
Universität Augsburg

Algebraic Aspects of Separation
Logic

Han-Hing Dang

Report 2009-01 May 2009

Institut für Informatik
D-86135 Augsburg

Copyright c© Han-Hing Dang
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Contents

1 Introduction 1

2 Basics and Notations 2
2.1 Expressions . 3

3 Assertions 5
3.1 Definitions and Examples . 5
3.2 An Algebraic Treatment . 9
3.3 The Algebraic Structure . 11
3.4 Laws for the New Heap Operations . 13
3.5 Special Classes of Assertions . 19

4 Commands 28
4.1 Relational Semantics . 29
4.2 Embedding the Assertion Quantale . 31

4.2.1 The Frame Rule . 32
4.3 Inference Rules . 33

4.3.1 Mutation and Disposal . 34
4.3.2 Allocation . 35
4.3.3 Lookup . 36

5 Proving the List Reversal Algorithm 37
5.1 Definitions and an Example . 37
5.2 Getting Ghost Variables Under Control . 41
5.3 An Algebraic Proof . 44

6 Conclusion and Outlook 49

Appendix A - Prover9 Input File 51

Appendix B - Translation Table 53

Bibliography 55

Chapter 1

Introduction

A lot of software systems nowadays run through long phases of development before they
can be delivered. This process is very error-prone and especially in early phases of devel-
opment software bugs become more expensive if they are found too late. Moreover such
bugs yield an immense decrease in prestige for a company when they happen too often.
Not least due to this, it is nowadays very important to develop correct software. Over
the last four decades a lot of effort has been invested to ensure correctness of programs
by using formal specification and verification methods. Some approaches for imperative
programming languages like C have already been introduced by Hoare and Dijkstra to
ensure partial or total correctness. But they lack expressiveness for shared mutable data
structures, i.e., structures where updatable fields can be referenced from more than one
point (e.g. [Rey08a]). Therefore Reynolds, O’Hearn and others have developed a novel
system called separation logic which allows reasoning about such data structures. Their
approach extended Hoare logic with assertions that express assumptions about separa-
tion in storage. Furthermore the command language is enriched by some constructs which
allows altering these separate ranges. Over the last few years this logic has become a
large research area and also has a variety of further applications e.g. in reasoning about
concurrency ([HWW09, HMSW09]).

In this technical report we take another view of separation logic, using an algebraic
approach to simplify proofs in this logic and to find new results. First we will give some
basic definitions and notations. Afterwards we will have a closer look at the new assertion
constructs for this logic and explain how they are to be understood. As a main result we
found a possibility to treat them algebraically. Especially for some classes of assertions we
will present an axiomatization and algebraically prove a lot of laws of [Rey08a]. Reynolds
did not give proofs for them. Next we look more closely at the new command constructs
to reference heap cells. To treat the commands algebraically, we introduce a relational
view for them and define an algebraic structure in which we are able to work with them.
Afterwards we introduce and explain some inference rules for these commands. Finally we
give a concrete example of an in-place list reversal algorithm which we will verify using
our algebraic approach.

Most of the laws given in Chapter 3 have been checked by the automatic theorem
prover Prover9 which, according to [DH08], is for our purposes the best theorem prover.
We added an input file for the axioms in the Appendix and listed some of the goals which
we have verified using Prover9.

1

Chapter 2

Basics and Notations

As already mentioned in the introduction, separation logic is an extension of Hoare logic
by constructs which allows reasoning about separate storage parts. In Hoare logic, states
only consist of a store used to save values of program variables. Now in separation logic
states do not just consist of stores; they are extended by an additional heap component.
The store of a state corresponds to the currently allocated registers and the the heap to
the addressable memory ([Rey08a]). In the rest of this report we write s for stores and h
for heaps. In [Rey08a] stores are defined as functions from variables into values of ZZ and
heaps as functions from addresses into values of ZZ , while addresses are also values of ZZ .
We will slightly deviate from this functional view and define for an algebraic treatment
the stores and heaps as relations.

For this relational view it is useful to let every store or heap just map a variable or an
address into a single value. This brings us immediately to the first definition where define
partial functions using a relational view.

Definition 2.0.1 (Relational view of partial functions) A relation R ⊆ M ×N is
called a partial function from M to N iff

∀x ∈M : ∀ y, z ∈ N : (x, y) ∈ R ∧ (x, z) ∈ R ⇒ y = z.

The set of all partial functions from M to N is denoted by M ; N .
Now we can define our states with store and heap components as follows.

Definition 2.0.2 Let V be the set of all variables. Then we define

V alues = ZZ

{nil} ∪̇Addresses ⊆ V alues

Stores = V ; V alues

Heaps = Addresses ; V alues

States = Stores×Heaps

where ∪̇ denotes the disjoint union on sets.

We write in this report h(a) for an address a and s(x) for a variable x to denote its
according value. The constant nil is a value for pointers that denotes an improper reference
like null in programming languages like Java. By this definition nil is not an address and
therefore every heap h ∈ Heaps satifies nil 6∈ dom(h), where dom(·) is defined as follows

2

2.1 Expressions

Definition 2.0.3 (Domain of Relations) Let R ⊆ M × N be a relation. Then its
domain dom(R) is defined by

dom(R) =df {x ∈M | ∃ y : (x, y) ∈ R}.

In particular, the domain of a store denotes all currently used program variables and
dom(h) is the set of all currently allocated addresses on a heap h.

As in [Möl93] and for later definitions we also need an operator called update operator.
This operator is used to model changes in stores and heaps. First we give a definition in
the following and then explain its meaning.

Definition 2.0.4 (Update on partial functions) Let R and S be partial functions.
Then we define

R |S =df R ∪ {(x, y) | (x, y) ∈ S ∧ x 6∈ dom(R)}.

Hence the relation R updates the relation S with all possible tuples of R in such a
way that R |S is again a partial function. The righthand side of ∪ above is disjoint from
the set R. In particular, R |S can be seen as an extension of R to dom(R) ∪ dom(S). In
later definitions to denote an update on a single variable or address, we abbreviate this
and do not write the brackets in the notation. So we write (x, v) |S for {(x, v)} |S.

2.1 Expressions

Before giving a detailed definition for assertions we need to define how expressions need
to be understood in Separation Logic. This is important because they are ubiquitous
for every assertion. The reader may find them straightforward to understand but to get
a better comprehension about how they need to be evaluated, we defined them more
precisely. An important fact is that every expression, used in separation logic in assertions,
is independent of the heap. This means that they only need the store component of a given
state to be evaluated. In particular, expressions in assertions are always defined and can
not cause any fault or side effects when evaluated.

They are basically used for describing conditions on stores or on heaps with the help of
special constructs which will be defined later when giving a precise definition for assertions.
From the definitions of stores and heaps above we are able to perform simple arithmetics
on values or addresses in expressions since we are working only with values of ZZ .

In separation logic there exists two kinds of expressions, namely 〈exp〉-expressions and
Boolean 〈bexp〉-expressions. In the remainder we will give intuitive definitions for them to
explain their structure and their evaluation on stores. Afterwards we give a small example.

Definition 2.1.1 (Syntax for expressions)

〈var〉 ::= x | y | z | ...
〈exp〉 ::= 0 | 1 | 2 | ...

| 〈var〉 | − 〈exp〉 | 〈exp〉+ 〈exp〉 | 〈exp〉 − 〈exp〉
| 〈exp〉 · 〈exp〉 | ...

〈bexp〉 ::= true | false
| 〈exp〉 = 〈exp〉 | 〈exp〉 < 〈exp〉 | ...

3

2.1 Expressions

This means that 〈exp〉-expressions can only be variables, denoted by x, y, z, or values,
i.e., numbers of ZZ , or terms with the usual arithmetic operators over variables or natural
numbers. Furthermore 〈bexp〉-expressions are Boolean expressions which are true, false or
just some comparisons.

The semantics of expressions when evaluating them, using the store of a given state,
is defined as follows.

Definition 2.1.2 (Semantics of expressions) Let s be an arbitrary store on which
the following expressions are intended to be evaluated. Furthermore, let e1, e2 be 〈exp〉-
expressions and [op] be an arbitrary corresponding arithmetic or Boolean operator. Then
we write 〈·〉exp(s) for the evaluation of an arbitrary expression on s and inductively define
it as follows

〈c〉exp(s) = c ∀ c ∈ ZZ , 〈x〉exp(s) = s(x) ∀x ∈ dom(s) ,

〈e1 [op] e2〉exp(s) = 〈e1〉exp(s) [op] 〈e2〉exp(s) ∈ ZZ ,

〈true〉bexp(s) = true , 〈false〉bexp(s) = false ,

〈e1 [op] e2〉bexp(s) = 〈e1〉exp(s) [op] 〈e2〉exp(s) ∈ {true, false}

We give a small example to how this evaluation is done.

Example 2.1.3 Let V = {x, y, z} and s = {(x, 1), (y, 32), (z, 59)}. Some examples for
〈exp〉-expressions are

x + 1, y, z + x− 1 .

Their corresponding values w.r.t. the store s are

〈x + 1〉exp(s) = s(x) + 1 = 2

〈y〉exp(s) = s(y) = 32

〈z + y − 1〉exp(s) = s(z) + s(y)− 1 = 90

Two simple examples for Boolean-expressions are

x + 1 < y, y = z + x− 1 .

Their results, evaluated w.r.t. s, are

〈x + 1 < y〉bexp(s) =
(
s(x) + 1 < s(y)

)
=

(
2 < 32

)
= true

〈y = z + x− 1〉bexp(s) =
(
s(y) = s(z) + s(x)− 1

)
=

(
32 = 59 + 1− 1

)
= false

ut

With the use of expressions we next introduce the assertion language of separation logic.

4

Chapter 3

Assertions

Assertions play an important role in separation logic. They are used as predicates to
describe the contents of heaps and stores using the just defined expressions. Moreover, in
separation logic, assertions are used as pre- or postconditions in programs, like in Hoare
logic. The assertions in separation logic can be divided into the already known ones from
predicate logic and into four new ones which express properties of the heap. We first give
a definition for our assertions. Afterwards go into detail explaining the semantics of our
new operators and how they are used in separation logic.

3.1 Definitions and Examples

We start by a definition of what an assertion can look like. We write p, q and r in the
remainder to denote assertions. Afterwards we have a closer look on the new aspects of
separation logic. Furthermore we present what is new in this logic and what is the main
idea behind the new predicates characterising heaps.

Definition 3.1.1 (Syntax for assertions)

〈assert〉 ::= 〈bexp〉
| ¬ 〈assert〉 | 〈assert〉 ∨ 〈assert〉 | 〈assert〉 ∧ 〈assert〉
| 〈assert〉 ↔ 〈assert〉 | 〈assert〉 → 〈assert〉
| ∀ 〈var〉. 〈assert〉 | ∃ 〈var〉. 〈assert〉
| emp

| 〈exp〉 7→ 〈exp〉
| 〈assert〉 ∗ 〈assert〉
| 〈assert〉−∗〈assert〉

Remark 3.1.2 We write p ∈ 〈bexp〉 for an arbitrary assertion p if it is a 〈bexp〉-
expression. ut

Hence, we have the usual Boolean connectives and four new ones including an atomic
assertion named emp . We will explain their usefulness when we defined their semantics.
To get a connection between states and assertions we inductively define a relation |=
according to [Rey08a].

We write (s, h) |= p or briefly s, h |= p, if the state (s, h) satisfies the assertion p.
Hence we have the pair ((s, h), p) ∈ |= iff p holds in the state (s, h). Otherwise we will

5

3.1 Definitions and Examples

write (s, h) 6|= p. Moreover we call an assertion p valid iff p holds in every state. And,
as usual, if there exists a state (s, h) which satisfies p then we say the assertion p is
satisfiable. Sometimes we only focus the heap h of a state (s, h) that satisfies an assertion
p. Therefore we abbreviate: h satisfies p.

Subsequently we define the semantics for assertions in separation logic, including the
just mentioned new connectives which give separation logic its name.

Definition 3.1.3 (Semantics for Assertions) Let e be an 〈exp〉-expression, b be an
〈bexp〉-expression and p, q be assertions then

s, h |= b ⇔df 〈b〉bexp(s) = true

s, h |= ¬p ⇔df s, h 6|= p

s, h |= p ∧ q ⇔df s, h |= p and s, h |= q

s, h |= p ∨ q ⇔df s, h |= p or s, h |= q

s, h |= p→ q ⇔df s, h |= p implies s, h |= q

s, h |= p↔ q ⇔df s, h |= p iff s, h |= q

s, h |= ∀ v. p ⇔df ∀x ∈ ZZ : (v, x) | s, h |= p

s, h |= ∃ v. p ⇔df ∃x ∈ ZZ : (v, x) | s, h |= p

s, h |= emp ⇔df h = ∅
s, h |= e 7→ e′ ⇔df h = {(〈e〉exp(s) , 〈e′〉exp(s))}
s, h |= p ∗ q ⇔df ∃h0, h1 ∈ Heaps : dom(h0) ∩ dom(h1) = ∅ and

h = h0 ∪ h1 and s, h0 |= p and s, h1 |= q

s, h |= p−∗ q ⇔df ∀h0 ∈ Heaps : (dom(h0) ∩ dom(h) = ∅ and s, h0 |= p)

implies s, h0 ∪ h |= q

The first eight definitions are standard and should be known from predicate logic or Hoare
logic. They do not make any assumptions about the heap and only carry along the heap
without making any changes to it. Only the semantics of quantifications over variables
might need a closer look and more explanation.

Example 3.1.4 Consider the assertion x = 1 ∧ ∃x. x = 2 and a state with s = {(x, 1)}.
One can see that x = 1 is satisfied. In ∃x. x = 2, the variable x is bound by the ∃ -
quantifier and therefore x is only a placeholder for a value v ∈ ZZ and is not evaluated by
the tuple (x, 1). In general this means if s can be updated with a tuple (x, v) such that
x = 2 holds then ∃x.x = 2 is satisfiable. ut

We want to avoid situations as in the example above and assume for the rest that
every variable is uniquely used. That means it is either bound or free. And in the case of
bound variables each quantifier uses different variable names. We call FV (p), the set of
all free variables of an assertion p, i.e., all variables occurring in an assertion p, that are
not bound by any quantification.

In the above definition, the last four lines describe the new parts in separation logic. We
explain them in the following more detailed. For an arbitrary state (s, h), emp ensures
that the heap h is empty and contains no addressable cells. For a single heap cell the
assertion e 7→ e′ is used, where e and e′ denotes expressions. It assures that there exists
only one cell at the address 〈e〉exp(s) on the heap which has the value 〈e′〉exp(s). To

6

3.1 Definitions and Examples

build up more complex heaps, the novel operator ∗ is used. It is called the separating
conjunction by Reynolds and lies at the heart of separation logic. One simple idea behind
this operator is to join two disjoint heaps into a larger one. Two heaps h and h′ are disjoint
if dom(h) ∩ dom(h′) = ∅ holds for them, i.e., if they do not map from common addresses
into values. As in each computer for example, there must be only one value assigned to
each address allocated on the heap. One may wonder then why the case

dom(h) ∩ dom(h′) 6= ∅ ∧ ∀x ∈ dom(h) ∩ dom(h′) ⊆ Addresses : h(x) = h′(x)

is not included in the definition of ∗, since it should also be possible to unite such two
heaps. But in fact, it is intended not to be able to combine such two heaps, since the
general purpose for this operator is to separate the heap h of a state (s, h) into two
disjoint portions. Or more exactly, let p and q be two arbitrary assertions and (s, h) a
state satisfying the assertion p ∗ q then it is possible to divide h into two disjoint heaps
such that p holds for one and q for the other part. But this is not possible anymore if the
above case is allowed. Obviously it is not clear anymore to which heap the overlapping
part might belong. This is why the ∗ operator is called separating conjunction.

Example 3.1.5 As a simple example to illustrate the ∗ operation, we start by a state
which satisfies x 7→ 5. The heap then maps the address s(x) into the value 5.

hs
x 5

The variable x has a value s(x) in the store s whereas s(x) denotes an address on the
heap. Using the separating conjunction ∗, we are able to combine another disjoint heap
cell, satisfying y 7→ 7, with the existing one. Again it is important that x and y are in
dom(s) of the state and therefore are defined. The reader should also keep in mind that
the conjunction of two disjoint heaps requires that both states on which the assertions
are satisfied must agree on their store components. Then the resulting state is illustrated
in the following picture

hs x

y

5

7

and satisfies (x 7→ 5) ∗ (y 7→ 7). The assertions x 7→ 5 and y 7→ 7 hold for two disjoint
parts of the heap and imply immediately that s(x) 6= s(y). Otherwise one would get a
contradiction to the assumption that h is a partial function. To see that ∗ cannot be
replaced by ∧ , consider next the assertion x 7→ 5 ∧ y 7→ 7 and a state (s, h) satisfying
the assertion. By definition h = {(s(x), 5)} and h = {(s(y), 7)} has to hold. But this is
false for every state because even if s(x) = s(y), i.e., if the domain of the heap is exactly
determined. We would immediately get the just mentioned contradiction.

Of course, one can guess that an assertion like (x 7→ 5) ∗ (x 7→ 5) similarly does
not hold for any state, since it is not possible to let two disjoint heaps map from the
same address s(x). We can conclude that the separating conjunction is not generally an
idempotent operation.

For two consecutive cells in a heap, e.g. a heap satisfying (x 7→ 3)∗ ((x+1) 7→ 5), we
will abbreviate this in the following and write x 7→ 3, 5 instead. More intuitively, such a
state is illustrated in the following picture

7

3.1 Definitions and Examples

hs x 3

5

For the cell containing 5 it should be clear that it is reachable by x + 1. ut

We generalize situations with adjacent heap cells as in the example above and give a
notation in the following remark.

Remark 3.1.6 Let e1, . . . , en and e be expressions then e 7→ e1, . . . , en abbreviates
(e 7→ e1) ∗

(
((e + 1) 7→ e2) ∗

(
. . . ∗ ((e + n) 7→ en)

))
. The expressions e1, . . . , en denote

the contents of n consecutive cells starting from address e.
In the following we will use the convention that 7→ binds stronger than ∗ and write

x 7→ e ∗ y 7→ e′ instead of (x 7→ e) ∗ (y 7→ e′). ut

To point out some advantages of these novel operators, we will later give a larger example
when reasoning about programs.

Next we explain the separating implication −∗, as it is named by Ishtiaq and O’Hearn
([Rey08a]), and give an example to get an idea of this operation. Consider a heap h in
which p−∗ q holds and a disjoint heap h′ which satisfies the assertion p. This situation is
illustrated on the left side of the picture below.

p−∗ q

h

p

h′

q

h ∪ h′

If we extend the heap h with the heap h′, then the resulting heap h ∪ h′ satisfies the
assertion q. This is illustrated on the right side of the figure1. We give in the following a
simple explicit example. In general cases the situation becomes more complicated.

Example 3.1.7 Consider the following assertions

p = (x + 1) 7→ 5 ,

q = x 7→ 3 ∗ (x + 1) 7→ 5 ,

then by extending a heap in which (x + 1) 7→ 5−∗[x 7→ 3 ∗ (x + 1) 7→ 5] holds with a
disjoint heap satisfying (x+1) 7→ 5, we obtain a heap that satisfies x 7→ 3∗ (x+1) 7→ 5.
But as we know from the definitions above, a heap satisfying (x + 1) 7→ 5 has only
one single cell and therefore is determined exactly by a given store s. Furthermore the
assertions x 7→ 3 and x + 1 7→ 5 always describe disjoint non-overlapping portions of a
given heap, so that the assertion x 7→ 3 ∗ (x + 1) 7→ 5 always describes a union of two
disjoint heaps. In fact, in this case

(x + 1) 7→ 5−∗
(
x 7→ 3 ∗ (x + 1) 7→ 5

)
⇔ x 7→ 3

holds by the definition of −∗. But of course this is just a simple example and generally
p−∗(q ∗ p) ⇔ q for arbitrary assertions p, q does not hold. ut
1The right picture might suggest that the heaps are adjacent after the join. But the intention is only to
bring out abstractly that the united heap satisfies q

8

3.2 An Algebraic Treatment

We will discuss and sum up some general laws for the newly introduced heap operations
in the next chapter.

Next we introduce an algebraic view for the just defined assertions. The main idea
is to have a set-theoretic view on this logic by calculating with sets of states instead
of continuing to use the predicates for the states. We will see that most of the laws
axiomatized in [Rey08a] can be easily proved algebraically and be handled more concisely.

3.2 An Algebraic Treatment

To get the just mentioned mechanism under control we define sets of states on which we
are going to calculate. Let p be an arbitrary assertion then we define by [[p]] =df {(s, h) :
s, h |= p} the set of all states that satisfy p, i.e., (s, h) ∈ [[p]] ⇔ s, h |= p. By writing
the brackets [[·]] around an assertion p, it is meant to emphasize that we are using sets of
states. We will later use the letters p, q to denote sets of states when calculating in our
algebraic setting, so the reader should keep in mind that by writing p in later algebraic
proofs, we mean a set of states that satisfy p and not the assertion itself anymore.

The usual Boolean connectives in this logic can be handled as already known. We can
view the disjunction of two assertions in a set-based view for the |= - semantics as a union
of two sets. The same holds for the conjunction which can be modeled by set intersection.
Since the complete assertion language is Boolean we are able to define the negation of an
assertion as the complement on a Boolean lattice.

To model the separating conjunction ∗ algebraically let P(States) be the power set
of States. Then we define an operator ·∪ : States × States → P(States) which has a
similar semantics as the ∗ in separation logic. This operator is an algebraic version of ∗
with the difference that it will be used for calculating with sets of states. Consider two
states (s, h) and (s′, h′). The disjoint union ·∪ on heaps between two states is defined by

(s, h) ·∪ (s′, h′) =df

{
{(s, h ∪ h′)} if dom(h) ∩ dom(h′) = ∅ ∧ s = s′

∅ otherwise.

By this definition the second case stands for an error case; if the heaps are not dis-
joint, their union is not defined and thus the operator will return ∅. Consider now the
pointwise extension of this operator denoted by the same operator with functionality
·∪ : P(States)× P(States) → P(States) which is defined by

[[p]] ·∪ [[q]] =df

⋃
(s,h)∈ [[p]]

⋃
(s′,h′)∈ [[q]]

(s, h) ·∪ (s′, h′)

for [[p]], [[q]] ∈ P(States). By this definition, the extended operator distributes over union,
i.e., ⋃

χ1 ·∪
⋃

χ2 =df

⋃
{[[p]] ·∪ [[q]] : [[p]] ∈ χ1, [[q]] ∈ χ2}

for χ1, χ2 ⊆ P(States). In fact, an analogous proof shows that it even distributes over
arbitrary unions. By taking χ1 = ∅ or χ2 = ∅ we obtain strictness of the pointwise
extension with respect to ∅ in both arguments:

∅ ·∪ [[p]] = ∅ [[p]] ·∪ ∅ = ∅

Furthermore by taking χ1 = {[[p1]], [[p2]]}, χ2 = {[[q1]], [[q2]]} and using the equivalence

9

3.2 An Algebraic Treatment

[[p1]] ⊆ [[p2]] ⇔ [[p1]] ∪ [[p2]] = [[p2]]

(analogously for q1 and q2) one also obtains isotony with respect to ⊆ , i.e.,

[[p1]] ⊆ [[p2]] ∧ [[q1]] ⊆ [[q2]] ⇒ [[p1]] ·∪ [[q1]] ⊆ [[p2]] ·∪ [[q2]]

Finally, bilinear equational laws for ·∪ , i.e., laws in which each side has at most one
occurence of every variable (i.e. a set of states) are inherited by the pointwise extension.
Consider e.g. the assertions p, q and r, then examples of such laws are

([[p]] ·∪ [[q]]) ·∪ [[r]] = [[p]] ·∪ ([[q]] ·∪ [[r]]) (associativity)

[[p]] ·∪ [[q]] = [[q]] ·∪ [[p]] (commutativity)

[[p]] ·∪ [[emp]] = [[q]] (neutrality)

where [[emp]] denotes the set of all states with an empty heap component.
Now we present our basic definition for an algebraic treatment of assertions in sepa-

ration logic.

Definition 3.2.1 (Set-based view on assertions) Let e and e′ be 〈exp〉-expressions
and p, q be arbitrary assertions and v a variable then the set-based view for assertion is
defined as follows

[[p]] =df {(s, h) : s, h |= p, p ∈ 〈bexp〉}
[[¬ p]] =df {(s, h) : s, h 6|= p } = [[p]]

[[p ∨ p]] =df [[p]] ∪ [[q]]

[[p ∧ q]] =df [[p]] ∩ [[q]] = [[p]] ∪ [[q]]

[[p → q]] =df [[¬ p ∨ q]] = [[p]] ∪ [[q]]

[[p ← q]] =df [[q → p]] = [[q]] ∪ [[p]]

[[p ↔ q]] =df [[(p → q) ∧ (q → p)]] = ([[p]] ∪ [[q]]) ∩ ([[q]] ∪ [[p]])

[[∃ v. p]] =df {(s, h) : ∃x ∈ ZZ . (v, x) | s, h |= p }
[[∀ v. p]] =df {(s, h) : ∀x ∈ ZZ . (v, x) | s, h |= p }
[[emp]] =df {(s, h) : h = ∅}
[[e 7→ e′]] =df {(s, h) : h = {(〈e〉exp(s), 〈e′〉exp(s))} }
[[p ∗ q]] =df {(s, h) ·∪ (s′, h′) : (s, h) ∈ [[p]], (s′, h′) ∈ [[q]]}

= [[p]] ·∪ [[q]]

[[p −∗ q]] =df {(s, h) : ∀h′ ∈ Heaps : (dom(h) ∩ dom(h′) = ∅ ∧ (s, h′) ∈ [[p]])

⇒ (s, h ∪ h′) ∈ [[q]]}

As already mentioned, most of the usual Boolean connectives can be modeled by union
and intersection on sets of states. An exception are the quantification in assertions. Later
we will discuss how these situations can be treated.

Furthermore the separating conjunction is now modeled with the mechanism described
above. Only the definition for the separating implication still looks difficult to get under
control. Later we give some laws ([Rey08a]) for this operation and finally explain how this
operator can be axiomatized using our algebraic approach.

10

3.3 The Algebraic Structure

3.3 The Algebraic Structure

To keep the proofs for the later given laws simple, we introduce some definitions for the
used algebraic structure and give some proof principles. First of all we give definitions for
a semiring and a relation ≤ for an ordering in this structure.

Definition 3.3.1 (Semiring) A semiring is a structure (S, +, 0, ·, 1) such that (S, +, 0)
is a commutative monoid and (S, ·, 1) is a monoid. Furthermore multiplication distributes
over addition in both arguments, i.e., for arbitrary x, y, z ∈ S

(x + y) · z = x · z + y · z z · (x + y) = z · x + z · y

and 0 is a left and right annihilator with respect to multiplication, i.e.,

x · 0 = 0 = 0 · x

We call a semiring idempotent if the addition satisfies

x + x = x

and commutative if multiplication satisfies

x · y = y · x

Definition 3.3.2 (Natural order) In an idempotent semiring S the relation ≤ is de-
fined by x ≤ y ⇔df x + y = y. This relation is a partial order and has 0 as its least
element. Multiplication and addition are isotone in both arguments. Therefore it is called
the natural ordering on S. This makes S into a semilattice with addition as join and 0 as
its least element.

With these definitions we can now go on and define our mainly used algebraic structure,
a quantale or standard Kleene Algebra as it is also called ([Con71, Mul86]).

Definition 3.3.3 (Quantale) A quantale is an idempotent semiring that is a complete
lattice under the natural order and in which multiplication distributes over arbitrary
suprema. The supremum of a subset S is denoted by tS and the infimum by uS. In
particular, the greatest element is denoted by >, i.e., p ≤ > for arbitrary elements p.
Furthermore if the underlying lattice is a Boolean algebra we call it a Boolean quantale.

Next we introduce an important tool which we will use in proofs. For proving inequalities
we use the principle of indirect inequality

x ≤ y ⇔ (∀ z : y ≤ z ⇒ x ≤ z)
x ≤ y ⇔ (∀ z : z ≤ x ⇒ z ≤ y)

and the proof principle of indirect equality for proving equalities

x = y ⇔ (∀ z : x ≤ z ⇔ y ≤ z) ⇔ (∀ z : z ≤ x ⇔ z ≤ y)

11

3.3 The Algebraic Structure

The (⇒) directions for the inequality proof principle follows immediately from transitivity
of ≤. For the reverse direction set z = y or z = x. The proof principle for equality then
holds immediately by antisymmetry of the order ≤.

Finally, we can explain how the assertions or the sets of states can be embedded
into such an algebraic structure. The union on sets coincides with the addition in an
idempotent semiring and so does the relation ≤ with the relation ⊆ . Hence (S, ∪ , ∅) is
a commutative monoid. To define the intersection ∩ on sets we will use the following
equivalence

z ≤ x u y ⇔df z ≤ x ∧ z ≤ y

It is a natural definition and allows us to use intersection in absence of negation, i.e., if
we are not in a Boolean quantale. Furthermore, since the separating conjunction is only a
union on disjoint heaps, it is clear that it is commutative, associative and has the empty
heap as its neutral element. We sum this result up in the next lemma.

Lemma 3.3.4 The separating conjunction ∗ induces a commutative monoid with emp
as its neutral element, i.e., for arbitrary assertions p, q and r the following laws hold :

p ∗ q ⇔ q ∗ p

(p ∗ q) ∗ r ⇔ p ∗ (q ∗ r)

p ∗ emp ⇔ p

Of course, the same holds for our new operator ·∪ , since it is only a union on heaps. By
applying the mechanism of pointwise extension to it, we can view ·∪ as the multiplication
in a quantale with [[emp]] as its neutral element. As already mentioned, we know that
pointwise extension lifts up laws like associativity, commutativity and neutrality. Further-
more it is strict in both arguments with respect to ∅. Therefore we have ∅ as a left and
right annihilator. To see that ·∪ distributes over arbitrary suprema we give a short proof
for it in separation logic. But as mentioned above, we have + as the join denoting the
supremum t. And since we are again only calculating on union of sets, the only problem
that could arise is that we are calculating on both, states and heaps of states. The follow-
ing proof in separation logic shows that the distributivity law in fact holds. We will use
the abbreviation h− h0 =df h ∩ h0 as the usual known difference on sets.

s, h |= (p ∨ q) ∗ r
⇔ {[definition of ∗]}
∃h0 : h0 ⊆ h and s, h0 |= p ∨ q and s, h− h0 |= r

⇔ {[definition of ∨]}
∃h0 : h0 ⊆ h and (s, h0 |= p or s, h0 |= q) and s, h− h0 |= r

⇔ {[logic]}
∃h0 : h0 ⊆ h and ((s, h0 |= p and s, h− h0 |= r) or

(s, h0 |= q and s, h− h0 |= r))
⇔ {[logic]}

(∃h0 : h0 ⊆ h and (s, h0 |= p and s, h− h0 |= r)) or
(∃h0 : h0 ⊆ h and (s, h0 |= q and s, h− h0 |= r))

⇔ {[definition of ∗]}
s, h |= (p ∗ r) or s, h |= (q ∗ r)

⇔ {[definition of ∨]}
s, h |= (p ∗ r) ∨ (q ∗ r)

12

3.4 Laws for the New Heap Operations

Therefore by pointwise extension also ([[p]] ∪ [[q]]) ·∪ [[r]] = ([[p]] ·∪ [[r]]) ∪ ([[q]] ·∪ [[r]])
holds. A similiar argument then shows that ·∪ in fact distributes over arbitrary suprema.
Moreover since every state satisfies the assertion true, we have [[true]] as the greatest
element in the algebraic setting. For this reason [[true]] = > holds. One should note that
[[true]] is also the neutral element for u.

As an important conclusion we sum up the just discussed results in the next lemma.

Lemma 3.3.5 The structure (P(States), ∪ , ∅, ·∪ , [[emp]],¬) forms a Boolean quantale.

In the following we will assume this algebraic structure when calculating algebraically.
We will also assume where needed a Boolean quantale and write for negation · . It can be
axiomatised by p = p + q + p + q for arbitrary elements p and q ([Hun33]). We continue
in next chapter by explaining some useful laws for the new operations and show how the
separating implication −∗ can be axiomatized in our algebra.

3.4 Laws for the New Heap Operations

We start by some subdistributive and distributive laws which we will axiomate in our
algebra.

Theorem 3.4.1 The separating conjunction ∗ satisfies the following distributivity and
subdistributivity laws for arbitrary assertions p, q and r. Furthermore we assume that the
variable v is not free in q:

(p ∨ q) ∗ r ⇔ (p ∗ r) ∨ (q ∗ r)

(p ∧ q) ∗ r ⇒ (p ∗ r) ∧ (q ∗ r)

(∃ v. p) ∗ q ⇔ ∃ v. (p ∗ q)

(∀ v. p) ∗ q ⇒ ∀ v. (p ∗ q)

A proof for the distributivity law (p ∨ q) ∗ r ⇔ (p ∗ r) ∨ (q ∗ r) has already been
given before in separation logic. Next we will give an algebraic proof for (p ∧ q) ∗ r ⇒
(p ∗ r) ∧ (q ∗ r). This law can be encoded in a quantale by (p u q) · r ≤ (p · r) u (q · r),
whereas ⇒ is algebraically encoded as ≤. We also write in the following p, q and r for
elements of our quantale. They denote as mentioned above, sets of states on which we
calculate.

(p u q) · r
= {[idempotence of u]}

((p u q) · r) u ((p u q) · r)
≤ {[isotony of u]}

(p · r) u (q · r)

The other direction does not hold in general. We will give here a short counterex-
ample according to [Rey08a] and explain the situation. Consider a state (s, h) with
s = {(x, 5), (y, 6)} and h = {(5, 10), (6, 20)}. Then the right hand side with the asser-
tions p = x 7→ 10, q = y 7→ 20 resolves to

(x 7→ 10 ∗ (x 7→ 10 ∨ y 7→ 20)) ∧ (y 7→ 20 ∗ (x 7→ 10 ∨ y 7→ 20))

which is satisfiable on the given state, but the left hand side

13

3.4 Laws for the New Heap Operations

(x 7→ 10 ∧ y 7→ 20) ∗ (x 7→ 10 ∨ y 7→ 20)

is not satisfied by any state. The reason therefore can be seen by writing the assertion as

((x 7→ 10 ∧ y 7→ 20) ∗ x 7→ 10) ∨ ((x 7→ 10 ∧ y 7→ 20) ∗ y 7→ 20)

using the fact that ∗ distributes over ∨ . Then if the heap can be split into a part which
satisfies x 7→ 10 ∧ y 7→ 20, the rest of the heap cannot contain cells where x 7→ 10 or
y 7→ 20 are satisfied since by the separating conjunction the portions have to be disjoint
and both assertions have to agree on the same store. For a certain subclass of assertions
this law becomes a full distributivity law. We will discuss this subclass later and explain
why the full law holds in this class.

The next laws denote import and export rules over variable quantifications in asser-
tions. We will continue by explaining these laws and their algebraic background. First,
looking at the semantics of these assertions, they describe that under a certain condition
an assertion can be imported into or or exported out of the binding range of a variable
quantification. The first law is a full distributive law and therefore denotes a portation of
q in both directions if v is not a free variable in q, i.e., if it has no occurrence in q or is
bound by another quantifier.

To see that this law holds we will give again a short proof in separation logic.

s, h |= (∃ v. p) ∗ q
⇔ {[definition of ∗]}
∃h0 : h0 ⊆ h and s, h0 |= ∃ v. p and s, h− h0 |= q

⇔ {[definition of ∃ v.]}
∃h0 : h0 ⊆ h and (∃x ∈ ZZ : (v, x) | s, h0 |= p) and s, h− h0 |= q

⇔ {[v is not free in q]}
∃h0 : h0 ⊆ h and (∃x ∈ ZZ : (v, x) | s, h0 |= p and (v, x) | s, h− h0 |= q)

⇔ {[logic]}
∃x ∈ ZZ : (∃h0 : h0 ⊆ h and ((v, x) | s, h0 |= p and

(v, x) | s, h− h0 |= q))
⇔ {[definition of ∗]}
∃x ∈ ZZ : (v, x) | s, h |= p ∗ q

⇔ {[definition of ∃ v.]}
s, h |= ∃ v. (p ∗ q)

One can see that the main issue of this proof lies in the modification of the store s such
that q still holds with the store (v, x) | s. This is of course possible, since q does not use
v as a free variable. In particular, quantification in separation logic always only makes
assumptions over the store s of a state.

The last of the laws in Theorem 3.4.1 is again a subdistributive law. So it only denotes
an import of an assertion q into the binding range of a ∀ -quantifier. It says that if the
variable v is not free in q then the store component of a state satisfying q can be modified
according to the definition of ∀ such that q still holds for the modified state. We will
give here no proof for this law, since the proof is very similar to the last one given
for the ∃ -quantification. Instead of this, we only give another counterexample for the
reverse direction of this law. Consider now a state (s, h) with e.g.2 s = {(y, 5)} and
h = {(x, 10) : x ∈ Addresses}, i.e., a heap where every cell is initialized with the value

2The store is arbitrarily chosen in this example, since we do not need store variables here.

14

3.4 Laws for the New Heap Operations

10. We set in the law ∀x. (p ∗ q) ⇒ (∀x. p) ∗ q, where x is free in q, p = x 7→ 10 and
q = ∃ y. y 7→ 10. Then again

∀x. (x 7→ 10 ∗ (∃ y. y 7→ 10))

holds for our given state, since we can find for every heap cell containing the value 10
another heap cell with the same value. But up on a closer look at the assertion

(∀x. x 7→ 10) ∗ (∃ y. y 7→ 10)

one can see that it does not hold. The reason for this is that already ∀x. x 7→ 10 character-
izes our whole heap h. Therefore there cannot exist a disjoint heap with a cell containing
the value 10. As discussed above this lack can be fixed in a subclass of assertions which
we discuss later.

Another useful law, which is very important and ubiquitous in our algebraic proofs is
isotony with respect to ∗ . This law will facilitate a lot of calculations. With the pointwise
extension mechanism we are able to lift up this law to sets of states on which we calculate.

Lemma 3.4.2 The separating conjunction ∗ is isotone, i.e., for arbitrary assertions p,
q, r and s:

p ⇒ r q ⇒ s

p ∗ q ⇒ r ∗ s

To understand this law, one can imagine that by the assertion p ∗ q we characterize
two disjoint parts of a heap. If the part satisfying p also satisfies r, then again the union
of the disjoint parts will also satisfy r ∗ q, since by ∗ we only unite both parts and the
union on sets is also a isotone operator as discussed above.

A general meaning of this law is that we can weaken the assertion on the left hand or
right hand side of ∗ . This is especially important for proving correctness of programs, since
like in Hoare logic we will often have to strengthen or weaken the pre- and postconditions
of inference rules, so they can be applied.

In our algebraic setting this law is encoded as

p ≤ r ∧ q ≤ s ⇒ p · q ≤ r · s

By calculating on sets algebraically we can interpret p, q, r and s as sets of states. Then
the meaning is: if p is a subset of r and q a subset of s then the set p · q is still a subset
of the set r · s.

The last laws we discuss in this section are laws for a characterization of the separating
implication −∗ using the interplay of −∗ with the separating conjunction ∗ according to
[Rey08a]. In the following we will first explain these laws and then conclude by giving an
algebraic characterization for this operator.

Theorem 3.4.3 The separating implication −∗ satisfies the following inference rules for
arbitrary assertions p, q and r according to [Rey08a]:

p ∗ q ⇒ r

p ⇒ (q−∗ r)
(currying)

p ⇒ (q−∗ r)

p ∗ q ⇒ r
(decurrying)

15

3.4 Laws for the New Heap Operations

The first law (named currying law) says that if a heap can be split into two disjoint parts
such that p holds for one part, q holds for the rest while the whole heap also satisfies r
then that part of the whole heap which satisfies p will just as well satisfy q−∗ r. Again,
to get an intuition for q−∗ r, consider a heap h that satisfies r. Then q−∗ r characterizes
the part of h where the portion that satisfies q is cut out. Thus q−∗ r describes a residual
part of the heap.

r

p q ⇒

r

q−∗ r q

The decurrying law is the other direction of the just discussed law. That means: if a heap
that satisfies p is also a residual heap where q−∗ r holds, then r holds for the union of
this heap and a heap that satisfies q.

This characterization of −∗ via ∗ reminds us of the definition of algebraic residuals (see
e.g. [Möl05]). In a quantale, residuals represents the largest solution p for the inequation
p · q ≤ r and are defined by a Galois connection as for −∗ above. We sum this up in the
next definition.

Definition 3.4.4 (Left Residuals) For arbitrary elements p, q and r of a quantale, the
left residual q\r is defined by the following Galois connection

p ≤ q\r ⇔df q · p ≤ r

In a quantale there also exists right residuals which are defined symmetrically. But since
the multiplication in our quantale is commutative, both residuals coincide and so we stay
with left residuals. Furthermore using left residuals will save in later proofs one step for
changing p · q into q ·p using commutativity of ·. The interpretation of p−∗ q as p\q is also
more intuitive. By using the pointwise extension we can again use this algebraic definition
for −∗ while calculating on our sets of states.

For residuals there already exist a lot of laws (e.g. [Möl05]). We list some of them
without proofs to use them afterwards while proving given rules for −∗ of [Rey08a]. For
proofs of the following theorems the reader is referred to [Möl05].

Theorem 3.4.5 For arbitrary p, q and r the inequation (r\q) · (q\p) ≤ r\p holds.

Theorem 3.4.6 Left residuals are antitone in their first and isotone in their second ar-
gument, i.e.,

p ≤ q ⇒ r\p ≤ r\q
p ≤ q ⇒ q\r ≤ p\r

Now we list the derived rules for −∗ in [Rey08a], prove them algebraically and explain
their meaning. To avoid confusions, we mainly list most of the separation logic laws
algebraically encoded. The according laws in separation logic can be found by using the
translation table in the appendix.

Lemma 3.4.7 For arbitrary elements p and q the law q · (q \ p) ≤ p holds.

16

3.4 Laws for the New Heap Operations

Proof.

q · (q \ p) ≤ p
⇔ {[definition of \]}

q \ p ≤ q \ p
⇔ {[≤ is a partial order]}

true
ut

According to the translation table this law is encoded in separation logic as

q ∗ (q−∗ p) ⇒ p

To explain the intuitive meaning of this inference rule, we assume a state (s, h) where
h can be split into two disjoint parts h′ and h′′. Furthermore let (s, h′) satisfy q and
(s, h′′) satisfy q−∗ p, then (s, h) satisfies the assertion p which is a natural property of this
operator.

Lemma 3.4.8 For arbitrary elements p, q the law q · (q \ p) ≤ (q · >) u p holds.

Proof.

q · (q \ p)
= {[idempotence of u]}

(q · (q \ p)) u (q · (q \ p))
≤ {[Lemma 3.4.7, isotony of u]}

(q · (q \ p)) u p
≤ {[x ≤ >, isotony of · and u]}

(q · >) u p
ut

Again this rule can be encoded as the following inference rule in separation logic

q ∗ (q−∗ p) ⇒ ((q ∗ true) ∧ p)

This rule in contrast to the previous one, says that a state (s, h) that satisfies q ∗ (q−∗ p)
also satisfies p and somewhere in h there exists a part that still satisfies q. This behavior
is modeled by the assertion q ∗ true. Assertions of this form are instances of imprecise
assertions which we discuss later more detailed. The reader should understand up to now
that they describe the extent of the heap imprecisely, i.e., it is not clear if the extent is
empty or may contain some additional heap cells.

Lemma 3.4.9 For arbitrary elements p, q the rule p ≤ q\(q · p) holds.

Proof.

p ≤ q\(q · p)
⇔ {[definition of \]}

q · p ≤ q · p
⇔ {[≤ is a partial order]}

true

17

3.4 Laws for the New Heap Operations

ut
This rule is equal to the inference rule

p ⇒ (q−∗(q ∗ p))

To get an idea for this rule consider a state (s, h) that satisfies p. The heap h can also be
seen as a residual heap of a state that satisfies q ∗ p. That means by adding a disjoint
heap h′ of a state (s, h′) that satisfies q to h, then the resulting state satisfies q ∗ p.

Lemma 3.4.10 For arbitrary assertions p, q, r the law p · r ≤ p · (q\(q · r)) holds.

Proof. This lemma follows immediately by setting p = r in Lemma 3.4.9 and using
isotony of ·. ut
This rule says nothing new, since it just follows from isotony of ·. It can be encoded as

(p ∗ r) ⇒ (p ∗ (q−∗(q ∗ r)))

and is only listed here to have all inference rules of [Rey08a] algebraically proved in this
report.

Lemma 3.4.11 For arbitrary assertions p0, p1, q, r, s the law

p0 ≤ q\r ∧ p1 ≤ r\s ⇒ p1 · p0 ≤ q\s

holds.

Proof. Using the assumptions p0 ≤ q\r and p1 ≤ r\s, we calculate

p1 · p0

= {[commutativity of ·]}
p0 · p1

≤ {[isotony of ·, premises]}
(q\r) · (r\s)

≤ {[Lemma 3.4.5]}
q\s

ut
Looking at the translation table we see that this law is equal to the inference rule

p0 ⇒ (q−∗ r) p1 ⇒ (r−∗ s)

(p1 ∗ p0) ⇒ (q−∗ s)

This rule denotes a kind of transitivity law for the separating implication and can be
viewed as the chaining law in usual predicate logic. In particular, consider two states
(s, h), (s, h′) with disjoint heaps that satisfies p0 and p1. Then h ∪ h′ is a residuated heap
of a heap h′′, assuming (s, h′′) satisfies s.

Lemma 3.4.12 For arbitrary assertions p0, p1, q0, q1 the law

p0 ≤ p1 ∧ q0 ≤ q1 ⇒ p1 \ q0 ≤ p0 \ q1

holds.

18

3.5 Special Classes of Assertions

Proof. This law follows immediately from Lemma 3.4.6 and the assumptions. ut
Finally, we have found an algebraic characterization of the separating implication and

are now able to algebraically calculate with this axiomatization. Residuals have already
been analyzed earlier and a lot of results have been summarized in [Möl05]. Therefore we
are able to show many of the laws of [Rey08a] by already proved algebraic properties of
residuals. Comparing these algebraic proofs with the derivations given in [Rey08a], one
can see that the algebraic proofs are, on the one hand, shorter and, on the other hand,
more concise and easier to follow than the given derivation steps listed in [Rey08a].

In the next section we introduce a classification of assertions (due to [Rey08a]) and
show how they can be modeled algebraically. In each class some special laws hold and for
most of them we will be able to give short algebraic proofs.

3.5 Special Classes of Assertions

In [Rey08a] Reynolds categorized the assertions into special classes which we now want to
introduce and discuss. The first class of assertions are pure assertions. These are assertions
that are independent of the heap of a state. Therefore these assertions only give conditions
on store variables. Examples of such assertions are e.g. x = 1, ∃ y. y < x or k = x + y.
Next we give a definition for pure assertions and list some laws for them which we will
prove using our algebraic characterization

Definition 3.5.1 (Pure assertions) An assertion p is called pure iff it is independent
of every heap h. Or more precisely

p is pure ⇔df (∀h, h′ ∈ Heaps : s, h |= p ⇔ s, h′ |= p)

In [Rey08a] Reynolds gives a few special laws which hold for this class of assertions:

p ∧ q ⇒ p ∗ q when p or q is pure
p ∗ q ⇒ p ∧ q when p and q are pure

(p ∧ q) ∗ r ⇔ (p ∗ r) ∧ q when q is pure
(p−∗ q) ⇒ (p→ q) when p is pure
(p→ q) ⇒ (p−∗ q) when p and q are pure

As we can see from the given laws, under certain conditions, the distinction between the
separating conjunction and the usual Boolean conjunction collapses. The same situation
can be seen for the separating implication and the Boolean implication3 →. The central
idea behind these assertions is that they are not heap dependent. That means the heap
is only carried with in every state without making any changes to it.

The third of the laws above is an important and often used one in proofs of programs
Its meaning is: if q is a pure assertion, we can modify the stores of p or r before combining
the disjoint heaps satisfying p or q. This behavior will be explained when discussing the
algebraic characterization for these assertions.

In [Rey08a] Reynolds only defined pure assertions as in Definition 3.5.1 and gives the
five laws above for pure assertions without proving them. We introduce in the following
an algebraic characterisation for this class of assertions and show how the five rules given
above can be simply proved. One advantage we get is that the proof of the laws above can

3→ denotes the implication in the logic itself while ⇒ is the implication at the meta-logical level

19

3.5 Special Classes of Assertions

be fully automated using Prover9. Furthermore we also found from this characterization
some useful features for pure assertions.

We now present an algebraic characterization for pure assertions and the idea behind
it. Thereafter we list some features of pure assertions and prove the given laws above in
separation logic algebraically.

Definition 3.5.2 (Algebraic characterization of pure assertions) An element p of
a quantale is called pure iff for arbitrary elements q and r

p · > ≤ p (upward closure)

(q · r) u p ≤ (q u p) · (r u p) (meet-distributivity)

Remark 3.5.3 Of course, both axioms can be strenghtend to equations, since for the
upward closure axiom p ≤ p · > always holds by isotony. For the meet-distributivity
axiom we calculate

(q u p) · (r u p)
≤ {[isotony of u, ·]}

p · >
≤ {[upward closure]}

p

and

(q u p) · (r u p)
≤ {[isotony of u, ·]}

q · r

Thus, by definition the claim (pu q) · (pu r) ≤ pu (q · r) follows. We use = where needed
in the later proofs. ut

To get an idea for the upward closure axiom, consider an arbitrary state (s, h) in p.
Then every state (s, h′) with h ⊆ h′ is an element of p · >. That means the set p · >
consists of all states that we have in p including those where the heap is extended with
arbitrary disjoint parts and therefore p is upward closed.

But since pure assertions holds for every heap, we have only modeled one direction for
pureness by this axiom. We will later see that by the meet-distributivity axiom we also
capture the downward closureness.

Note that the upward closure axiom implies

p · q ≤ p (∗)

for all q.
The meet-distributivity axiom characterizes the interplay between the separating con-

junction and the Boolean conjunction with pure assertions. In detail, it says algebraically
that some states of the sets q and r can be discarded before joining disjoint heaps of the
states. This is clear since, by closure of p, e.g. in q u p only such states will be discarded
from q where the store does not equal the store in some state in p. Remember the heap
will not be changed by this intersection since in p every possible heap combination is
included for arbitrary states.

To see that this law in fact holds, we give a correctness proof in separation logic. We
assume that p is a pure assertion.

20

3.5 Special Classes of Assertions

s, h |= p ∧ (q ∗ r)
⇔ {[definition of ∧]}

s, h |= p and s, h |= q ∗ r
⇔ {[definition of ∗]}

s, h |= p and (∃h0 : h0 ⊆ h and s, h0 |= q and s, h− h0 |= r)
⇔ {[logic]}
∃h0 : h0 ⊆ h and s, h |= p and s, h0 |= q and s, h− h0 |= r

⇔ {[p is pure]}
∃h0 : h0 ⊆ h and (s, h0 |= p and s, h0 |= q) and

(s, h− h0 |= p and s, h− h0 |= r)
⇔ {[definition of ∧]}
∃h0 : h0 ⊆ h and s, h0 |= p ∧ q and s, h− h0 |= p ∧ r

⇔ {[definition of ∗]}
s, h |= (p ∧ q) ∗ (p ∧ r)

Next we give a consequence of these two axioms to see that we have exactly modeled
the behavior in Definition 3.5.1.

Corollary 3.5.4 For an arbitrary pure element p,

p = (p u 1) · > (downward closure)

Proof.
(≤):

p
= {[> neutral for u, 1 neutral for ·]}

p u (1 · >)
= {[meet-distributivity]}

(p u 1) · (p u >)
≤ {[isotony w.r.t. ·]}

(p u 1) · >

(≥):

(p u 1) · >
≤ {[isotony w.r.t. ·, u]}

p · >
≤ {[p is upward closed]}

p
ut

The element 1 is the neutral element for · in our quantale. Therefore it denotes the set
[[emp]]. This corollary says that we can empty the heap of all states in p and then build
the heap up with arbitrary cells. This means that p holds for states with an arbitrary
heap h ∈ Heaps and therefore is independent of the heap. And since the two axioms
in Definition 3.5.2 follow from Definition 3.5.1, we have exactly modeled pure assertions
algebraically.

Before we give algebraic proofs for the above listed consequences of pure assertions,
we give a major result which immediately follow from Definition 3.5.2.

21

3.5 Special Classes of Assertions

Corollary 3.5.5 For a pure element p and an arbitrary element q the following law holds:

p · q = p u (q · >)

Proof. We split the first law into two inequations, proving each separately.
(≥):

p u (q · >)
≤ {[p is pure]}

(p u q) · (p u >)
= {[> neutral w.r.t. u]}

(p u q) · p
≤ {[isotony of ·, p u r ≤ p]}

q · p
= {[commutativity of ·]}

p · q

(≤): From (∗) we know p · q ≤ p. Furthermore p · q = q · p ≤ q · > and by definition we
get p · q ≤ p u (q · >). ut

This law says that since p is a pure element in our quantale it holds for every heap.
Therefore we can first calculate q · > which have on the heap component of our states the
same effect as q · p and afterwards discard all states that do not occur in p, i.e., where the
store component still differs from every store of the states in p.

In the following we use this result to prove the five laws given at the beginning of
this section for pure assertions. Furthermore we give some consequences which follow by
the algebraic axiomatization. Since we give algebraic proofs, we encode all laws alge-
braically. They can be translated in separation logic using the given translation table in
the appendix.

Lemma 3.5.6 The law (p u q) · r = (p · r) u q holds if q is pure.

Proof. We will split the proof of (p u q) · r = (p · r) u q into two parts, proving each
inequation separately.
(≤):

(p u q) · r
≤ {[subdistributivity of · w.r.t u]}

(p · r) u (q · r)
≤ {[by (∗), isotony of u]}

(p · r) u q

(≥):

(p · r) u q
= {[q is meet-distributive]}

(p u q) · (r u q)
≤ {[isotony of ·, u]}

(p u q) · r
ut

22

3.5 Special Classes of Assertions

Lemma 3.5.7 The law p u q ≤ p · q holds if p or q is pure.

Proof. We assume q is a pure element. The proof for p is symmetric since · and u are
commutative.

p u q
≤ {[isotony of ·, u, 1 ≤ >]}

(p · >) u q
= {[Corollary 3.5.5]}

p · q
ut

Lemma 3.5.8 The law p · q ≤ p u q holds if p and q are pure.

Proof. This law follows immediately using Corollary 3.5.5:

p · q = p u (q · >) ≤ p u q

ut
Now we immediately conclude by using the previous two results that · and u coincides

when we only calculate on pure elements.

Corollary 3.5.9 When p and q are pure then p · q = p u q.

Corollary 3.5.10 If p is pure then p · p = p holds.

Proof. Using Corollary 3.5.9 we calculate p · p = p u p = p. ut

This law says that · becomes an idempotent operator when calculating on pure ele-
ments. This is a natural behaviour since we know that on pure elements · and u coincide
and u is clearly an idempotent operator.

Next we give a closure property for pure assertions.

Lemma 3.5.11 If p and q are pure elements then

p + q p u q p · q

are also pure elements. Hence pure assertions themselves form a semiring.

Proof. We start by proving that p + q is upward closed and calculate

(p + q) · > = p · >+ q · > ≤ p + q

For meet-distributivity we calculate for arbitrary elements r and s

(p + q) u (r · s)
= {[distributivity]}

(p u (r · s)) + (q u (r · s))
≤ {[p, q are meet-distributive]}

(p u r) · (p u s) + (q u r) · (q u s)
≤ {[isotony]}

((p + q) u r) · ((p + q) u s) + ((p + q) u r) · ((p + q) u s)
= {[idempotence of +]}

((p + q) u r) · ((p + q) u s)

23

3.5 Special Classes of Assertions

That p u q is upward closed, can be shown by

(p u q) · > ≤ p · > u q · > ≤ p u q

Meet-distributivity can be seen from

(p u q) u (r · s)
= {[associativity]}

p u (q u (r · s))
≤ {[q is meet-distributive]}

p u ((q u r) · (q u s))
≤ {[p is meet-distributive, associativity]}

((p u q) u r) · ((p u q) u s))

From this and p + q = p u q by Corollary 3.5.9 it follows that p · q is also pure. ut

In the next two laws we use instead of the definition of → by negation the following
definition

∀ r : r ≤ p _ q ⇔df r u p ≤ q

where _ denotes the algebraic version of →. Well-definedness is assured since p _ q =
p + q and the equivalence above follows by shunting. With this definition we are also able
to prove the laws without the assumption that we are in a Boolean quantale.

Lemma 3.5.12 The law p \ q ≤ p _ q holds if p is pure.

Proof. We prove p \ q ≤ p _ q using the proof principle of indirect inequality.

p \ q ≤ p _ q
⇔ {[indirect inequality]}
∀ r : r ≤ p \ q ⇒ r ≤ p _ q

⇔ {[definition of \ , _]}
∀ r : p · r ≤ q ⇒ r u p ≤ q

⇐ {[p is pure, Lemma 3.5.7]}
∀ r : r u p ≤ r · p ∧ r · p = p · r ≤ q ⇒ r u p ≤ q

ut

Lemma 3.5.13 The law p _ q ≤ p \ q holds if p and q are pure.

Proof.

p _ q ≤ p \ q
⇔ {[indirect inequality]}
∀ r : r ≤ p _ q ⇒ r ≤ p \ q

⇔ {[definition of \ , _]}
∀ r : r u p ≤ q ⇒ p · r ≤ q

Now we assume pur = rup ≤ q. By Corollary 3.5.5, meet-distributivity of p, neutrality
of > w.r.t. u, the assumption, isotony of ·, upward closure of q,

p · r = p u (r · >) = (p u r) · (p u >) = (p u r) · p≤ q · p≤ q · >≤ q
ut

Now, using the assumption that we are in a Boolean quantale we sum up some further
results in the following.

24

3.5 Special Classes of Assertions

Corollary 3.5.14 If p is a pure element then p is also a pure element. Hence in a Boolean
quantale pure assertions themselves form a Boolean semiring.

Proof. Since p is pure we can instantiate the meet-distributivity axiom for pure assertions
using q = p and r = >, i.e.,

(p · >) u p ≤ (p u p) · (> u p) = 0.

From this we obtain by shunting p ·> ≤ p. Next we calculate for arbitrary elements q and
r

(q · r) u p
= {[> is neutral w.r.t. u]}

((q u >) · (r u >)) u p
= {[> = p + p]}

((q u (p + p)) · (r u (p + p))) u p
= {[distributivity of u over +]}

((q u p + q u p) · (r u p + r u p)) u p
= {[distributivity of · over +]}

((q u p) · (r u p) + (q u p) · (r u p) + (q u p) · (r u p) + (q u p) · (r u p)) u p
= {[p is pure, Lemma 3.5.6]}

((q · r) u p + ((q u p) · r) u p + ((r u p) · q) u p + (q u p) · (r u p)) u p
= {[distributivity of u over +, p u p = 0]}

((q u p) · (r u p)) u p
≤ {[isotony of u]}

(q u p) · (r u p)

And together we get p is also pure. ut

Corollary 3.5.15 If p is pure then p · p = 0.

Proof. By Lemma 3.5.11 we know p is pure and using Corollary 3.5.9 we calculate
p · p = p u p = 0. ut

Finally, all laws given in [Rey08a] can be easily proved algebraically from two axioms.
Notice that in [Rey08a] no proofs for these laws in separation logic are given. Using the
algebraic approach one gets short and easy proofs. They are, compared to separation
logic proofs given in this report, much easier to understand since they are precise and
emphasize the basic ideas of the proofs.

In the following we introduce some other classes of assertions. It is to mention here
that we only define and explain them very shortly. An algebraic treatment for them is
subject of future work.

The next special class we discuss is the class of precise assertions [Rey08a]. Assertions
of this class describe the domain of a heap exactly, in contrast to intuitionistic assertions
which we discuss afterwards. This means for every heap that we know from these assertions
exactly which heap cells are allocated. Examples are

x 7→ 10 or ∃ v. x 7→ v or emp

while imprecise assertions are, as already mentioned, e.g.

true or ∃x. x 7→ v or emp ∨ x 7→ 10

25

3.5 Special Classes of Assertions

Notice the distinction between ∃ v. x 7→ v and ∃x. x 7→ v. In the first case the quantified
variable is a placeholder for the value of a heap cell and in the second case it denotes
a placeholder for the address of a heap cell. Hence, the second assertion is an instance
of an imprecise assertion since the domain of the heap is not described exactly. Precise
assertions are defined as follows.

Definition 3.5.16 (Precise assertions) Given a heap, if precise assertion holds for any
subheap, then it holds for a unique subheap. In detail, an assertion p is called precise iff
for all heaps h and stores s, there exists a unique subheap h′ ⊆ h such that s, h′ |= p
holds.

Next we come back to the subdistributivity law (p ∗ r) ∧ (q ∗ r) ⇒ (p ∧ q) ∗ r which
does not hold for arbitrary assertions p, q and r. The problem in our counterexamples we
encountered before can be avoided if we assume that the assertion r is precise [Rey08a].
To see this, let (s, h) be a state assuming s, h |= (p ∗ r) ∧ (q ∗ r) holds. Then by definition
there exists a heap h0 ⊆ h such that s, h − h0 |= p and s, h0 |= r holds. Equally there
exists a heap h1 such that s, h − h1 |= q and s, h1 |= r holds. Now, since r is precise it
follows h0 = h1 and therefore s, h − h0 |= p ∧ q. Finally by definition of ∗ the claims
follows.

Thus, for these assertions the distributive law in fact holds. Almost the same argu-
mentation can be used for the ∀ -quantified law mentioned above.

The next lemma gives a simple closure characterization w.r.t. to the separation con-
junction and the usual conjunction for precise assertions. We do not go more into detail
here as already mentioned.

Lemma 3.5.17 The following assertions are precise under the given conditions.

p ∗ q when p and q are precise
p ∧ q when p or q is precise

p when p ⇒ q holds and q is precise

We conclude this chapter by defining intuitionistic assertions. These assertions are
instances of imprecise assertions, i.e., they do not describe the domain of a heap ex-
actly. Hence, using these assertions one might do not know if the heap does not contain
additional anonymous cells. We define them first and then give an example.

Definition 3.5.18 (Intuitionistic assertions) An assertion p is called intuitionistic iff
for all stores s and heaps h, h′:

(h ⊆ h′ and s, h |= p) implies s, h′ |= p

This means for a heap that satisfies an intuitionistic assertion p that it can be extended
with arbitrary cells and still satisfies p. In particular, these assertions are instances of
imprecise assertions since the domain of a heap is not determined exactly. As a simple
example consider the assertion

(x 7→ 1) ∗ true

It describes that the heap of a state that satisfies this assertion can be split into a part in
which we only got one cell containing the value 1 and into another disjoint part for which
true is satisfiable. That means we can make any assumption for the rest of the heap since
it may contain arbitrary cells or is empty. This brings us to the idea of characterizing this
class of assertions as follows.

26

3.5 Special Classes of Assertions

Definition 3.5.19 (Intuitionistic elements) Consider an element i of our algebraic
setting. Then it is called intuitionistic iff

i · > ≤ i.

Of course, an assertion is intutionistic iff it is upward closed. All of the laws for
pure assertions we have given in the previous section are also applicable for this class
of assertions if they can be proved without using the meet-distributivity axiom for pure
assertions. In particular, assuming i is intuitionistic,

• (i u 1) · > ≤ i

• i · q ≤ i u (q · >)

• (p u i) · q ≤ (p · q) u i

• i · i ≤ i

• i + i′ and i u i′ are intuitionistic if i, i′ are intuitionistic

holds. We give a proof for one law of [Rey08a] which we have not proved for pure assertions
by using only the upward closure axiom.

Lemma 3.5.20 Let i and i′ be arbitrary intuitionistic elements then

i · i′ ≤ i u i′

is valid.

Proof.

i · i′
= {[u is idempotent]}

(i · i′) u (i · i′)
≤ {[isotony of · and u, > greatest element]}

(i · >) u (> · i′)
≤ {[i and i′ are intuitionistic, isotony]}

i u i′

ut
All the laws given in [Rey08a] are simple consequences of the axiomatization and

knowledge given so far. We will not list and prove them in the following since they should
be straightforward.

In the next chapter we want to have a closer look at the command language of sepa-
ration logic and try to handle it algebraically by using a relational approach.

27

Chapter 4

Commands

In this chapter we introduce the command constructs of separation logic. We start by
explaining the semantics of the commands. Next we present an algebraic approach and give
a relational view for the commands. Furthermore we explain how the assertion quantale,
presented before, can be extended and used in this relational view. After that we go into
more detail and give some inference rules for the commands.

We begin by syntactically defining the constructs for the command language in sepa-
ration logic.

Definition 4.0.21 (Syntax for commands)

〈comm〉 ::= 〈var〉 := 〈exp〉 | skip | 〈comm〉; 〈comm〉
| if 〈bexp〉 then 〈comm〉 else 〈comm〉
| while 〈bexp〉 do 〈comm〉
| newvar 〈var〉 in 〈comm〉
| newvar 〈var〉 := 〈exp〉 in 〈comm〉
| 〈var〉 := cons (〈exp〉, ..., 〈exp〉)
| 〈var〉 := [〈exp〉]
| [〈exp〉] := 〈exp〉
| dispose 〈exp〉

As in Hoare logic we have a lot of well-known constructs like variable assignments and
definitions in local scopes. For example the if-then-else, while-do constructs and command
composition are carried over.

The cons command is an allocation command: if e1 . . . en are n arbitrary expressions
then cons (e1, . . . , en) allocates n arbitrary consecutive cells with e1 as the content of the
first cell, e2 as the content of the second cell, and so forth. The cells have to be unused and
lie somewhere on the heap, since this allocation process is defined to be non-deterministic.
The command only returns the address of the first cell while the rest of the cells can be
indirectly addressed using the start address.

The dereferencing command [e] assumes that e is an 〈exp〉-expression and the evaluated
expression corresponds to an allocated address on the heap, i.e., 〈e〉exp(s) ∈ dom(h) for
the given heap h. It has the same meaning as e.g. the expression *e in the programming
language C. In particular, this means for commands of the form 〈var〉 := [〈exp〉] that after
execution, the variable on the left hand side of := saves the contents of a dereferenced

28

4.1 Relational Semantics

heap cell. Conversely an execution of a command [〈exp〉] := 〈exp〉 assigns the value of the
expression on the right hand side to the cell being the value of the left hand side.

Finally, the dispose command is used for deallocating heap cells. After execution of
the command the disposed cell is not valid anymore, i.e., a dereferencing of that cell would
cause a fault in the program execution.

In the following we define a relational view for the commands to be able to treat them
algebraically.

4.1 Relational Semantics

As already mentioned, separation logic is an extension of Hoare logic with special operators
to reason about separate heap regions. For Hoare logic there already exists a relational
approach which we reuse for a relational treatment of separation logic. First we summarize
the main concepts for the relational approach of Hoare logic. Next we extend the semantics
so that we are able to define the new heap-related commands of separation logic in this
relational view.

In Hoare logic triples {p} c {q}, where p and q are assertions and c is a command, are
named specifications ([Rey08a, Mor98]). As usual, p denotes the precondition or initial
state while q denotes the postcondition or final state after the execution of c. The triples
we are considering in this report are partial correctness triples, i.e., we do not consider
the termination of a program execution. This is sufficient, since for the examples in this
report termination of the programs is assumed.

The relational approach for Hoare logic considers assertions p, q and commands c to
be relations. The relation c denotes transitions from states of the precondition p to states
of the postcondition q. We denote the relation for the command skip , which denotes
the command that does nothing, by [[skip]]. Furthermore we know that the states in
Hoare logic only consist of stores. The algebraic structure for Hoare logic is the quantale
(P(REL(Stores)), ∪ , ∅, ; , [[skip]]) where REL(S) =df S × S for arbitrary set S and ;
denotes the relational composition.

The conditions p and q are represented as special relations called test elements.

Definition 4.1.1 (Test elements) An element p ≤ 1 in a semiring (S, +, 0, ·, 1) is called
a test element iff it has a complement ¬p which satisfies

p + ¬p = 1 p · ¬p = 0 = ¬p · p

Hence the test elements in the quantale form the assertions in Hoare logic and the
triples above can be algebraically encoded in the quantale by

{p} c {q} ⇔ p · c · ¬q ≤ 0 ⇔ p · c ≤ c · q ⇔ p · c = p · c · q

The quantale can also be extended to an iteration algebra using the Kleene star op-
erator ([Koz94, Koz97]). It is well-known that we are able to algebraically encode while
loops using this operator.

Definition 4.1.2 (Kleene algebra) A Kleene algebra is an idempotent semiring S ex-
tended by an operation ∗ : S → S that satisfies the star unfold axioms

1 + x · x∗ ≤ x∗ 1 + x∗ · x ≤ x∗

and the star induction axioms

y + x · z ≤ z ⇒ x · y∗ ≤ z y + z · x ≤ z ⇒ y∗ · x ≤ z

29

4.1 Relational Semantics

With this definition the structure (P(REL(Stores)), ∪ , ∅, ; , [[skip]], ∗) forms a Kleene
algebra. According to [MS06, Koz00], we can algebraically encode the partial correctness
inference rule

{p ∧ i} c {i}
{i} while p do c {¬p ∧ i}

for the while loop where i denotes a loop invariant, e.g. by

p · i · c ≤ c · i ⇒ i · (p · c)∗ · ¬p ≤ (p · c)∗ · ¬p · i.

In the concrete case of the relation quantale · is relational composition ; .
Using these fundamentals we first extend the semantics so that we are also able to

work with heaps. Therefore we interpret the states as tuples consisting of a store and a
heap component and extend the relations now to pairs of these states. By defining the
set [[skip]] =df {((s, h), (s, h)) : (s, h) ∈ States}, which is the neutral element for ; , we
get the quantale (P(REL(States)), ∪ , ∅, ; , [[skip]]) as our basic algebraic structure for the
commands. We call this structure the command quantale. Finally we define a relational
view for new commands. For all following commands we assume that FV (e), FV (e′) ⊆ s
always holds for the stores s involved in the definitions.

For a relational view of mutation commands [[[e] := e]] the transition from an arbitrary
state (s, h) can be defined using the update operator | :

[[[e] := e′]] =df

{((s, h), (s, (a, v) |h)) : (s, h) ∈ States, a = 〈e〉exp(s) ∈ dom(h), v = 〈e′〉exp(s)}.

This definition coincides exactly with the described semantics for mutation commands
at the beginning of this chapter. The condition 〈e〉exp(s) ∈ dom(h) is needed to ensure
that the dereferenced heap cell is already allocated on the heap, since otherwise we would
immediately get a fault in the program execution.

Next we define a relational semantics for the dispose command. As already mentioned,
it is used to deallocate heap cells.

[[dispose e]] =df {((s, h), (s, h − {(a, h(a))})) : (s, h) ∈ States, a = 〈e〉exp(s) ∈ dom(h)}.

Of course, after the execution of dispose , the address 〈e〉exp(s) is not allocated anymore
in the resulting state. Again if 〈e〉exp(s) 6∈ dom(h), we would get a fault when executing
dispose .

Conversely to the command dispose , we now define a relational semantics for the
command cons which is used to allocate cells on the heap.

[[v := cons (e0, ..., en−1)]] =df

{((s, h), ((v, a) | s, {(a, v0)...(a + n− 1, vn−1)} |h)) : (s, h) ∈ States},

where a,..., a + n− 1 6∈ dom(h), {v} ∪ FV (e0, . . . , en−1) ⊆ dom(s) and v0 = 〈e0〉exp(s),...,
vn−1 = 〈en−1〉exp(s). For an allocation of n consequtive cells, the addresses a, . . . , a+n−1
have to be unallocated.

The last heap-dependent command we add to our relational view are lookup com-
mands, i.e., commands where values of heap cells are read and assigned to a store variable.
They are defined as follows:

[[v := [e]]] =df {((s, h), ((v, h(a)) | s, h)) : (s, h) ∈ States, a = 〈e〉exp(s) ∈ dom(h)}.

30

4.2 Embedding the Assertion Quantale

By these commands only the store gets updated and the heap remains unaltered.
Usual variable assignments, as they are known from Hoare logic, are carried over and

semantically extended to work on states with an additional heap component. Therefore
we assume that v is a variable and e an 〈exp〉-expression. Then variable assignment is
defined as follows:

[[v := e]] =df {((s, h), ((v, a) | s, h)) : (s, h) ∈ States, a = 〈e〉exp(s)}.

With these definitions we are able to work with the new commands of separation logic.
But the algebraic structure still lacks expressiveness for the separating conjunction. In the
previous chapter we presented an algebraic approach to assertions which we will embed in
the next section into the relational view. This will enrich test elements with the possiblity
to work with the heap operators.

4.2 Embedding the Assertion Quantale

As known from the previous section, the test elements of our relational view coincide
with the assertions in Hoare logic. In Chapter 3 we presented an algebraic approach for
working with assertions in separation logic. Now we explain how the assertion quantale
of Chapter 3 can be extended to express separation on parts on the heap, so that it can
be integrated into the relational view. Furthermore we continue to use all the laws for
assertions we have proved before.

The test elements in the defined relation structure are subidentities, i.e. p ∈ test(S) ⇔
p ≤ 1, where 1 denotes the set [[skip]]. This set consists of pairs of the form ((s, h), (s, h)),
i.e., the states in each component are equal. Therefore we have to extend the elements
of the assertion quantale to sets of such pairs so that we can work with them using the
relational view. By extending the elements to relations, defining P̂ =df {(t, t) : t ∈ P}
for P ∈ P(States), we have to extend the corresponding operators of the quantale. The
union and empty set can be adopted from the command quantale. Only the disjoint union
on heaps which denotes the multiplication in the assertion quantale needs to be redefined.
We write ?∪ for this operator and define ?∪ : test(REL(States))× test(REL(States)) →
test(REL(States)) by

P̂ ?∪ Q̂ =df P̂ ·∪Q .

with P, Q ∈ P(States). This operator makes sense only when working on test elements.
Hence we define the result to be ∅ when the relation on the left hand side or on the
right hand side is not a test element, i.e., both states in each relation must be equal.
Furthermore, as in the definition of ·∪ the stores also have to be equal. Moreover, the
disjoint union on heaps is only defined when the domains of the considered heaps are
disjoint. For all other cases the operator returns ∅ which is the result of the error case.
Thus, this operator denotes a natural extension of ·∪ to sets of tuples and has the same
semantics as ·∪ in the assertion quantale.

The neutral element for this operator can also easily be integrated into the relational
view by defining

[[emp]] =df {((s, ∅), (s, ∅)) : s ∈ Stores}.

Since test elements need to have complements, i.e., the set of test elements is Boolean,
we have to assume a Boolean assertion quantale. In Chapter 3 we have written · to

31

4.2 Embedding the Assertion Quantale

denote the complement of an element, in the Boolean quantale. To avoid confusions in
the following, we will use the notation from the definition of test elements and denote the
complement by ¬. We sum up the results in the following lemma.

Lemma 4.2.1 The structure (test(()REL(States)), ∪ , ∅, ?∪ , [[emp]],¬) forms a Boolean
quantale.

Since all test elements p satisfy p ≤ 1 in our relational view, we know that the neutral
element in the command quantale coincides with the greatest element > in the assertion
quantale, i.e., [[true]] = [[skip]] holds.

Up to now we have defined for our relational view for commands in separation logic
a quantale for test elements and one for commands so that we are able to treat both
algebraically. But there is still a connection between both quantales needed to be able to
use the separating conjunction in algebraic proofs of programs. We will use for this purpose
an inference rule, called the frame rule [ORY01]. It describes an interaction between the
separating conjunction in pre- and postconditions using arbitrary commands c. We will
define and explain this rule in the following and afterwards use it to define the whole
algebraic structure which we will use in the next chapter for proving correctness of a
program example.

4.2.1 The Frame Rule

In this section we present the frame rule which is an important key for local reasoning in
separation logic. By local reasoning it is meant to have a modular view of the program
proofs. One can build up a correctness proof for the whole program by proving certain
program parts, each of them independently and afterwards putting them together by
applying the frame rule. It is defined as follows:

Definition 4.2.2 (Frame Rule) Let p, q, r be arbitrary assertions and c an arbitrary
command. Then the Frame Rule in separation logic is defined by

{p} c {q}
{p ∗ r} c {q ∗ r}

assuming that no free variable of r is modified by c.

The premise {p} c {q} of this rule ensures that starting the execution of c in a state
satisfying p ends in a state satisfying q. Furthermore the conclusion says that extending
the initial heap of the state with disjoint parts will not affect the execution of the triple
in the premise. The additional heap cells remain unchanged, as long as no free variable
of r is changed by c.

Example 4.2.3 As a simple example consider p = x 7→ 10, q = x 7→ 20, r = y 7→ 25 and
c = ([x] := 20). Then the frame rule can be instantiated to

{x 7→ 10} [x] := 20 {x 7→ 20}
{x 7→ 10 ∗ y 7→ 25} [x] := 20 {x 7→ 20 ∗ y 7→ 25}

The command [x] := 20 in the premise does not change the values of the variables x
and y. Hence only the heap cell located at address x lies in its frame. It is clear that the

32

4.3 Inference Rules

postcondition of the conclusion is satisfied by the final state, since c does not change y or
the heap cell located at y according to the premise.

The reader should keep in mind that replacing the separating conjunction by the
Boolean conjunction in the frame rule makes it invalid. Looking at such a triple where p
is replaced by the imprecise assertion x 7→ − =df ∃ v. x 7→ v ,

{x 7→ −} [x] := 20 {x 7→ 20}
{x 7→ − ∧ y 7→ 25} [x] := 20 {x 7→ 20 ∧ y 7→ 25}

is not valid anymore, since it is not clear whether x and y contain the same address and
whether the command [x] := 20 does not change the heap cell located at address y so
that a satisfied postcondition might look like x 7→ 20 ∧ y 7→ 20. ut

As mentioned before we now use the frame rule to define the interplay between rela-
tional composition and the ?∪ operator in our relational view. We can encode this rule
algebraically as follows:

[[p]]; [[c]] ⊆ [[c]]; [[q]] ⇒ ([[p]] ?∪ [[r]]); [[c]] ⊆ [[c]]; ([[q]] ?∪ [[r]])

assuming that [[p]], [[q]], [[r]] are arbitrary test elements and [[c]] is a command element.
Furthermore we have to ensure that c does not modify any free variables of the assertion
r. The whole algebraic structure is summarized in the following lemma.

Lemma 4.2.4 Let (test(REL(States)), ∪ , ∅, ?∪ , [[emp]],¬) be the assertion quantale and
(P(REL(States)), ∪ , ∅, ; , [[skip]], ∗) be the command quantale extended by the ∗ operator.
Then the frame rule

[[p]]; [[c]] ⊆ [[c]]; [[q]] ⇒ ([[p]] ?∪ [[r]]); [[c]] ⊆ [[c]]; ([[q]] ?∪ [[r]])

holds for arbitrary test elements [[p]], [[q]], [[r]] and command element [[c]], assuming that
c does not modify any free variables of the assertion r, defining the set [[r]]. We call this
structure a Separation Algebra.

Next we present the inference rules for commands Reynolds has given in [Rey08a].
We give some explanation for these rules and will see that the rules are interderivable. In
particular, these rules become consequences of the relational view and the definitions of
the commands we have given so far.

4.3 Inference Rules

We start by giving inference rules for the mutation and disposal commands. Using the
relational view of these inference rules they become simple consequences. Furthermore we
explain some rules for allocating heap cells. These rules need some more explanation since
the allocation command cons is non-deterministic as already mentioned. Finally we give
two inference rules for lookup commands. For these commands there is a big variety of
rules which we do not list in this report. They can be found in [Rey08a].

33

4.3 Inference Rules

4.3.1 Mutation and Disposal

In the previous section we defined relational semantics for commands used to change
values of heap cells or to delete them. In this section we have a closer look at some
inference rules and explain why this axiomatization makes sense.

The following laws denote valid triples for changing values of heap cells.

Theorem 4.3.1 Let p, r be an arbitrary assertion and e, e′ be 〈exp〉-expressions. Then
valid triples for mutation commands are

{e 7→ −} [e] := e′ {e 7→ e′} (local)

{(e 7→ −) ∗ r} [e] := e′ {(e 7→ e′) ∗ r} (global)

{(e 7→ −) ∗ ((e 7→ e′)−∗ p)} [e] := e′ {p} (backward-reasoning)

Proof. To prove the local rule, let (s, h) ∈ [[e 7→ −]]. Therefore the condition 〈e〉exp(s) ∈
dom(h) in the definition of mutation commands is satisfied. Finally the updated state
(s, (a, v) |h), whereas a = 〈e〉exp(s) ∈ dom(h) and v = 〈e′〉exp(s), satisfies the postcondition
e 7→ e′.

The global mutation rule can be proved by instantiating the frame rule, using the local
law as its premise.

For a proof of the backward-reasoning rule, we instantiate the global rule by setting
r = (e 7→ e′)−∗ p. Therefore we get the postcondition (e 7→ e′) ∗ ((e 7→ e′)−∗ p).
Finally, by setting q = e 7→ e′, we only have to prove q ∗ (q−∗ p) ⇒ p which was shown
in Chapter 3 and thus the claim follows. ut

The local mutation law is very simple to understand, since it only says: if there exists
an allocated heap cell at address e then it will have the value e′ after the execution of
the assignment in [e] := e′. Notice that the precondition was assured in the relational
semantics by 〈e〉exp(s) ∈ dom(h). The global mutation law is just an instantiation of the
frame rule with the use of the local mutation rule. Hence, it says that such a process can
be modularized. The local rule can be derived from the global one by setting r = emp .

The backward-reasoning law is often used in a situation where we just have the post-
condition of a mutation and need to find a precondition so that p holds after the execution.
The precondition (e 7→ −)∗((e 7→ e′)−∗ p) says that if the postcondition holds in a state
described after the execution there must exist an allocated heap cell at address e which
is disjoint from the rest of the heap. The assertion (e 7→ e′)−∗ p describes that part of
the whole heap from which the just-mentioned heap cell is excluded.

The global and the backward-reasoning rules are also interderivable. One direction
was already shown in the proof. For the reverse direction, we set p = (e 7→ e′) ∗ r in the
backward-reasoning rule and get the precondition (e 7→ −) ∗ (e 7→ e′−∗((e 7→ e′) ∗ r)).
Hence, by setting q = (e 7→ e′), we only need to show r ⇒ q−∗(q ∗ r) which was already
proved in the previous chapter.

The proofs for next commands is very similar to the proof just given and therefore
will be omitted. For the command dispose we have the following rules.

34

4.3 Inference Rules

Theorem 4.3.2 Let e be an 〈exp〉-expression and r be an arbitrary assertion. Then the
following triples for disposal are

{e 7→ −} dispose e { emp } (local)

{(e 7→ −) ∗ r} dispose e {r} (global)

This means that for deleting a cell at address e there must exist an allocated heap cell
at address e and afterwards the heap is either empty, in case of the local disposal law, or
only the disjoint rest of the heap remains.

4.3.2 Allocation

In separation logic, the process of allocation of cells on the heap is important. This process
is, as already mentioned, non-deterministic, i.e., arbitrary not yet allocated n consecutive
cells on the heap are used by the command cons (e1, . . . , en). We present two kinds of
laws for this command. The difference between these laws lies in the fact that the variable
to which the address of the first cell is assigned, sometimes is used in the expressions
e1, . . . , en of cons . Therefore we distinguish between non-overwriting and overwriting
allocation laws. The expressions in the postconditions of the overwriting allocation laws
are always evaluated on a store s of a state that satisfies the precondition. Therefore it will
be needed to use quantified variables denoting the value before and after the assignment
to v. We write v′′ to denote the value of v after the assignment and v′ to denote the value
before the assignment to v.

In the remainder we first list the rules and then explain their meaning.

Theorem 4.3.3 (Non-overwriting allocation)

{ emp } v := cons (e1, . . . , en) {v 7→ e1, . . . , en} (local)

{r} v := cons (e1, . . . , en) {(v 7→ e1, . . . , en) ∗ r} (global)

assuming v has no free occurrence in the expressions e1, . . . , en and in the assertion r.

Non-overwriting allocation assumes that the variable v has no free occurrence in the
expressions of cons and in the assertion r. That means these expressions and the assertion
are not affected by an assignment of the output address of cons to v. Therefore they
remain unchanged by the execution of the command. Furthermore the n consecutive cells
are new allocated cells and therefore disjoint from the heap portion satisfying r. This is
expressed using the ∗ operator.

Theorem 4.3.4 (Overwriting allocation) We write e′i for the expression ei where ev-
ery occurence of the variable v is replaced by v′. Likewise we write r′ for the assertion r
where v is replaced by v′ and r′′ where v is replaced by v′′. Then the overwriting allocation
rules are

{v′ = v ∧ emp } v := cons (e1, . . . , en) {v 7→ e′1, . . . , e
′
n}

(local)

{r} v := cons (e1, . . . , en) {∃ v′. (v 7→ e′1, . . . , e
′
n) ∗ r′} (global)

{∀ v′′. (v′′ 7→ e1, . . . , en)−∗ p′′} v := cons (e1, . . . , en) {p} (backward-reasoning)

assuming v′, v′′ have no free occurrences in the expressions e1, . . . , en and in the assertion
r.

35

4.3 Inference Rules

Let us explain these laws. The variable v′ in the local law is used to keep the old value
of v before it is overwritten by cons . In the postcondition every occurrence of the variable
v is replaced by the variable v′, since v now contains the address of the first cell allocated
by cons . Therefore the postcondition v 7→ e1, . . . , en would be definitely false.

In the global allocation law the variable v′ is an existentially quantified variable, in
contrast to the local one. That means the old value of v is not necessaritly saved in v′ as
in the local law. Hence the postcondition is only satisfied when v′ contains the old value
of v.

The third of these laws is again for finding a satisfied precondition if the postcondition
p is given. In this situation one has to be careful with cons , since it allocates non-
deterministically n consecutive non-allocated cells on the heap. That means the heap of
the state that satisfies the postcondition p must have these n allocated consecutive cells.
For the precondition we have to consider this fact and therefore we need to quantify over
all possible initial addresses of the n just allocated cells. In summary, the precondition
characterizes all states, for which it is possible to insert n consecutive cells with contents
e1, . . . , en at an arbitrary address v′′ into the heap such that afterwards the condition p′′

is satisfied.
The reader should realize that the variable v in a state of the postcondition is already

overwritten in contrast to the variable v of a state of the precondition. In such a state
v still holds its original value and v′′ denotes the new value or the assigned address to v
after the execution of cons .

4.3.3 Lookup

For the lookup commands there is a large variety of inference rules in [Rey08a]. We only
give the non-overwriting ones, since the others remain uninteresting here.

Theorem 4.3.5 (Non-overwriting lookup)

{e 7→ v′} v := [e] {v = v′ ∧ (e 7→ v)} (local)

{∃ v′. (e 7→ v′) ∗ p′} v := [e] {(e 7→ v) ∗ p} (global)

where v 6∈ FV (e), v′ 6∈ FV (e) ∪ (FV (p) − {v}), and p′ stands for p where every free
occurrence of v is replaced by v′.

These laws should be clear in their meaning with the explanation given in the previous
section since the usage of v′ is the same as in the allocation rules.

In the next chapter we start with some basic definitions and notations for the list
reversal algorithm and then prove it algebraically using our relational view on separation
logic.

36

Chapter 5

Proving the List Reversal Algorithm

The in-place list-reversal algorithm is a standard example for proving correctness of pro-
grams. It has been studied in a lot of works, e.g. [Möl93, Rey08a] and will be proved
correct here using the presented algebraic approach. First we give the algorithm and its
specification in separation logic according to [Rey08a]. Furthermore we add some major
definitions and a small example to understand the pointer modifications of the algorithm.
Afterwards we identify some problems in the specification and show how we can eliminate
them. Finally we give an algebraic proof of the algorithm.

5.1 Definitions and an Example

In this section we present the algorithm with its specification in separation logic. The task
is to reverse a given list by simple pointer modifications. Hence no additional memory is
needed. In separation logic lists are defined inductively along the structure of a sequence
representing the contents of the whole list. Sequences over a given alphabet Σ should
be well known. We write greek letters α, β, . . . to denote sequences while the elements
of these sequences are values. Furthermore, we write ε for the empty sequence, · for the
composition of sequences and α† for the reverse of a sequence α. We denote the set of all
sequences by Seq.

The predicate for list structures in separation logic is defined as follows:

Definition 5.1.1 Consider an address a ∈ ZZ , arbitrary sequences α, α′ and a store
variable i. Then the predicate list α i expresses that the sequence α is represented in the
current state by a list whose head cell is at the address saved in i. It is inductively defined
by

list ε i ⇔df emp ∧ i = nil

list (a · α′) i ⇔df ∃ j. i 7→ a, j ∗ list α′ j

where α = ε in the first and α = a · α′ in the second case.

Remark 5.1.2 Since the list predicate is inductively defined, the sets [[list α i]] in our
relational view are also inductively defined. ut

In case of an empty list, the variable i has to contain a nil pointer and the heap portion
of this list has to be empty. If the list consists of at least one record then the sequence
α has at least one element. By this definition we put two adjacent heap cells together

37

5.1 Definitions and an Example

to form one list record. The first heap cell contains the first sequence element while the
second heap cell contains the starting address of the next list cell. The quantified variable
j denotes an anonymous pointer.

From this inductive definition of lists, one can see an advantage we get by using
the separating conjunction. Under the assumption that the represented sequence has n
elements, we automatically get by the list predicate an acyclic list which will be proved
in the following.

Lemma 5.1.3 Given an arbitrary sequence α and a variable i. A list characterized by the
predicate list α i does not contain any cycles.

Proof. We show this by induction over the length n of α.
n = 0 : Trivial.
n = 1 : Let α = a for an arbitrary a ∈ ZZ .

list a i
⇔ {[definition]}
∃ j. i 7→ a, j ∗ list ε j

⇔ {[definition]}
∃ j. i 7→ a, j ∗ (emp ∧ j = nil)

⇔ {[Lemma 3.5.6, neutrality]}
∃ j. i 7→ a, j ∧ j = nil

⇔ {[trivial]}
i 7→ a, nil

⇒ Hence there can not be any cycles in a single record.

n→ n + 1 : Let α = a·α′ for arbitrary a ∈ ZZ , α′ ∈ Seq and α′ 6= ε.

We know by definition that list (a · α′) i ⇔df ∃ j. i 7→ a, j ∗ list α′ j. Since α 6= ε
furthermore j 6= nil has to hold and contains a valid address. From the definition
of ∗ we finally get that i 6= j has to hold. Moreover by induction hypothesis we
know that the list starting at j is cycle-free for a quantified variable j. By linking a
distinct single record i 7→ a, j to the beginning of the existing list can not produce
any cycles. Thus the whole list remains cycle-free.

ut
Notice, for a precise proof to show that sharing is prohibited, we would have to prove

that no cycle is reachable by the pointer i. Therefore it would be necessary to include
properties for reachability. But this is left for further work. For the list predicate a few
further properties are summarized in the next corollary.

Corollary 5.1.4 Let α ∈ Seq and i be a variable. Then

i = nil ∧ list α i ⇒ emp ∧ α = ε

α = ε ∧ list α i ⇒ emp ∧ i = nil

and furthermore

i 6= nil ∧ list α i ⇔ α 6= ε ∧ list α i ⇔ ∃ a, α′. list (a · α′) i ∧ α = a · α′

38

5.1 Definitions and an Example

Now we are able to give the in-place list-reversal algorithm with its annotated speci-
fication in separation logic, according to [Rey08a]. The list at the address i, representing
the sequence α0, will be reversed.

{list α0 i}
{list α0 i ∗ (emp ∧ nil = nil)}
j := nil;

{list α0 i ∗ (emp ∧ j = nil)}
{list α0 i ∗ list ε j}
{∃α, β. (list α i ∗ list β j) ∧ α†

0 = α†·β}
while i 6= nil do(
{∃ a, α, β. (list (a·α) i ∗ list β j) ∧ α†

0 = (a·α)†·β}
{∃ a, k, α, β. (i 7→ a, k ∗ list α k ∗ list β j) ∧ α†

0 = (a·α)†·β}
k := [i + 1];

{∃ a, α, β. (i 7→ a, k ∗ list α k ∗ list β j) ∧ α†
0 = (a·α)†·β}

[i + 1] := j;

{∃ a, α, β. (i 7→ a, j ∗ list α k ∗ list β j) ∧ α†
0 = (a·α)†·β}

{∃ a, α, β. (list α k ∗ list a·β i) ∧ α†
0 = α†·(a·β)}

{∃α, β. (list α k ∗ list β i) ∧ α†
0 = α†·β}

j := i;

i := k;

{∃α, β. (list α i ∗ list β j) ∧ α†
0 = α†·β}

)
{∃α, β. list β j ∧ α†

0 = α†·β ∧ α = ε}
{list α†

0 j}

First we start by some explanation of the semantics behind the pre- and postconditions of
this specification. The formulas in braces denote the pre- or postconditions of commands
or of weakening rules. Here the sequences α and β are existentially quantified and used as
ghost variables. That means that these variables do not occur in the program itself as store
variables. They are used to denote placeholders for sequences that satisfy the pre- and
postconditions, i.e., they are meta-variables and work at a different level of abstraction.
Moreover the reader should notice that the variable α in the assertion after entering the
while -loop differs from α in the subsequent assertion, since it only represents the tail
sequence of the original α value (cf. Corollary 5.1.4).

The situation is different for the quantified variables a and k. It is not clear if the
semantics of a has to be handled like that of sequence variables, i.e., store-independent,
or as it is given in Definition 3.1.3. But in both cases it remains a logical variable. The
variable k is confusingly used in two ways. After entering the while -loop the variable
k is existentially quantified and not used by the program, hence it is a logical variable.
Contrarily the next command assigns a value to k and hence it becomes a program variable,
i.e., physical content of the store. We will later present a way how to overcome this
difficulty with ghost variables and treat all occurring variables in the same way which will
make the program more readable.

To see what the pointer modifications in this algorithm do, we give a small example.

39

5.1 Definitions and an Example

Example 5.1.5 We consider the three-element sequence α0 = 1 2 3 and i pointing to the
list representing this sequence on the heap. Before entering the while loop, we have the
following situation, where j is a nil pointer and k has some arbitrary contents. At the
beginning the ghost variables in the invariant have the contents α = 1 2 3 and β = ε. The
symbol ◦ in a cell denotes that is has no reference, i.e. the value nil.

1 2 3

◦

i

j ◦

k ...

After the first iteration of the while loop the situation looks as follows.

1

◦

2 3

◦

j

i

k

The content of pointer i is now the address of the second list cell and j saves the address of
the first list cell. The variable k is always used to save temporary addresses. Furthermore
α = 2 3 and β = 1 are the values of the ghost variables for this iteration.

After the second iteration the address cell of the second list cell points to the first list
cell. Every pointer from the previous iteration has now moved over to the next unchanged
list cell. For this iteration we have α = 3 and β = 2 1.

1

◦

2 3

◦

j k

i

Finally the algorithm terminates with the reversed list starting at an address saved in j.
The variables i and k contain nil-pointers and α = ε, β = 3 2 1 are the values for the ghost
variables after loop termination.

1

◦

2 3

j

i

k

ut

The reader may have noticed that the variable k is not initialized with nil at the beginning
of the algorithm. It is possible that we overwrite a pointer when executing this algorithm
and therefore may get side effects. Hence, to apply the frame rule it is essential to claim
that we must not modify any free variable of the added assertion, i.e., the assertion r in
Definition 4.2.2.

In the next section we give an opportunity to get the before mentioned difficulties
with ghost variables under control. Afterwards we are ready to give a correctness proof
of the list-reversal algorithm using the algebraic approach presented so far.

40

5.2 Getting Ghost Variables Under Control

5.2 Getting Ghost Variables Under Control

As mentioned before the ghost variables for the sequences α, β in the list-reversal algo-
rithm work at a different meta-level and are not part of the program state. To simplify
this and to get a consistent treatment for all variables we redefine the stores to let them
also handle sequences. Therefore we first introduce a new kind of store variables.

Definition 5.2.1 (Sequence variables) Let V be the set of all variables. Then VSeq

denotes the set of all sequence variables. We use greek letters α, β, ... to denote sequence
variables. Furthermore V =df Vs ∪ VSeq where Vs ∩ VSeq = ∅ and Vs is the usual set of
all program store variables, denoted by the letters x, y, z.

In particular, we require sequence variables not to occur in the program itself but still to
be a physical part of the store. We use them in the following for an algebraic treatment
and verification purposes only. With this definition, we define our stores as follows:

Stores =df Vs ; V alues ∪ VSeq ; Seq

Now we are able to handle the sequence variables with our algebraic operators by calcu-
lating on states using the new store definition. The next step we take is an extension of
the syntax and semantics of expressions to evaluate sequences on a given store. Therefore
we expand Definition 2.1.1 by the entries

〈seq〉 ::= ε |α | β | . . .
〈var〉·〈seq〉 | 〈seq〉·〈var〉 | 〈seq〉·〈seq〉 | 〈seq〉†

〈bexp〉 ::= . . . | 〈seq〉 = 〈seq〉 | ...

The semantics given in Definition 2.1.2 can be extended in a straightforward way.

Looking at the pre- and postconditions in the verification of the algorithm, one can
see that the quantifiers over the ghost variables range over the whole formulas. This will
make an algebraic treatment of the assertions more difficult. The next step we take is an
alternative to avoid the quantifications while preserving the semantics.

For this purpose we let ghost variable definitions be saved in the store with the re-
striction that these will never be used as program variables. Therefore we have to keep
these variables disjoint from the usual store variables which must be a physical part of
the store and can be used by the program. We write Vpro ⊆ V to denote the variables
which can be used by the program and Vghost ⊆ V for ghost variables and require

V =df Vpro ∪ Vghost

assuming Vpro ∩ Vghost = ∅. In particular, no variable used by a program can be a ghost
variable and vice versa. To distinguish ghost variables in assertions from program variables
we use k , l , ... for them. Since sequences are never used by programs and therefore are
always ghosts, there is no need to mark them. Furthermore we have to avoid situations in
which a ghost variable is used at the same time as a free and a bound variable in a formula.
Therefore we assume that a variable is either free or bound by a quantifier. Otherwise
we would get problems with the semantics. Hence, we have to resolve such conflicts by
renaming the variables. The same has to be done when a variable is bound by an ∃ - and
an ∀ -quantifier at the same time.

41

5.2 Getting Ghost Variables Under Control

By this we reproduce the original behavior of the stores for programs and are able to
calculate with ghost variables algebraically in the usual way. The new stores are illustrated
in the following figure for an arbitrary store s:

Vs VSeq

s

Vpro

Vghost

s

Example 5.2.2 As a small example we consider the loop invariant of the list-reversal
algorithm, viz.

{∃α, β. (list α i ∗ list β j) ∧ α†
0 = α†·β}.

The variables i and j are usual store variables which can be used by a program. Furthermore
the variable α0 is a ghost variable which by the definitions above, now becomes a physical
content of the store. The ghost variables α and β are existentially quantified but also are
part of the store now. We can transform this formula using our new semantics into the
shorter form

{(list α i ∗ list β j) ∧ α†
0 = α†·β}.

The ghost variables α and β are now evaluated on the store. Therefore, this formula holds
in a particular store iff the ghosts α and β have suitable values, which is precisely what
the original form with the quantification asserts. ut
As discussed in the problems for the annotated specification given for the list-reveral
algorithm, ghost variables change their contents from one pre- or postcondition to the
subsequent one. This behaviour comes implicitly with their existential quantification.
To describe these changes we now introduce the concept of ghost commands which we
use for changing contents of ghost variables only. The basic idea is to extend the usual
specification by ghost commands in such a way that it still remains valid after removing
the ∃ -quantifiers. Notice that an extension by ghost commands will not change the original
program itself since these commands only manipulate ghost variables. We first extend the
syntax of the program commands by

〈comm〉 ::= ... | 〈seq〉 := 〈seq〉 | 〈ghostvar〉 := head(〈seq〉) | 〈seq〉 := tail(〈seq〉)
| 〈ghostvar〉 := [〈exp〉] | 〈ghostvar〉 := 〈exp〉 | ...

where 〈ghostvar〉 denotes logical variables of Vghost which do not save sequences. The
functions head and tail are the usual known functions on sequences which are used later
for a rewritten specification. Furthermore we allow ghost commands to dereferences heap
cells. But we have to ensure every time when using these commands that such lookups
do not use unallocated addresses which will immediately cause a fault in their execution.
Next we give some intuitive inference rules for these commands and afterwards give a
specification of the list-reversal algorithm using ghost commands.

Assignments to ghost variables can then be handled in the usual way with the assign-
ment rule of Hoare logic resulting from a unique treatment.

Corollary 5.2.3 The following inference rules for assignments to ghost variables hold.
For an assertion p, arbitrary sequences α, β and a ∈ Vghost, v ∈ ZZ :

{p}α := β {α = β ∧ p′} {p} a := v {a = v ∧ p′}
assuming p′ is p where every occurence of β and v is replaced by α and a, resp.

42

5.2 Getting Ghost Variables Under Control

With this knowledge we now give a rewritten version of the in-place list-reversal algorithm
which is, albeit longer, much more perpicuous and easier to use for an algebraic treatment:

{list α0 i}
{list α0 i ∗ (emp ∧ nil = nil)}
j := nil;

{list α0 i ∗ (emp ∧ j = nil)}
{list α0 i ∗ list ε j}
α := α0;

{(list α i ∗ list ε j) ∧ α = α0}
β := ε;

{(list α i ∗ list β j) ∧ α = α0 ∧ β = ε}
{(list α i ∗ list β j) ∧ α†

0 = α†·β}
while (i 6= nil) do

(
a := head(α);

{(list α i ∗ list β j) ∧ a = head(α) ∧ α†
0 = α†·β}

α′ := tail(α);

{(list α i ∗ list β j) ∧ a = head(α) ∧ α′ = tail(α) ∧ α†
0 = α†·β}

{(list (a ·α′) i ∗ list β j) ∧ α = a ·α′ ∧ α†
0 = (a ·α′)†·β}

{(list (a ·α′) i ∗ list β j) ∧ α†
0 = (a ·α′)†·β}

l := [i + 1];

{(i 7→ a, l ∗ list α′ l ∗ list β j) ∧ α†
0 = (a ·α′)†·β}

k := [i + 1];

{(i 7→ a, k ∗ list α′ k ∗ list β j) ∧ α†
0 = (a ·α′)†·β}

[i + 1] := j;

{(i 7→ a, j ∗ list α′ k ∗ list β j) ∧ α†
0 = (a ·α′)†·β}

{(list α′ k ∗ list a ·β i) ∧ α†
0 = (α′)

†·(a ·β)}
β := a ·β;

{(list α′ k ∗ list β i) ∧ α†
0 = (α′)

†·β}
α := α′;

{(list α k ∗ list β i) ∧ α†
0 = α†·β}

j := i;

i := k;

{(list α i ∗ list β j) ∧ α†
0 = α†·β}

)
{list β j ∧ α†

0 = α†·β ∧ α = ε}
{list α†

0 j}

Notice, that the variable l is the renamed ghost variable k of the old specification. We
have done this to distinguish it from the program variable k. Moreover ghost commands
with their additional pre- and postconditions are printed in gray. All greek and italic

43

5.3 An Algebraic Proof

printed variables are ghost variables while the sans-serif letters are program variables.
The reader should also keep in mind that the line k := [i + 1] cannot be replaced by the
assignment k := l . Again the reason therefore is that l is a ghost variable and works on a
different abstraction layer, i.e. it is not part of the current store.

5.3 An Algebraic Proof

Before giving an algebraic proof of the in-place list-reversal algorithm from the new speci-
fication, we first sum up some simple consequences for the list predicate using our algebraic
setting. Furthermore we present a law that characterizes an interplay between ghost vari-
ables and assignments to store variables and add a consequence for heap-independent
assignments.

Corollary 5.3.1 Let i, k and l be variables where l is a ghost variable. Then the following
law holds

([[i 7→ l]] ?∪ [[p]]); [[k := [i]]] ⊆ [[k := [i]]]; ([[i 7→ k]] ?∪ [[p′]]),

assuming p′ is the assertion p where every existentially quantified ghost variable l is re-
placed by k.

Proof. The ghost variable l is used to save the value h(s(i)). Therefore the assignment
k := [i] can be treated like the command k := v for a value v = h(s(i)) ∈ ZZ using the
usual assignment rule. Hence for a postcondition p, we have to replace every occurrence
of l by the store variable k in the precondition. ut
We give a special case of alternative assignment rule (mentioned before) in the next
corollary and encode it in the relational view as:

Corollary 5.3.2 Let x be a variable. Furthermore, let e be an 〈exp〉-expression and p an
assertion. We assume that both have no free occurences of x. Then we conclude

[[p]]; [[x := e]] ⊆ [[x := e]]; ([[p]] ∩ [[x = e]]).

The next corollary is an encoding of the laws in Corollary 5.1.4 into our relation setting.

Corollary 5.3.3 The following laws holds for the list predicate

¬[[α = ε]] ∩ [[list α i]] = ¬[[i = nil]] ∩ [[list α i]]

[[list (a ·α) i]]; [[l := [i + 1]]] ⊆ [[l := [i + 1]]]; ([[i 7→ a]] ?∪ [[i + 1 7→ l]] ?∪ [[list α′ l]])

[[i = nil]] ∩ [[list α i]] ⊆ [[emp]] ∩ [[α = ε]]

Now we are able to prove the algorithm with our algebraic approach. We split the proof
into three parts. First we prove the part up to the while loop. Afterwards, we prove the
while loop and finally give a simple conclusion to see that in fact we get our reversed list
back at the end of the algorithm. To calculate algebraically, we abbreviate the concrete
relations in the following by:

44

5.3 An Algebraic Proof

• p1 = [[list α0 i]] • p2 = [[list ε j]]

• p3 = [[list α i]] • p4 = [[list β j]]

• p5 = [[list α′ l]] • p6 = [[list α′ k]]

• p7 = [[list (a ·β) i]] • p8 = [[list β i]]

• p9 = [[list α′ i]] • p10 = [[list α0
† j]]

• p11 = [[list (a ·α′) i]] • p12 = [[list α k]]

• q1 = [[α0
† = α†·β]] • q2 = [[α = a ·α′]]

• q3 = [[α0
† = (α′)†·(a ·β)]] • q4 = [[α = ε]]

• q5 = [[α0
† = β]] • q6 = [[α = α0]]

• q7 = [[β = ε]] • q8 = [[a = head(α)]]

• q9 = [[α′ = tail(α)]] • q10 = [[α0
† = (α′)†·β]]

• r1 = [[i 7→ a]] • r2 = [[i + 1 7→ l]]

• r3 = [[i + 1 7→ j]] • r4 = [[i + 1 7→ k]]

• s1 = [[j = nil]] • s2 = [[i = nil]]

• c1 = [[j := nil]] • c2 = [[k := [i + 1]]]

• c3 = [[[i + 1] := j]] • c4 = [[j := i]]

• c5 = [[i := k]] • c6 = [[α := α0]]

• c7 = [[β := ε]] • c8 = [[a := head(α)]]

• c9 = [[α′ := tail(α)]] • c10 = [[l := [i + 1]]]

• c11 = [[β := a ·β]] • c12 = [[α := α′]]

For the algebraic proofs, we also abstract from the concrete model and write · to denote
the relation composition ; since it is used as the multiplication in the command quantale.
Furthermore we use, for the assertion quantale, the notation ∗ for ?∪ and emp for [[emp]]
to avoid confusions. We sum up results which hold for the abbreviations above:

(1) According to Corollary 5.3.2 we get

[[list α0 i]]; [[j := nil]] ⊆ [[j := nil]]; ([[list α0 i]] ∩ [[j = nil]])

which is algebraically encoded by p1 · c1 ≤ c1 · (p1 u s1).

(2) Using the alternative assignment rule we have

(p1 ∗ p2) · c6 ≤ c6 · ((p1 ∗ p2) u q6)

((p1 ∗ p2) u q6) · c7 ≤ c7 · ((p1 ∗ p2) u q6 u q7)

(3) A further law is q6 · q7 ≤ q1.

(4) The first law in 5.3.3 is encoded as ¬s2 u p3 = ¬q4 u p3

(5) Also we have q8 u q9 = q2, q2 u q1 ≤ q3 and p3 u q2 ≤ p11

(6) The second law in 5.3.3 is encoded as p11 · c10 ≤ c10 · (r1 ∗ r2 ∗ p5) holds

(7) Using Lemma 5.3.1 we conclude

([[i + 1 7→ l]] ?∪ [[p]]); [[k := [i + 1]]] ⊆ [[k := [i + 1]]]; ([[i + 1 7→ k]] ?∪ [[p′]]),

which encodes into (r2 ∗ p) · c2 ≤ c2 · (r4 ∗ p′) for suitable p, p′.

45

5.3 An Algebraic Proof

(8) By the global mutation inference rule (r4 ∗ p) · c3 ≤ c3 · (r3 ∗ p′) holds for suitable
p, p′

(9) Moreover r1 ∗ r3 ∗ p4 ≤ p8 holds

(10) By Corollary 5.3.3 we get

[[i = nil]] ∩ [[list α i]] ⊆ [[emp]] ∩ [[α = ε]]

which encodes into s2 u p3 ≤ emp u q4.

(11) Furthermore we have

α = ε ∧ α0
† = α†·β ⇒ α0

† = β

which encodes to q4 u q1 ≤ q5 and

list β j ∧ α0
† = β ⇒ list α0

† j

which encodes to p4 u q5 ≤ p10.

Finally we algebraically calculate:

p1 · c1 · c6 · c7

≤ {[assumption (1)]}
c1 · (p1 u s1) · c6 · c7

= {[emp neutral w.r.t. ∗]}
c1 · ((p1 ∗ emp) u s1) · c6 · c7

= {[s1 is pure, Lemma 3.5.6]}
c1 · (p1 ∗ (emp u s1)) · c6 · c7

= {[Definition 5.1.1]}
c1 · (p1 ∗ p2) · c6 · c7

≤ {[Assumption (2)]}
c1 · c6 · ((p1 ∗ p2) u q6) · c7

≤ {[Assumption (2)]}
c1 · c6 · c7 · ((p1 ∗ p2) u q6 u q7)

≤ {[Assumption (3)]}
c1 · c6 · c7 · ((p3 ∗ p4) u q1)

Next we prove correctness of the while loop. This is done by using the algebraically
encoded inference rule for the while loop:

p · i · c ≤ c · i ⇒ i · (p · c)∗ · ¬p ≤ (p · c)∗ · ¬p · i

where i denotes the loop invariant. By instantiating this law we have to prove

¬s2 · ((p3 ∗ p4) u q1) · c8 · c9 · c10 · c2 · c3 · c11 · c12 · c4 · c5

≤ c8 · c9 · c10 · c2 · c3 · c11 · c12 · c4 · c5 · ((p3 ∗ p4) u q1).

Again we calculate

46

5.3 An Algebraic Proof

¬s2 · ((p3 ∗ p4) u q1) · c8 · c9 · c10 · c2 · c3 · c11 · c12 · c4 · c5

= {[u coincides with · on tests]}
(¬s2 u ((p3 ∗ p4) u q1)) · c8 · c9 · c10 · c2 · c3 · c11 · c12 · c4 · c5

= {[¬s2 is pure]}
(((¬s2 u p3) ∗ p4) u q1) · c8 · c9 · c10 · c2 · c3 · c11 · c12 · c4 · c5

= {[Assumption (4)]}
(((¬q4 u p3) ∗ p4) u q1) · c8 · c9 · c10 · c2 · c3 · c11 · c12 · c4 · c5

≤ {[Assignment, frame rule]}
c8 · (((¬q4 u p3) ∗ p4) u q1 u q8) · c9 · c10 · c2 · c3 · c11 · c12 · c4 · c5

≤ {[Assignment, frame rule]}
c8 · c9 · (((¬q4 u p3) ∗ p4) u q1 u q8 u q9) · c10 · c2 · c3 · c11 · c12 · c4 · c5

≤ {[Assumption (5), idempotency of u, isotony, q2 is pure]}
c8 · c9 · ((p11 ∗ p4) u q3 u q2) · c10 · c2 · c3 · c11 · c12 · c4 · c5

≤ {[isotony]}
c8 · c9 · ((p11 ∗ p4) u q3) · c10 · c2 · c3 · c11 · c12 · c4 · c5

≤ {[q3 is pure]}
c8 · c9 · (p11 ∗ (p4 u q3)) · c10 · c2 · c3 · c11 · c12 · c4 · c5

≤ {[Assumption (6), frame rule]}
c8 · c9 · c10 · (r1 ∗ r2 ∗ p5 ∗ (p4 u q3)) · c2 · c3 · c11 · c12 · c4 · c5

≤ {[Assumption (7) with p = r1 ∗ p5 ∗ (p4 u q3), p′ = r1 ∗ p6 ∗ (p4 u q3)]}
c8 · c9 · c10 · c2 · (r1 ∗ r4 ∗ p6 ∗ (p4 u q3)) · c3 · c11 · c12 · c4 · c5

≤ {[Assumption (8) with p = p′ = r1 ∗ p6 ∗ (p4 u q3)]}
c8 · c9 · c10 · c2 · c3 · (r1 ∗ r3 ∗ p6 ∗ (p4 u q3)) · c11 · c12 · c4 · c5

≤ {[q3 is pure]}
c8 · c9 · c10 · c2 · c3 · ((r1 ∗ r3 ∗ p6 ∗ p4) u q3) · c11 · c12 · c4 · c5

≤ {[Assumption (9), commuativity of ∗]}
c8 · c9 · c10 · c2 · c3 · ((p6 ∗ p7) u q3) · c11 · c12 · c4 · c5

≤ {[Assignment rule]}
c8 · c9 · c10 · c2 · c3 · c11 · ((p6 ∗ p8) u q10) · c12 · c4 · c5

≤ {[Assignment rule]}
c8 · c9 · c10 · c2 · c3 · c11 · c12 · ((p12 ∗ p8 u q1) · c4 · c5

≤ {[Assignment rule]}
c8 · c9 · c10 · c2 · c3 · c11 · c12 · c4 · ((p12 ∗ p4) u q1) · c5

≤ {[Assignment rule]}
c8 · c9 · c10 · c2 · c3 · c11 · c12 · c4 · c5 · ((p3 ∗ p4) u q1)

The last part of the correctness proof shows that the algorithm in fact returns the reverted
list at the end.

s2 · ((p3 ∗ p4) u q1)
= {[· coincides with u on tests]}

s2 u ((p3 ∗ p4) u q1)
= {[s2, q1 are pure]}

(s2 u p3 u q1) ∗ p4

≤ {[Assumption (10)]}
(emp u q4 u q1) ∗ p4

≤ {[Assumption (11)]}
(emp u q5) ∗ p4

= {[q5 is pure, emp is neutral w.r.t. ∗]}

47

5.3 An Algebraic Proof

p4 u q5

≤ {[Assumption (11)]}
p10

Finally we can use all three proved parts above and easily show

p1 · c1 · c6 · c7 · (¬s2 · c8 · c9 · c10 · c2 · c3 · c11 · c12 · c4 · c5)
∗ · s2

≤ c1 · c6 · c7 · (¬s2 · c8 · c9 · c10 · c2 · c3 · c11 · c12 · c4 · c5)
∗ · p10.

Hence, at the end of this algorithm, we get the reversed list on the heap with the
pointer j saving the initial address of the list. One can see that in the verification in
separation logic above a lot of steps have been left out. Also the quantification over the
four ghost variables even makes the verification more difficult to read. In our algebraic
approach we treated the ghost variables as normal store variables but kept them disjoint
from the usual program store variables to ensure that they are not used by the program
itself. This gives us the freedom to calculate with them in states as we had done with
the usual store variables and also makes the semantics of the verification proofs easier to
understand. Compared with the separation logic proof, the algebraic approach is more
precise and exactly points out what is needed for every step in the verification. By this
our proof also becomes more lengthy than the original, not fully formal verification in
separation logic. However since this algebraic approach is completely first-order based
fully automated theorem provers can be applied for the presented verification task. Only
the given assumptions use domain-specific knowledge which has to be considered. One
approach to handle this could be an integration of SMT-solvers for verifications at this
level since these systems support arithmetics. But this is left for future research.

48

Chapter 6

Conclusion and Outlook

We have presented an algebraic treatment of separation logic. In particular, we introduced
a model for the assertions which is based on sets of states like it has been done for temporal
logics ([DMS04, MHS06]). Furthermore we defined an algebraic version of the separating
conjunction and were able to embed the assertion part of the logic into a Boolean quantale.
Using this approach we identified the separating implication with algebraic residuals. A
lot of work ([Möl05]) has already been done on composing laws for these operators. We
figured out that all of the derived inference rules of [Rey08a] can be proved algebraically
very easily and are just simple consequences of most of the laws in [Möl05].

We got another result from this algebraic approach on a closer look to the mentioned
classes of assertions. For pure assertions we found an axiomatization which made it pos-
sible for us to prove all laws in [Rey08a]. Furthermore we have found a lot of useful
consequences for pure assertions. Another class of assertions we have focused on was the
class of precise assertions. But for this class and most other given in [Rey08b] we have
not found a characterization so far and will have to investigate further in future work.

The next step we took was an embedding of the command language of this logic into
an algebraic structure. We used a relational view for the commands as it has already
been done for Hoare logic. We defined this relational view for the new heap-dependent
commands and explained a lot of the inference rules for them given in [Rey08a]. To use
the assertion quantale with commands, we lifted the set-based semantics of our assertions
up to sets of tuples of states and linked the assertion and command quantales by the
frame rule. As related work we could try to find another approach which might be better
than the relational view on the command language.

Finally we algebraically verified the standard example of an in-place list reversal al-
gorithm with the algebraic structure we presented so far. The name ”in-place” means
that there is no copying of whole structures, i.e., the reversal is done by simple pointer
modifications. As a result of a unique treatment of store and ghost variables our proof
was more precise than the one given in [Rey08a]. For this proof we needed to sum up a
few laws for the list predicate to get some proof steps under control. But this approach is
still quite promising and we might get more general inference rules for our new commands
by analyzing another examples.

In this report we have not analyzed situations where data structures may share some
parts of their cells. Consider a situation where we got two lists like in the following figure:

49

x 1 2 3 4 5

◦

y 7 8

The cells with contents 3, 4 and 5 are list cells of both lists. Of course, if one dereferences
one of the two lists and changes these cells, it will affect both lists. There are already
some works published for this topic with an algebraic approach ([Möl99, Ehm04]). These
have to be analyzed in a more detailed way using our algebraic approach for separation
logic.

50

Appendix A - Prover9 Input File

As mentioned at the beginning of this report we give in the following an input file for the
Prover9 proofs which we used for a verification of our results.

1 op(500, infix, "+"). %addition

2 op(490, infix, ";"). %meet

3 op(490, infix, "*"). %multiplication

4 op(490, infix, "\"). %left residual

5 op(480, infix, "-->"). %implication

6

7 formulas(assumptions).

8 %commutative additive monoid

9 x+y = y+x.

10 x+0 = x.

11 x+(y+z) = (x+y)+z.

12 %commutative multiplicative monoid

13 x*1 = x.

14 x*y = y*x.

15 x*(y*z) = (x*y)*z.

16 %annihilation

17 0*x = 0.

18 %addition is idempotent

19 x+x = x.

20 %distributivty of * w.r.t. +

21 (x+y)*z = x*z + y*z.

22 %greatest element T

23 x <= T.

24 %definition of residuals

25 x <= y\z <-> y*x <= z.

26 %natural order

27 x <= y <-> x+y = y.

28 %definition of ; (meet)

29 x <= y;z <-> (x <= y & x <= z).

30 %distributivity of ; w.r.t. +

31 (x+y);z = x;z + y;z.

32 %definition of implication

33 all z (z <= x --> y <-> z;x <= y).

34 %definition of pure elements

35 pure(x) <-> (x*T <= x & all y all z (y*z ; x <= (y;x)*(z;x))).

36 end_of_list.

51

Some of the goals need some additional lemmas which we give in the following.

1 formulas(assumptions).

2 %isotony of multiplication

3 x <= y -> z*x <= z*y.

4 x <= y -> x*z <= y*z.

5 %isotony of meet

6 x <= y -> x;z <= y;z.

7 x <= y -> z;x <= z;y.

8 %definition of meet with negation (Boolean quantale)

9 %x = c(c(x) + c(y))+c(c(x)+y).

10 %x;y = c(c(x) + c(y)). %only used for Corollary 3.5.15

11 end_of_list.

In the following we list some of the laws which we have succesfully verified.

1 formulas(goals).

2 %Lemma 3.4.7

3 %y*(y\x) <= x.

4 %Lemma 3.4.8

5 %y*(y\x) <= y*T ; x.

6 %Lemma 3.4.9

7 %x <= y\(y*x).
8 %Lemma 3.4.11

9 %all x1 all x2 ((x1 <= (x\y) & x2 <= (y\z)) -> x1*x2 <= x\z).
10 %Lemma 3.4.12

11 %all x1 all y1 ((x <= x1 & y <= y1) -> x1\y <= x\y1).
12

13 %Corollary 3.5.4

14 %pure(x) -> x = (x;1)*T.

15 %Corollary 3.5.5

16 %pure(x) -> (all y x*y = x;(y*T)).

17 %Lemma 3.5.6

18 %pure(x) -> (y;x)*z = (y*z);x.

19 %Lemma 3.5.7

20 %pure(x) -> x;y <= x*y.

21 %Lemma 3.5.8

22 %pure(x) & pure(y) -> x*y <= x;y.

23 %Corollary 3.5.10

24 %pure(x) -> x*x = x.

25 %Lemma 3.5.12

26 %pure(x) -> x\y <= x --> y.

27 %Lemma 3.5.13

28 pure(x) & pure(y) -> (x --> y <= x\y).
29 %Corollary 3.5.15

30 %pure(x) & (all y x*y = x;(y*T)) -> x*c(x) = 0.

31

32 end_of_list.

52

Appendix B - Translation Table

encoded algebraically in separation logic

Lemma 3.4.7 q · (q \ p) ≤ p
q ∗ (q−∗ p) ⇒ p

Lemma 3.4.8 q · (q \ p) ≤ (q · >) u p
q ∗ (q−∗ p) ⇒ ((q ∗ true) ∧ p)

Lemma 3.4.9 p ≤ q\(q · p)
p ⇒ (q−∗(q ∗ p))

Lemma 3.4.10 p · r ≤ p · (q\(q · r))
(p ∗ r) ⇒ (p ∗ (q−∗(q ∗ r)))

Lemma 3.4.11
p0 ≤ q\r ∧ p1 ≤ r\s
⇒ p1 · p0 ≤ q\s

p0 ⇒ (q−∗ r) p1 ⇒ (r−∗ s)

(p1 ∗ p0) ⇒ (q−∗ s)

Lemma 3.4.12
p0 ≤ p1 ∧ q0 ≤ q1

⇒ p1\q0 ≤ p0\q1

p0 ⇒ p1 q0 ⇒ q1

(p1−∗ q0) ⇒ (p0−∗ q1)

Definition 3.5.2 p · > ≤ p p ∗ true ⇒ p

(q · r) u p ≤ (q u p) · (r u p) (q ∗ r) ∧ p ⇒ (q ∧ p) ∗ (r ∧ p)

Corollary 3.5.4 p = (p u 1) · > p ⇔ (p ∧ emp) ∗ true

Corollary 3.5.5 p · q = p u (q · >) p ∗ q ⇔ p ∧ (q ∗ true)

Lemma 3.5.6 (p u q) · r = (p · r) ∧ q (p ∧ q) ∗ r ⇔ (p ∗ r) ∧ q

Lemma 3.5.7 p u q ≤ p · q p ∧ q ⇒ p ∗ q

Lemma 3.5.8 p · q ≤ p u q p ∗ q ⇒ p ∧ q

Corollary 3.5.9 p · q = p u q p ∗ q ⇔ p ∧ q

Corollary 3.5.10 p · p = p p ∗ p ⇔ p

Lemma 3.5.11 p + q p ∨ q

p u q p ∧ q

p · q p ∗ q

Lemma 3.5.12 p \ q ≤ p _ q (p−∗ q) ⇒ (p→ q)

Lemma 3.5.13 p _ q ≤ p \ q (p→ q) ⇒ (p−∗ q)

Corollary 3.5.14 p ¬p

Corollary 3.5.15 p · p = 0 p ∗ ¬p ⇔ false

Definition 3.5.19 i · > ≤ i i ∗ true ⇒ i

Lemma 3.5.20 i · i′ ≤ i u i′ i ∗ i′ ⇒ i ∧ i′

53

Bibliography

[Con71] Conway, J. H.: Regular Algebra and Finite Machines. Chapman and Hall,
1971.

[DH08] Dang, H.-H. and P. Höfner: First-Order Theorem Prover Evaluation
w.r.t. Relation- and Kleene algebra. In Berghammer, R., B. Möller and
G. Struth (editors): Relations and Kleene Algebra in Computer Science —
PhD Programme at RelMiCS 10/AKA05, number 2008-04 in Technical Re-
port, pages 48–52. Institut für Informatik, Universität Augsburg, 2008.

[DMS04] Desharnais, J., B. Möller and G. Struth: Modal Kleene algebra and
Applications — A Survey. Journal of Relational Methods in Computer Sci-
ence, 1:93–131, 2004.

[Ehm04] Ehm, T.: Pointer Kleene Algebra. In Berghammer, R., B. Möller and
G. Struth (editors): RelMiCS, volume 3051 of Lecture Notes in Computer
Science, pages 99–111. Springer, 2004.

[HMSW09] Hoare, C.A.R., B. Möller, G. Struth and I. Wehrman: Concurrent
Kleene Algebra. (to appear), 2009.

[Hun33] Huntington, E.V.: Boolean algebra, A correction. Trans. AMS 35, pages
557–558, 1933.

[HWW09] Hoare, C.A.R., I. Wehrman and O’Hearn P. W.: Graphical Models of
Separation Logic. (to appear), 2009.

[Koz94] Kozen, D.: A Completeness Theorem for Kleene Algebras and the Algebra
of Regular Events. Information and Computation, 110(2):366–390, 1994.

[Koz97] Kozen, D.: Kleene Algebra with Tests. ACM Transactions on Programming
Languages and Systems, 19(3):427–443, 1997.

[Koz00] Kozen, D.: On Hoare Logic and Kleene Algebra with Tests. ACM Transac-
tions on Computational Logic, 1(1):60–76, 2000.

[MHS06] Möller, B., P. Höfner and G. Struth: Quantales and Temporal Logics.
In Johnson, M. and V. Vene (editors): Algebraic Methodology and Software
Technology, volume 4019 of Lecture Notes in Computer Science, pages 263–
277. Springer, 2006.

[Möl93] Möller, B.: Towards Pointer Algebra. Science of Computer Programming,
21(1):57–90, 1993.

54

BIBLIOGRAPHY

[Möl05] Möller, B.: Residuals and Detachments. Technical Report, Department for
Computer Science, December 2005.

[Mor98] Morgan, C.: Programming from Specifications. Prentice-Hall, Inc, Second
edition, 1998.

[MS06] Möller, B. and G. Struth: Algebras of Modal Operators and Partial Cor-
rectness. Theoretical Computer Science, 351(2):221–239, 2006.

[Mul86] Mulvey, C. J.: &. In Second Topology Conference, Rendiconti del Circolo
Matematico di Palermo 12, pages 99–104, 1986.

[Möl99] Möller, B.: Calculating with Acyclic and Cyclic Lists. Information Sciences
— An International Journal., 119(3-4):135–154, 1999.

[ORY01] O’Hearn, P. W., J. C. Reynolds and H. Yang: Local Reasoning about
Programs that Alter Data Structures. In Fribourg, L. (editor): CSL ’01:
Proceedings of the 15th International Workshop on Computer Science Logic,
volume 2142 of Lecture Notes in Computer Science, pages 1–19. Springer,
2001.

[Rey08a] Reynolds, J. C.: An Introduction to Separation Logic, June 2008.

[Rey08b] Reynolds, J. C.: An Introduction to Separation Logic (Preliminary Draft),
October 2008.

55

	Introduction
	Basics and Notations
	Expressions

	Assertions
	Definitions and Examples
	An Algebraic Treatment
	The Algebraic Structure
	Laws for the New Heap Operations
	Special Classes of Assertions

	Commands
	Relational Semantics
	Embedding the Assertion Quantale
	The Frame Rule

	Inference Rules
	Mutation and Disposal
	Allocation
	Lookup

	Proving the List Reversal Algorithm
	Definitions and an Example
	Getting Ghost Variables Under Control
	An Algebraic Proof

	Conclusion and Outlook
	Appendix A - Prover9 Input File
	Appendix B - Translation Table
	Bibliography

