_control_consider_signal = all);
intmp_activate_condition := ((loadp_control_activate_signal = intm) |

(loadp_control_activate_signal = all));

The condition is evaluated to true if and only if the signal is received by the plan
or the signal is broadcasted by the parent (loadp_control_consider_signal = all).
Depending on the type of control of the parent plan, the transition relation for
control signals can be defined in a different way. For example the plan load has
anyorder type of control. As far as plan load reaches the state Activated that sub
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state locally-advanced-BC-control becomes and the corresponding state chart
cares for sending of control signals, see state chart in Figure 4.3. Firstly, this
state chart makes the transition to the state all_Select. During this transition,
the action ¢ is performed, which just broadcasts the Consider signal to all of
the sub plans.

Igcally_advancedBC_Control
intm_Exec lintm_Exec
A[LT A
Cl-aV 2.a v 2.T
o—»[ all_Select ]

¢ : /intensive_treatment_manual_plan.consider;
less_intensive_treatment_manual_plan.consider;

1.a: [in(intensive_treatment_manual_plan.Selected)]
/intensive_treatment_manual_plan.activate;

1.T : [in(intensive_treatment_manual_plan.Terminated)]

2a:...

Figure 4.3: State chart modeling control of the plan locally-advanced-BC

In the state all_Select each of the transitions 7.a and 1.a can be made and the
Activated signal sent to the corresponding sub plan. This exactly corresponds
to the nondeterministic execution order of the anyorder control type. The state
chart in Fig. 4.3 can be translated to a finite state transition system as follows:

MODULE load_plan_control(loadp_state,loadp_control_consider_signal,
loadp_control _activate_signal,
intmp_state,intmp_retry_condition,
lintmp_state,lintmp_retry_condition)

ASSIGN
init(loadp_control_consider_signal) := none;
next (loadp_control_consider_signal) := case
loadp_state = activated : all;
!loadp_state = activated : none;
esac;
init(loadp_control_activate_signal) := none;
next(loadp_control_activate_signal) := case

loadp_state = activated : case
loadp_control_activate_signal = none : case

intmp_state = ready & lintmp_state = ready : {intm,lintm};
lintmp_state = ready & lintmp_state = ready : {lintm};
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intmp_state = ready & !lintmp_state = ready : {intm};
!lintmp_state = ready & !lintmp_state = ready : none;
1 : loadp_control_activate_signal;

esac;

loadp_control_activate_signal = intm & (intmp_state = aborted |
intmp_state = completed)
case
lintmp_state = ready : {lintm};
!lintmp_state = ready : none;
1 : loadp_control_activate_signal;
esac;

loadp_control_activate_signal = lintm & (lintmp_state = aborted |
lintmp_state = completed)
case
intmp_state = ready : {intm};
!intmp_state = ready : none;
1 : loadp_control_activate_signal;
esac;

1 : loadp_control_activate_signal;
esac;
!loadp_state = activated : none;
esac;

In the first part the transition relation for the Consider signal is defined. The
definition of loadp_control_activate_signal is a bit more complicated since we
have to take all possibilities into account and still preserve the nondeterministic
order of activation sub plans. As a result, we obtain an exponential number of
cases. For example, in chapter 1 from the breast cancer guideline the definition
of anyorder control of the plan treat with 8 sub plans required ca. 700 lines of
code.

The definition of control signals for other control types is comparatively simple.
Let us consider an abstract example of the parent plan P with three children
A, B,C. In case of the sequential control type the definition in SMV notation
corresponding to the Asbru semantics would look like:

init (P_control_consider_signal) := none;
next (P_control_consider_signal)
P_state = activated : case
A_state = inactive : A;
B_state = inactive & A_terminated : B;
C_state = inactive & A_terminated & B_terminated : C;
1 : P_control_consider_signal;

case

esac;
!P_state = activated : none;
esac;
init (P_control_activate_signal) := none;

nezt (P_control_activate_signal)
P_state = activated : all;
!P_state = activated : none;
esac ;

case

20 of 58



4.1. FINITE STATE MODEL OF ASBRU PLANS CHAPTER 4.

Similarly for the parallel type:

init (P_control_consider_signal) := none;
next (P_control_consider_signal) := case
P_state = activated : all;
!P_state = activated : none;
esac;
init (P_control_activate_signal) := none;
next (P_control_activate_signal) := case

P_state = activated : case
(A_state = ready | A_terminated) &
(B_state = ready | B_terminated) &
(C_state = ready | C_terminated) : all
1 : none;

esac;

!'P_state = activated : none;

esac;

And the unordered type:

init (P_control_consider_signal) := none;
next (P_control_consider_signal) := case
P_state = activated : all;
!P_state = activated : none;

esac;
init (P_control_activate_signal) := none;
next (P_control_activate_signal) := case

P_state = activated : all;
!'P_state = activated : none;
esac;

Due to the high expressiveness of the Asbru language it is also possible to specify
hierarchies of plans which are not necessarily trees, but graphs. Consider the
case where the child C has two parents P; and P,. This situation can have
an impact on the communication between both parents and the child. Firstly,
if P; terminates for some reason then C' has also to terminate only if it was
activated by P;. Secondly, consider following circumstances which occur at the
same time: both plans P; and P, are executed in anyorder (i.e. are considered
simultaneously); one of them, say P; has wait for C' execution strategy; sub plan
C' is activated by P,. If now C aborts then the plan P; has not to terminate
because C' was not activated by Py, i.e. plan C' must remember the parent which
activated it. This is done by introducing the new state variable C_my_selector.
Following SMV code illustrates how this is reflected in the overall SMV model:

DEFINE

Cp_consider_condition := (P2p_control_consider_signal = C) | (P2p_control_consider_signal = all) |
(P1p_control_consider_signal = C) | (Plp_control_consider_signal = all);

Cp_activate_condition := ((P2p_control_activate_signal = C) | (P2p_control_activate_signal = all)
(P1p_control_activate_signal = C) | (Plp_control_activate_signal = all));

Cp_parentterm_condition := (Cp_my_selector=P2) & (P2p_is_terminated|P2p_state=inactive) |
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(Cp_my_selector=P1) & (Plp_is_terminated|P1lp_state=inactive);

Plp_waitfor_condition := (Cp_state=completed & Cp_my_selector=P1);
Pilp_waitfor_condition := (Cp_state=completed & Cp_my_selector=P1);

P2p_waitfor_condition := (Cp_state=completed & Cp_my_selector=P2);
P2p_waitfor_condition (Cp_state=completed & Cp_my_selector=P2);

VAR

Cp_my_selector: {none,P1,P2};

ASSIGN

init(Cp_my_selector) := none;

next (Cp_my_selector) :=

case
P2p_state=activated : P2;
Plp_state=activated : P1;
1 : Cp_my_selector;

esac;

Assuming that all patient data parameters are finite and no Asbru plan con-
ditions are time annotated, we have seen that to this point we don’t need any
abstraction at all in order to construct the finite state model of the protocol.
We distinguish between statical parameters which are assigned at the begin-
ning of plans execution and dynamic parameters which are assigned during the
execution of some ask-plan. For example, parameter diagnosis is assigned just
in the next step after initialization and the parameter more-then-focal-tumor is
asked later by the ask-plan mcte2:

VAR

diagnosis : {metastasized-BC,locoregional-recurrent-BC,locally-advanced-BC,
operable-BC,operable-invasive-BC,DCIS,unknown};

more-than-focal-tumor : {unknown,0,1};

ASSIGN
init(diagnosis) := unknown;
next(diagnosis) := case

diagnosis=unknown : {metastasized—BC,locoregional—recurrent—BC,1ocally-advanced—BC,
operable—BC,operable—invasive—BC,DCIS};
1 : diagnosis;

esac;
init (more-than-focal-tumor) := unknown;
next (more-than-focal-tumor) := case

more-than-focal-tumor=unknown & mcte2p_state=activated : {0,1};
1 : more-than-focal-tumor;
esac;

On the first view it looks a bit inefficient to assign the value unknown to the
the patient parameter diagnosis in the initialization and the nondeterministic
assignment in the next step. But writing down init(diagnosis) := {metastasized-
BC,..}; would result in a quite different model as in the case of the definition
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above. The definition init(z) := {1,2}; means that the Kripke structure repre-
senting our model has two initial state: one withz=1 and the other with z=2.
This affects verification of the CTL properties according to the CTL semantics:
CTL formula ¢ holds for the Kripke structure iff it holds for all initial states
S0-

4.2 Environment, macro- and micro-steps

Although, until now we have not applied any abstraction, but abstraction is
needed for practically every Asbru model. An abstraction is always applied
in the model of user-performed-plan. On the other hand, if we have a time
annotated Asbru condition, then we also always apply an abstraction. Both
abstractions present our standard abstraction and our incorporated in the SMV
model compiler.

The reason why we need such an abstraction is the issue of modeling time.
Modeling of time in Asbru usually requires some kind of history, i.e. in order to
evaluate some time annotated conditions a plan must access the history. Our
goal is an abstraction, which can be constructed automatically for any given
Asbru model. In order to construct a finite state model an appropriate abstrac-
tion which eliminates time and history is needed. We use a simple abstraction
that maps all time annotations to atomic propositions which logical value is ran-
domly assigned in every macro step by the environment. Those random inputs
can eventually generate behavior in the abstract model that is not present in
the concrete model. This abstraction preserves only ACTL properties, as it is
an over-approximation, which adds extra behavior to the abstract model (The
logic ACTL is the set of all well-formed state formulas from CTL [36] containing
no existential operators (EX and EU)).

The main weakness of this abstraction is the potential generation of false nega-
tives during the verification of universal properties which must be eliminated by
refining the model (CEGAR [37]). On the other hand the important advantage
is its automatic generation. By this abstraction we shift the complexity of time
and history to the environment. According to the state chart semantics inputs
from the environment happen in the first micro-step of every macro-step and
provide the required information about the patient needed for the controls of
plans, e.g. up-to-date value of blood pressure or information about change of
the bilirubin level in blood over the period of 6 hours after the start of the plan.

The concept of environment is, for example, implemented in the semantics of
state charts. Usually environment aggregates the abstracted parts of the con-
crete model and plays an important in the verification. We implemented this
concept in our SMV model by introducing a predicate tick which defines the
beginning of the new macro step, i.e. tick becomes true if the system reaches a
stable state (no transition can be triggered). This can be modeled as a negation
of the disjunction of all possibilities were some state chart transition can be
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triggered:

tick := !(
(loadp_state = inactive & loadp_consider_condition) |
(loadp_is_in_selection_phase & loadp_reject_condition) |
(loadp_state = considered & loadp_filter_condition) |
(loadp_state = possible & loadp_setup_condition) |
(loadp_state ready & loadp_activate_condition) |
(loadp_state = activated & loadp_complete_multi_condition) |
(loadp_state = activated & loadp_abort_multi_condition) |
(loadp_state = aborted & loadp_retry_condition) |

);

Almost all Asbru models contain so called user-conditions which are evaluated
by the external signal from a doctor at some time point of the plan execution.
Such conditions can mostly be found in the definitions of user performed plans.
Since we do not model the time and use a standard abstraction instead, this
exactly the point where an environment plays role. According to the concept of
the environment external signals are send to the system only at the beginning
of every macro step. These signals represent an abstract part of the system.
In case of user-conditions, signals which evaluate the user condition are non-
deterministically sent every time the variable tick becomes true. The main
problem about such modeling is the termination of plans. It is possible that,
for example, user performed plans stuck in the state Activated waiting for the
completion signal in vain. If we want to avoid such execution traces we must
add some fairness assumption to the model. In order to do this we add lines
like FAIRNESS plan_state=inactive to the SMV model.
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Verification process

The abstraction we use allows us to generate the SMV model automatically. On
the other hand it can introduce unrealistic behavior, which has an impact on
the verification process. Luckily this problem occurs only if the Asbru model
contains non-trivial (we consider the time annotation NOW as a trivial one)
time-annotated conditions. So, in this chapter we consider exactly this situation
and discuss how the abstraction of time annotations can affect the verification
process. Otherwise (if an Asbru model contains no non-trivial time annotations)
we do not bother about false-negatives or false-positives.

Let us consider the case where the finite state model contains some unrealistic
traces added by an abstraction. Due to property preservation considerations we
examine only ACTL properties although it is also indirectly possible to verify
ECTL properties. Fig. 5.1 illustrates the general scheme of the verification

process.
CONCRETE abstraction
MODEL

REFINE
(false negative)

verifyACTL property

(counter—exampte

Error in guideline YES
found

property doesn't hold _ property holds
in concrete mode in concréte model

Figure 5.1: Verification in case of an over-approximation.
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If ACTL property is proved to be false the corresponding counter example is
generated. In the next step we have to analyze this trace to find out whether
it is a real bug in the concrete model or just some unrealistic trace added by
the over-approximation. We have also to verify ECTL properties since most
implementation level (structural) properties are existential properties, e.g. sat-
isfiability of Asbru conditions or non-redundancy of plans. If, for instance, a
ECTL formula EF¢ must be verified, we verify first the ACTL formula AG—.
If it is true then original formula is false. On the other hand, if a counter ex-
ample is found then we analyze whether it is realistic one. If the found counter
example trace is realistic then the original formula is true and generated counter
example is the trace that satisfies the original formula.
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Compiler

Already at the beginning of model checking task in the project, as we were
constructing the first prototypical SMV model for the jaundice protocol, we
realized that this process can be done automatically. The Asbru model of the
jaundice protocol contains approximately 40 plans. So we started with the
small part of the whole hierarchy containing only 7 plans (regular-treatments-
star hierarchy). Already this small number of plans caused several problems
concerning error-prone human work. As we moved on to the higher levels in
the hierarchy and the number of plans to be modeled was doubled, we still
tried to construct the SMV model manually. But after spending half an hour
on analyzing the counter example trace to find out that we have forgotten the
negation operator in the filter condition we decided to write a compiler.

Writing a compiler for the construction of SMV models is a very crucial and
responsible task. Because the confidence of SMV models depends on it. The
compiler gets an Asbru model as an input and produces an SMV model as an
output. With other words our compiler should apply a standard abstraction
in an automatic manner on Asbru models defined by means of algebraic spec-
ifications in the theorem prover KIV. Another possibility would be, to write
a general compiler for parallel programs, which are used to define the Asbru
semantics in KIV. This compiler can be used on the already abstracted Asbru
model (represented as a parallel program in KIV). Because of pragmatic consid-
erations we settled for the first possibility (compiler with incorporated standard
abstraction for Asbru models) as a more efficient way of constructing suitable
SMV models.

The central step in writing the compiler of SMV models is to define a mapping of
a finite state transition system (modeling an Asbru model) into an SMV model.
This task is not as trivial as it sounds at first. The reason for this is a quite
complicated general Asbru semantics as well as not always unambiguous way
of encoding into SMV syntax, e.g. the transition relation can be defined using
SMV-keywords init,next or alternatively by using SMV-keyword TRANS. Next
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we will provide a detailed insight into the realization of these ideas. First we will
see how the compiler generally works, i.e. how it gets an Asbru model from the
theorem prover KIV. Then we will consider the SMV model for the part of the
breast cancer case study as a running example. Using this example in order to
explain the mapping from the finite state model on the document which can be
used as an input for the SMV model checker. We will also describe the general
structure of SMV models. And at the end we review the PPL source code of
the compiler.

6.1 How does it works?

The algebraic specification of Asbru model contains in particular definitions of
all Asbru plans (with all relevant data, like conditions, plan type etc.) and
corresponding patient parameters. This is exactly what the compiler needs as
an input. The compiler doesn’t cares about the implementation of the semantics
in KIV, i.e. it doesn’t have to parse and interprete it. It implements its own
semantics of Asbru as a finite state transition system by the application of a
standard abstraction. This standard abstraction is assumed to comply to the
original Asbru semantics implemented in KIV (see the corresponding chapter
on Asbru finite state model).

Asbru plans are defined in KIV using abstract data type asbru-def which is
constructed as a tuple of a set of conditions, plan type, a couple of flags for
execution strategy, a list of sub plans and the waiting for sub plans completion
strategy, see figure below:

asbru-def

= mk-asbru-def( . .filter : abstract-asbru-condition;
.setup : abstract-asbru-condition;
.suspend : abstract-asbru-condition;
.reactivate : abstract-asbru-condition;
.abort : abstract-asbru-condition;
.complete : abstract-asbru-condition;
.type : plan-type;
.retry : bool;
.subplans : string-list;
.waitfor : wait-for;
.opt-wf : bool;

);

As an example consider the plan locally-advanced-BC from the chapter 3 in the
breast cancer guideline, see listing below. It is defined in KIV as an axiom load-
def. All the compiler has to do is to search for axioms like asbru(..)=mk-asbru-
def(..); in the theorem base and extract the relevant information from them.
According to the axiom definition the plan locally-advanced-BC has a filter
condition “diagnosis=locally-advanced-BC” and no setup-, abort- or complete-
condition (default keywords in the corresponding place in the tuple), is not
retried in case of rejection or abortion, has two sub plans intm and lintm, waits
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only for the completion of one of the sub plans and doesn’t wait for optional
plans:

; ;plan-locally-advancedBC
load-def:
asbru(‘load’)
= mk-asbru-def
(mk-aasbruc (mk-acond(lambda pdh, vh, ash, as, ac. pdh[ac] [‘parameter-diagnosis’] .val =
locally-advanced-BC,default-ata ),false, false),
setup_condition,
suspend_condition,
resume_condition,
abort_condition,
complete_condition,
anyorder,
false,
‘intm’ + ‘lintm’ °’,
wait-for-n(1, ‘intm’ + ‘lintm’ ’),
false);

Different patient parameters, which occur in the conditions are mostly finite
(Asbru is very suitable for data abstraction) and are defined in data specifica-
tions:

data specification

diagnosis-scale = DCIS | operable-invasive-BC | locally-advanced-BC |
locoregional-recurrent-BC | metastasized-BC;

variables sd, sdl, sd2, sd3 : diagnosis-scale;
Sd, Sd1, Sd2, Sd3 : diagnosis-scale flexible;

end data specification

After all these information is extracted from KIV, the compiler has to translate
the finite transition system due to the standard abstraction into the input doc-
ument for the model checker using the SMV syntax. The general structure of
the SMV document is explained in the next section.

6.2 Structure of the SMV document

According to the SMV syntax, we distinguish between state variables and define-
variables. A specific assignment to the state variables specifies a unique state in
the system and vice versa. In contrast, define-variables are defined like macros
which depend in a unique way on the current assignment of the state variables
and don’t affect the state space. They can be seen as mere state labels which
are used just for comfort.

State variables in SMV are defined using init and next keywords, i.e. definition
of initial states and transition relation. While defining transition relation the
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MODULEmain
DEFINE

loadp_is_terminated := (loadp_state = rejected) | (loadp_state = aborted) | ...
loadp_filter_condition := (diagnosis = locally-advanced-BC;

<<for every plan: a bunch of conditions>>

VAR

loadp_state : {inactive, considered, possible, ready, rejected, activated, completed, aborted};

<<for every plan: different state variables>>

ASSIGN
init(Ismp_completed_signal) := 0;
next(lsmp_completed_signal) := case

<<for some plans: different state variables assignments>>

-——specifications
SPEC AG (loadp_state = ready —> EF (loadp_activate_condition))

<<for every plan: a bunch of structural properties>>

-——modules
MODULE load_plan(loadp_state, loadp_consider_condition, ...)

<<for every plan: a module>>

Figure 6.1: General structure of the SMV document

recursive definition is possible, e.g. next(z) := x + 1;. The definition of define-
variables can not be recursive. Consequently it is natural to represent plan
state variables as state variables. The same holds for patient parameters for
example. On the other hand conditions is typical candidate to be declared as a
define variable. Figure 6.1 shows the general structure of the SMV document:
DEFINE (contains define variables declarations), VAR (declarations of state
variables), ASSIGN (contains definition of initial states and transition relation
for state variables), a list of specification (CTL properties to be verified) and
a list of modules (containing a module for each plan). A module for each plan
simply contains definition of the transition relation for plan state variable.

The document structure on the Fig. 6.1 corresponds to the CMU SMV CTL
model checker syntax which is the original tool in the family of SMV model
checkers. We have adopted the compiler also for the Cadence SMV syntax in
order to use extended features of this LTL model checker like assume .. using
.. prove .. paradigm. This technique allows us to add different assumptions (as
LTL formulas) to the model. This is in particular very useful in case of medical
guidelines as it allows to integrate different medical background knowledge in
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MODULEmain
DEFINE

loadp_is_terminated := (loadp_state = rejected) | (loadp_state = aborted) | ...
loadp_filter_condition := (diagnosis = locally-advanced-BC;

<<for every plan: a bunch of conditions>>

VAR

loadp_state : {inactive, considered, possible, ready, rejected, activated, completed, aborted};

<<for every plan: different state variables>>

ASSIGN
init(Ismp_completed_signal) := 0;
next(lsmp_completed_signal) := case

<<for some plans: different state variables assignments>>

-——specifications
SPEC AG (loadp_state = ready —> EF (loadp_activate_condition))

<<for every plan: a bunch of structural properties>>

-——modules
MODULE load_plan(loadp_state, loadp_consider_condition, ...)

<<for every plan: a module>>

Figure 6.2: General structure of the SMV document (Cadence SMV syntax)

the model without complicated changes in the model itself (see the chapter on
the background knowledge verification). See Fig. 6.2 for the Cadence SMV
document example.

During the compilation process the compiler processes the list of Asbru plans,
which are acquired from KIV, generates the code for each plan and places it in
the corresponding sections. The concrete example of the generated SMV code
(CMU SMV syntax) for the plan locally-advanced-BC' from the chapter 3 in the
breast cancer guideline is presented in the appendix.

6.3 Compiler as a PPL program

We implemented the compiler in the functional language PPL (LISP branch)
which was the most suitable decision since the theorem prover KIV is imple-
mented in LISP. The general structure of the functional program is shown in
Figure 6.3.
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Read Asbru model from KI

generate—SMV-model

' '

do for every plan generate patient paramet

genMODULEplan(planlis

genDEFINE(planslis]

T

genVAR(planlist) genSPEC(planlist)

genASSIGN(planlist] genFAIRNESS(planlist)

Figure 6.3: Internal structure of the PPL-program implementing compiler
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Chapter 7

Properties

Every medical guideline must fulfill a number of properties and criteria. We
discern between structural and medical properties [38]. Structural properties re-
gard to the correctness of a concrete implementation of a guideline while medical
properties refer to the correctness of a medical guideline itself. In the following
section 7.1 we describe, what structural properties we use. Medical properties
can be expressed in the Guideline Description Language (GDL), which was de-
veloped in the Protocure I project. In the section 7.2 we describe how GDL
properties can be translated to SMV. Medical properties in general and the re-
sults of model checking structural and medical properties are presented in detail
in Deliverable D4.2¢ of the Protocure II project [4].

7.1 Structural Properties

Structural properties are also called implementation level properties, as they
refer to a concrete implementation of a guideline. The main goal of using them
is to validate the correctness of a specific implementation of a guideline.

The translation of natural language based medical guidelines to a formal model
is a huge and difficult step. Therefore, it is important to find and eliminate
errors introduced into the model during the translation. Structural properties
are used, to verify that the model is sane in principle, e.g., that all plans have
the chance to get executed at least under some circumstances. This helps to
eliminate errors introduced into the model during the translation process and
to increase the confidence of the created model.

Usually, for a given guideline modellingion language (e.g. Asbru), all structural
properties should be similar for all different models that are specified in this
language. In our case, this guidline modelling language is Asbru.
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7.1.1 Properties we use

In [38] a number of properties for Asbru-Plans are defined, which specify when
an Asbru-plan is ”legal and meaningful”. The structural properties we used are
derived from the properties presented in [38] and translated to SMV properties.

The structural properties we use in detail are the following:

Termination Every Asbru-plan must always terminate eventually.

No eternal waits It is possible during execution of an Asbru-plan that it waits
for an external signal. It should not be possible that the plan waits eter-
nally for this signal.

Completion It must be possible for every plan in the model to reach the state
completed.

Activation Every plan in the model must be able to be activated.
Satisfiability It must be possible to satisfy every non-default Asbru-condition.

Valid sequences of states Every valid sequence of states of a plan must be
possible in the model.

Usually, a violated structural property gives a hint at the kind of error in the
model. So, the termination, no eternal waits and completion properties make
it possible to detect, if a model gets stuck in a deadlock. As user performed
plans are not required to terminate eventually, the violation of the properties
termination and no eternal waits must not be an error in the model. If one
of these properties is not satisfied, the error must be examined more closely by
adding suitable fairness conditions about termination of user performed plans
(see chapter 4.2).

The activation property helps to detect "dead code” fragments. These are
usually the result of unsatisfiable or incorrect conditions. This kind of property
is also often violated, if the subplan execution order or the wait-for condition
of the superplan is incorrect. Figure 7.1 illustrates such an error.

Satisfiability properties make it possible to detect incorrect conditions. Viola-
tion of properties of the type valid sequences of states can have different reasons.
Also, a violation of this property type must not be an error. E.g., it is allowed
that a certain plan is never rejected in a model. However, this property type is
very suitable to give a quick overview over all possible execution sequences of
all plans, and if their actual behavior matches with their intended behavior.

7.1.2 Formalisation as SMV-Properties

In order to verify structural properties with SMV, it is necessary to specify
them as temporal logic formulas. Cadence and NuSMV SMV are both able to
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|

always completed

Figure 7.1: Example of an sequential execution, where plan C' is never activated

T

e =

Figure 7.2: Valid sequences of states for Asbru-plans

verify linear time (LTL) and branching time (CTL) formulas. As some of the
structural properties are existential (e.g. the completion property), we have
chosen CTL for the formalisation of all structural properties.

In the following we describe how we formalize each structural property and
present the according SMV-specification:

Termination

In every state the plan terminates or is inactive eventually in all continu-
ations:

AG AF(P_state = completed | P_state = aborted |
P_state = inactive | P_state = rejected)

No eternal waits

Only in the following states, a plan P can wait for external signals: pos-
sible, ready and activated. Therefore, we generate for any of these three
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states S a property, which states the following: Every time P is in state S,
in all continuations the according condition is true or the plan terminates.
As example the according SMV-property for state possible:

AG(P_state = possible -> AF(P_setup_condition | P_is_terminated))

The other two formulas can be defined analogously.

Completion
There exists a trace, where plan reaches the state completed:

EF P_state = completed

Activation
There exists a trace, where the plan reaches the state activated:

EF P_state = activated

Satisfiability
Every plan has four conditions: filter-, setup-, complete- and abort-condition.
For every of these four conditions C' There exists a trace, where the con-
dition C' is evaluated (i.e. the according plan is in a state where C' is
evaluated) and C' is satisfied. As example the according SMV-property
for the setup-condition:

EF (setup-condition & P_state=possible)

The other three formulas are be defined analogous.

Valid sequences of states
Figure 7.2 shows all valid sequences of states an Asbru-plan can pass
through. We use the until operator, to test if such sequences exist. For
example, to verify that the state sequence inactive-considered-possible-
ready-activated-completed is possible, we use the following SMV-specifi-
cation:

EF(P_state = inactive & E(P_state = inactive U
(P_state = considered & E(P_state = considered U
(P_state = possible & E(P_state = possible U

(P_state = ready & E(P_state = ready U
(P_state = activated & E(P_state = activated U
P_state = completed))))))))))

The formulas for all other valid sequences of states are be defined analo-
gous.
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7.2 Translation Schemata from GDL to SMV-
Properties

Originally, model checking of Asbru was supposed to be used mainly for checking
structural properties. But it has turned out, as we have shown in deliverable
D4.2¢ of this project, model checking is also very suitable for verification of
medical properties. Medical properties are usually given in a natural language,
their ad-hoc translation to SMV-propeties is a non-trivial and error prone task.
To aid in the task to translate medical properties to formal properties, which
can be used in verification tools, the guideline description language GDL was
invented and presented in the master thesis of R. Stegers [39].

In this section, we want to describe first approaches, how GDL properties could
be translated into SMV properties. As GDL formulas has many special con-
structs, we do not consider each of them here and limit this section only to
general cases of GDL.

In this section we first give a short overview of GDL properties and their transla-
tion to KIV properties. Then we present two different translation GDL-to-SMV
translation pattern. The first is a direct translation, which uses only tempo-
ral logic (TL) formulas to express the properties in SMV. The second pattern
uses the GDL-to-KIV translation pattern, resulting in properties which are very
similar to KIV properties. It uses TL-fomulas and special trigger variables to
express the properties in SMV. The section concludes with an example transla-
tion, which shows the application of the second pattern.

7.2.1 Overview of GDL properties and the translation into
KIV properties

Here, we can only give a small overview of GDL. For details of GDL, see [39].
GDL, and the translation of GDL to KIV are described there in detail.

The translation process of GDL begins with a property given in natural lan-
guage and transforms this property in several successive steps into an attached
GDL property. This attached GDL property is a formal representation of the
original property and can be mechanically translated into the input language of
verification tools like KIV or SMV.

In general, an attached GDL property has the following pattern':

Goal Goalname
Precondition
preCondition
Time-specification
From startEvent

In GDL, several variants of the schema presented here are allowed, which we do not discuss
here.
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Until endFEvent
behaviour
eventOrCondition

In this schema, preCondition restricts the patient group for which the property
should hold. startEvent and endFvent are used to define an interval, in which
the property should hold. In eventOrConditon the relevant event or condition is
specified. The behaviour specifies how eventOrCondition should be interpreted
over the interval defined by start- and endEvent. The following keywords are
allowed to specify the behaviour:

<behaviour> = 'maintain-during-period’
| avoid-during-period’
| “observe-during-period’
| “achieve-at-end’
| < ’sub-goal’ >

As example, the behavior observe-during-period means that eventOrCondition
should occur at least once if eventOrCondition is a condition in the specified
interval. If eventOrCondition is an event, the operand requires an addition count
specificaion (e.g. observe-during-period = 1 or observe-during-period > 5). In
this case the event must be observed the specified number of times in the interval.

The translation from GDL to KIV presented in [39] uses three kinds of KIV TL-
formulas. The first are called check-formulas, which are the actual formulas for
the property which have to be proven. A second kind of formula is called test-
formula. Test-formulas are included into the check-formulas. They are usually
very simple and mostly consist of a single flag that is set, if a certain signal (e.g.,
an event) did occur in the past. The last kind of formulas are called support-
formulas. They are added to the antecedent of the KIV formula, that is they
affect the model behavior but they have not to be proven. Support-formulas are
mainly used to set the flags that are used in the test-formulas, e.g., to signal the
occurrence of the Start- or EndEvent or the occurrence of eventOrCondition.

The actual pattern of a check-formula is dependent of the behavior of the at-
tached GDL-property. We considere here only the most common form of check-
formulas which has the following pattern:

O (preCond — cond)

Here, the formulas preCond and cond are predicate logic formulas which consists
normally of one or more test-formulas.

Most support-formulas consist of an initialization of the trigger variable and
an if-then-else like formula, which detects the occurence of a specific event of
satisfaction of a specific condition. It has usually the following schema:

- Trigger,
O (Event D Trigger” = True ; Trz'gger” = Trigger)
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This KIV-formula sets Trigger to true as soon as FEwvent occurs, otherwise it
leaves Trigger unchanged. Initial Trigger is false.

7.2.2 Direct GDL-to-SMYV translation pattern

One way to automate the translation of GDL properties into SMV has been
devised, which uses the observation that there are a relatively low number of
different behaviours are possible in GDL. The idea of the direct translation is
to find a temporal formula pattern for every behaviour possible in GDL. Table
7.1 presents the TL-patterns we found.

’ Nr. \ GDL Behaviour \ SMYV Property ‘

1 MAINTAIN-DURING- AG (StartEvent —
PERIOD (StartEvent, | A (Condition W EndFEwvent))
EndEvent, Condition)

2 OBSERVE-DURING- AG (Start Event —
PERIOD (StartEvent, | A (wEndEvent U Event))
EndEvent, Event)

3 AVOID-DURING- AG (Start Event —
PERIOD (StartEvent, | A (=Condition U EndEwvent))
EndEvent, Condition)

4 ACHIEVE-AT-END AG (Start Event —
(StartEvent, EndEvent, | A (—=EndEvent U (Event A
Event, Condition) Condition)))

5 SEQUENCE/SUBGOAL | AG (StartEvent —
(StartEvent, EndEvent, | A ((=EndEvent U FEwventl) A
Eventl, Event2) (mEvent2 W (Eventl N —Ewvent2))))

Table 7.1: List of GDL to SMV direct translations

This line of research has been suggested by Dwyer et al [40]. It includes for-
mulating equivalent formulations of the most essential temporal properties in
various property specification languages. If GDL is viewed as one of these lan-
guages, and these mappings are established, medical properties, which were
previously specified in other languages can be expressed in GDL.

Examples for the application of this patterns are shown in chapter 7.2 of the
deliverable D4.2¢ of the Protocure II project [4].
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7.2.3 Indirect GDL-to-SMYV translation pattern using the
GDL-to-KIV pattern

Another possibility for translating GDL properties to SMV is to use the trans-
lation pattern GDL-to-KIV. For this translation, we take the translation to
KIV-properties as an intermediate step and translate these into SMV. This pro-
ceeding simplifies the task to ensure that the translated properties in SMV are
semantically the same as the translated KIV properties.

Up to a some exceptions, e.g., if the included test-formulas consider time, check-
formulas can be translated directly from KIV formulas to SMV LTL-properties.
For these check-formulas that can not translated directly (e.g., if, as mentioned
above, they consider time), a suitable abstraction must be found.

Assuming that preCond and cond can be translated into SMV, the check-
formula of the preceding section can be translated into an equivalent SMV
LTL-formula. The corresponding LTL-formula in nuSMV syntax would be:

LTLSPEC G ( preCond -> cond)

A bit more difficult to include into the SMV model are the support-formulas. It
is important that we model the behavior or the trigger varialbe in the same way
as they do in KIV. A possible solution to do this, is to include support-formulas
into the SMV model with the following translation schema. First, we declare a
new variable for the trigger:

trigger : boolean;

Then we can use the state transition definition of SMV to specify the possible
behaviors of the trigger variable:

init(trigger) := false;
next (trigger) := case
cond : true;
1 : trigger;

esac;

A disadvantage of this pattern, compared with the direct translation pattern,
is that, as we add some new state variables, we increase the size of the model
and the complexity of model checking this model. Furthermore, the translation
process is more complex, as we need the GDL-to-KIV translation as an interme-
diate step. However, there are also several advantages of this pattern compared
to the direct GDL-to-SMV translation pattern. One advantages is that the
resulting properties are semantically equivalent to the properties translated to
KIV. This is useful if a property should be examined with both verification tech-
niques. Also, due to the inclusion of the trigger variables into the model, the
counterexamples for violated properties are better understandable. This is es-
pecially important, as, once we have the model and the properties, the analysis
of counterexamples is the most difficult and time consuming task in verification
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Goal Example 4

Precondition
always-true

Time-specification
From Transition chl-treatment enter active
Until Transition masectomy-proper enter active

Observe-during-period
patient-information-reconstruction = completed

Figure 7.3: Attachment - Example 4 (BC Ch 1 23.11.2005) [39]

with model checking. Also, it is very hard to come up with a direct translation
for difficult GDL-properties, e.g., properties containing behaviors with several
sub-goals or properties that must observe a specific number of envents (e.g.,
observe-during-period > 5). Here, the indirect translation offers more flexibil-
ity.

Another possible pattern would be the usage of module checking to restrict
the model with the support formulas. While this approach would make the
translation of TL support formulas into the SMV more direct, modular model
checking has usually a higher complexity than normal model checking.

7.2.4 Example for indirect GDL-toKIV translation

For an example of the indirect transformation technique, we use the following
property from the breast cancer case study, chapter 1:

“The posibillity of breast reconstruction should be discussed with all
patients prior to masectomy.”

This example is used as running example in [39] (“Example 4”). In this work it
is shown how this property can be attached and translated into a KIV-formula.
The resulting attached GDL property is shown in figure 7.3, the translation into
KIV-formulas in figure 7.4.

The support-formulas in the antecedent (that are all formulas before the “F”-
character) can be translated and included into the model according to the
schema presented in the previous section. For the doubly-primed variables in
the KIV-formulas, which denotes the variable value in the next temporal logic
step, the next statement is used, which does exactly the same in SMV. First,
we must add the variable declaration of the new trigger-variables we need to
the SMV model:

--variable declaration

startEventTrigger : boolean;
endEventTrigger : boolean;
observed : boolean;
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(: Initial system state :)

- StartEventTrigger, — EndEventTrigger, — Observed,

(: Start event detection :)

a ( — StartEventTrigger
A AS[’chl-treatment’]] # active(@, @, @)
A AS’’ [’chl-treatment’]] # active(@, @, @)
D StartEventTrigger’’
; StartEventTrigger’’ = StartEventTrigger ),

(: End event detection :)

a ( StartEventTrigger
A AS[’masectomy-proper’]] # active(@, @, @)
A AS’’ [’masectomy-proper’]] # active(@, @, @)
O EndEventTrigger’’
; EndEventTrigger’’ = EndEventTrigger ),

(: Support part of the behavior :)

o ( StartEventTrigger A — EndEventTrigger

A AS’’ [’patient-info-reconstruction’]] = completed
D 0Observed’’
; Observed’’ = Observed )

(: The check part of the behavior :)

O ( — EndEventTrigger A EndEventTrigger’’ = Observed’’)

Figure 7.4: Translation - Example 4 (BC Ch 1 23.11.2005) [39]
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The resulting SMV-code for the state transition relation of these variables, which
has to be included into the SMV-model, is:

—--start event detection

init(startEventTrigger) := false;
next (startEventTrigger) := case
!'startEventTrigger & ! chl_treatment_state = active
& next(chl_treatment_state = active): true;
1 : startEventTrigger;
esac;

--end event detection

init(endEventTrigger) := false;
next (endEventTrigger) := case
startEventTrigger & ! masectomy_proper_state = active
& next(masectomy_proper_state = active): true;
1 : endEventTrigger;
esac;

--support part of the behavior

init (observed) := false;
next (observed) := case
startEventTrigger & !'endEventTrigger
& masectomy_proper_state = completed: true;
1 : observed;
esac;

The check-formula in the succedent (the formula after the “+“-character) is
specified as NuSMV-LTL property. Here we use the next-TL operator (written
as "X“ in SMV) for the doubly-primed KIV-variables. The SMV-property after
translation is as follows:

LTLSPEC G (( 'endEventTrigger & X endEventTrigger ) -> X observed);
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Chapter 8

Experimental Results

As the verification results of model checking guideline properties are presented in
Deliverable 4.2c of the Protocure II project, we present here only general issues
and experimental results about the complexity of applying model checking to
Asbru plans.

8.1 Application of Symbolic CTL Model Check-
ing to Asbru Verification

In this Section we use Cadence SMV on Asbru models. Model checking with
NuSMV is very similar, as both tools share the same input syntax and many
options are the same or have at least an corresponding equivalent and we did

not notice an remarkable performance difference between both tools. All test
were performed on a 2.2 Ghz standard PC with 2 GB RAM.

For our experiments, we chose the latest version of chapter 1 of the breastcancer
case study. This chapter consists of 50 Asbru-plans and is therefore one of
the biggest chapters of the case study. The whole SMV model for chapter
consists of more then 6200 lines of code including the 570 structural properties,
which are automatically generated and included in the model by the compiler.
The computation af the initial configuration, the transition relation and the
reachable states takes alltoghther approx. 133 seconds. This computation is
necessary before any verification. The verification of all 570 structural properties
takes approx. 20min
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8.2 Application of Bounded Model Checking to
Asbru Verification

In previous deliverables, we have found many anomalies in the models, suggest-
ing that, even after a careful review by the modeller, the model of a guideline
can still contain errors. However, even after the extensive testing phase, it is dif-
ficult to say when the model is correct. Bounded model checking is a technique
for detection of problems in the system, but it may be possible that it tells you
the system complies with a certain property, while in fact it does not. However,
given that there might be anomalies in both the model or the specification of
properties, the same holds for other types of verification. Moreover, there are
immense amounts of properties, making it impossible anyway to check that the
guideline is “correct”. Hence, all verification tools should be seen as techniques
for finding problems in the guideline, rather than showing that the guideline is
correct. Preliminary effort shows that BMC could be an interesting technique
to explore further.

Small experiments were done using bounded model checking in the context of
model checking Asbru plans. Given the nature of the Asbru semantics, we can
observe that each plan has at most 6 states it can be in (inactive, considered,
possible, ready, activated, completed). Of course, other states can occur
in case the plan is rejected or aborted, however, in that case, the plan does not
complete. Hence, in case of n plans executed in sequence, the number of states
is restricted by 6n. A rough estimate, going through the models of the breast
cancer guideline, shows that most plans can be reached with less than roughly
15 plan executions. Therefore, most counter-examples will be within this range,
making it, at least in theory, worthwhile to apply BMC to Asbru verification of
breast cancer.

As an example, we could for example investigate whether or not the patient will
ever be informed. The plan that takes care of this is patient-information
abbreviated to ‘pin’. We specify that ‘pin’ is never activated, i.e.:

Gpin # activated
Using bounded model checking (using NuSMV in this case), we find:

-- no counterexample found with bound O

-- no counterexample found with bound 1

-- no counterexample found with bound 2

...

-- no counterexample found with bound 12

-- no counterexample found with bound 13

-- no counterexample found with bound 14

-- specification G (!pinp_state = activated) is false

i.e., the smallest counter example can be found after 15 steps in this case. Often,
in verification of Asbru plans, it is also useful to provide a lower-bound. For
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example, suppose we have n sequential plans and our property refers to the
last plan. Clearly, we do not expect counterexamples smaller than roughly 6n.
Therefore, the iteration could start at a higher bound.

Now consider the following property:
G(treatment = activated — Ftreatment = possible)

Clearly, this is false, as after activation of the treatment, it cannot be restarted
at any point. At first sight, it might seem that this cannot be proven by BMC,
as we need to look arbitrarily long into the future to make sure treatment is
never possible again. However, SMV counter models may contain loops, hence,
it is still able to deduce that after activation, possible will never occur again in
the model. Hence, we can still find a finite counter model:

-- no counterexample found with bound O

-- no counterexample found with bound 1

...

-- no counterexample found with bound 8

-- no counterexample found with bound 9

—-- specification G (treatmentp_state = activated
-> F treatmentp_state = possible) is false

It remains future work to provide a more elaborate study to establish whether
the anomalies found in the selected guideline properties, as provided in Deliv-
erable 4.2¢ of the Protocure II project, can be found more easily using BMC
rather than BDD techniques.
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Model Checking with
Background Knowledge

Background knowledge is most intuitively expressed in LTL. Therefore, we use
LTL model checking as well as bounded model checking for the verification with
background knowlede. For accomplishing this, there are two options

1. A translation from LTL to the state machine, i.e., combining the guideline
and additional knowledge into one automaton

2. LTL model checking

The first option was attempted using standard LTL to Biichi automatons [41, 42]
on the diabetes case study (see Deliverable 4.2c), however, even for the lim-
ited amount of background knowledge that is used there, the SMV model ex-
plodes, which makes it infeasible to use for model checking. Of course, assuming
PSPACE # P, which is very likely, it is difficult to design really efficient algo-
rithms to reduce the explosion of this translation.

Another approach for the verification of Asbru with background knowledge is
the use of modular model checking (see chapter 3.6). We applied modular model
checking to the breast cancer guideline using background knowledge with respect
to daily medical practice. Here, we introduce the syntax used in SMV for the
specification of modular proofs based on the SMV language definitions!.

Assertions about the execution of the program described by the SMV model
can be written down as:

id: assert f;

Thttp://www.cs.indiana.edu/classes/p515 /readings /smv /CadenceSM V-
docs/smv/language/language.html
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where f is a linear temporal formula. If a trace in the SMV model does not
satisfy f, then this is called a failure. In this case, the assertion has an identifier
“id”, which may be used to refer to this assertion.

Modular verification of [p] M (¢)) is written down as follows:
using id prove SPEC g;

where id is an assertion. It is also possible to verify assertions using other
assertions, e.g.,

using id prove id2;
to verify that assertion identified by “id2” holds under the assumption that

assertion “id” holds. An example of this technique used to verify the guideline
using background knowledge can be found in Deliverable 4.2c.
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Summary

Our experiences with model checking showed how helpful this technique is for
all kinds of analysis of formal models. In the first phase of using model check-
ing for the verification of Asbru we mainly concentrated on the verification of
structural properties of Asbru models. Already at this stage we achieved very
promising results, enhanced our techniques and gained lots of experiences from
verification process. The next phase started with application of the already
validated technique to another case study called “breast cancer”. Although it
was not our goal in the beginning we have also shown that model checking can
also be successfully applied for the verification of medical properties as well as
for other kinds of analysis of Asbru models, e.g. critiquing etc.

Our choice in the beginning for a “push-down” approach, i.e. automatic model

generation using standard abstraction, turned out to be a very flexible and effi-
cient solution. The tool we developed for the compilation of SMV models from
Asbru models in KIV made the whole process much more efficient. Otherwise,
it were even impossible to construct some bigger SMV models with more than
5000 lines of code without some automatization support.

The general idea behind model checking to find as many errors in the design as
possible in the short period of time proved itself to be very useful not only in
the Asbru verification but also surprisingly in the modeling stage of the overall
framework. If we just review the metaphor of our project “Asbru model -
program” we recognize that constructing Asbru models is somehow like writing
programs (yet parallel programs which is even more challenging). Of course by
using the Asbru interpreter tool the modeler can detect some errors. But testing
can not be compared with the state of the art verification technique allowing
to check the most forgotten cases. So we propose for the future to integrate
such quick check in the modeling process as well as a pre-check for new models
before starting an interactive verification.

The approach we presented here uses the standard abstraction for the construc-
tion of a finite state model without considering any model of time. Using this
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model we are able to verify a broad class of properties. Nevertheless, we are not
able to find errors concerning timing issues in time annotations. Therefore, an
interesting direction for the future work would be modeling of time annotations
using one of the numerous automatic techniques and tools for the verification
of real time systems. Another promising direction would be the better integra-
tion of both verification techniques, i.e. automatic and interactive. Currently
we use them practically in parallel. The integration of theorem proving in the
model checking process in order to tackle the state explosion problem or vice
versa, using model checking for more efficient proof construction are interesting
alternatives to our approach which can be investigated in the future.
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Appendix A

Compiler

MODULE main
-- chapter 3 : plan name abbreviations for

--load plan-locally-advancedBC locally-advanced-bc
DEFINE
--locally-advanced-bc plan
loadp_is_terminated := (loadp_state = rejected) | (loadp_state = aborted) |
(loadp_state = completed);
loadp_is_aborted := (loadp_state = rejected) | (loadp_state = aborted);
loadp_consider_condition := 1;
loadp_filter_condition := diagnosis = locally-advanced-BC;
loadp_setup_condition := 1;
loadp_activate_condition := (1);
loadp_parentterm_condition := O;
loadp_reject_condition := loadp_parentterm_condition | (loadp_state = considered &
!loadp_filter_condition);
loadp_abort_multi_condition := loadp_abort_condition | loadp_parentterm_condition |
loadp_child_is_aborted;
loadp_abort_condition := 0;
loadp_complete_multi_condition := (loadp_complete_condition & loadp_waitfor_condition) |
('loadp_ifthen_condition);
loadp_complete_condition := 1;
loadp_waitfor_condition := (intmp_state=completed) | (lintmp_state=completed);
loadp_is_in_selection_phase := (loadp_state = considered) | (loadp_state = possible) |
(loadp_state = ready);
loadp_retry_condition := 0;
loadp_child_is_aborted := (intmp_is_aborted) & (lintmp_is_aborted) ;

loadp_ifthen_condition := 1;

--variable tick=1 indicates a macro step

tick := !(
(loadp_state = inactive & loadp_consider_condition) |
(loadp_is_in_selection_phase & loadp_reject_condition) |
(loadp_state = considered & loadp_filter_condition) |
(loadp_state = possible & loadp_setup_condition) |
(loadp_state = ready & loadp_activate_condition) |
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(loadp_state = activated & loadp_complete_multi_condition) |
(loadp_state = activated & loadp_abort_multi_condition) |
(loadp_state = aborted & loadp_retry_condition) |

);

VAR

loadplan : load_plan(loadp_state,loadp_parentterm_condition,loadp_consider_condition,
loadp_filter_condition,loadp_is_terminated,loadp_is_in_selection_phase,
loadp_setup_condition,loadp_reject_condition,loadp_activate_condition,
loadp_abort_multi_condition,loadp_complete_multi_condition,loadp_retry_condition);

loadp_state : inactive,considered,possible,ready,rejected,activated,completed,aborted;

loadp_plan_control : load_plan_control(loadp_state,loadp_control_consider_signal,
loadp_control_activate_signal,intmp_state,
intmp_retry_condition,lintmp_state,lintmp_retry_condition);

loadp_control_consider_signal : none,intm,lintm,all;

loadp_control_activate_signal : none,intm,lintm,all;

PATENT DATA

diagnosis : metastasised-BC,locoregional-recurrent-BC,locally-advanced-BC,operable-BC,
operable-invasive-BC,DCIS,unknown;

ASSIGN
init(diagnosis) := unknown;
next(diagnosis) := case

diagnosis=unknown : metastasised-BC,locoregional-recurrent-BC,locally-advanced-BC,
operable-BC,operable-invasive-BC,DCIS;
1 : diagnosis;
esac;

--property TERMINATION
SPEC AG AF (loadp_state=completed | loadp_state=aborted |
loadp_state=inactive | loadp_state=rejected)

--property ASBRU-CONDITION

SPEC EF (loadp_filter_condition
SPEC EF (loadp_setup_condition
SPEC EF (loadp_complete_condition
SPEC EF (loadp_abort_condition

& loadp_state=considered)

& loadp_state=possible)

& loadp_state=activated)

& loadp_state=activated)

—--property TRACES

--trace 1: inactive -> considered -> possible -> ready -> activated -> completed

SPEC EF(loadp_state = inactive &
E(loadp_state = inactive U (1oadp_state = considered &
E(loadp_state = considered U (loadp_state = possible &
E(loadp_state = possible U (loadp_state = ready &
E(loadp_state = ready U (loadp_state = activated &
E(loadp_state = activated U loadp_state = completed))))))))))

--trace 2: inactive -> considered -> possible -> ready -> activated -> aborted
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SPEC EF(loadp_state = inactive &
E(loadp_state = inactive U (loadp_state = considered &
E(loadp_state = considered U (loadp_state = possible &
E(loadp_state = possible U (loadp_state = ready &
E(loadp_state = ready U (loadp_state = activated &
E(loadp_state = activated U loadp_state = aborted))))))))))

--trace 3: inactive -> considered -> rejected

SPEC EF(loadp_state = inactive &
E(loadp_state = inactive U (loadp_state = considered &
E(loadp_state = considered U (loadp_state = rejected)))))

--trace 4: inactive -> considered -> possible -> rejected

SPEC EF(loadp_state = inactive &
E(loadp_state = inactive U (loadp_state = considered &
E(loadp_state = considered U (loadp_state = possible &
E(loadp_state = possible U (loadp_state = rejected)))))))

--trace 5: inactive -> considered -> possible -> ready -> rejected
SPEC EF(loadp_state = inactive &
E(loadp_state = inactive U (loadp_state = considered &
E(loadp_state = considered U (loadp_state = possible &
E(loadp_state = possible U (loadp_state = ready &
E(loadp_state = ready U loadp_state = rejected))))))))

—--property COMPLETED
SPEC EF loadp_state = completed

--property ACTIVATED
SPEC EF loadp_state = activated

—--property WAIT-STATES

SPEC AG(loadp_state = possible -> AF(loadp_setup_condition | loadp_is_terminated))

SPEC AG(loadp_state = ready -> AF(loadp_activate_condition | loadp_is_terminated))

SPEC AG(loadp_state = activated -> AF(loadp_abort_multi_condition |
loadp_complete_multi_condition))

FAIRNESS loadp_state = inactive

MODULE load_plan(loadp_state,loadp_parentterm_condition,loadp_consider_condition,
loadp_filter_condition,loadp_is_terminated,loadp_is_in_selection_phase,
loadp_setup_condition,loadp_reject_condition,loadp_activate_condition,
loadp_abort_multi_condition,loadp_complete_multi_condition,1oadp_retry_condition)

ASSIGN
init(loadp_state) := inactive;
next(loadp_state) := case

loadp_parentterm_condition : inactive;

loadp_is_terminated & loadp_retry_condition : considered;

loadp_state = inactive & loadp_consider_condition : considered;
loadp_is_in_selection_phase & loadp_reject_condition : rejected;
loadp_state = considered & loadp_filter_condition : possible;
loadp_state = possible & loadp_setup_condition : ready;

loadp_state = ready & loadp_activate_condition : activated;
loadp_state = activated & loadp_complete_multi_condition : completed;
loadp_state = activated & loadp_abort_multi_condition : aborted;

1 : loadp_state;
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esac;

MODULE load_plan_control(loadp_state,loadp_control_consider_signal,loadp_control_activate_signal,
intmp_state,intmp_retry_condition,lintmp_state,lintmp_retry_condition)

ASSIGN
init(loadp_control_consider_signal) := none;
next(loadp_control_consider_signal) := case

loadp_state = activated : all;
!loadp_state = activated : none;

esac;

init(loadp_control_activate_signal) := none;

next (loadp_control_activate_signal) := case
loadp_state = activated : case

loadp_control_activate_signal = none : case
intmp_state = ready & lintmp_state = ready : intm,lintm;
!intmp_state = ready & lintmp_state = ready : lintm;
intmp_state = ready & !'lintmp_state = ready : intm;
!intmp_state = ready & !lintmp_state = ready : none;
1 : loadp_control_activate_signal;

esac;

loadp_control_activate_signal = intm & (intmp_state = aborted | intmp_state = completed)
case

lintmp_state = ready : lintm;

!lintmp_state = ready : none;

1 : loadp_control_activate_signal;
esac;

loadp_control_activate_signal = lintm & (lintmp_state = aborted | lintmp_state = completed)
case
intmp_state = ready : intm;
!intmp_state = ready : none;
1 : loadp_control_activate_signal;
esac;

1 : loadp_control_activate_signal;
esac;
!loadp_state = activated : none;
esac;
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