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ABSTRACT

Transcription of music is the process of generating a symbolic
representation such as a score sheet or a MIDI file from an
audio recording of a piece of music. A statistical machine
learning approach for detecting note onsets in polyphonic pi-
ano music is presented. An area from the spectrogram of the
sound is concatenated into one feature vector. A cascade of
boosted classifiers is used for dimensionality reduction and
classification in an one-versus-all manner. The presented sys-
tem achieves an accuracy of 87.4% in onset detection outper-
forming the best comparison system by 25.1 %.

Index Terms— Acoustic signal detection, Spectral
analysis, Feature extraction, Pattern classification

1. INTRODUCTION

A trained musician is able to write down the scores from lis-
tening to the recording of a song. In this paper a system is
presented, which is able to perform a similar task, by creating
a MIDI file from the recording of a song. The accurate sym-
bolic representation of a song has many useful applications.
It can easily be read by humans and machines and reveals
the core essence of the music, which is more or less hidden in
a recording. Examples of such information are: the key, the
chord progression, and the melody line.

The main issue in music transcription is the superposi-
tion of the notes in the music recording. Any sort of detec-
tor for a note has to face the interference from an unknown
combination of other notes sounding at the same time. The
interference is hard or even impossible to model. Superposi-
tion therefore is the hard key issue in music transcription and
other music understanding tasks.

Contributions: In this work a system is constructed,
which produces a transcription in form of a MIDI file from
the input of a music audio recording. The main contributions
are: Detectors based on statistical machine learning, trained
on example data are used instead of heuristic F0 estimation
techniques. The detectors are trained for the detection of note

onsets instead of a frame-wise detection of the presence of the
note in its sustain phase. This has two advantages: First the
onset is the most characteristic part of the note, which gives
a very distinctive, instrument specific pattern. Second the
note onset carries not only the pitch information, but also
information about the rhythm, which makes it of great value
for the transcription. As the onset is very characteristic, con-
sequently not generic but instrument specific classifiers are
employed. To enable the representation of the characteristic

onset pattern, a rich feature set is necessary. Therefore high
dimensional spectrogram features are used instead of heuris-
tically designed features. Several time frame vectors are con-

catenated to form one feature vector, representing not only
one time frame, but an area of the spectrogram. This allows
profiting from the development of the sound over time during
the onset as information source.

Related Work: State of the art systems for music tran-
scription use a wide range of different methods and are de-
signed for different application scenarios. The first type of
system relies on typical properties of notes, such as the struc-
ture of fundamental frequency and harmonics or a sudden
increase in energy at the onset, which are directly built into
the system manually (e.g. [1, 2]). The second type of system
uses statistical methods, such as classifiers [3] or distribution
models (e.g. [4]). There also exist some approaches for onset
detection independent of the current note (e.g. [5]).

2. SYSTEM OVERVIEW

The presented system consists of an array of classifiers, one
for each note of the piano (see figure 1). The same feature
vector is provided to all classifiers. The classifiers are either
trained for note onset detection or for frame-wise detection
of the presence of a note.

Fig. 1. From the time signal the spectrogram and finally
the feature vector is generated. It is provided to all note
detectors.

The dimensionality of the input feature set is quite high.
This challenge is tackled by using Discrete AdaBoost [6] as
classifier, which is capable of dealing with high dimensional
input features, since it is not only a meta-classifier, but also
a feature selection technique. Stumps are employed as weak
classifiers. Boosting additionally has the advantages of be-
ing quite robust against overfitting [6] and of having similar
discrimination performance as non-linear classifiers such as
SVMs and Neural Networks (see [7]).

Note onsets are rare and short events, so the number of
negative examples is much higher than the number of positive



examples resulting in an unbalanced learning problem. This is
tackled by creating a cascade of Discrete AdaBoost classifiers,
see [7]. It instantly sorts out a lot of easy to detect false
examples, saving time for cases harder to decide on.

The time-frequency representation of an audio signal such
as a single note is sparse in nature (e.g. [8]). Thus different
notes are not overlapping in all parts of the spectrogram.
Therefore the rich set of spectrogram features together with
the feature selection step in the classifier give rise to the hope
of being able to tackle the challenge of superposition.

3. FEATURES

The features should carry valuable information about the task
at hand. In the case of music transcription, the desired in-
formation is the pitch height or equivalently the MIDI note
number of a note currently played, the attack time of the on-
set of the note and the timbre or instrument. All this is coded
directly in the spectrogram of the sound. The harmonic signal
parts, i.e. the fundamental frequency and overtones, encode
the pitch and partly the timbre and form more or less hori-
zontal lines in the spectrogram. Non harmonic, i.e. noise-like
or non-deterministic signal parts encode the attack time in
form of transients and the exact instrument or timbre. They
form more texture-like than structured contributions in the
spectrogram. Therefore we directly use the spectrogram of
the signal as features.

Gabor Transform: The Gabor transform with Gaus-
sian window [9] is used for generating the spectrogram fea-
tures, because it perfectly localizes the information in time
and frequency. The spectrogram is the logarithm of the mod-
ulus of the complex values of a Gabor transform. The mod-
ulus removes the phase, which is crucial as relative and ab-
solute phases carry no important sound information, but can
vary arbitrarily. The logarithm serves as nonlinear compres-
sion of the number range.

The Gabor transform is implemented as described in [9].
The sampling rate in the system is fs = 1/T = 48 kHz. The
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The logarithm of the modulus of the transform values are
used as feature values, selecting only the values of the bins
from 0Hz up to 6 kHz (0 Hz ≤ m∆f ≤ 6 kHz). This is moti-
vated by the fact that frequency content above about 6 kHz
is only important for the sound quality, but not for music un-
derstanding and can therefore be skipped for better computa-
tional performance. With this setting the number of feature
values per time frame is 683.

Concatenation of Feature Vectors: A single vector
in time can be ambiguous e.g. due to interference of noise or
due to more or less random parts of the signal. To overcome
this, the information of several consecutive vectors should be
evaluated together. In audio information retrieval Hidden
Markov Models (HMM, [10]) are the common standard tool
for the analysis of sequences, frequently used e.g. in speech
recognition [10], chord recognition [11], and music transcrip-
tion [3]. They model a fixed temporal order of a sequence,
while the speed of the process generating the sequence can
vary. This corresponds to a loose coupling of the time axis.
The evolving of a single note over time is precisely defined.
This results in a fixed coupling of the time axis. HMMs are
therefore not suitable for onset detection.

Therefore we use a different, even simpler but computa-
tional demanding method, in order to use the temporal de-
velopment as information source. By concatenating several
consecutive feature vectors into one vector, a combined eval-
uation of the local time neighborhood is enabled. The con-
catenation is performed in overlapping and sliding manner,
i.e. each time frame vector becomes the member of several
concatenated feature vectors. Figure 2 illustrates this for con-
catenating 4 time frame vectors. A single square represents
one time frame vector.

Fig. 2. Illustration of the overlapping and sliding concate-
nation of 4 time frame vectors into feature vectors. A single
square represents one time frame vector.

For the typical setting of 4 time frame vectors forming one
feature vector, the concatenation results in 683 ·4 = 2732 fea-
ture dimensions. The high dimensionality of spectrogram fea-
tures, made worse by the concatenation is expected to be the
main reason why spectrogram features and also concatenated
feature vectors are not a common approach in music infor-
mation retrieval. For comparison: Mel-Frequency-Cepstral-
Coefficients (MFCC, [12]) and Chroma features ([13]), which
are quite common audio features have a typical number of
feature values of 13–30 (MFCCs) and 12 (Chroma) per time
frame i.e. per feature vector.

4. CLASSIFIER

Note onsets are quite short and rare events in polyphonic mu-
sic. Most of the time a given note is either not sounding or
in the sustain or decay phase. Consequently the number of
negative examples is much larger than the number of posi-
tive examples. A classifier for this task has to achieve not
only a high recognition rate for positive examples, but also a
very high rejection rate for negative examples. This can be
addressed by building a cascade of Discrete AdaBoost classi-
fiers. This has been introduced and successfully used for face
detection in images, see [7]. Face detection similarly has to
cope with an asymmetry in the frequency of class occurrences
as a lot of positions and scales of images do not contain faces
and correct positives are rare events.



Thus the classifier is build with cascaded Discrete Ad-
aBoost classifiers [6, 7]. Boosting is a meta classifier tech-
nique, which builds a strong classifier out of a large number
of simple or weak classifiers. During training an optimal sub-
set is selected from a large pool of weak classifiers in order to
form the ensemble of the strong classifier. Stumps (see below)
are used as weak classifiers. A single stump is applied only to
one dimension of the input features. As suitable stumps are
selected during training, AdaBoost is also a feature selection
technique.

Stumps: A stump is a degenerated decision tree with one
split node and two leaf nodes [6]. It is applied to the element
j of feature vector x. It can be written as ht(x), with t a
running index specifying the stump. The parameters of a
specific stump are the dimension j, the threshold θt and the
sign information pt ∈ {−1, +1}. An example x is classified
as follows:

ht(x) =



+1 : if xj · pt ≥ θt

−1 : else
. (2)

Discrete AdaBoost: The first AdaBoost classifier for
the cascade is trained as follows (see [6] for details):

• All positive examples for the current note are drawn.
l is the number of positive examples, which could be
drawn. It lies in the order of several hundred, depend-
ing on the size of the data set and the note number.

• The negative examples are drawn randomly. The num-
ber of negative examples m is limited to m ≤ 2l.

• In each iteration the stump with the lowest error is
selected and added to the ensemble. The iteration
is stopped, if either the desired recognition rates are
achieved or a maximum number of iterations is reached,
which means that the training was not successful. The
maximum is the smaller value of l/2 or 150.

In later stages only examples which are classified either as
correct positives (positive examples) or false positives (nega-
tive examples) by the preceding stages are drawn.

A trained classifier consists of a set of stumps, together
with a weight αt for each stump and one global threshold
value α. Given the feature vector x of an example, the final
decision of such a classifier is made as follows:

h(x) =



1 : if
P

t
αtht(x) − α ≥ 0

−1 : else
. (3)

Cascade of Classifiers: The cascade (see [7]) sorts out
negative examples rapidly, while preserving almost all pos-
itive examples. An example classified positive by the first
classifier of the cascade is handed over to the next classifier
for further investigation and so on. As soon as an example is
classified negative during this chain, the example is classified
negative by the whole cascade and the process is stopped.

The single classifiers are tuned via their threshold value
α to achieve specific recognition rates. The goal is to accept
almost all examples e.g. 0.999 of the positive examples as
positive while accepting at most e.g. 0.5 or less of the negative
examples as positive ones. The training iteration of a single
classifier is stopped, as soon as enough weak classifiers are
added in order to fulfill also the correct positive rate. If this
cannot be achieved in the maximum number of iterations, the
classifier is discarded and the cascade ends, otherwise training

proceeds with the next classifier for this cascade. With this
structure the overall expected rates converge very fast. For
example with 20 cascades the expected false alarm rate is
0.520 ≈ 9.6e−7 and the expected hit rate is 0.99920 ≈ 0.98.

5. EXPERIMENTS

Two slightly different systems are tested, one for the detection
of note onsets for which the system is intentionally designed
and one for frame-wise detection of the presence of the note
intended mainly for comparison with systems from literature.
Both systems are also tested under noisy conditions.

Audio Data and Ground Truth: The MIDI files used
in [3] were used as training and test data for the experi-
ments. They originate from the Classical Piano Midi Page
www.piano-midi.de. The dataset consists of 87 training and
26 test pieces. They were converted to sound files with timid-
ity++ [14], a sample based MIDI software synthesizer and
with a high quality General MIDI soundfont. The ground
truth is directly extracted from the MIDI files as described
in the following paragraphs.

Onset Detection: During training a concatenated fea-
ture vector is considered a positive example, if a note onset
takes place during one selected part feature vector. Feature
vectors which are not a positive example, but have nearby
note onsets are removed from the training data. The remain-
ing vectors are used as negative examples. During detection
a postprocessing is applied in order to debounce the detector:
after detection of an onset the detection of further onsets is
suppressed for the following two feature vectors. During test-
ing all vectors, which are not positive examples according to
the previous rule, are negative examples. A misalignment of
one time frame, which can easily result from binning issues,
is still considered a correct recognition.

Frame-wise Detection: During training a vector is con-
sidered a positive example, if a note is at least partly present
in the time frame. Time frames after a note off command are
removed from the training data to remove the reverberation.
The remaining examples are used as negative examples.

Results: The recognition results are compared with the
system in [3], which itself contains a comparison with [15]
and [16]. For simplicity we use the accuracy values which
are calculated from the number of true positives (TP), false
positives (FP) and false negatives (FN) as follows:

Acc =
TP

FP + FN + TP
. (4)

The training data naturally contains very few, sometimes
even no positive examples for very high and very low pitches,
especially for the onset detection case. Therefore of the grand
piano keyboard range 21 to 108, only onset detectors for the
note numbers 36 to 96 have been trained, which cover almost
all notes played. For a fair comparison with the other sys-
tems which also had detectors for the notes outside the inner
range, dummy onset classifiers which always predict negative
are used. For the frame-wise detection, all classifiers with at
least 1 positive example are trained.

To test the influence of the concatenation of several vec-
tors, the performance of the onset detection for 1, 2, 4 and 8
concatenated vectors has been tested. The results are given
in table 1. The gain in performance for an increasing num-
ber of vectors is obvious. As expected the additional data



is valuable and the evolution of the note over time can be
evaluated beneficially. As the performance degrades with 8
vectors again, 4 concatenated vectors have been used for the
following experiments.

Number of vectors 1 2 4 8
Number of features 683 1366 2732 5464
Length in ms 22.8 45.5 91.0 182.0
Accuracy 54.1% 73.8% 87.4% 76.5%

Table 1. Onset detection with different numbers of vectors.

The results for the main experiment of onset detection are
given in table 2 (a). The new system clearly outperforms the
existing ones. Table 2 (b) shows the results for the frame-wise
detection. Again the existing systems are outperformed.

Algorithm (a) Onset (b) Frame-wise
AdaBoost Cascade 87.4% 75.2%
Poliner and Ellis 62.3% 67.7%
Ryynänen and Klapuri 56.8% 46.6%
Marolt 30.4% 36.9%

Table 2. Accuracy (a) onset and (b) frame-wise detection.

Performance on Noisy Data: Pink noise is added to
the test data. Table 3 shows the results depending on the
SNR. A significant amount of noise robustness is achieved:
The accuracy degrades only a little bit for moderate noise
levels of SNR ≥ 30 dB and is still acceptable for a SNR of
20 dB, especially for the onset detection. It sharply falls at
higher noise levels. Preliminary experiments showed that us-
ing noisy training data enhances the accuracy for testing on
similar and higher noise levels while degrading the accuracy
for lower noise levels only slightly.

SNR (a) Onset (b) Frame-wise
∞dB 87.4% 75.2%
40 dB 84.3% 68.9%
30 dB 73.1% 56.1%
20 dB 46.5% 34.2%
10 dB 19.9% 12.9%
0 dB 4.0% 2.7%

Table 3. Accuracy (a) onset and (b) frame-wise detection
with pink noise of given SNR added to the test data.

6. CONCLUSION

The presented system gives a new quality of recognition per-
formance for onset detection, even under noisy conditions.
However it should be mentioned that not all aspects can be
compared directly. The same MIDI data, but different audio
data generated with different synthesizers have been used.
Also the time resolutions are different. However this does
not invalidate the comparison in general.

The approach should be seamlessly applicable to similar
instruments with properties similar to the piano, i.e. pro-
nounced, percussive attack and tonal, highly structured sus-
tain phase.
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