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Abstract. In this paper we present an abstract representation of pointer
structures in Kleene algebras and the properties of a particular selective
update function. These can be used as prerequisites for the definition of
in-situ pointer updates and a general framework to derive in-situ pointer
algorithms from their specification.
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1 Introduction

Although pointers are frequently used in implementations of software, there are only
a few methods to formally describe them [2,3]. This paper is part of a project to
improve upon this situation. To obtain this goal we use a relational framework to
model pointer structures as described in [8]. In this approach algorithms on complex
data structures are transformed from their functional specification to an executable
pointer implementation. Such a process often contains a number of degrees of free-
dom in the choice of transformation rules. So the resulting pointer algorithms may
vary a lot, depending on the applied transformation steps. But often there are cer-
tain implicit requirements which have to be fulfilled by the pointer algorithm, such
as reusing memory as much as possible. That particular demand is described in this
paper by the notion of in-situ update of an data structure.

The final goal of our project is to derive - possibly automatically - in-situ pointer
implementation from functional specifications. To define in-situ updates on pointer
structures it is necessary to know which operation changes the given structure as
little as possible but preserves the specified properties. This means we have to
find orders and lattices, respectively least and greatest elements of certain sets.
To achieve this goal we examine the selective update function |, which is the only
operation capable of changing pointers in our relational model. Particularly, in this
paper we are interested in extremal solutions of the equation x | a = b. The model
used can be abstracted to the level of Boolean Kleene algebras.

This paper is structured as follows: Section 2 defines pointer structures and how
one can derive a pointer algorithm from a functional one. A definition of Kleene
Algebra and some rules are introduced in Section 3. Section 4 presents the notions of
domain in Typed Kleene Algebra and the concept of local composition. Differences
as used in Boolean Algebras, such as for example set theory, are introduced in
Section 5. The very important concept of modelling overwriting in Kleene Algebras is
handled in Section 6. Essential parts of this paper are in Section 7. There a minimal
solution for updates in Kleene Algebras is presented. In Section 8 an application of
these results to maps is shown and Section 9 gives a short summary of the whole
paper. To make this paper self-contained but also as readable as possible we defer
all the proofs to Appendix A.



2 Pointer structures

Pointer structures play an essential role in all programming tasks. Though there are
efforts to hide explicit use of pointers as for example in Java, they are present in
almost all implementations of software. Complex data structures in object oriented
programming languages are pointer structures as well as dataflow dependencies in
compilers and so on.

To treat pointer structures formally we make the used memory an explicit pa-
rameter in all the calculations. So in our model a pointer structure consists of a store
and a list of entries. A store is a family of relations between records (represented
by their initial addresses A) or between records and node values Nj . Each relation
represents a selector on the records like e.g. head and tail for lists with functionality
A → Nj respectively A → A. The entries of a pointer structure are addresses that
form starting points of the modelled data structures.

Each abstract object implemented by pointer structures is represented by a
pointer structure (n, P ) with a single entry n ∈ A. The relation between abstract
and concrete levels is established by a partial abstraction function F as described in
[7]. The pointer implementation fp of a given functional operation f is now specified
by the equation f(F (p)) = F (fp(p)).

functional
dataobjects
(O1, . . . , On)

functional
specification

f
//
functional
dataobject

O

pointer structure
(x1, . . . , xn, X)

F1,...,Fn

OO

pointer algorithm
fp

// pointer structure
(x0, X

′)

F0

OO

To derive a pointer implementation fp from this specification one tries to transform
f(F (p)) by equational reasoning into an expression F (E) such that E does not
contain F . Then we can define fp by setting fp(p) = E.

Our future goal is now to make available a set of transformation rules that leads
to an in-situ pointer algorithm of the specified operation.

3 Kleene Algebras

A Kleene algebra is an algebraic structure to describe sets endowed with an ordering
and a composition operation. We will use a definition first introduced in [4].

Definition 1. A Kleene algebra (KA) is a sixtuple (K,≤,>, ·, 0, 1) satisfying the
following laws:

1. (K,≤) forms a complete lattice with least element 0 and greatest element >.
2. (K, ·, 1) is a monoid.
3. The operation · is universally disjunctive (i.e. distributes through arbitrary su-

prema) in both arguments.

Prominent candidates of KAs are for example the algebra of formal languages

LAN = (P(A∗),⊆, A∗, ·, ∅, ε)

over some alphabet A or the algebra PAT of path sets in a directed graph. More
important for our goal is the algebra

REL = (P(M ×M),⊆,M ×M, ; , ∅, I)



of homogenous binary relations over some set M . There we can model pointers as
(atomic) relations between addresses. Concrete relation algebras can be lifted to the
concept of abstract relation algebra [10].

Definition 2. An abstract relation algebra is a tuple RA = (N,≤,>, ; , 0, 1, ,`)
where

1. (N,≤, , 0,>) is a Boolean algebra.
2. (N, ; , 1) is a monoid.
3. Tarski’s rule x 6= 0⇒ >;x;> = > holds.
4. Dedekind’s rule x; y u z ≤ (x u z; y`); (y u x` ; z) is satisfied.

Such a RA is a special case of a Boolean KA. We call a KA Boolean, if its underlying
lattice is a Boolean lattice. The complement of an element a ∈ K is denoted by a. In
the sequel we will exclusively use such Boolean KAs, and all the proven properties
are inherited by relation algebras. So we can do all our calculations and reasoning
over pointer structures in Boolean KAs.

3.1 Types

Of special interest are elements that are less than or equal to the neutral element 1.
They can be used to describe domain and range of elements in a straightforward way.
In our context the domain corresponds to the set of starting addresses of pointers
or in other words to the allocated records in the store. In othere disciplines these
elements are also called partial identities, monotypes or coreflexives. Though we will
use the notion type as in [9].

Definition 3. A type of a Kleene algebra is an element t with t ≤ 1.

We will use TYP = {t : t ≤ 1} as synonym for the set of all types in a KA. Types
in Kleene algebras are idempotent wrt. ·. The meet of two types coincides with ·
(see Lemma 1.1). To have a complement for elements in TYP we define

Definition 4. The negation of a type t ∈ TYP is ¬t = t u 1.

If appropriate we shall use this operation also for elements not in TYP. There are
some properties which are only valid for elements of TYP.

Lemma 1. Consider a typed KA and s, t ∈ TYP.

1. s · t = s u t
2. t · (a u b) = t · a u t · b
3. (s u t) · a = s · a u t · a
4. t · a u ¬t · b = 0

5. a) ¬(s · t) = ¬s+ ¬t
b) ¬(s+ t) = ¬s · ¬t

6. a u t · b = t · a u t · b
In particular: a u t · > = t · a

4 Domain and Locality of Composition

To model the region pointers start from we introduce the notion of a domain. The
domain is defined using Galois connections because there is no possibility in KAs
to access the components of elements.

Definition 5. (see also [1]) pa ≤ y ⇔ a ≤ y · >

Note that y only ranges over types. This definition implies that the domain operator
is universally disjunctive, strict and monotonic. The domain operator maps an ele-
ment to the representation of its domain in TYP. Domains are often used to restrict
elements to certain subelements. This is done by simply composing the restriction



domain with the element. But an implication of Lemma 1.3 is, that the two notions
of restriction (t · a and a u t · >) to a type t are equivalent.

In general Kleene algebras one can only prove that p(a·b) ≤ p(a·pb). The converse
inequation does not follow from the axiomatisation. But all the examples given in
Section 3 and all reasonable KAs satisfy this property. So we define:

Definition 6. A KA has left-local composition if it satisfies

pb = pc⇒ p(a · b) = p(a · c)

Then the following Lemma holds:

Lemma 2. 1. A KA has left-local composition iff it satisfies p(a · b) = p(a · pb)
2. If a KA has left-local composition then p(pa · b) = pa u pb = pa · pb

We summarize some properties in the context of domain and left-local composition
needed later:

Lemma 3. Let t ∈ TYP.

1. pa · a = a
2. a ≤ b⇒ pb · a = a
3. pt = t
4. p(a+ b) = pa+ pb
5. p(a u b) ≤ pa u pb
6. ¬pa · a = 0

7. ¬pa · a = ¬pa · >
8. ¬pa · b ≤ ¬pa · a
9. ¬pa · ¬pb = ¬(pa+ pb)

10. t · a = ¬t · a+ a = ¬t · >+ t · a
11. p(t · a) = t · pa

In the sequel we presume that all KAs treated in this paper have left-local compo-
sition.

5 Differences

To describe updates that change the given structure as little as possible it is neces-
sary to have a “metric” on the considered elements. Such a metric has to express the
difference between input and output elements. Later steps in the project have to
compare different solutions and figure out the best possibly by using such a metric.
But in this paper we are interested in extremal solutions of a particular update
equation and so we use orders defined by differences instead of a metric.

To model simple differences in Boolean KAs we use the well-known definition
from often used Boolean algebras such as set theory.

Definition 7. The difference between a and b in a Boolean KA is defined by

a \ b = a u b

This operation is left distributive and right anti-distributive, but neither associative
nor commutative. The following properties not using types or domains hold in all
Boolean algebras.

Lemma 4. 1. (a+ b) \ c = a \ c+ b \ c
2. (a u b) \ c = a \ c u b \ c
3. a \ (b+ c) = a \ b u a \ c
4. a \ (b u c) = a \ b+ a \ c
5. (a \ b) \ c = a \ (b+ c)
6. a \ (b \ c) = a \ b+ (a u c)

7. a = (a u b) + a \ b
8. a \ (t · a) = ¬t · a
9. (t · a) \ a = 0

10. t \ pa = t · ¬pa
11. ¬pa · (b \ a) = ¬pa · b



5.1 The symmetric difference

If two elements are treated equally in the calculation of a difference we can use the
symmetric difference. There are all elements not in the meet of a and b taken into
account.

Definition 8. The symmetric difference in a Boolean KA is defined as

a∆b = a \ b+ b \ a

All the properties of ∆ are also inherited from Boolean algebra. Some of the most
needed are:

Lemma 5. 1. a∆b = (a+ b) \ (a u b)
2. a∆0 = a
3. a \ b ≤ a∆b

4. (a∆b)∆c = a∆(b∆c)
5. a u (b∆c) = (a u b)∆(a u c)
6. a = b⇔ a∆b = 0

6 Overwriting

Overwriting is the only operation which alters the structure in our pointer model. It
is used to model selective updates on entire domains. The area outside the domain
is not touched.

Definition 9. The overwriting “a on b” is defined as

a | b = a+ ¬pa · b

Lemma 6. 1. a ≤ a | b
2. a = pa · (a | b)
3. a | a = a

4. a | (b+ c) = a | b+ a | c
5. p(a | b) = pa+ pb
6. a∆(b | a) = pb · (a∆b)

In the context of selective overwriting and in-situ updates on pointer structures
we are particularly interested in elements changing the given structure as little as
possible. So we are searching for minimal and maximal solutions of x | a = b. This
represents a sort of left residue for the update operator.

7 Equivalence on the same domain

In our approach overwriting is performed on the entire domain range of the over-
writing element (see definition in Section 6). This means, that it is not possible to
change some and simultaneously preserve other subelements which have the same
domain. This gives us the occasion to define a set Ea describing all elements less
than a which contain all elements of a restricted to the domain of this element.

Definition 10. Ea = {x : x ≤ a ∧ px · a = x}

Note that, by monotony x ≤ a⇒ x ≤ px ·a holds anyway. An important observation
is:

Lemma 7. Ea forms a complete lattice.

The definition of Ea singles out “maximal” subelements of a. In general it is not
possible to make propositions about the restriction to an arbitrary subdomain. But
this sort of completeness of Ea in the domain leads to some properties that only
hold for elements in Ea:



Lemma 8. Let x ∈ Ea
1. px · a = x
2. a \ x = ¬px · a
3. px · (a \ x) = 0

In our pointer model this means, that all pointers in a that start at the same address
as any pointer in x ∈ Ea are also in x. Considering overwriting and the equation
x | a = b. The parts of a and b that are equal under the restriction to a certain
domain are the essential parts that are not changed by an update with a minimal
element x. This observation leads to the

Definition 11. The set of domain equivalent subelements with regard to a and b is
defined as:

Da,b = Ea ∩ Eb = {x : x ≤ a u b ∧ px · a = x = px · b}
For example in PAT Da,b are the paths p that are in a and b and satisfy that all
paths in a ∩ b starting at the same node as p are also in Da,b. By definition of Da,b
we observe that

Lemma 9. Da,b forms a complete lattice

as well. This provides us with the foundation to speak of minimum and maximum
elements in Da,b. In the sequel we are particularly interested in the supremum of
Da,b. This is the greatest element that coincides on its domain with a and b and
therefore is the part that does not have to be overwritten to obtain b from a.

Definition 12. (a⊗ b) =
⊔
Da,b =

⊔
{x : x ≤ a u b ∧ px · a = x = px · b}

This definition is well-formed since by Lemma 9 the supremum exists for all subsets
of Da,b. The elements of Da,b inherit all the laws given in Lemma 8 not only for a
but also symmetrically for b.

7.1 Heading for a closed formula

One major drawback is, that calculating with the definition for domain equivalent
subsets is very unwieldy. This lies in the set theoretic definition of Da,b and the
supremum calculation for (a⊗b). A closed formula for the greatest domain equivalent
subset would be a remedy.

The analysis of KAs given in Section 3 and Lemma 11 led us to suppose that
there is a close relation between the symmetric difference and domain equivalent
subsets. In fact we can prove

Lemma 10. (a⊗ b) = ¬p(a∆b) · (a u b)
In addition the difference between b and (a ⊗ b) can be calculated simply by re-
stricting b to the domain of a symmetric difference.

Lemma 11.
b \ (a⊗ b) = p(a∆b) · b
This rule also holds symmetrically for a.

Corollary 1. a ≤ b⇒ a⊗ b = ¬p(b \ a) · a
This is the foundation for the following investigation of overwriting in KAs.

By the definition of | we observe that the result of an update has to be greater
than the overwritten element. Even more, we can show:

Lemma 12. Let X be the set {x : x | a = b}. Then

1. X 6= ∅ iff pa ≤ pb
2. pa ≤ pb⇒ b = maxX
3. pa ≤ pb⇒ b \ (a⊗ b) = minX

These results make us confident of finding a calculus to determine solutions of
equations containing the update operator and will be investigated further.



8 Maps

Since we are heading for a general calculus for selective pointer updates, we are
mainly interested in functional correspondences, namely maps, as it does not make
sense for a pointer to point to two different objects.

There are several ways to characterize maps in Kleene algebra. In this paper we
will use a domain-oriented approach described in [5]:

Definition 13. a is a map
def⇔ ∀b : b ≤ a⇒ b = pb · a

This is equivalent to the statement Ea = {x : x ≤ a}. For maps in Kleene algebras
some of the common properties are true:

Lemma 13. 1. a map ∧ b ≤ a⇒ b map
2. a map⇒ a u b map
3. a, b map⇒ a | b map

With the previous results we can give an extreme solution for x | a = b with a and
b maps.

Lemma 14. Assume that a and b are maps.

1. a⊗ b = a u b
2. The least solution of x | a = b is b \ a if pa ≤ pb

This raises our hope of achieving a calculus and a set of transformation rules for
deriving in-situ pointer updates.

9 Summary

We have presented some properties of a particular selective update function. These
properties were used to investigate minimal and maximal solutions of x | a = b.
In the future these results will be used to define orders on pointer algorithms to
achieve a formal notion of in-situ updates.
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5. J. Desharnais, B. Möller: Characterizing determinacy in Kleene Algebras. Proc.
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A Proofs

Lemma 1

1. • s · t = s · t u s · t ≤ s u t
• s u t = (s u t) · (s u t) ≤ s · t

2.

t · (a u b) = t · (a u b) u t · (a u b)
≤ t · a u t · b
= t · ((a u b) + (a u b)) u t · ((a u b) + (a u b))
= (t · (a u b) + t · (a u b)) u (t · (a u b) + t · (a u b))
= (t · (a u b) u t · (a u b)) + t · (a u b) + (t · (a u b) u t · (a u b)) +

(t · (a u b) u t · (a u b))
≤ (a u b u a u b) + t · (a u b) + (a u b u a u b) + (a u b u a u b)
= t · (a u b)

3.

(s u t) · a ≤ s · a u t · a
= (s+ ¬s) · (s · a u t · a)
= s · (s · a u t · a) + ¬s · (s · a u t · a)
≤ s · t · a+ ¬s · s · a
= s · t · a
= (s u t) · a

4. t · a u ¬t · b ≤ t · (a+ b) u ¬t · (a+ b) = (t u ¬t) · (a+ b) = 0
5. Follows from De Morgan.
6.

a u t · b = (t+ ¬t) · a u t · b
= (t · a+ ¬t · a) u t · b
= (t · a u t · b) + (¬t · a u t · b)
= t · a u t · b

Lemma 2

1. • Assume left-local composition. Then pb = p(pb)⇒ p(a · b) = p(a · pb)
• Assume lemma holds and pb = pc⇒ p(a · b) = p(a · pb) = p(a · pc) = p(a · c)



2. p(pa · b) = p(pa · pb) = p(pa u pb) = pa u pb

Lemma 3

1. • pa · a ≤ 1 · a = a
• a = a u a ≤ a u pa · > = pa · a

2. a = pa · a ≤ pb · a ≤ a
3. t ≤ t · > ⇒ pt ≤ t and t = pt · t ≤ pt
4. Follows from p is universally disjunctive
5. Follows from monotony of p.
6. ¬pa · a = ¬pa · pa · a = 0 · a = 0
7. ¬pa · > = ¬pa · (a+ a) = ¬pa · a+ ¬pa · a = ¬pa · a
8. ¬pa · b ≤ ¬pa · > = ¬pa · a
9. Follows from Lemma 1.5.

10. • t · a u (¬t · a+ a) = (t · a u ¬t · a) + (t · a u a) = 0
• t · a+ (¬t · a+ a) = (t · a+ ¬t · a) + a = a+ a = >

This proves the first equivalence
• ¬t · >+ t · a = ¬t · (a+ a) + t · a = ¬t · a+ ¬t · a+ t · a = ¬t · a+ a

11. p(t · a) = p(t · pa) = pt · pa = t · pa

Lemma 4

1. (a+ b) \ c = (a+ b) u c = (a u c) + (b u c) = a \ c+ b \ c
2. (a u b) \ c = (a u b) u c = a u c u b u c = a \ c u b \ c
3. a \ (b+ c) = a u (b+ c) = a u (b u c) = (a u b) u (a u c) = a \ b u a \ c
4. a \ (b u c) = a u (b u c) = a u (b+ c) = (a u b) + (a u c) = a \ b+ a \ c
5. (a \ b) \ c = (a u b) u c = a u (b u c) = a u (b+ c) = a \ (b+ c)
6. a \ (b \ c) = a u (b u c) = a u (b+ c) = a \ b+ a u c
7. (a u b) + a \ b = (a u b) + (a u b) = a u (b+ b) = a u > = a
8. a \ (t · a) = a u t · a = a u (¬t · a+ a) = (a u ¬t · a) + (a u a) = ¬t · a
9. (t · a) \ a = t · a u a = t · (a u a) = 0

10. t · ¬pa = t u ¬pa = t u (pa u 1) = t u 1 u pa = t u pa = t \ pa
11. ¬pa · (b \ a) = ¬pa · (b u a) = ¬pa · b u ¬pa · a = ¬pa · b

Lemma 5

1. a∆b = a \ b+ b \ a = (a u b) + (b u a) = (a+ b) u (a+ b) = (a+ b) u (a u b) =
(a+ b) \ (a u b)

2. a∆0 = a \ 0 + 0 \ a = a+ 0 = a
3. Immediate from the definition
4. First we prove two auxiliary lemmata:

c \ (a∆b) = c \ ((a+ b) \ (a u b)) = c \ (a+ b) + c u (a u b)

(a∆b) \ c = ((a \ b) + (b \ a)) \ c = (a \ b) \ c+ (b \ a) \ c = a \ (b+ c) + b \ (a+ c)

Now we can prove the lemma itself easily:

(a∆b)∆c = (a∆b) \ c+ c \ (a∆b)
= a \ (b+ c) + b \ (a+ c) + c \ (a+ b) + (a u b u c)
= a \ (b+ c) + (a u b u c) + b \ (a+ c) + c \ (a+ b)
= a \ (b∆c) + (b∆c) \ a
= a∆(b∆c)

5. (au b)∆(au c) = ((au b) + (au c)) \ (au buau c) = (au (b+ c)) \ (au (bu c)) =
(a u (b+ c)) u (a+ (b u c)) = (a u (b+ c) u (b u c)) = a u (b∆c)



6. a = b⇒ a∆b = a∆a = a \ a+ a \ a = 0
a∆b = 0⇒ a = a∆0 = a∆(a∆b) = (a∆a)∆b = 0∆b = b

Lemma 6

1. Immediate from the definition.
2. pa · (a | b) = pa · (a+ ¬pa · b) = pa · a+ pa · ¬pa · b = a
3. a | a = a+ ¬pa · a = a
4. a | (b+c) = a+¬pa·(b+c) = a+¬pa·b+¬pa·c = a+¬pa·b+a+¬pa·c = a | b+a | c
5. p(a | b) = p(a+ ¬pa · b) = pa+ p(¬pa · b) = pa+ ¬pa · pb = pa+ pa · pb+ ¬pa · pb =
pa+ (pa+ ¬pa) · pb = pa+ pb

6.

a∆(b | a) = a∆(b+ ¬pb · a)
= a \ (b+ ¬pb · a) + (b+ ¬pb · a) \ a
= (a \ b u a \ (¬pb · a)) + (b \ a+ (¬pb · a) \ a))
= (a \ b u pb · a) + (b \ a)
= (a∆b) u (pb · a+ b \ a)
= (a∆b) u (pb · a+ pb · (b \ a))
= (a∆b) u pb · (a+ (b \ a))
= pb · ((a∆b) u (a+ b))
= pb · (a∆b)

Lemma 7 Let X ⊆ Ea

• ∀x ∈ X : x ≤ a⇒
⊔
X ≤ a

• p(
⊔
X) · a =

⊔
x∈Xpx · a =

⊔
x∈X x =

⊔
X

Lemma 8

1. Clear from definition.
2. • x+ ¬px · a = px · a+ ¬px · a = a
• x u ¬px · a = px · a u ¬px · a = (px u ¬px) · a = 0

3. px · (a \ x) = px · a u px · x = x u px · x = px · (x u x) = 0

Lemma 9 Follows immediately from Definition and Lemma 7.
Lemma 11

b \ (a⊗ b) = b u (a⊗ b)
= b u (p(a∆b) · (a u b) + (a u b))
= (b u (p(a∆b) · (a u b)) + (b u a) + (b u b)
= p(a∆b) · (a u b) + b u a
= p(a∆b) · (a u b) + p(a∆b) · (b \ a)
= p(a∆b) · ((a u b) + (b \ a))
= p(a∆b) · b

Lemma 10 First of all ¬p(a∆b) · (a u b) ∈ Da,b:

a) ¬p(a∆b) · (a u b) ≤ a u b
b) We show the second condition only for a:

p(¬p(a∆b) · (a u b)) · a = ¬p(a∆b) · p(a u b) · a
= p(a u b) · ¬p(a∆b) · a
= p(a u b) · ¬p(a∆b) · ((a u b) + (a \ b))



= p(a u b) · (¬p(a∆b) · (a u b) + ¬p(a∆b) · (a \ b))
= p(a u b) · ¬p(a∆b) · (a u b)
= ¬p(a∆b) · p(a u b) · (a u b)
= ¬p(a∆b) · (a u b)

Next we show that p(a∆b) · p(a⊗ b) = 0.

p(a∆b) · p(a⊗ b) = p(a⊗ b) · p(a∆b)
= p(p(a⊗ b) · (a∆b))
= p(p(a⊗ b) · ((a+ b) \ (a u b)))
≤ p(p(a⊗ b) · (a+ b) \ (a⊗ b))
= p(p(a⊗ b) · (a \ (a⊗ b) + b \ (a⊗ b)))
= p(p(a⊗ b) · (a \ (a⊗ b)) + p(a⊗ b) · (b \ (a⊗ b)))
= p(0 + 0)
= 0

Hence also p(a∆b) · (a⊗ b) = 0. Now it follows that

(a⊗ b) = p(a⊗ b) · a u p(a⊗ b) · b
= p(a⊗ b) · (a u b)
= (p(a∆b) + ¬p(a∆b)) · p(a⊗ b) · (a u b)
= p(a∆b) · p(a⊗ b) · (a u b) + ¬p(a∆b) · p(a⊗ b) · (a u b)
= p(a∆b) · (a⊗ b) + p(a⊗ b) · ¬p(a∆b) · (a u b)
= ¬p(a∆b) · (a u b)

This last equality holds, since ¬p(a∆b) · (a u b) ∈ Da,b and by Lemma 3.2.
Lemma 12

1. (⇒) Assume X 6= ∅ and x ∈ X :

pb = p(x | a) = px+ pa ≥ pa

(⇐) We show that b is a solution if the righthand side holds, so assume pa ≤ pb:

b | a = b+ ¬pb · a = b since ¬pb · a ≤ ¬pa · a = 0

2. By 1. we have b ∈ X , and for all x ∈ X it follows that:

x ≤ x+ ¬px · a = x | a = b

3. Let pa ≤ pb

(b \ (a⊗ b)) | a = b \ (a⊗ b) + ¬p(b \ (a⊗ b)) · a
= b \ (a⊗ b) + ¬p(¬p(a⊗ b) · b) · a
= b \ (a⊗ b) + ¬(¬p(a⊗ b) · pb) · a
= b \ (a⊗ b) + (p(a⊗ b) · ¬pb) · a
= b \ (a⊗ b) + p(a⊗ b) · a+ ¬pb · a
= b \ (a⊗ b) + (a⊗ b)
= b

So b \ (a⊗ b) ∈ X .



Consider x ∈ X .

b \ (a⊗ b) = p(a∆b) · b
= p(a∆b) · (x | a)
= p(a∆b) · (x+ ¬px · a)
= p(a∆b) · x+ p(a∆b) · ¬px · a
= p(a∆b) · x+ p(a∆(x | a)) · ¬px · a
= p(a∆b) · x+ p(px · (a∆x)) · ¬px · a
= p(a∆b) · x+ px · p(a∆x) · ¬px · a
= p(a∆b) · x
= p(a∆b) · (x u b)
= p(a∆b) · x u b
= b \ (a⊗ b) u x

So b \ (a⊗ b) is minimal in X

Lemma 13

1. Let c ≤ b⇒ pc ≤ pb, then pc · b = pc · pb · a = pc · a = c
2. Follows directly from 1.
3.

c ≤ a | b⇒ c = c u a | b = c u a+ c u ¬pa · b = c u a+ ¬pa · (c u b)
⇒ pc = p(c u a) + ¬pa · p(c u b)

pc · (a | b) = pc · (a+ ¬pa · b) = pc · a+ ¬pa · pc · b = p(c u a) · a+ ¬pa · p(c u b) · b

Lemma 14

1. a, b maps ⇒ Da,b = {x : x ≤ a u b} because of remark after Definition 13.
2. Follows directly from 1. and Lemma 12.3.
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