
Universität Augsburg

���������	
���
System-Level Software

for a Multi-Core MERASA Processor

Florian Kluge, Julian Wolf

Report 2009-17 Oktober 2009

Institut für Informatik

D-86135 Augsburg

Copyright c© Florian Kluge, Julian Wolf
Institut für Informatik
Universität Augsburg
D�86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
� all rights reserved �

Contents 3

Contents

1. Introduction 5

2. Requirements 6
2.1. Functional Requirements . 6
2.2. Requirements for the user interface 8

3. Architectural overview 8

4. Application Programming Interface 9
4.1. Thread Management . 9
4.2. Dynamic Memory Management 9
4.3. Resource Management . 10
4.4. Common header �les . 11
4.5. POSIX interface . 11

5. Implementation 12
5.1. Thread Management . 12
5.2. Dynamic Memory Management 15
5.3. Resource Management . 17

6. Conclusion 17

A. Data Structure Documentation 19
A.1. driver Struct Reference . 19
A.2. driver_interface Struct Reference 21
A.3. mem_cfg_data Struct Reference 22
A.4. memorystatistics Struct Reference 24
A.5. pthread_attr_t Struct Reference 26
A.6. pthread_barrier_t Struct Reference 27
A.7. pthread_barrierattr_t Struct Reference 28
A.8. pthread_cond Struct Reference 29
A.9. pthread_condattr_t Struct Reference 30
A.10.pthread_mutex Struct Reference 31
A.11.pthread_mutexattr_t Struct Reference 33
A.12.sched_param Struct Reference 34
A.13.thread_memorystatistics Struct Reference 35

B. File Documentation 36
B.1. con�g.h File Reference . 36
B.2. driver.h File Reference . 40
B.3. drivermanager.h File Reference 43
B.4. error.h File Reference . 44
B.5. fcntl.h File Reference . 50
B.6. log.h File Reference . 51
B.7. memory-desc.h File Reference . 58

Contents 4

B.8. memory.h File Reference . 60
B.9. merasa-ssw.h File Reference . 62
B.10.pthread.h File Reference . 63
B.11.stropts.h File Reference . 75
B.12.sysmonitor.h File Reference . 76
B.13.types.h File Reference . 77
B.14.unistd.h File Reference . 82
B.15.vo.h File Reference . 84

1 Introduction 5

Abstract

In the EC FP-7 MERASA project a hard real-time capable multi-core

processor is developed. The system-level software represents an abstrac-

tion layer between application software and embedded hardware. It has

to provide basic functionalities of a real-time operating system.

This report presents requirements for a multi-threaded and multi-core hard

real-time capable system software in embedded systems and the transfer

to the implemented MERASA multi-core processor showing details of the

thread management, the dynamic memory management and the resource

management. It summarises the full MERASA system-level software de-

veloped for a multi-core processor running on the MERASA SystemC Sim-

ulator.

1. Introduction

The main objective of the MERASA1 project is the development of a multi-
core processor for hard real-time embedded systems. Simultaneously there is
a need for timing analysis techniques and tools to guarantee the analyzability
and predictability of the features provided by the processor. The MERASA
system-level software provides a fundament for application software running on
such a processor. A veri�cation of the contained features will be achieved by an
integration into pilot studies.

The challenge in this software �eld is to guarantee an isolation of memory and
I/O resource accesses of various hard real-time threads running on di�erent cores
to avoid mutual and possibly unpredictable interferences between hard real-time
threads. The intent of this isolation is also to enable an e�ective WCET analysis
of application code. The resulting system software should execute hard real-
time threads in parallel on di�erent cores of a multi-core MERASA processor or
within di�erent thread slots of simultaneously multithreaded MERASA cores.
These hard real-time threads will potentially run in concert with additional non
real-time threads of mixed application workload. Currently, the development
of the �rst version of the MERASA multi-core processor is �nished. It was
adapted from a simultaneous multi-threaded (SMT) MERASA core processor
developed based on the SMT CarCore processor [7] which is binary compatible
to the In�neon TriCore.

This report describes the full system-level software which provides function-
alities for a MERASA multi-core processor with a hardware-based two-level
scheduler. During the next stage of the MERASA project, it will be enhanced
by the integration of drivers to support pilot studies on the FPGA prototype.

This report is organised as follows: Section 2 gives an overview of requirements
arising for a multi-core real-time operating system. In section 3 we present an
architectural overview, followed by a short description of the user interface in

1
Multi-Core Execution of Hard Real-Time Applications Supporting Analysability, a
STREP project within the Seventh Framework Programme of the European Union

2 Requirements 6

section 4. Section 5 shows the implementation of the single parts developed
to accomplish these requirements. Section 6 concludes this paper. The annex
�nally shows the detailed information on the user interface.

2. Requirements

In this section, we state the minimum requirements for a Real-Time Operating
System (RTOS) for embedded systems with simultaneous multithreaded (SMT)
and multi-core hardware, and show the basic properties that have to be ful-
�lled.

2.1. Functional Requirements

In general, an operating system (OS) makes the usage of computer hardware
possible. It provides an interface to access system resources like memory, I/O
devices and to manage the execution of tasks. So we can summarise the common
requirements:

• The OS has to manage processes and schedule processor time.

• Memory for the applications must be allocated and controlled.

• The OS must control and manage the connected devices.

• In case of errors and interrupts, they must be handled by the OS.

Figure 1: Combination of requirements for di�erent OS types

Operating systems can be categorised into di�erent classi�cations. So we can
distinguish between single- and multi-user as well as single-threaded and multi-
threaded systems. Depending on response time or execution mode, we can �nd
real-time and non-real-time, embedded- or general-purpose computing operat-
ing systems. As our objective is the development of an RTOS for embedded
systems with multithreaded and multi-core hardware, we need a combination of
di�erent �elds. Figure 1 shows a symbolic intersection of the di�erent �elds of
requirements and how they must be mixed together. So we �rst take a look at
the concept of an RTOS and then add aspects regarding both embedded and
SMT systems.

2.1 Functional Requirements 7

Concept of RTOSs

The key di�erence between general-purpose operating systems and real-time
operating systems is the need for a deterministic timing behaviour. All operating
system services have to consume only known and expected amounts of time. It
is not allowed that a task causes random delays and makes an application miss
real-time deadlines. So most RTOSs do their task scheduling using a scheme
called priority based preemptive scheduling. Each task is assigned a priority,
with higher values representing a need for quicker execution. The preemptive
nature of the task scheduling enables a fast responsiveness. The scheduler is
allowed to stop a task's execution, if another task needs to run immediately.

Regarding [1] we can summarise the general facets making an OS an RTOS:

• The RTOS has to be multi-threaded and preemptible.

• Either the notion of thread priority exists, or the RTOS provides a deadline
driven scheduler.

• The RTOS supports predictable thread synchronization mechanisms, es-
pecially a system of priority inheritance.

• The timing behaviour of the RTOS should be known and predictable.

OSs in embedded environments

Embedded systems are mostly not recognizable as computers, instead they are
hidden inside cars, aeroplanes or everyday objects surrounding and helping us in
our live. A high-level connectivity to the environment through sensoric interfaces
providing context data is typical.

The characteristical operation of embedded systems is limited by computer
memory and processing power. The services they provide to their users are
usually constrained by strict time deadlines. When using an OS in embedded
environments, we also have to regard these restrictions on memory and perfor-
mance.

So, we can outline also the requirements implicated from the �eld of embedded
computing:

• The embedded OS must be very time and memory e�cient.

• The OS has to be compact and concentrate on the most necessary func-
tions.

OSs on SMT and multi-core hardware

Simultaneous multithreading (SMT) is the ability to concurrently run programs
divided into subcomponents or threads on a single processor or within a pro-
cessor core. While the SMT execution is only apparently parallel, multi-core

2.2 Requirements for the user interface 8

hardware o�ers real parallelism. However, both mechanisms promise better uti-
lization of processors and other system resources. As a result they provide a
scalable, modular environment upon which it is appropriate to write application
software. Working with several tasks in parallel, a multi-threaded or multi-core
hardware can also cause a lot of new potential bugs to be introduced into an
application. So we can add as speci�c requirement (see [4]) that the OS has to
avoid race conditions or deadlocks caused by timing problems.

2.2. Requirements for the user interface

To facilitate the development of applications, the interface of the operating
system should be geared towards a common standard. As POSIX [5] is widely
used also in the �elds of embedded real-time systems (e.g. QNX [6]), it is
useful to support functionalities following this standard. Thus, one can provide
a familiar handling of parameters, return values and function names. It will be
easy to port applications developed for other systems using the POSIX interface
as well (see sect. 4.5).

On basis of these requirements concerning both functionalities and the user
interface, we are now able to propose an architecture for the MERASA system
level software that ful�lls a combination of concepts concerning a RTOS for
embedded environments with multithreaded and multi-core hardware.

3. Architectural overview

The design of the MERASA system-level software joins several well-known OS
techniques. The basic kernel comprises the most important management func-
tionalities following the microkernel principle. Additional functions may run
outside this kernel as seperate components.

Figure 2 gives an overview of the proposed architecture. The core of the
MERASA system-level software contains three components: the Thread Man-
agement, the Dynamic Memory Management and the Resource Management.
These three parts run on top of the proposed MERASA Embedded Control
Unit (ECU). To give consideration to the real-time requirements the system-
level software uses pre-allocation techniques. In an initial phase, all resources,
which may potentially cause non real-time behaviour, are allocated. So when
the application starts running for all resource accesses real-time behaviour can
be guaranteed. The next section will show in more detail how the application
programming interface can be accessed. Section 5 describes the working of the
kernel parts and especially how the real-time execution is ensured.

4 Application Programming Interface 9

Figure 2: Architecture of the MERASA system-level software

4. Application Programming Interface

Here we describe the programming interface to access the MERASA system-
level software (directory include/). This section is a short guide for application
programmers to know where to �nd necessary functionalities, whereas the full
speci�cation is con�ned to the annex. In the �rst three parts of this section
we specify the functions of the basic architectural components. The last part
explains some common header �les.

4.1. Thread Management

The Thread Management is implemented as a subset of POSIX functions:

pthread.h This header provides essential functions for the Thread Management.
It allows the creation of threads and the management of the di�erent hard-
ware thread types (see sect. 5.1) and their scheduling parameters. Also,
thread privileges are de�ned here as a base for a security manager. More-
over, it contains an interface to access the thread synchronization mecha-
nisms providing functions for mutex, conditional and barrier variables.

4.2. Dynamic Memory Management

For the usage of the Dynamic Memory Management it is necessary to utilise the
de�nitions from the following header �les:

4.3 Resource Management 10

memory.h This header represents the basic �le of the memory management.
It provides methods to allocate a speci�ed amount of memory or to free
previously allocated blocks of the current thread. As well, one can perform
an copy of non-overlapping memory sections to another address.

memory-desc.h The Dynamic Memory Management of the MERASA system-
level software supports the usage of di�erent types of memory. This
�le provides functionalities to notify the Dynamic Memory Management
about the availability of memory hardware.

4.3. Resource Management

One basic task of the MERASA system-level software is to enable the usage of
computer hardware. To get a high level of �exibility, the hardware resources are
accessed through device drivers. The interface to these drivers and the resource
management are de�ned in the following �les:

driver.h This header provides macros and data types to write an individual
device driver for the MERASA system-level software. So it can be ensured
that the compiled drivers have the correct �le format and layout structure.

drivermanager.h This �le enables the management of the device drivers. It
contains functions to install and remove drivers from the system and for
an access of the drivers' functions.

fcntl.h This header provides a function to open a device in the MERASA re-
source manager.

stropts.h Here, a function is included to control operations on a speci�c device.

unistd.h This �le contains functions to read and write from devices.

A special resource currently included in the MERASA system-level software
is the Virtual Output. It implements functions very similar to stdio.h with
di�erent format modi�ers for various data types. In the MERASA simulator
the output is written to STDOUT, prefaced with some special characters (%#).
This enables an easy way to debug applications but will in�uence the timing
behaviour of the application. For this reason, the virtual output also provides
fast-logging facilities to output just few bytes of data. These functions come
with less and predictable timing overhead, requiring less than ten processor
instructions.

log.h Especially for debugging purpose using the the virtual output this header
gives several easy logging facilities. The output is thread safe and can
be written to a log �le or to STDOUT. There are �ve prede�ned loglevel-
stages making it easy to distinguish between negligible debugging output,
interesting warnings and important fatal errors. The level is set in the
make�le (config/defines.mk) for compilation.

vo.h This header de�nes the memory regions for the virtual output.

4.4 Common header �les 11

4.4. Common header �les

Besides the interface to the three main parts of the MERASA system-level
software, there are several common header �les:

con�g.h This �le includes the general con�guration of the MERASA system-
level software. In many global de�nitions you can set the details, e.g. the
number of used cores, the basic con�guration of scheduling, the adresses
of used thread memory etc.

error.h This header contains de�nitions of error numbers and error types. These
are equal to the error number de�nitions de�ned by the POSIX standard.

sysmonitor.h Here, monitoring functionalities of system parameters are pro-
vided. It is possible to get detailed statistics on the usage of global and
each thread's memory.

sys/types.h In this header platform-speci�c de�nitions of basic data types are
de�ned.

merasa-ssw.h This �le includes all MERASA system-level software headers.

4.5. POSIX interface

In compliance with the MERASA partners a subset of the POSIX interface was
implemented, including basic functionalities for thread creation (with di�erent
attributes for scheduling) and thread join. Listing 1 shows how to use the in-
terface from application side. Here, one hard real-time (HRT) thread executing
function f1 and one non real-time (NRT) thread executing f2 is initialised. The
procedure finish_thread_init() signals the end of the initialisation phase to
the system software, and the execution of all threads will start just then. Fi-
nally, the join methods are called to suspend the calling thread and wait for
both other threads to �nish execution.

pthread_t my_hard_rt_thread;

pthread_t my_non_rt_thread;

pthread_attr_t my_hard_rt_attr;

pthread_attr_t my_non_rt_attr;

pthread_attr_setschedpolicy (& my_hard_rt_attr , SCHED_HRT);

pthread_create (& my_hard_rt_thread , &my_hard_rt_attr , &f1 , NULL);

pthread_attr_setschedpolicy (& my_non_rt_attr , SCHED_NRT);

pthread_create (& my_non_rt_thread , &my_non_rt_attr , &f2, NULL);

finish_thread_init ();

pthread_join (& my_hard_rt_thread);

pthread_join (& my_non_rt_thread);

Listing 1: Example for using the POSIX interface from application side

Moreover, also the synchronisation mechanisms are implemented following the
POSIX standard. By this, it is easy for application programmers to use the

5 Implementation 12

commonly known functionalities for mutex, conditional and barrier variables
as we provide a familiar handling of parameters, return values and function
names.

Besides the thread management, the resource management was enhanced cov-
ering a subset of the commonly used POSIX interface. We implemented basic
operations like the generic read / write functions as well as driver-speci�c ac-
cess by open / close and con�guration by ioctl in a POSIX-compliant way.

5. Implementation

This section describes the implementation of the architectural parts of the full
MERASA system-level software in more detail.

5.1. Thread Management

Based on the previously delivered MERASA SMT single-core, the main task in
the second project year was the extension of the thread management to support
the creation and maintenance of hard real-time (HRT) and non real-time (NRT)
threads on di�erent cores.

A two-level hardware scheduler distributes threads on the one hand over the dif-
ferent cores and on the other hand over the di�erent available thread slots per
core. So it is a basic goal of the system-level software to provide a solid schedul-
ing interface, which enables an easy creation, suspension and un-suspension of
speci�c threads from application side. This is especially reached by preserving
compatibility to the commonly used POSIX interface. On the other side, the
scheduling interface internally builds a correct and consistent baseline for the
hardware by managing the lists of HRT and NRT threads.

Moreover, it is necessary to ful�l the requirements on synchronisation. For this
reason, the system software provides commonly used mechanisms like mutex,
conditional and barrier variables. All these mechanisms are also implemented
following the POSIX standard.

Scheduling Interface

In order to support the full MERASAmulti-core SystemC simulator containing a
two-level scheduler, the scheduling interface had to be adapted and extended.

First it is necessary to take a deeper look into the organisation of threads within
system-software and simulator. Every HRT and NRT thread has its own spe-
ci�c �Thread Control Block� (TCB), which is an array of 256 bytes. In this
array, the whole thread context, like used data and address register values,
synchronisation and scheduling information is stored. All TCBs are located in
segment 0x90000000 and aligned to 256 byte boundaries, i.e. TCB 1 starts at
0x90000100, TCB 2 at 0x90000200, etc.

5.1 Thread Management 13

TCB 0 is reserved for special data used by the hardware scheduler, it contains the
heads of two lists, one for the HRT threads (a 32 bit pointer at 0x90000030) and
one for the NRT threads (a 32 bit pointer at 0x90000014). On thread creation
these two lists are updated and extended by the system-level software by setting
the pointers sched_next and sched_prev of every TCB to the next respectively
previous to schedule TCB. As a result we get two double linked lists of TCBs
as shown in �gure 3.

Figure 3: Two linked lists of TCBs, ready for the scheduler

As the progress of thread creation cannot guarantee timing constraints, it was
decided to introduce an initial phase, where only one boot thread is running on
the �rst core. It is possible to create new HRT and NRT threads only during
this phase,. The system software then ful�ls all preparation jobs which are bad
for real-time behaviour, like memory allocation to guarantee timing correctness
during the following execution phase. From application side, it is very important
to signal the end of the initialisation phase by calling exactly once the function
finish_thread_init(). After this call no further creation of threads is possible,
all needed threads must have been created during the initialisation phase.

The call to �nish the initial phase and to start thread execution internally writes
the heads of the HRT and NRT to the speci�ed addresses of the reserved TCB
0. This write access is snooped by the hardware scheduler, which in turn now
stats operation. It begins traversing �rst the HRT list and puts each TCB onto
another core, each in thread slot 0. This continues until the list is terminated
(by 0) or the maximum number of cores is reached. There is one special case:
as slot 0 of core 0 is the boot thread (the only one active after a reset, the head
of the HRT list must always point to TCB 1 (the boot thread) and then to the
next HRT thread.

5.1 Thread Management 14

A write to the head of the NRT list, which is also triggered by �nishing the
initial phase, also invokes the scheduler: it starts traversing the NRT list, in
detail it reads the �rst NRT thread's TCB from the speci�ed memory location
and writes it to core 0, thread slot 1. Following sched_next it puts the next
threads into thread slot 1 of core 1 to MAX_CORES. If the maximum number of
cores is reached, it continues with core 0 and thread slot 2, and so on. In �gure
4, the distribution of the di�erent TCBs over the slots is shown in more detail.

Figure 4: Distribution of TCBs over available thread slots

As already mentioned above, the developed hardware scheduler consists of two
levels: the �xed priority (FP) scheduler in the issue stage of the pipeline and
the initialisation logic to distribute threads over the slots in all cores. The FP
scheduler is quite simple: there are 4 slots per core and the issue logic chooses
the thread with the highest priority that is ready. The HRT thread always has
the highest priority within one core. The second level of the hardware scheduler
is the initialisation logic, which provides an interface to tell the cores where to
begin the program execution. It sets the program counters and register values
for each slot in every core. In order to optimise the scheduling, it is possible to
additionally use a software scheduler within the thread slots.

Synchronization

The second basic part of the thread management of the MERASA system-
level software besides the scheduling interface is the provision of synchronisation
mechanisms. Due to the enhancement of the simulator to the multi-core version,
but also due to requirements from application side, it was necessary to adapt
these mechanisms.

As a simple base, already in the basic system-level software a spinlock mech-
anism was implemented, which can be used to give only one thread access to
a critical region. If another thread tries to access the same region, it performs
�busy waiting� until the lock is free. Internally, the implementation of spinlocks
is based on the atomic swap instruction. But as the spinlock mechanism occu-
pies full processor power while waiting, it should be avoided from application
side or utilised only for extremely short critical regions.

To lock a critical region, the usage of mutex variables is preferable. Although

5.2 Dynamic Memory Management 15

the implementation is internally based on spinlocks, they cover only a very short
critical region. Whenever a thread has to wait for a lock to become free, it is
suspended from execution and inserted to a waiting list connected to the speci�c
mutex variable. As soon as the mutex is unlocked, the suspended threads are
reactivated following the waiting list. To ensure some degree of fairness, the
waiting list is managed following a �rst-in-�rst-out (FIFO) mechanism with
preferred HRT threads (if multiple HRT threads are in the list, they are also
handled according to FIFO). The waiting lists are implemented considering
constant access time, on insertion as well as on deletion of elements.

From a hard real-time point of view, it does not make sense to use shared locks
for HRT and NRT threads, because a HRT thead may have to wait for a NRT
thread holding a lock. As NRT threads do not have any timing guarantees,
the HRT thread might be delayed unpredictably and therefore loses his prop-
erty of being a HRT thread. However, although an important point in the
coding guidelines for application developers is the avoidance of common mutex
variables for HRT and NRT threads, it appears to be useful especially for debug-
ging purpose. As we implemented a �virtual output� in the MERASA SystemC
simulator which can display debugging messages from di�erent threads on com-
mand line, it is necessary to use at least temporary one common mutex for the
screen output.

In order to give a good solution for thread communication, the thread manage-
ment of the MERASA system software provides condition variables. By calling a
wait on a conditional variable, a thread is suspended and registered to a waiting
list. This progress is very similar to the waiting on a locked mutex variable, as
described above. As soon as the signal function is called, the �rst thread of the
waiting list is unsuspended, on broadcast all waiting threads are unsuspended
and continue execution.

Finally, in order to guarantee a synchronised start of a speci�c section of di�erent
threads, the thread management provides barriers. In an initialisation function,
the application programmer can set the number of threads on which the barrier
should wait. Every time a thread calls the wait function, a counter, connected to
the initialised barrier is incremented and the thread is suspended from execution.
The suspension itself is based on condition variables. As soon as the incremented
counter reaches the value which was set on initialisation, all threads in the
waiting list get a signal, to synchronously continue execution.

5.2. Dynamic Memory Management

In contrast to most traditional management systems, it is necessary for our
memory management to provide timing guarantees. So we introduce a two-
layered memory management and the use of memory pre-allocation. By this
means our objective is to minimise interferences of several threads among each
other and provide higher �exibility for applications at the same time.

On the �rst layer � the node level � large blocks of memory are allocated. This

5.2 Dynamic Memory Management 16

allocation is performed in a mutually exlusive way to keep the state of memory
consistent, so here a blocking of threads can occur. But as this is only done in
the initialisation phase before threads are started, in�uences on the real-time
behaviour of the system can be neglected. On the thread layer the memory
management allocates memory to the executed program in the speci�c thread.
This can be done in real-time without locking, because the memory is taken
from the blocks pre-allocated in the node level � exclusively for the thread.

Alongside we can see another advantage of such a two-layered architecture in
�gure 5. As it is always necessary to keep the information, which memory block
belongs to which thread, a lot of management data is needed by putting them
into a linked list including list pointers (LP). In contrast to the conventional
(one-layered) allocation scheme, our list pointers need only be added to the large
blocks on node level, as shown in 5(b). Apparently, even in this simple example
some memory can be saved and the management data needed to keep track of
the owners is reduced.

(a) Conventional memory management; the blocks of the threads are highly mixed

(b) Two-stage memory management, the threads' memory is kept separated

Figure 5: Example layout of used memory with two threads; MD: Manage-
ment data of the memory allocator, LP: List Pointers to keep track of
thread's memory

When a thread �nishes operation and its resources need to be cleaned up, the
two-layered architecture also has its advantages. Only few large blocks must be
deallocated by the node management. The internal structure of these blocks
can be ignored. Besides, external memory fragmentation is reduced at least on
the node level.

Regarding the implementation, dynamic memory management on the node level
is currently performed by an allocator based on Lea's allocator [2] (DLAlloc).
On the thread level, the user can choose between various implementations of
memory allocators. For non-real-time applications, e�ciency of memory usage
can be improved by a best-�t allocator like DLAlloc. This variant is fast and
space-conserving but hardly real-time capable. If a real-time application re-

5.3 Resource Management 17

quires the �exibility of dynamic storage allocation, an allocator with bounded
execution time can be used. The Two-Level Segregate Fit (TLSF) allocator, as
introduced by [3], is a general purpose dynamic memory allocator speci�cally
designed to meet real-time requirements. Using this alternative, the computa-
tion of worst-case execution time (WCET) is simpli�ed. Whereas in DLAlloc,
the execution time depends on the current state of the allocator and on the
previous de- / allocations, TLSF provides a bounded execution time regardless
of its former operation at the cost of higher internal fragmentation.

In general, the memory management supports di�erent types of memory. It
provides functionalities to de�ne the con�guration, i.e. beginning, end, length
and the cost for the use. By this means, a high �exibility of memory structures
will be achieved.

5.3. Resource Management

It is a main task of the system-level software to enable the usage of computer
hardware. As already mentioned, the MERASA system-level software follows
the microkernel principles, i.e. manages only the most essential system resources
like processing time and memory. To gain maximum �exibility, hardware devices
are accessed through device drivers. These resources are managed by a dedicated
Resource Management unit.

The implementation of the resource management, containing a driver manager,
is a subset of the POSIX standard [5]. It contains the generic open / close

operations as well as functions to access the device (read / write operations)
and for con�guration (ioctl). Valid con�guration values and further parameters
depend on the speci�c device and driver.

In the Resource Management the problem of concurrent use of devices can be
reduced to thread synchronization. For this, the Thread Manager already pro-
vides solutions. In general, there is no limitation on the number of drivers
supported by the resource manager. However, the timing behaviour depends on
this quantity. For the use in real-time applications, the number of drivers must
be limited to guarantee device accesses in bounded time. As the number of de-
vices an application uses is known in advance, constant-access-time handlers can
be arranged during the preparation of the application's execution environment.
Thus, device accesses can be performed in constant time.

6. Conclusion

In this report we presented the full system-level software for a multi-core
MERASA processor. It represents an abstraction layer between application soft-
ware and hard real-time capable multi-core hardware. The architecture consists
of three main parts: The Thread Manager provides an interface to the hardware
scheduler of the MERASA core processor, mechanisms for thread synchroniza-
tion and support for a software scheduler. The Dynamic Memory Management

6 Conclusion 18

minimises interferences of di�erent threads by providing a �exible two-layered
memory management with memory pre-allocation. Finally, the Resource Man-
agement enables the use of peripheral device drivers.

Regarding the di�erent classes of requirements stated in section 2 we can sum-
marise how they are ful�lled in detail: The MERASA system-level software is
multi-threaded and preemptible. For thread synchronization it provides lock
(mutex), conditional and barrier variables. As a real-time capable scheduler is
already implemented in the hardware, the system-level software only guarantees
a correct management of scheduling parameters. The timing behaviour is known
and predictable. All time-critical operations are executed in an initialisation
phase which is independent from the real execution with timing guarantees. The
system-level software is very compact because it concentrates on necessary func-
tionalities and provides a fast and e�cient way of execution. As the two-level
dynamic memory management of the MERASA system-level software keeps the
threads' memory separated on node level, the management e�ort of the chunks is
reduced. Concerning the multithreaded hardware, the software provides mecha-
nisms for synchronization. So it is easy for an application programmer to avoid
race conditions between di�erent threads running in parallel.

The support of pilot studies with the FPGA marks one central task of the third
year of the MERASA project. The requirements for data communication will
be investigated. Then it will be necessary to de�ne a detailed interface to the
FPGA and to integrate drivers for the peripheral components. Finally, the
system-level software will allow using the FPGA prototype of the MERASA
multi-core in evaluation environments of interested industrial partners.

Finally, the pilot studies will be continuously supported and debugged. If ex-
periences make it necessary, adaptations can be added and some �ne tuning of
the whole MERASA system-level software will be done, in order to get the best
possible solution as project outcome.

A Data Structure Documentation 19

A. Data Structure Documentation

A.1. driver Struct Reference

#include <driver.h>

Data Fields

• void ∗ pi
• const char ∗ name
• version_t version

• drv_init_fn_t init

• drv_cleanup_fn_t cleanup

• drvif_t ∗ ops
• pthread_mutex_t lock

• thread_handler owner

• struct driver ∗ sp_next

A.1.1. Detailed Description

This struct describes a device driver (p. 19). Do not use it directly, instead
publish your driver (p. 19) using the SDRIVER (p. 40) macro!

De�nition at line 89 of �le driver.h.

A.1.2. Field Documentation

A.1.2.1. void∗ driver::pi

Process image, only for internal use.

De�nition at line 90 of �le driver.h.

A.1.2.2. const char∗ driver::name

Name of the driver (p. 19).

De�nition at line 91 of �le driver.h.

A.1.2.3. version_t driver::version

Version of this driver (p. 19). This �eld is currently not used, it should be set
to 0x10.

De�nition at line 92 of �le driver.h.

A.1 driver Struct Reference 20

A.1.2.4. drv_init_fn_t driver::init

Initialisation function.

De�nition at line 93 of �le driver.h.

A.1.2.5. drv_cleanup_fn_t driver::cleanup

Cleanup function; currently unused.

De�nition at line 94 of �le driver.h.

A.1.2.6. drvif_t∗ driver::ops

Operations struct.

De�nition at line 95 of �le driver.h.

A.1.2.7. pthread_mutex_t driver::lock

Lock for this driver (p. 19).

De�nition at line 96 of �le driver.h.

A.1.2.8. thread_handler driver::owner

Current owner of this driver (p. 19), -1 if unused.

De�nition at line 97 of �le driver.h.

A.1.2.9. struct driver∗ driver::sp_next [read]

Pointer for a thread's driver (p. 19) stack.

De�nition at line 98 of �le driver.h.

The documentation for this struct was generated from the following �le:

• driver.h

A.2 driver_interface Struct Reference 21

A.2. driver_interface Struct Reference

#include <driver.h>

Data Fields

• drv_open_fn open

• drv_close_fn close

• drv_read_fn read

• drv_write_fn write

• drv_ioctl_fn ioctl

A.2.1. Detailed Description

This struct holds the functions a driver (p. 19) must implement, i.e. open,
close, read, write and ioctl.

De�nition at line 80 of �le driver.h.

A.2.2. Field Documentation

A.2.2.1. drv_open_fn driver_interface::open

De�nition at line 81 of �le driver.h.

A.2.2.2. drv_close_fn driver_interface::close

De�nition at line 82 of �le driver.h.

A.2.2.3. drv_read_fn driver_interface::read

De�nition at line 83 of �le driver.h.

A.2.2.4. drv_write_fn driver_interface::write

De�nition at line 84 of �le driver.h.

A.2.2.5. drv_ioctl_fn driver_interface::ioctl

De�nition at line 85 of �le driver.h.

The documentation for this struct was generated from the following �le:

• driver.h

A.3 mem_cfg_data Struct Reference 22

A.3. mem_cfg_data Struct Reference

#include <types.h>

Data Fields

• char ∗ begin
• char ∗ end
• size_t length

• uint32_t access_cycles

• int32_t cost

• uint32_t �ags

• char ∗ brk
• void ∗ binlist
• pthread_mutex_t mutex

A.3.1. Detailed Description

This struct is for the de�nition of a memory area.

De�nition at line 160 of �le types.h.

A.3.2. Field Documentation

A.3.2.1. char∗ mem_cfg_data::begin

�rst byte of memory area

De�nition at line 161 of �le types.h.

A.3.2.2. char∗ mem_cfg_data::end

�rst byte after the memory area

De�nition at line 162 of �le types.h.

A.3.2.3. size_t mem_cfg_data::length

length of memory area

De�nition at line 163 of �le types.h.

A.3.2.4. uint32_t mem_cfg_data::access_cycles

Average number of cycles to accesss one word of this memory

De�nition at line 164 of �le types.h.

A.3 mem_cfg_data Struct Reference 23

A.3.2.5. int32_t mem_cfg_data::cost

cost for use of this memory

De�nition at line 165 of �le types.h.

A.3.2.6. uint32_t mem_cfg_data::�ags

�ags for further use

De�nition at line 166 of �le types.h.

A.3.2.7. char∗ mem_cfg_data::brk

current break (allocated up to this address)

De�nition at line 167 of �le types.h.

A.3.2.8. void∗ mem_cfg_data::binlist

the gmalloc bins for this memory; usually located at the start of the memory

De�nition at line 168 of �le types.h.

A.3.2.9. pthread_mutex_t mem_cfg_data::mutex

mutex for gmalloc

De�nition at line 169 of �le types.h.

The documentation for this struct was generated from the following �le:

• types.h

A.4 memorystatistics Struct Reference 24

A.4. memorystatistics Struct Reference

#include <sysmonitor.h>

Data Fields

• size_t used

• uint32_t freepages_count

• size_t freepages_size

• size_t min_freepagesize

• size_t max_freepagesize

• size_t max_ext

A.4.1. Detailed Description

describes the state of global memory

De�nition at line 58 of �le sysmonitor.h.

A.4.2. Field Documentation

A.4.2.1. size_t memorystatistics::used

total inuse

De�nition at line 59 of �le sysmonitor.h.

A.4.2.2. uint32_t memorystatistics::freepages_count

the count of free pages

De�nition at line 60 of �le sysmonitor.h.

A.4.2.3. size_t memorystatistics::freepages_size

size of all free pages

De�nition at line 61 of �le sysmonitor.h.

A.4.2.4. size_t memorystatistics::min_freepagesize

size of greatest free page

De�nition at line 62 of �le sysmonitor.h.

A.4.2.5. size_t memorystatistics::max_freepagesize

size of smallest free page

A.4 memorystatistics Struct Reference 25

De�nition at line 63 of �le sysmonitor.h.

A.4.2.6. size_t memorystatistics::max_ext

maximum amount of memory that can be allocated using sbrk()

De�nition at line 64 of �le sysmonitor.h.

The documentation for this struct was generated from the following �le:

• sysmonitor.h

A.5 pthread_attr_t Struct Reference 26

A.5. pthread_attr_t Struct Reference

#include <types.h>

Data Fields

• sched_param param

• memory_t ∗ mem
• uint32_t �ags

• uint32_t heapsize

• enum sched_policy policy

A.5.1. Detailed Description

POSIX thread attributes

De�nition at line 178 of �le types.h.

A.5.2. Field Documentation

A.5.2.1. sched_param pthread_attr_t::param

De�nition at line 179 of �le types.h.

A.5.2.2. memory_t∗ pthread_attr_t::mem

De�nition at line 180 of �le types.h.

A.5.2.3. uint32_t pthread_attr_t::�ags

De�nition at line 181 of �le types.h.

A.5.2.4. uint32_t pthread_attr_t::heapsize

De�nition at line 182 of �le types.h.

A.5.2.5. enum sched_policy pthread_attr_t::policy

De�nition at line 183 of �le types.h.

The documentation for this struct was generated from the following �le:

• types.h

A.6 pthread_barrier_t Struct Reference 27

A.6. pthread_barrier_t Struct Reference

#include <types.h>

Data Fields

• int needed

• int called

• pthread_mutex_t mutex

• pthread_cond_t cond

A.6.1. Detailed Description

Barrier - ∗not fully tested yet∗

De�nition at line 145 of �le types.h.

A.6.2. Field Documentation

A.6.2.1. int pthread_barrier_t::needed

De�nition at line 146 of �le types.h.

A.6.2.2. int pthread_barrier_t::called

De�nition at line 147 of �le types.h.

A.6.2.3. pthread_mutex_t pthread_barrier_t::mutex

De�nition at line 148 of �le types.h.

A.6.2.4. pthread_cond_t pthread_barrier_t::cond

De�nition at line 149 of �le types.h.

The documentation for this struct was generated from the following �le:

• types.h

A.7 pthread_barrierattr_t Struct Reference 28

A.7. pthread_barrierattr_t Struct Reference

#include <types.h>

Data Fields

• uint32_t test

A.7.1. Detailed Description

Barrier attributes

De�nition at line 152 of �le types.h.

A.7.2. Field Documentation

A.7.2.1. uint32_t pthread_barrierattr_t::test

De�nition at line 153 of �le types.h.

The documentation for this struct was generated from the following �le:

• types.h

A.8 pthread_cond Struct Reference 29

A.8. pthread_cond Struct Reference

#include <types.h>

Data Fields

• pthread_mutex_t ∗ mutex
• tcb_t ∗ waitlist_�rst_out
• tcb_t ∗ waitlist_last_out_hrt
• tcb_t ∗ waitlist_last_out

A.8.1. Detailed Description

Conditional variable

De�nition at line 134 of �le types.h.

A.8.2. Field Documentation

A.8.2.1. pthread_mutex_t∗ pthread_cond::mutex

De�nition at line 135 of �le types.h.

A.8.2.2. tcb_t∗ pthread_cond::waitlist_�rst_out

De�nition at line 136 of �le types.h.

A.8.2.3. tcb_t∗ pthread_cond::waitlist_last_out_hrt

De�nition at line 137 of �le types.h.

A.8.2.4. tcb_t∗ pthread_cond::waitlist_last_out

De�nition at line 138 of �le types.h.

The documentation for this struct was generated from the following �le:

• types.h

A.9 pthread_condattr_t Struct Reference 30

A.9. pthread_condattr_t Struct Reference

#include <types.h>

Data Fields

• uint32_t test

A.9.1. Detailed Description

Conditional attributes

De�nition at line 141 of �le types.h.

A.9.2. Field Documentation

A.9.2.1. uint32_t pthread_condattr_t::test

De�nition at line 142 of �le types.h.

The documentation for this struct was generated from the following �le:

• types.h

A.10 pthread_mutex Struct Reference 31

A.10. pthread_mutex Struct Reference

#include <types.h>

Data Fields

• cc_spinlock_t the_lock

• cc_spinlock_t guard

• thread_handler owner

• sched_t prev_sched

• tcb_t ∗ waitlist_�rst_out
• tcb_t ∗ waitlist_last_out_hrt
• tcb_t ∗ waitlist_last_out

A.10.1. Detailed Description

Mutex variable

De�nition at line 120 of �le types.h.

A.10.2. Field Documentation

A.10.2.1. cc_spinlock_t pthread_mutex::the_lock

De�nition at line 121 of �le types.h.

A.10.2.2. cc_spinlock_t pthread_mutex::guard

De�nition at line 122 of �le types.h.

A.10.2.3. thread_handler pthread_mutex::owner

De�nition at line 123 of �le types.h.

A.10.2.4. sched_t pthread_mutex::prev_sched

Scheduling parameters before the guarded critical block

De�nition at line 124 of �le types.h.

A.10.2.5. tcb_t∗ pthread_mutex::waitlist_�rst_out

De�nition at line 125 of �le types.h.

A.10 pthread_mutex Struct Reference 32

A.10.2.6. tcb_t∗ pthread_mutex::waitlist_last_out_hrt

De�nition at line 126 of �le types.h.

A.10.2.7. tcb_t∗ pthread_mutex::waitlist_last_out

De�nition at line 127 of �le types.h.

The documentation for this struct was generated from the following �le:

• types.h

A.11 pthread_mutexattr_t Struct Reference 33

A.11. pthread_mutexattr_t Struct Reference

#include <types.h>

Data Fields

• uint32_t test

A.11.1. Detailed Description

Mutex attributes

De�nition at line 130 of �le types.h.

A.11.2. Field Documentation

A.11.2.1. uint32_t pthread_mutexattr_t::test

De�nition at line 131 of �le types.h.

The documentation for this struct was generated from the following �le:

• types.h

A.12 sched_param Struct Reference 34

A.12. sched_param Struct Reference

#include <types.h>

Data Fields

• sched_t sched_priority

A.12.1. Detailed Description

Scheduling parameter

De�nition at line 110 of �le types.h.

A.12.2. Field Documentation

A.12.2.1. sched_t sched_param::sched_priority

De�nition at line 111 of �le types.h.

The documentation for this struct was generated from the following �le:

• types.h

A.13 thread_memorystatistics Struct Reference 35

A.13. thread_memorystatistics Struct Reference

#include <sysmonitor.h>

Data Fields

• size_t reserved

• size_t used

• uint32_t freechunks_count

• size_t min_freechunksize

• size_t max_freechunksize

A.13.1. Detailed Description

describes the state of a thread's memory

De�nition at line 75 of �le sysmonitor.h.

A.13.2. Field Documentation

A.13.2.1. size_t thread_memorystatistics::reserved

De�nition at line 76 of �le sysmonitor.h.

A.13.2.2. size_t thread_memorystatistics::used

De�nition at line 77 of �le sysmonitor.h.

A.13.2.3. uint32_t thread_memorystatistics::freechunks_count

De�nition at line 78 of �le sysmonitor.h.

A.13.2.4. size_t thread_memorystatistics::min_freechunksize

De�nition at line 79 of �le sysmonitor.h.

A.13.2.5. size_t thread_memorystatistics::max_freechunksize

De�nition at line 80 of �le sysmonitor.h.

The documentation for this struct was generated from the following �le:

• sysmonitor.h

B File Documentation 36

B. File Documentation

B.1. con�g.h File Reference

Global de�nitions for general con�guration.

#include <sys/types.h>

De�nes

• #de�ne NO_CORES 4

• #de�ne NRT_SLOTS_PER_CORE 3

• #de�ne HRT_THREADS NO_CORES

• #de�ne NRT_THREADS (NO_CORES ∗ NRT_SLOTS_PER_-
CORE)

• #de�ne __USTACK_SIZE 20480

• #de�ne HRT_STACK_BASE ((address) 0xb0000000)

• #de�ne __CSA_SIZE 8192

• #de�ne CSA_BASE ((address) 0xd0000000)

• #de�ne HRT_CSA_CNT 128

• #de�ne NRT_CSA_CNT 128

• #de�ne LOGBUFFLEN 512

• #de�ne TCB_COUNT 128

• #de�ne TCB_BEGIN 0x90000100

• #de�ne TCB_END 0x90001000

• #de�ne MSS_HRT (∗((uint32_t volatile ∗) 0x90000014))
• #de�ne MSS_NRT (∗((uint32_t volatile ∗) 0x90000018))
• #de�ne MSS_MY_CORE (∗((uint32_t volatile ∗) 0x90000000))
• #de�ne MSS_MY_SLOT (∗((uint32_t volatile ∗) 0x90000004))
• #de�ne MSS_MY_TCB (∗((uint32_t volatile ∗) 0x90000008))
• #de�ne STM_TIM0 (∗((uint32_t volatile ∗) 0xF0000210))

B.1.1. Detailed Description

This header �le includes the general con�guration of the MERASA System-Level
Software. In many global de�nitions you can set the details, e.g. the number
of used cores, the basic con�guration of scheduling, the adresses of used thread
memory etc.

De�nition in �le con�g.h.

B.1 con�g.h File Reference 37

B.1.2. De�ne Documentation

B.1.2.1. #de�ne NO_CORES 4

The number of processor cores used in the System Software. Of course, the
distribution of threads over the cores is always done by the scheduler, but this
de�nition makes sure from software side, that there will not be more threads
created than the processor can handle.

De�nition at line 54 of �le con�g.h.

B.1.2.2. #de�ne NRT_SLOTS_PER_CORE 3

The number of non real-time slots per core. Usually, one MERASA core provides
four slots - the �rst is for hard real-time and the three others for non real-time
threads.

De�nition at line 57 of �le con�g.h.

B.1.2.3. #de�ne HRT_THREADS NO_CORES

The number of hard real-time threads. Usually, there is one hard real-time
thread per core.

De�nition at line 63 of �le con�g.h.

B.1.2.4. #de�ne NRT_THREADS (NO_CORES ∗ NRT_SLOTS_-
PER_CORE)

The number of non real-time threads. Usually, there is one hard-real time thread
per core, all others are non real-time threads.

De�nition at line 66 of �le con�g.h.

B.1.2.5. #de�ne __USTACK_SIZE 20480

The size of the reserved user stack.

De�nition at line 69 of �le con�g.h.

B.1.2.6. #de�ne HRT_STACK_BASE ((address) 0xb0000000)

The base address of the common stack for HRT threads (optimised for the use
of a scratchpad).

De�nition at line 72 of �le con�g.h.

B.1.2.7. #de�ne __CSA_SIZE 8192

The size of one reserved context save area (CSA). This is necessary to save the
context (i.e. register values ...) of a function before performing another call.

B.1 con�g.h File Reference 38

De�nition at line 75 of �le con�g.h.

B.1.2.8. #de�ne CSA_BASE ((address) 0xd0000000)

The base address of the reserved context save areas (CSA).

De�nition at line 78 of �le con�g.h.

B.1.2.9. #de�ne HRT_CSA_CNT 128

The number of context save areas reserved for hard real-time threads.

De�nition at line 81 of �le con�g.h.

B.1.2.10. #de�ne NRT_CSA_CNT 128

The number of context save areas reserved for non real-time threads.

De�nition at line 84 of �le con�g.h.

B.1.2.11. #de�ne LOGBUFFLEN 512

The bu�er length for log information in the virtual output.

De�nition at line 90 of �le con�g.h.

B.1.2.12. #de�ne TCB_COUNT 128

The maximum number of threads. This is only a theoretical value, because the
real number of threads is determined by the core and the available slots per
core.

De�nition at line 99 of �le con�g.h.

B.1.2.13. #de�ne TCB_BEGIN 0x90000100

The base address of Thread Control Blocks (TCBs). The range before TCB_-
BEGIN is reserved for some speci�c scheduling information (see the MSS_∗
de�nitions for details). The begin address for the �rst Thread Control Block
(TCB). This adress is usually used for the boot thread.

De�nition at line 105 of �le con�g.h.

B.1.2.14. #de�ne TCB_END 0x90001000

The end address of the Thread Control Blocks (�rst byte after).

De�nition at line 108 of �le con�g.h.

B.1 con�g.h File Reference 39

B.1.2.15. #de�ne MSS_HRT (∗((uint32_t volatile ∗) 0x90000014))

A pointer to the address of the �rst TCB in the list of hard real-time threads.

De�nition at line 111 of �le con�g.h.

B.1.2.16. #de�ne MSS_NRT (∗((uint32_t volatile ∗) 0x90000018))

A pointer to the address of the �rst TCB in the list of non real-time threads.

De�nition at line 114 of �le con�g.h.

B.1.2.17. #de�ne MSS_MY_CORE (∗((uint32_t volatile ∗)
0x90000000))

Contains the core number of the actual thread.

De�nition at line 117 of �le con�g.h.

Referenced by get_current_core().

B.1.2.18. #de�ne MSS_MY_SLOT (∗((uint32_t volatile ∗)
0x90000004))

Contains the slot number of the actual thread

De�nition at line 120 of �le con�g.h.

Referenced by get_current_slot().

B.1.2.19. #de�ne MSS_MY_TCB (∗((uint32_t volatile ∗) 0x90000008))

Contains the TCB address of the actual thread

De�nition at line 123 of �le con�g.h.

B.1.2.20. #de�ne STM_TIM0 (∗((uint32_t volatile ∗) 0xF0000210))

Contains the actual system time.

De�nition at line 126 of �le con�g.h.

B.2 driver.h File Reference 40

B.2. driver.h File Reference

Macros for writing MERASA device drivers.

#include <pthread.h>

#include <stdarg.h>

#include <sys/types.h>

Data Structures

• struct driver_interface

• struct driver

De�nes

• #de�ne SDRIVER(n, v, i, c, o)

Typedefs

• typedef int32_t(∗ drv_init_fn_t)(const void ∗)
• typedef int32_t(∗ drv_cleanup_fn_t)(void)
• typedef int32_t(∗ drv_open_fn)(void)

• typedef int32_t(∗ drv_close_fn)(void)

• typedef size_t(∗ drv_read_fn)(void ∗, size_t)
• typedef size_t(∗ drv_write_fn)(const void ∗, size_t)
• typedef size_t(∗ drv_ioctl_fn)(uint32_t, va_list)

• typedef struct driver_interface drvif_t

• typedef struct driver driver_t

B.2.1. Detailed Description

This �le provides macros and data types that are necessary to write a hardware
device driver (p. 19) for the MERASA operating system. For examples how
to use them, see existing driver (p. 19) �les. Please make sure to include all
necessary functions within the driver (p. 19) program. The DriverManager will
only resolve dependencies to OS API calls provided in the include directory!

De�nition in �le driver.h.

B.2.2. De�ne Documentation

B.2.2.1. #de�ne SDRIVER(n, v, i, c, o)

Value:

B.2 driver.h File Reference 41

struct driver sdriver_ ##n = { \

.name = #n, \

.version = v, \

.init = i, \

.cleanup = c, \

.ops = o, \

.pi = NULL, \

.owner = NO_THREAD, \

.sp_next = NULL }

Macro for a static driver (p. 19).

Use this macro to publish your own drivers. For examples how to use them, see
existing driver (p. 19) �les.

Parameters:

n Name of the driver (p. 19).

v Version of the driver (p. 19) (shoud be set to 0x10).

i Initialisation function.

c Cleanup function.

o Operations struct (drvif_t (p. 42)).

De�nition at line 115 of �le driver.h.

B.2.3. Typedef Documentation

B.2.3.1. typedef int32_t(∗ drv_init_fn_t)(const void ∗)

The initialisation function of a driver (p. 19). The passed pointer points to the
device's start address in memory. Currently, this function must not fail!

De�nition at line 58 of �le driver.h.

B.2.3.2. typedef int32_t(∗ drv_cleanup_fn_t)(void)

The cleanup function of a driver (p. 19).

De�nition at line 61 of �le driver.h.

B.2.3.3. typedef int32_t(∗ drv_open_fn)(void)

The open function of a driver (p. 19).

De�nition at line 64 of �le driver.h.

B.2.3.4. typedef int32_t(∗ drv_close_fn)(void)

The close function of a driver (p. 19).

De�nition at line 67 of �le driver.h.

B.2 driver.h File Reference 42

B.2.3.5. typedef size_t(∗ drv_read_fn)(void ∗, size_t)

The read function of a driver (p. 19).

De�nition at line 70 of �le driver.h.

B.2.3.6. typedef size_t(∗ drv_write_fn)(const void ∗, size_t)

The write function of a driver (p. 19).

De�nition at line 73 of �le driver.h.

B.2.3.7. typedef size_t(∗ drv_ioctl_fn)(uint32_t, va_list)

The ioctl function of a driver (p. 19).

De�nition at line 76 of �le driver.h.

B.2.3.8. typedef struct driver_interface drvif_t

B.2.3.9. typedef struct driver driver_t

B.3 drivermanager.h File Reference 43

B.3. drivermanager.h File Reference

Macros to declare and register a driver (p. 19).

De�nes

• #de�ne EXTERN_DRIVER(name) extern driver_t sdriver_-
##name;

• #de�ne REGISTER_DRIVER(name) &sdriver_##name

B.3.1. Detailed Description

This �le provides macros necessary to declare and register a driver (p. 19) in
the user application.

De�nition in �le drivermanager.h.

B.3.2. De�ne Documentation

B.3.2.1. #de�ne EXTERN_DRIVER(name) extern driver_t sdriver_-
##name;

Simple macro for the declaration of a driver (p. 19).

De�nition at line 59 of �le drivermanager.h.

B.3.2.2. #de�ne REGISTER_DRIVER(name) &sdriver_##name

Simple macro to register a driver (p. 19) in the user application.

De�nition at line 65 of �le drivermanager.h.

B.4 error.h File Reference 44

B.4. error.h File Reference

De�nitions of error numbers.

#include <sys/types.h>

De�nes

• #de�ne E_OK 0

• #de�ne EPERM 1

• #de�ne ENOENT 2

• #de�ne ESRCH 3

• #de�ne EINTR 4

• #de�ne EIO 5

• #de�ne ENXIO 6

• #de�ne E2BIG 7

• #de�ne ENOEXEC 8

• #de�ne EBADF 9

• #de�ne ECHILD 10

• #de�ne EAGAIN 11

• #de�ne ENOMEM 12

• #de�ne EACCES 13

• #de�ne EFAULT 14

• #de�ne ENOTBLK 15

• #de�ne EBUSY 16

• #de�ne EEXIST 17

• #de�ne EXDEV 18

• #de�ne ENODEV 19

• #de�ne ENOTDIR 20

• #de�ne EISDIR 21

• #de�ne EINVAL 22

• #de�ne ENFILE 23

• #de�ne EMFILE 24

• #de�ne ENOTTY 25

• #de�ne ETXTBSY 26

• #de�ne EFBIG 27

• #de�ne ENOSPC 28

• #de�ne ESPIPE 29

• #de�ne EROFS 30

• #de�ne EMLINK 31

B.4 error.h File Reference 45

• #de�ne EPIPE 32

• #de�ne EDOM 33

• #de�ne ERANGE 34

Functions

• error_t get_errno (void)

• void set_errno (error_t errno)

B.4.1. Detailed Description

This �le contains de�nitions of error numbers, similar to POSIX.

De�nition in �le error.h.

B.4.2. De�ne Documentation

B.4.2.1. #de�ne E_OK 0

De�nition at line 53 of �le error.h.

B.4.2.2. #de�ne EPERM 1

Operation not permitted

De�nition at line 57 of �le error.h.

B.4.2.3. #de�ne ENOENT 2

No such �le or directory

De�nition at line 58 of �le error.h.

B.4.2.4. #de�ne ESRCH 3

No such process

De�nition at line 59 of �le error.h.

B.4.2.5. #de�ne EINTR 4

Interrupted system call

De�nition at line 60 of �le error.h.

B.4.2.6. #de�ne EIO 5

I/O error

B.4 error.h File Reference 46

De�nition at line 61 of �le error.h.

B.4.2.7. #de�ne ENXIO 6

No such device or address

De�nition at line 62 of �le error.h.

B.4.2.8. #de�ne E2BIG 7

Argument list too long

De�nition at line 63 of �le error.h.

B.4.2.9. #de�ne ENOEXEC 8

Exec format error

De�nition at line 64 of �le error.h.

B.4.2.10. #de�ne EBADF 9

Bad �le number

De�nition at line 65 of �le error.h.

B.4.2.11. #de�ne ECHILD 10

No child processes

De�nition at line 66 of �le error.h.

B.4.2.12. #de�ne EAGAIN 11

Try again

De�nition at line 67 of �le error.h.

B.4.2.13. #de�ne ENOMEM 12

Out of memory

De�nition at line 68 of �le error.h.

B.4.2.14. #de�ne EACCES 13

Permission denied

De�nition at line 69 of �le error.h.

B.4 error.h File Reference 47

B.4.2.15. #de�ne EFAULT 14

Bad address

De�nition at line 70 of �le error.h.

B.4.2.16. #de�ne ENOTBLK 15

Block device required

De�nition at line 71 of �le error.h.

B.4.2.17. #de�ne EBUSY 16

Device or resource busy

De�nition at line 72 of �le error.h.

B.4.2.18. #de�ne EEXIST 17

File exists

De�nition at line 73 of �le error.h.

B.4.2.19. #de�ne EXDEV 18

Cross-device link

De�nition at line 74 of �le error.h.

B.4.2.20. #de�ne ENODEV 19

No such device

De�nition at line 75 of �le error.h.

B.4.2.21. #de�ne ENOTDIR 20

Not a directory

De�nition at line 76 of �le error.h.

B.4.2.22. #de�ne EISDIR 21

Is a directory

De�nition at line 77 of �le error.h.

B.4.2.23. #de�ne EINVAL 22

Invalid argument

De�nition at line 78 of �le error.h.

B.4 error.h File Reference 48

B.4.2.24. #de�ne ENFILE 23

File table over�ow

De�nition at line 79 of �le error.h.

B.4.2.25. #de�ne EMFILE 24

Too many open �les

De�nition at line 80 of �le error.h.

B.4.2.26. #de�ne ENOTTY 25

Not a typewriter

De�nition at line 81 of �le error.h.

B.4.2.27. #de�ne ETXTBSY 26

Text �le busy

De�nition at line 82 of �le error.h.

B.4.2.28. #de�ne EFBIG 27

File too large

De�nition at line 83 of �le error.h.

B.4.2.29. #de�ne ENOSPC 28

No space left on device

De�nition at line 84 of �le error.h.

B.4.2.30. #de�ne ESPIPE 29

Illegal seek

De�nition at line 85 of �le error.h.

B.4.2.31. #de�ne EROFS 30

Read-only �le system

De�nition at line 86 of �le error.h.

B.4.2.32. #de�ne EMLINK 31

Too many links

De�nition at line 87 of �le error.h.

B.4 error.h File Reference 49

B.4.2.33. #de�ne EPIPE 32

Broken pipe

De�nition at line 88 of �le error.h.

B.4.2.34. #de�ne EDOM 33

Math argument out of domain of func

De�nition at line 89 of �le error.h.

B.4.2.35. #de�ne ERANGE 34

Math result not representable

De�nition at line 90 of �le error.h.

B.4.3. Function Documentation

B.4.3.1. error_t get_errno (void)

Get the error number of the actual thread.

Returns:

E_OK if there is no error, otherwise the speci�ed error number.

B.4.3.2. void set_errno (error_t errno)

Set the error number of the actual thread.

B.5 fcntl.h File Reference 50

B.5. fcntl.h File Reference

Open or create a device for reading or writing.

Functions

• int open (const char ∗path, int �ags,...)

B.5.1. Detailed Description

De�nition in �le fcntl.h.

B.5.2. Function Documentation

B.5.2.1. int open (const char ∗ path, int �ags, ...)

Open or create a device for reading or writing.

The device name speci�ed by path is opened for reading and/or writing as spec-
i�ed by the argument �ags and the descriptor returned to the calling process.

Returns:

If successful, open() (p. 50) returns a non-negative integer, termed a device
descriptor. It returns -1 on failure, and sets errno to indicate the error.

B.6 log.h File Reference 51

B.6. log.h File Reference

Logging macros for the virtual output of the MERASA simulator.

#include <config.h>

#include <vo.h>

#include <pthread.h>

De�nes

• #de�ne LOGLEVEL_DEBUG 5

• #de�ne LOGLEVEL_INFO 4

• #de�ne LOGLEVEL_WARN 3

• #de�ne LOGLEVEL_ERR 2

• #de�ne LOGLEVEL_FATAL 1

• #de�ne LOGLEVEL_NONE 0

• #de�ne LOGDBL_D4C(w, c1, c2, c3, c4)

• #de�ne LOGDBL_X4C(w, c1, c2, c3, c4)

• #de�ne log_debug_s(msg, args...)

• #de�ne log_debug(msg)

• #de�ne log_info_s(msg, args...)

• #de�ne log_info(msg)

• #de�ne log_warn_s(msg, args...)

• #de�ne log_warn(msg)

• #de�ne log_err_s(msg, args...)

• #de�ne log_err(msg)

• #de�ne log_fatal_s(msg, args...)

• #de�ne log_fatal(msg)

Functions

• int sprintf (char ∗str, const char ∗format,...)

Variables

• pthread_mutex_t log_mutex

B.6.1. Detailed Description

This �le provides logging facilities by means of di�erent loglevels (DEBUG,
INFO, WARN, ERR, FATAL, NONE); the global loglevel is usually de�ned in

B.6 log.h File Reference 52

the Make�le. Attention: As the log output of a thread is locked by one common
mutex, in some cases there may be problems like priority inversion. For this
reason, we suggest to use the fast one-cycle logging methods LOGDBL_D4C,
LOGDBL_DS, LOGDBL_X4C and LOGDBL_XS (for details of usage see
below).

De�nition in �le log.h.

B.6.2. De�ne Documentation

B.6.2.1. #de�ne LOGLEVEL_DEBUG 5

De�nition at line 57 of �le log.h.

B.6.2.2. #de�ne LOGLEVEL_INFO 4

De�nition at line 58 of �le log.h.

B.6.2.3. #de�ne LOGLEVEL_WARN 3

De�nition at line 59 of �le log.h.

B.6.2.4. #de�ne LOGLEVEL_ERR 2

De�nition at line 60 of �le log.h.

B.6.2.5. #de�ne LOGLEVEL_FATAL 1

De�nition at line 61 of �le log.h.

B.6.2.6. #de�ne LOGLEVEL_NONE 0

De�nition at line 62 of �le log.h.

B.6.2.7. #de�ne LOGDBL_D4C(w, c1, c2, c3, c4)

Value:

{ \

uint64_t v = (w) | \

((uint64_t)(c1)<<32) | \

((uint64_t)(c2)<<40) | \

((uint64_t)(c3)<<48) | \

((uint64_t)(c4)<<56); \

P64(VO_DBL_D4C) = v; \

}

Fast log of one decimal and four chars.

B.6 log.h File Reference 53

This macro enables a very fast logging output of one decimal and four chars
(usually describing the decimal). As the output is �nished within one cycle, you
don't need the logging mutex and no priority inversion can occur.

De�nition at line 91 of �le log.h.

B.6.2.8. #de�ne LOGDBL_X4C(w, c1, c2, c3, c4)

Value:

{ \

uint64_t v = (w) | \

((uint64_t)(c1)<<32) | \

((uint64_t)(c2)<<40) | \

((uint64_t)(c3)<<48) | \

((uint64_t)(c4)<<56); \

P64(VO_DBL_X4C) = v; \

}

Fast log of one decimal and a string.

This macro enables a very fast logging output of one decimal and a string. This
string should contain 4 characters - if it's longer, it will be cut. As the output
is �nished within one cycle, you don't need the logging mutex and no priority
inversion can occur.

Fast log of one hexadecimal and four chars This macro enables a very fast logging
output of one hexadecimal and four chars (usually describing the hexadecimal).
As the output is �nished within one cycle, you don't need the logging mutex
and no priority inversion can occur.

De�nition at line 113 of �le log.h.

B.6.2.9. #de�ne log_debug_s(msg, args...)

Value:

{ \

LOCK_LOG(); \

char buffer[LOGBUFFLEN]; \

sprintf(buffer, msg, args); \

printf("[5,%u] %s:%d %s\n", get_thread(),__FILE__, __LINE__, buffer); \

UNLOCK_LOG(); \

}

Fast log of one hexadecimal and a string.

This macro enables a very fast logging output of one hexadecimal and a string.
This string should contain 4 characters - if it's longer, it will be cut. As the
output is �nished within one cycle, you don't need the logging mutex and no
priority inversion can occur.

B.6 log.h File Reference 54

Logging function for debug output with several arguments This macro enables
a logging output for debugging. It is used similar to the common printf() with
an unde�ned number of arguments.

De�nition at line 141 of �le log.h.

B.6.2.10. #de�ne log_debug(msg)

Value:

{ \

LOCK_LOG(); \

printf("[5,%u] %s:%d %s\n", get_thread(),__FILE__, __LINE__, msg); \

UNLOCK_LOG(); \

}

Logging function for a string debug output.

This macro enables a logging output for debugging. It is used similar to the
common printf(), but only for one argument.

De�nition at line 158 of �le log.h.

B.6.2.11. #de�ne log_info_s(msg, args...)

Value:

{ \

LOCK_LOG(); \

char buffer[LOGBUFFLEN]; \

sprintf(buffer, msg, args); \

printf("[4,%u] %s:%d %s\n", get_thread(),__FILE__, __LINE__, buffer); \

UNLOCK_LOG(); \

}

Logging function for info output with several arguments.

This macro enables a logging output for information. It is used similar to the
common printf() with an unde�ned number of arguments.

De�nition at line 174 of �le log.h.

B.6.2.12. #de�ne log_info(msg)

Value:

{ \

LOCK_LOG(); \

printf("[4,%u] %s:%d %s\n", get_thread(),__FILE__, __LINE__, msg); \

UNLOCK_LOG(); \

}

B.6 log.h File Reference 55

Logging function for a string info output.

This macro enables a logging output for information. It is used similar to the
common printf(), but only for one argument.

De�nition at line 190 of �le log.h.

B.6.2.13. #de�ne log_warn_s(msg, args...)

Value:

{ \

LOCK_LOG(); \

char buffer[LOGBUFFLEN]; \

sprintf(buffer, msg, args); \

printf("[3,%u] %s:%d %s\n", get_thread(),__FILE__, __LINE__, buffer); \

UNLOCK_LOG(); \

}

Logging function for warning output with several arguments.

This macro enables a logging output for warning. It is used similar to the
common printf() with an unde�ned number of arguments.

De�nition at line 206 of �le log.h.

B.6.2.14. #de�ne log_warn(msg)

Value:

{ \

LOCK_LOG(); \

printf("[3,%u] %s:%d %s\n", get_thread(),__FILE__, __LINE__, msg); \

UNLOCK_LOG(); \

}

Logging function for a string warning output.

This macro enables a logging output for warning. It is used similar to the
common printf(), but only for one argument.

De�nition at line 222 of �le log.h.

B.6.2.15. #de�ne log_err_s(msg, args...)

Value:

{ \

LOCK_LOG(); \

char buffer[LOGBUFFLEN]; \

sprintf(buffer, msg, args); \

printf("[2,%u] %s:%d %s\n", get_thread(),__FILE__, __LINE__, buffer); \

UNLOCK_LOG(); \

}

B.6 log.h File Reference 56

Logging function for error output with several arguments.

This macro enables a logging output for error. It is used similar to the common
printf() with an unde�ned number of arguments.

De�nition at line 238 of �le log.h.

B.6.2.16. #de�ne log_err(msg)

Value:

{ \

LOCK_LOG(); \

printf("[2,%u] %s:%d %s\n", get_thread(),__FILE__, __LINE__, msg); \

UNLOCK_LOG(); \

}

Logging function for a string error output.

This macro enables a logging output for error. It is used similar to the common
printf(), but only for one argument.

De�nition at line 254 of �le log.h.

B.6.2.17. #de�ne log_fatal_s(msg, args...)

Value:

{ \

LOCK_LOG(); \

char buffer[LOGBUFFLEN]; \

sprintf(buffer, msg, args); \

printf("[1,%u] %s:%d %s\n", get_thread(),__FILE__, __LINE__, buffer); \

UNLOCK_LOG(); \

}

Logging function for fatal error output with several arguments.

This macro enables a logging output for fatal error. It is used similar to the
common printf() with an unde�ned number of arguments.

De�nition at line 270 of �le log.h.

B.6.2.18. #de�ne log_fatal(msg)

Value:

{ \

LOCK_LOG(); \

printf("[1,%u] %s:%d %s\n", get_thread(),__FILE__, __LINE__, msg); \

UNLOCK_LOG(); \

}

B.6 log.h File Reference 57

Logging function for a string fatal error output.

This macro enables a logging output for fatal error. It is used similar to the
common printf(), but only for one argument.

De�nition at line 286 of �le log.h.

B.6.3. Function Documentation

B.6.3.1. int sprintf (char ∗ str, const char ∗ format, ...)

Better use the logging macros.

B.6.4. Variable Documentation

B.6.4.1. pthread_mutex_t log_mutex

The mutex for the virtual output of the MERASA simulator. Necessary, if you
don't want a mixture of chars from di�erent threads.

B.7 memory-desc.h File Reference 58

B.7. memory-desc.h File Reference

Description of memory.

#include <sys/types.h>

#include <pthread.h>

De�nes

• #de�ne MEMORY_CFG(b, l, ac, c, f)

Variables

• memory_t node_mem_con�g []

• const size_t mem_con�g_len

B.7.1. Detailed Description

This �le provides functionalities to de�ne and characterize a memory region.

De�nition in �le memory-desc.h.

B.7.2. De�ne Documentation

B.7.2.1. #de�ne MEMORY_CFG(b, l, ac, c, f)

Value:

{ .begin = b, \

.length = l, \

.end = b + l, \

.access_cycles = ac, \

.cost = c, \

.flags = f, \

.brk = 0, \

.binlist = 0 \

}

Use this macro to de�ne a memory region. See an example of usage in the
userapp.c.

Parameters:

b begin

l lenght

ac access_cycles

c cost

B.7 memory-desc.h File Reference 59

f �ags

De�nition at line 83 of �le memory-desc.h.

B.7.3. Variable Documentation

B.7.3.1. memory_t node_mem_con�g[]

You need to de�ne this constant in the OS for one speci�c node con�guration.
Use the MEMORY_CFG (p. 58) macro below for �lling this array!

B.7.3.2. const size_t mem_con�g_len

For correct access to node_mem_con�g (p. 59), you have to set this constant
as sizeof(node_mem_con�g)/sizeof(memory_t).

B.8 memory.h File Reference 60

B.8. memory.h File Reference

Basic functionalities of memory management.

#include <pthread.h>

#include <sys/types.h>

#include <memory-desc.h>

Functions

• void ∗ malloc (size_t size)
• void ∗ calloc (size_t number, size_t size)
• void ∗ realloc (void ∗ptr, size_t size)
• void free (void ∗ptr)
• void ∗ tcmemcpy (void ∗dest, const void ∗src, size_t n)
• bool_t has_write_permission (void ∗mem)

B.8.1. Detailed Description

This �le provides functionalities to allocate and free memory, but also to copy
memory regions or check for write permissions.

De�nition in �le memory.h.

B.8.2. Function Documentation

B.8.2.1. void∗ malloc (size_t size)

The malloc() (p. 60) function allocates size bytes of memory and returns a
pointer to the allocated memory.

Parameters:

size amount of memory to allocate

B.8.2.2. void∗ calloc (size_t number, size_t size)

The calloc() (p. 60) function allocates space for number objects, each size bytes
in length. The result is identical to calling malloc() (p. 60) with an argument
of "number ∗ size", with the exception that the allocated memory is explicitly
initialized to zero bytes.

B.8.2.3. void∗ realloc (void ∗ ptr, size_t size)

The realloc() (p. 60) function changes the size of the previously allocated mem-
ory referenced by ptr to size bytes. The contents of the memory are unchanged
up to the lesser of the new and old sizes. If the new size is larger, the value

B.8 memory.h File Reference 61

of the newly allocated portion of the memory is unde�ned. Upon success, the
memory referenced by ptr is freed and a pointer to the newly allocated memory
is returned.

B.8.2.4. void free (void ∗ ptr)

Free a previously allocated block of the current thread.

Parameters:

ptr the memory block

B.8.2.5. void∗ tcmemcpy (void ∗ dest, const void ∗ src, size_t n)

E�ective copying of (non-overlapping!) memory.

B.8.2.6. bool_t has_write_permission (void ∗ mem)

Check if the thread is allowed to write to the speci�ed address.

B.9 merasa-ssw.h File Reference 62

B.9. merasa-ssw.h File Reference

All MERASA includes.

#include <error.h>

#include <driver.h>

#include <drivermanager.h>

#include <fcntl.h>

#include <log.h>

#include <memory-desc.h>

#include <memory.h>

#include <pthread.h>

#include <stropts.h>

#include <sysmonitor.h>

#include <sys/types.h>

#include <unistd.h>

#include <vo.h>

B.9.1. Detailed Description

This �le contains all headers of the MERASA include directory. This enables
an easy inclusion into your user application.

De�nition in �le merasa-ssw.h.

B.10 pthread.h File Reference 63

B.10. pthread.h File Reference

POSIX thread functions and more.

#include <sys/types.h>

#include <config.h>

De�nes

• #de�ne NO_THREAD ((int32_t)-1)

• #de�ne NO_OWNER ((thread_handler)-1)

• #de�ne get_thread() get_current_thread_handler()

• #de�ne THREAD_PRIV_NRT 0x00000001

• #de�ne THREAD_PRIV_HRT 0x00000004

• #de�ne THREAD_PRIV_THRMG 0x00000008

• #de�ne THREAD_PRIV_DYNMEM 0x00000010

• #de�ne THREAD_PRIV_MEXT 0x00000020

• #de�ne THREAD_PRIV_TLSF 0x00000040

• #de�ne THREAD_PRIV_MODS 0x00000100

• #de�ne THREAD_PRIV_GMOD 0x00000200

• #de�ne THREAD_PRIV_APPS 0x00000400

• #de�ne THREAD_PRIV_DRVS 0x00000800

Functions

• threadptr get_thread4handler (thread_handler th)

• threadptr get_current_thread (void)

• thread_handler get_current_thread_handler (void)

• bool_t has_privilege (uint32_t priv)

• void yield (void)

• static uint32_t get_current_core (void)

• static uint32_t get_current_slot (void)

• uint32_t �nish_thread_init (void)

• int pthread_create (pthread_t ∗thread, const pthread_attr_t
∗attr, void ∗(∗start_routine)(void ∗), void ∗arg)

• int pthread_join (pthread_t thread, void ∗∗value_ptr)
• pthread_t pthread_self (void)

• void pthread_yield (void)

• int pthread_attr_getschedpolicy (const pthread_attr_t ∗attr, int
∗policy)

• int pthread_attr_init (pthread_attr_t ∗attr)

B.10 pthread.h File Reference 64

• int pthread_attr_setschedpolicy (pthread_attr_t ∗attr, int pol-
icy)

• int pthread_attr_getmemory (pthread_attr_t ∗attr, memory_t
∗∗mem)

• int pthread_attr_setmemory (pthread_attr_t ∗attr, memory_t
∗mem)

• int pthread_attr_getbasicheapsize (pthread_attr_t ∗attr, int
∗heapsize)

• int pthread_attr_setbasicheapsize (pthread_attr_t ∗attr, int
heapsize)

• int pthread_attr_get�ags (pthread_attr_t ∗attr, int ∗�ags)
• int pthread_attr_set�ags (pthread_attr_t ∗attr, int �ags)
• int pthread_attr_getiq (pthread_attr_t ∗attr, int ∗iq)
• int pthread_attr_setiq (pthread_attr_t ∗attr, int iq)
• int pthread_mutex_destroy (pthread_mutex_t ∗mutex)
• int pthread_mutex_init (pthread_mutex_t ∗mutex, const
pthread_mutexattr_t ∗attr)

• int pthread_mutex_lock (pthread_mutex_t ∗mutex)
• int pthread_mutex_trylock (pthread_mutex_t ∗mutex)
• int pthread_mutex_unlock (pthread_mutex_t ∗mutex)
• int pthread_cond_broadcast (pthread_cond_t ∗cond)
• int pthread_cond_destroy (pthread_cond_t ∗cond)
• int pthread_cond_init (pthread_cond_t ∗cond, const pthread_-
condattr_t ∗attr)

• int pthread_cond_signal (pthread_cond_t ∗cond)
• int pthread_cond_wait (pthread_cond_t ∗, pthread_mutex_t

∗mutex)
• int pthread_barrier_destroy (pthread_barrier_t ∗barrier)
• int pthread_barrier_init (pthread_barrier_t ∗barrier, const
pthread_barrierattr_t ∗attr, unsigned count)

• int pthread_barrier_wait (pthread_barrier_t ∗barrier)

B.10.1. Detailed Description

This �le contains not only a subset of POSIX thread functions, but also some
other de�nitions and tool functions for thread management.

De�nition in �le pthread.h.

B.10.2. De�ne Documentation

B.10.2.1. #de�ne NO_THREAD ((int32_t)-1)

B.10 pthread.h File Reference 65

Return value if no thread is selected.

De�nition at line 51 of �le pthread.h.

B.10.2.2. #de�ne NO_OWNER ((thread_handler)-1)

Return value if no owner is selected.

De�nition at line 53 of �le pthread.h.

B.10.2.3. #de�ne get_thread() get_current_thread_handler()

Returns the actual thread handler.

De�nition at line 55 of �le pthread.h.

B.10.2.4. #de�ne THREAD_PRIV_NRT 0x00000001

Non real-time scheduling.

De�nition at line 59 of �le pthread.h.

B.10.2.5. #de�ne THREAD_PRIV_HRT 0x00000004

Hard real-time scheduling. The hard realtime thread should use TLSF (real-
time capable memory management).

De�nition at line 61 of �le pthread.h.

B.10.2.6. #de�ne THREAD_PRIV_THRMG 0x00000008

Thread has access to thread management (usually only boot thread).

De�nition at line 63 of �le pthread.h.

B.10.2.7. #de�ne THREAD_PRIV_DYNMEM 0x00000010

Thread uses dynamic memory management.

De�nition at line 67 of �le pthread.h.

B.10.2.8. #de�ne THREAD_PRIV_MEXT 0x00000020

Thread may extend its memory (i.e. the local malloc may do so) (needs DYN-
MEM!).

De�nition at line 69 of �le pthread.h.

B.10.2.9. #de�ne THREAD_PRIV_TLSF 0x00000040

B.10 pthread.h File Reference 66

Thread uses TLSF for DSA, or if not set, uses DLAlloc (needs DYNMEN!).
When using TLSF, online-memory extension is not allowed (the MEXT �ag is
ignored). So make sure to reserve enough memory at thread creation!

De�nition at line 71 of �le pthread.h.

B.10.2.10. #de�ne THREAD_PRIV_MODS 0x00000100

Thread is allowed to load program modules (needs DYNMEM and MEXT too!).
Use with care! The local namespace will in�uence the memory consumption of
the thread.

De�nition at line 75 of �le pthread.h.

B.10.2.11. #de�ne THREAD_PRIV_GMOD 0x00000200

Thread may load modules into global namespace.

De�nition at line 77 of �le pthread.h.

B.10.2.12. #de�ne THREAD_PRIV_APPS 0x00000400

Thread may load applications.

De�nition at line 79 of �le pthread.h.

B.10.2.13. #de�ne THREAD_PRIV_DRVS 0x00000800

Thread may manage drivers (load/unload).

De�nition at line 81 of �le pthread.h.

B.10.3. Function Documentation

B.10.3.1. threadptr get_thread4handler (thread_handler th)

Returns the thread pointer of the speci�ed thread.

B.10.3.2. threadptr get_current_thread (void)

Returns the thread pointer of the current thread.

B.10.3.3. thread_handler get_current_thread_handler (void)

Returns the thread handler of the current thread.

B.10.3.4. bool_t has_privilege (uint32_t priv)

Returns 1, if the current thread has a speci�ed privilege. Otherwise 0.

B.10 pthread.h File Reference 67

B.10.3.5. void yield (void)

Allows the scheduler to run another thread instead of the current one.

B.10.3.6. static uint32_t get_current_core (void) [inline, static]

Returns the core of the current thread.

De�nition at line 97 of �le pthread.h.

References MSS_MY_CORE.

B.10.3.7. static uint32_t get_current_slot (void) [inline, static]

Returns the slot of the current thread.

De�nition at line 101 of �le pthread.h.

References MSS_MY_SLOT.

B.10.3.8. uint32_t �nish_thread_init (void)

Finishes the initialisation phase.

This function �nishes the thread creation phase and sets the lists of hard- and
non real-time threads to the scheduler. Attention: The scheduling will not start
before calling this function!

B.10.3.9. int pthread_create (pthread_t ∗ thread, const pthread_-
attr_t ∗ attr, void ∗(∗)(void ∗) start_routine, void ∗ arg)

Creates a new thread of execution.

The pthread_create() (p. 67) function is used to create a new thread, with
attributes speci�ed by attr, within a process. If the attributes speci�ed by
attr are modi�ed later, the thread's attributes are not a�ected. Upon successful
completion pthread_create() (p. 67) will store the ID of the created thread in
the location speci�ed by thread. The thread is created executing start_routine
with arg as its sole argument.

Returns:

If successful, the pthread_create() (p. 67) function will return zero. Oth-
erwise an error number will be returned to indicate the error.

B.10.3.10. int pthread_join (pthread_t thread, void ∗∗ value_ptr)

Causes the calling thread to wait for the termination of the speci�ed thread.

The pthread_join() (p. 67) function suspends execution of the calling thread
until the target thread terminates unless the target thread has already termi-
nated.

B.10 pthread.h File Reference 68

When a pthread_join() (p. 67) returns successfully, the target thread has
been terminated. The results of multiple simultaneous calls to pthread_join()
(p. 67) specifying the same tar- get thread are unde�ned. If the thread calling
pthread_join() (p. 67) is can- celled, then the target thread is not detached.

Returns:

If successful, the pthread_join() (p. 67) function will return zero. Other-
wise an error number will be returned to indicate the error.

B.10.3.11. pthread_t pthread_self (void)

Returns the thread ID of the calling thread.

Returns:

The pthread_self() (p. 68) function returns the thread ID of the calling
thread.

B.10.3.12. void pthread_yield (void)

Allows the scheduler to run another thread instead of the current one.

B.10.3.13. int pthread_attr_getschedpolicy (const pthread_attr_t ∗
attr, int ∗ policy)

Get the scheduling policy attribute from a thread attributes object.

B.10.3.14. int pthread_attr_init (pthread_attr_t ∗ attr)

Initialize a thread attributes object with default values.

Thread attributes are used to specify parameters to pthread_create() (p. 67).
One attribute object can be used in multiple calls to pthread_create() (p. 67),
with or without modi�cations between calls.

The pthread_attr_init() (p. 68) function initializes attr with all the default
thread attributes.

Returns:

If successful, this function returns 0. Otherwise, an error number is returned
to indicate the error.

B.10.3.15. int pthread_attr_setschedpolicy (pthread_attr_t ∗ attr, int
policy)

Set the scheduling policy attribute in a thread attributes object.

This is necessary to select the right thread type. Possible values are

• SCHED_HRT: hard real-time thread

B.10 pthread.h File Reference 69

• SCHED_NRT: non real-time thread

After initialization, the policy is set to SCHED_NONE (a thread is not able to run
with this value).

Returns:

If successful, this function returns 0. Otherwise, an error number is returned
to indicate the error.

B.10.3.16. int pthread_attr_getmemory (pthread_attr_t ∗ attr,
memory_t ∗∗ mem)

Get the memory type used for the thread.

Returns:

If successful, this function returns 0. Otherwise, an error number is returned
to indicate the error.

B.10.3.17. int pthread_attr_setmemory (pthread_attr_t ∗ attr,
memory_t ∗ mem)

Set the memory to use for the thread.

If set to NULL, system standard memory will be used.

Returns:

If successful, this function returns 0. Otherwise, an error number is returned
to indicate the error.

B.10.3.18. int pthread_attr_getbasicheapsize (pthread_attr_t ∗ attr,
int ∗ heapsize)

Get the initial heap size used for the thread.

See pthread_attr_setbasicheapsize() (p. 69) for more details.

Returns:

If successful, this function returns 0. Otherwise, an error number is returned
to indicate the error.

B.10.3.19. int pthread_attr_setbasicheapsize (pthread_attr_t ∗ attr,
int heapsize)

Set the initial heap size used for the thread.

Set the initial memory for the thread (only sensible, if the thread needs not
to extend its memory). Calculation of the parameter thread_mem: For each
variable, you need to allocate, add 4 bytes (1 word) management overhead and
round each of these values up to a 8-byte-alignment. The minimum amount of
memory that can be allocated is 16 bytes (4 word).

B.10 pthread.h File Reference 70

sz: amount of memory needed for a variable

=> real_sz = (sz+4 + 7) & ∼8

Thus, all real_sz values added up result in the thread_mem parameter.

Returns:

If successful, this function returns 0. Otherwise, an error number is returned
to indicate the error.

B.10.3.20. int pthread_attr_get�ags (pthread_attr_t ∗ attr, int ∗ �ags)

Get thread �ags describing the thread's behaviour.

See pthread_attr_set�ags() (p. 70) for an explanation of possible val-
ues.

Returns:

If successful, this function returns 0. Otherwise, an error number is returned
to indicate the error.

B.10.3.21. int pthread_attr_set�ags (pthread_attr_t ∗ attr, int �ags)

Set thread �ags describing the thread's behaviour.

Possible values are:

• THREAD_PRIV_THRMG: thread has access to thread management (creating,
killing, renicing)

• THREAD_PRIV_DYNMEM: thread uses dynamic memory management

• THREAD_PRIV_MEXT: thread my extend its memory (i.e. the local malloc
may do so)

• THREAD_PRIV_TLSF: thread uses TLSF for DSA, or if not set, uses DLAlloc
(needs DYNMEN!) When using TLSF, online-memory extension is not
allowed (the MEXT �ag is ignored). So make sure to reserve enough
memory at thread creation!

• THREAD_PRIV_MODS: thread is allowed to load program modules (needs
DYNMEM and MEXT too!). Use with care! The local namespace will
in�uence the memory consumption of the thread.

• THREAD_PRIV_GMOD: thread may load modules into global namespace

• THREAD_PRIV_APPS: thread may load applications

• THREAD_PRIV_DRVS: thread may manage drivers (load/unload)

Returns:

If successful, this function returns 0. Otherwise, an error number is returned
to indicate the error.

B.10 pthread.h File Reference 71

B.10.3.22. int pthread_attr_getiq (pthread_attr_t ∗ attr, int ∗ iq)

Get the instruction quantum.

Deprecated

The actual MERASA hardware scheduler ignores this value.

Returns:

If successful, this function returns 0. Otherwise, an error number is returned
to indicate the error.

B.10.3.23. int pthread_attr_setiq (pthread_attr_t ∗ attr, int iq)

Set the instruction quantum.

Deprecated

The actual MERASA hardware scheduler ignores this value.

This value is given to the hardware-scheduler to decide how to schedule the
di�erent threads.

Returns:

If successful, this function returns 0. Otherwise, an error number is returned
to indicate the error.

B.10.3.24. int pthread_mutex_destroy (pthread_mutex_t ∗ mutex)

Destroy a mutex.

The pthread_mutex_destroy() (p. 71) function frees the resources allocated
for mutex.

Returns:

If successful, pthread_mutex_destroy() (p. 71) will return zero, other-
wise an error number will be returned to indicate the error.

B.10.3.25. int pthread_mutex_init (pthread_mutex_t ∗ mutex, const
pthread_mutexattr_t ∗ attr)

Initialize a mutex with speci�ed attributes.

The pthread_mutex_init() (p. 71) function creates a new mutex, with at-
tributes speci�ed with attr. If attr is NULL the default attributes are used.

Returns:

If successful, pthread_mutex_init() (p. 71) will return zero and put the
new mutex id into mutex, otherwise an error number will be returned to
indicate the error.

B.10 pthread.h File Reference 72

B.10.3.26. int pthread_mutex_lock (pthread_mutex_t ∗ mutex)

Lock a mutex and block until it becomes available.

The pthread_mutex_lock() (p. 72) function locks mutex. If the mutex is
already locked, the calling thread will block until the mutex becomes available.

Returns:

If successful, pthread_mutex_lock() (p. 72) will return zero, otherwise
an error number will be returned to indicate the error.

B.10.3.27. int pthread_mutex_trylock (pthread_mutex_t ∗ mutex)

Try to lock a mutex, but do not block if the mutex is locked by another thread,
including the current thread.

The pthread_mutex_trylock() (p. 72) function locks mutex. If the mutex
is already locked, pthread_mutex_trylock() (p. 72) will not block waiting
for the mutex, but will return an error condition.

Returns:

If successful, pthread_mutex_trylock() (p. 72) will return zero, other-
wise an error number will be returned to indicate the error.

B.10.3.28. int pthread_mutex_unlock (pthread_mutex_t ∗ mutex)

Unlock a mutex.

If the current thread holds the lock on mutex, then the pthread_mutex_-
unlock() (p. 72) function unlocks mutex.

Returns:

If successful, pthread_mutex_unlock() (p. 72) will return zero, other-
wise an error number will be returned to indicate the error.

B.10.3.29. int pthread_cond_broadcast (pthread_cond_t ∗ cond)

Unblock all threads currently blocked on the speci�ed condition variable.

The pthread_cond_broadcast() (p. 72) function unblocks all threads wait-
ing for the condition variable cond.

Returns:

If successful, the pthread_cond_broadcast() (p. 72) function will re-
turn zero, otherwise an error number will be returned to indicate the error.

B.10.3.30. int pthread_cond_destroy (pthread_cond_t ∗ cond)

Destroy a condition variable.

B.10 pthread.h File Reference 73

The pthread_cond_destroy() (p. 72) function frees the resources allocated
by the condition variable cond.

Returns:

If successful, the pthread_cond_destroy() (p. 72) function will return
zero, otherwise an error number will be returned to indicate the error.

B.10.3.31. int pthread_cond_init (pthread_cond_t ∗ cond, const
pthread_condattr_t ∗ attr)

Initialize a condition variable with speci�ed attributes.

The pthread_cond_init() (p. 73) function creates a new condition variable,
with attributes speci�ed with attr. If attr is NULL the default attributes are
used.

Returns:

If successful, the pthread_cond_init() (p. 73) function will return zero
and put the new condition variable id into cond, otherwise an error number
will be returned to indicate the error.

B.10.3.32. int pthread_cond_signal (pthread_cond_t ∗ cond)

Unblock at least one of the threads blocked on the speci�ed condition variable.

The pthread_cond_signal() (p. 73) function unblocks one thread waiting for
the condition variable cond.

Returns:

If successful, the pthread_cond_signal() (p. 73) function will return
zero, otherwise an error number will be returned to indicate the error.

B.10.3.33. int pthread_cond_wait (pthread_cond_t ∗, pthread_-
mutex_t ∗ mutex)

Wait for a condition and lock the speci�ed mutex.

The pthread_cond_wait() (p. 73) function atomically blocks the current
thread waiting on the condition variable speci�ed by cond, and releases the
mutex speci�ed by mutex. The waiting thread unblocks only after an-
other thread calls pthread_cond_signal() (p. 73), or pthread_cond_-
broadcast() (p. 72) with the same condition variable, and the current thread
reacquires the lock on mutex.

Returns:

If successful, the pthread_cond_wait() (p. 73) function will return zero.
Other- wise an error number will be returned to indicate the error.

B.10 pthread.h File Reference 74

B.10.3.34. int pthread_barrier_destroy (pthread_barrier_t ∗ barrier)

Destroy a barrier.

The pthread_barrier_destroy function will destroy barrier and release any re-
sources that may have been allocated on its behalf.

Returns:

If successful, the pthread_barrier_destroy() (p. 74) function will return
zero, otherwise an error number will be returned to indicate the error.

B.10.3.35. int pthread_barrier_init (pthread_barrier_t ∗ barrier, const
pthread_barrierattr_t ∗ attr, unsigned count)

Initialise a barrier.

The pthread_barrier_init function will initialize a barrier with attributes spec-
i�ed in attr, or if it is NULL, with default attributes. The number of threads
that must call pthread_barrier_wait before any of the waiting threads can be
released is speci�ed by count.

Returns:

If successful, the pthread_barrier_init() (p. 74) function will return
zero. Other- wise an error number will be returned to indicate the error.

B.10.3.36. int pthread_barrier_wait (pthread_barrier_t ∗ barrier)

Wait on a barrier.

The pthread_barrier_wait function will synchronize calling threads at the bar-
rier. The threads will be blocked from making further progress until a su�cient
number of threads calls this function. The number of threads that must call
it before any of them will be released is determined by the count argument to
pthread_barrier_init. Once the threads have been released the barrier will be
reset.

Returns:

If successful, the pthread_barrier_wait() (p. 74) function will return
zero. Other- wise an error number will be returned to indicate the error.

B.11 stropts.h File Reference 75

B.11. stropts.h File Reference

Control a device.

Functions

• int ioctl (int d, int request,...)

B.11.1. Detailed Description

De�nition in �le stropts.h.

B.11.2. Function Documentation

B.11.2.1. int ioctl (int d, int request, ...)

Control a device.

The ioctl() (p. 75) system call manipulates the underlying device parameters
of special �les. In particular, many operating characteristics of character spe-
cial �les (e.g. terminals) may be controlled with ioctl() (p. 75) requests. The
argument d must be an open �le descriptor.

Valid values for request and further parameters depend on the speci�c device,
see the driver's header �le.

Returns:

If an error has occurred, a value of -1 is returned and errno is set to indicate
the error.

B.12 sysmonitor.h File Reference 76

B.12. sysmonitor.h File Reference

Type de�nitions to describe the state of memory.

#include <sys/types.h>

Data Structures

• struct memorystatistics

• struct thread_memorystatistics

Typedefs

• typedef struct memorystatistics ∗ memstatptr
• typedef struct thread_memorystatistics ∗ tmemstatptr

B.12.1. Detailed Description

De�nition in �le sysmonitor.h.

B.12.2. Typedef Documentation

B.12.2.1. typedef struct memorystatistics∗ memstatptr

A shortcut

De�nition at line 68 of �le sysmonitor.h.

B.12.2.2. typedef struct thread_memorystatistics∗ tmemstatptr

A shortcut

De�nition at line 84 of �le sysmonitor.h.

B.13 types.h File Reference 77

B.13. types.h File Reference

De�nitions of basic data types.

#include <stddef.h>

Data Structures

• struct sched_param

• struct pthread_mutex

• struct pthread_mutexattr_t

• struct pthread_cond

• struct pthread_condattr_t

• struct pthread_barrier_t

• struct pthread_barrierattr_t

• struct mem_cfg_data

• struct pthread_attr_t

De�nes

• #de�ne false FALSE

• #de�ne true TRUE

Typedefs

• typedef unsigned char uint8_t

• typedef signed char int8_t

• typedef unsigned short int uint16_t

• typedef signed short int int16_t

• typedef unsigned int uint32_t

• typedef signed int int32_t

• typedef unsigned long long uint64_t

• typedef signed long long int64_t

• typedef char ∗ address
• typedef int32_t error_t

• typedef uint32_t version_t

• typedef signed int ssize_t

• typedef int32_t thread_handler

• typedef struct thread ∗ threadptr
• typedef struct thread_control_block_t tcb_t

• typedef uint32_t sched_t

B.13 types.h File Reference 78

• typedef int32_t cc_spinlock_t

• typedef struct pthread_mutex pthread_mutex_t

• typedef struct pthread_cond pthread_cond_t

• typedef struct mem_cfg_data memory_t

• typedef thread_handler pthread_t

Enumerations

• enum bool_t { FALSE = 0, TRUE = 1 }

• enum sched_policy { SCHED_NONE = 0, SCHED_HRT,
SCHED_NRT }

B.13.1. Detailed Description

De�nition in �le types.h.

B.13.2. De�ne Documentation

B.13.2.1. #de�ne false FALSE

De�nition at line 77 of �le types.h.

B.13.2.2. #de�ne true TRUE

De�nition at line 78 of �le types.h.

B.13.3. Typedef Documentation

B.13.3.1. typedef unsigned char uint8_t

Unsigned 8-bit integer

De�nition at line 48 of �le types.h.

B.13.3.2. typedef signed char int8_t

Signed 8-bit integer

De�nition at line 50 of �le types.h.

B.13.3.3. typedef unsigned short int uint16_t

Unsigned 16-bit integer

De�nition at line 52 of �le types.h.

B.13 types.h File Reference 79

B.13.3.4. typedef signed short int int16_t

Signed 16-bit integer

De�nition at line 54 of �le types.h.

B.13.3.5. typedef unsigned int uint32_t

Unsigned 32-bit integer

De�nition at line 56 of �le types.h.

B.13.3.6. typedef signed int int32_t

Signed 32-bit integer

De�nition at line 58 of �le types.h.

B.13.3.7. typedef unsigned long long uint64_t

Unsigned 64-bit integer

De�nition at line 60 of �le types.h.

B.13.3.8. typedef signed long long int64_t

Signed 64-bit integer

De�nition at line 62 of �le types.h.

B.13.3.9. typedef char∗ address

Data type for addresses

De�nition at line 84 of �le types.h.

B.13.3.10. typedef int32_t error_t

Data type for errors

De�nition at line 86 of �le types.h.

B.13.3.11. typedef uint32_t version_t

Data type for driver (p. 19) versions

De�nition at line 88 of �le types.h.

B.13.3.12. typedef signed int ssize_t

Data type for sizes

De�nition at line 90 of �le types.h.

B.13 types.h File Reference 80

B.13.3.13. typedef int32_t thread_handler

The thread handler is just an ID; this value is used as an o�set into the TCB
array.

De�nition at line 96 of �le types.h.

B.13.3.14. typedef struct thread∗ threadptr

Thread pointer

De�nition at line 98 of �le types.h.

B.13.3.15. typedef struct thread_control_block_t tcb_t

Thread control block

De�nition at line 100 of �le types.h.

B.13.3.16. typedef uint32_t sched_t

Scheduling information

De�nition at line 106 of �le types.h.

B.13.3.17. typedef int32_t cc_spinlock_t

Spinlock variable (busy waiting) for synchronisation

De�nition at line 118 of �le types.h.

B.13.3.18. typedef struct pthread_mutex pthread_mutex_t

B.13.3.19. typedef struct pthread_cond pthread_cond_t

B.13.3.20. typedef struct mem_cfg_data memory_t

B.13.3.21. typedef thread_handler pthread_t

POSIX thread

De�nition at line 176 of �le types.h.

B.13.4. Enumeration Type Documentation

B.13.4.1. enum bool_t

Boolean data type

B.13 types.h File Reference 81

Enumerator:

FALSE

TRUE

De�nition at line 76 of �le types.h.

B.13.4.2. enum sched_policy

Scheduling policy

Enumerator:

SCHED_NONE

SCHED_HRT

SCHED_NRT

De�nition at line 108 of �le types.h.

B.14 unistd.h File Reference 82

B.14. unistd.h File Reference

Generic read and write operations.

#include <sys/types.h>

Functions

• int close (int d)

• ssize_t read (int d, void ∗buf, size_t nbytes)
• ssize_t write (int d, const void ∗buf, size_t nbytes)

B.14.1. Detailed Description

De�nition in �le unistd.h.

B.14.2. Function Documentation

B.14.2.1. int close (int d)

Delete a descriptor.

The close() (p. 82) system call deletes a descriptor from the per-process object
reference table. If this is the last reference to the underlying object, the object
will be deactivated.

Returns:

The close() (p. 82) function returns the value 0 if successful; otherwise the
value -1 is returned and the global variable errno is set to indicate the error.

B.14.2.2. ssize_t read (int d, void ∗ buf, size_t nbytes)

Read input.

The read() (p. 82) system call attempts to read nbytes of data from the object
referenced by the descriptor d into the bu�er pointed to by buf.

Returns:

If successful, the number of bytes actually read is returned. Upon reading
end-of-�le, zero is returned. Otherwise, a -1 is returned and the global
variable errno is set to indicate the error.

B.14.2.3. ssize_t write (int d, const void ∗ buf, size_t nbytes)

Write output.

The write() (p. 82) system call attempts to write nbytes of data to the object
referenced by the descriptor d from the bu�er pointed to by buf.

B.14 unistd.h File Reference 83

Returns:

Upon successful completion the number of bytes which were written is re-
turned. Otherwise a -1 is returned and the global variable errno is set to
indicate the error.

B.15 vo.h File Reference 84

B.15. vo.h File Reference

De�nitions of memory regions for virtual output.

De�nes

• #de�ne PER_VIO (0xe0010000)

• #de�ne VO_ADDRESS (PER_VIO + 0x10)

• #de�ne VO_WORD (PER_VIO + 0x14)

• #de�ne VO_DBL_D4C (PER_VIO + 0x20)

• #de�ne VO_DBL_X4C (PER_VIO + 0x28)

• #de�ne VIO_PREFIX "%#"

• #de�ne P64(a) (∗((uint64_t volatile ∗) a))

B.15.1. Detailed Description

De�nition in �le vo.h.

B.15.2. De�ne Documentation

B.15.2.1. #de�ne PER_VIO (0xe0010000)

The base address for the virtual output.

De�nition at line 44 of �le vo.h.

B.15.2.2. #de�ne VO_ADDRESS (PER_VIO + 0x10)

Bytes written to this address are put into the virtual output.

De�nition at line 47 of �le vo.h.

B.15.2.3. #de�ne VO_WORD (PER_VIO + 0x14)

Write one word to STDOUT.

De�nition at line 50 of �le vo.h.

B.15.2.4. #de�ne VO_DBL_D4C (PER_VIO + 0x20)

Special log, hi is interpreted as chars, lo as word dec.

De�nition at line 53 of �le vo.h.

B.15.2.5. #de�ne VO_DBL_X4C (PER_VIO + 0x28)

Special log, hi is interpreted as chars, lo as word hex.

B.15 vo.h File Reference 85

De�nition at line 56 of �le vo.h.

B.15.2.6. #de�ne VIO_PREFIX "%#"

The pre�x allows easy �ltering of VIO output in console mode.

De�nition at line 59 of �le vo.h.

B.15.2.7. #de�ne P64(a) (∗((uint64_t volatile ∗) a))

Fast access to a 64-bit value.

De�nition at line 62 of �le vo.h.

References 86

References

[1] FAQ of comp.realtime. http://www.faqs.org/faqs/realtime-computing/faq/,
July 1998. visited July 2007.

[2] Lea, D. A Memory Allocator. unix/mail (Dec. 1996).

[3] Masmano, M., Ripoll, I., Crespo, A., and Real, J. TLSF: A New
Dynamic Memory Allocator for Real-Time Systems. In ECRTS '04: Proceed-
ings of the 16th Euromicro Conference on Real-Time Systems (ECRTS'04)
(Washington, DC, USA, 2004), IEEE Computer Society, pp. 79�86.

[4] Morphew, G. Debugging complex embedded applications.
http://www.ddj.com/embedded/184406044, April 2005. visited April
2008.

[5] IEEE Std 1003.1, 2004 Edition. The Open Group Base Speci�cations Issue
6, 2004.

[6] QNX Software Systems. http://www.qnx.com/. Visited April 2008.

[7] Uhrig, S., Maier, S., and Ungerer, T. Toward a Processor Core for
Real-time Capable Autonomic Systems. In Proceedings of the 5th IEEE
International Symposium on Signal Processing and Information Technology
(Dec. 2005), pp. 19�22.

