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On the convergence of right transforming iterations for the
numerical solution of PDE constrained optimization problems

Christopher Linsenmann∗,†

Institute for Mathematics, University of Augsburg, Universitätsstr.14, D-86159 Augsburg, Germany

SUMMARY

We present an iterative solver, called right transforming iterations (or right transformations), for linear
systems with a certain structure in the system matrix, such as they typically arise in the framework
of KKT conditions for optimization problems under PDE constraints. The construction of the right
transforming scheme depends on an inner approximate solver for the underlying PDE subproblems.
We give a rigorous convergence proof for the right transforming iterative scheme in dependence on the
convergence properties of the inner solver. Provided that a fast subsolver is available, this iterative
scheme represents an efficient way of solving first order optimality conditions.
Numerical examples endorse the theoretically predicted contraction rates. Copyright c© 2000 John
Wiley & Sons, Ltd.

key words: right transforming iterations; iterative KKT solver; optimization problems with PDE

constraints; perturbed splitting methods

1. INTRODUCTION

The numerical solution of PDE constrained optimization problems based on the first order
optimality conditions typically involves linear systems of the form

Kx =




Q ST BT
1

S 0 BT
2

B1 B2 C






y
λ
u


 =




by

bλ

bu


 = b, (1)

where Q, S ∈ Rn×n, B1, B2 ∈ Rm×n and C ∈ Rm×m. In case of linear-quadratic minimization
problems, such a system arises directly from the KKT conditions, whereas for nonlinear
problems it stems from a Newton linearization thereof. Here, y ∈ Rn stands for the state,
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Universitätsstr.14, D-86159 Augsburg, Germany
†E-mail: linsenmann@math.uni-augsburg.de

Contract/grant sponsor: DFG SPP 1253, NSF; contract/grant number: DMS-0511611

Received 2009
Copyright c© 2000 John Wiley & Sons, Ltd. Revised



2 C. LINSENMANN

λ ∈ Rn for the Lagrange multiplier and u ∈ Rm for the design parameter/control, and S
denotes the matrix associated with the discretized partial differential operator.

The idea of right transformations is based on an appropriate ’right matrix’ KR, which is
multiplied from the right to K and then gives rise to a regular splitting KKR = M1 − M2,
where due to a block-diagonal structure M1 is relatively easy to invert. The availability of
KR depends on the properties of the submatrices of K. In practice it turns out that the
computation of such a matrix KR is too costly and solving the system M1K

−1
R x = b equivalent

to (1) would require the same effort as solving (1) directly by means of a Schur complement
formulation. Indeed, the right transforming iterative scheme can be seen as an approximate
Schur complement-based method. The benefit of the right transforming formulation, however,
is the possibility of analyzing the spectral properties of the associated iteration matrix. Thus,
one replaces the ’exact’ matrix KR by an approximate version KR(k), k ∈ N, indicating that
this matrix is constructed by means of k applications of an iterative subsolver (for details see
Section 2 and Assumption 3.2). This leads to a perturbed splitting scheme with M1(k) ≈ M1

and M2(k) ≈ 0. We will show that the thus induced iterative scheme does converge to the
solution x = K−1b, depending on the ’quality’ of approximation indicated by k, and we will
derive its rate of contraction and convergence.

Although the use of matrix transformations is a basic tool in numerical linear algebra
(see for example [9, 10] for an application to KKT systems), the term ’right transforming
iterations’ goes back to Wittum, who has developed a right transforming iterative scheme
serving as a smoother for the multigrid solution of Stokes and Navier-Stokes equations [22, 23].
This approach has recently been extended to transforming smoothers for PDE constrained
optimization problems in [19]. In [1, 2, 3, 4, 13, 14, 15, 16], right transforming iterations
have been successfully applied to the solution of shape and topology optimization problems,
however, without a convergence proof.

The paper is organized as follows: In Section 2 we derive the right transforming iterative
scheme and establish assumptions that guarantee its applicability. In Section 3 we present a
convergence proof for the right transforming scheme and derive an estimate for the contraction
rate in dependence of the spectral radii of the iteration matrices associated with the PDE
subsolvers. This convergence result will be illustrated by numerical experiments in Section 4.
In Section 5 we give a pseudo-algorithmic code of the right transforming scheme and, after
discussing its limitations, present an iterative version of it in Section 6.

2. RIGHT TRANSFORMING ITERATIONS

2.1. Preliminaries

We consider a linear system of the form

K̃z =

(
A BT

B 0

)(
v
w

)
=

(
c
d

)
, (2)

where A ∈ R
(n+m)×(n+m) and B ∈ R

n×(n+m) are such that K̃ ∈ R
(2n+m)×(2n+m) is regular,

and v, c ∈ Rn+m, w, d ∈ Rn.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–16
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ON THE CONVERGENCE OF RIGHT TRANSFORMING ITERATIONS 3

Among direct methods for the solution of (2) there are symmetric factorizations as well as
the range space and the null space approach (see [11]). The range space approach is based
on the Schur complement formulation of (2) and thus requires positive definiteness of A. In
contrast, the null space approach does not assume regularity of A. Both methods use the
special structure of the KKT matrix K̃.
The distinction between the range space and the null space approach can be extended to the
class of iterative solvers, see [18, 20, 22]. As for the direct solver, the iterative range space

approach requires regularity of A and works with a transforming matrix K̃L ’from the left’
(range space transformation). For the iterative analogue of the null space approach, we have
a right transforming matrix which thus transforms the nullspace of the matrix. We will refer
to the associated solver in the following as RT. A main ingredient thereof is to rearrange the
matrix

K̃ =




A11 A12 BT

1

A21 A22 BT
2

B1 B2 0



 ∈ R
(n+m+n)×(n+m+n)

with regular B1 ∈ Rn×n according to

K :=




A11 BT
1 A12

B1 0 BT
2

A21 B2 A22


 .

By identifying

A =

(
A11 A12

A21 A22

)
=

(
Q BT

1

B1 C

)

and

B =
(
B1 B2

)
=
(

S B2

)
,

we see that the structure of K fits the one of K in (1), and that the assumptions for (2) are
met, if K and S are invertible. Just to keep track of all necessary assumptions, we state

Assumption 2.1. The system matrix K ∈ R(2n+m)×(2n+m) is of the form as in (1) and
regular, and the matrix S ∈ Rn×n is regular as well. (Symmetry of Q ∈ Rn×n and C ∈ Rm×m

is not necessary, but ’helpful’, cf. Section 6.) 3

We set

A :=

(
Q ST

S 0

)
∈ R

2n×2n and B :=
(

B1 B2

)
∈ R

m×2n,

so that

K =

(
A BT

B C

)
,

cf. (1). We note that A is indefinite but nonsingular, and relatively easy to invert if this holds
true for S and ST .

We assume that there exist fast iterative solvers for the generic subproblems

S z = f and ST z = f, z, f ∈ R
n (3)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–16
Prepared using nlaauth.cls



4 C. LINSENMANN

(which correspond to a discretized PDE system and its adjoint system in the PDE-constrained
optimization context). We formally set

A(k) :=

(
Q ST (k)

S(k) 0

)
(4)

and note that its inverse is given by

A(k)−1 =

(
0 S(k)−1

ST (k)−1 −ST (k)−1Q S(k)−1

)
. (5)

Here and in the sequel, matrices and vectors followed by a (k) are seen as iteratively
obtained approximations, where the quality of approximation depends on the iteration count
k. Also, expressions like S(k) or S(k)−1 have to be understood in a formal sense: In practice,
S(k)−1f := z(k) means the application of an iterative solver with k iterations to the system
Sz = f , where z(k) is the k-th iterate.

As will be pointed out below, the RT iterative scheme mainly requires application of A(k)−1.
In view of (5), we therefore need the approximate inverse of S and of its transpose, but not
of Q; in fact, there are no regularity requirements on Q. This is a crucial feature of the RT
scheme: The solution of system (1) is carried out by repeatedly applying PDE solvers (which
are, in general, already available and well investigated). In this sense, it is a natural approach
and involves only a few regularity requirements.

We further define the perturbed/approximate right transform KR(k) by

KR(k) :=

(
I2n −A(k)−1BT

0 Im

)
.

Obviously, KR(k) is nonsingular. The product KKR(k) gives rise to the regular splitting

K KR(k) =

(
A BT

B C

)(
I2n −A(k)−1BT

0 Im

)

=

(
A(k) 0
B C − BA(k)−1BT

)

︸ ︷︷ ︸
=: M1(k)

−

(
(I2n − AA(k)−1)A(k) −(I2n − AA(k)−1)BT

0 0

)

︸ ︷︷ ︸
=: M2(k)

.

It can be easily seen that there holds M2(k) ≈ 0, if AA(k)−1 ≈ I2n.

2.2. Iterative scheme

The idea of RT is as follows: The system Kx = b with b ∈ R2n+m is equivalent to

KKR(k)︸ ︷︷ ︸
≈M1(k)

KR(k)−1x︸ ︷︷ ︸
=: x̃(k)

= b.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–16
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ON THE CONVERGENCE OF RIGHT TRANSFORMING ITERATIONS 5

Hence, M1(k) can be used as a preconditioner for the right transformed system KKR(k)x̃(k) =
b. Given a start iterate x̃(0) = KR(k)−1x(0), the corresponding stationary iterative scheme
reads

x̃(i+1)(k) = x̃(i)(k) + M1(k)−1
(
b − KKR(k)x̃(i)(k)

)
, i ≥ 0.

Multiplication from the left by KR(k) yields

x(i+1)(k) = x(i)(k) + KR(k)M1(k)−1
(
b − Kx(i)(k)

)
, i ≥ 0 (6)

which is the RT iteration scheme, where KR(k)M1(k)−1 serves as a preconditioner for K in a
Richardson-type iteration scheme. It is easy to see that one iteration in (6) can be subdivided
into three steps:

(i) Compute the residual ξ := b − Kx(i)(k).
(ii) Solve M1(k)z = ξ. Due to the structure of M1(k), this mainly requires

(a) the solution of the system ξ1 = A(k)−1r1, where z and ξ are partitioned according
to (z1, z2)

T , (ξ1, ξ2)
T ∈ R2n+m, and

(b) computation of
G(k) := A(k)−1BT ∈ R

n×m.

This means that the approximate inverse has to be applied m times, namely, to
each column of BT .
Finally, the approximate Schur complement

D(k) := C − BA(k)−1BT = C − B G(k) ∈ R
m×m

has to be computed
(c) and thereafter, D(k)z2 = ξ2−Bξ1 has to be solved exactly. This can be easily done,

if m is small. Altogether, step (ii) demands (m+1) applications of the approximate
inverse A(k)−1.

(iii) Compute the increment w := KR(k)z and update x(i+1)(k) = x(i)(k) + w. For the
computation of w, the result from step (ii)(b) can be used: (w1, w2)

T = (z1−G(k)z2, z2)
T .

Of course, in an algorithmic realization, the computationally most expensive part, step
(ii)(b), will be done only once in a pre-processing step, since the matrices G(k) and D(k) will
not change in later iterations.
Let us have a closer look at the formal expression A(k)−1ξ1 = z1 from step (ii)(a): Due to the
block structure of A(k) (see (4)), this basically means that the iterative solvers for (3) have to
be employed.

Remark 2.2. If exact solvers for (3) are used, then A(·)−1 = A−1 and

KKR(·) = M1(·) =

(
A 0
B C − BA−1BT

)
.

The regularity of D := C−BA−1BT follows from the regularity of K and KR. For a sufficiently
accurate approximation A(k)−1 ≈ A−1, we see that D(k) is regular, whence step (ii)(c) is well-
defined. 3

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–16
Prepared using nlaauth.cls



6 C. LINSENMANN

Straightforward computation reveals that the iteration matrix I2n+m − KR(k) M1(k)−1K
associated with the iterative scheme (6) is given by

LRT (k) :=

( (
I2n + A(k)−1BT D(k)−1B

)(
I2n − A(k)−1A

)
0

−D(k)−1B
(
I2n − A(k)−1A

)
0

)
. (7)

For a sufficiently accurate approximation A(k)−1 ≈ A−1, we expect convergence of the right
transforming scheme (6), since then LRT (k) ≈ 0. We will make this statement rigorous by
estimating the spectral radius of LRT (k), which is the content of the next section.

3. CONVERGENCE RESULT FOR RIGHT TRANSFORMATIONS

In the following, we use the abbreviation

H(k) :=
(
I2n + A(k)−1BT D(k)−1B

)(
I2n − A(k)−1A

)
, (8)

where H(k) stands for the first upper block in LRT (k).

Proposition 3.1. With LRT (k) from (7) and H(k) from (8), there holds

̺
(
LRT (k)

)
= ̺
(
H(k)

)
,

where ̺(·) denotes the spectral radius.

Proof. If (λ, (v, w)T ) is an eigenpair of LRT (k) and λ 6= 0, then v 6= 0 and therefore, (λ, v) is
an eigenpair of H(k).
Conversely, if (λ, v) is an eigenpair of H(k) with λ 6= 0, then (λ, (v,−1/λD(k)−1B(I2n −
A(k)−1A)v)T ) is an eigenpair of LRT . Thus, ̺(LRT (k)) = ̺(H(k)) if either ̺(·) > 0.
If ̺(LRT (k)) = 0, then by contraposition also ̺(H(k)) = 0 and vice versa. 2

Hence, it is sufficient to estimate the spectral radius of the matrix H(k). We now specify
the requirements on the iterative solver(s) for the subsystems (3):

Assumption 3.2. There exists a consistent and convergent stationary iterative solver for the
basic subproblem Sz = f with associated iteration matrix S ≡ S(k) (i.e., z(k+1) = Sz(k)+Nf ,
k ≥ 0, with S = In − NS) and an upper bound r < 1 for its spectral radius, i.e.,

̺(S) ≤ r < 1. 3

Remark 3.3. It is clear that an iterative solver for the problem ST z = f is given by

z(k+1) = z(k)+NT (f−ST z(k)), k ≥ 0, with iteration matrix ST = NTS
T
N−T (Assumptions

2.1 and 3.2 imply that N is invertible) fulfilling ̺(ST ) = ̺(N−1SN) = ̺(S), the first and
second equality following from the facts that a matrix and its transpose resp. a matrix similar to
it possess the same eigenvalues. Thus, under Assumptions 2.1 and 3.2 we have ̺(ST ) ≤ r < 1.

3

Let us now state the main result of the paper.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–16
Prepared using nlaauth.cls



ON THE CONVERGENCE OF RIGHT TRANSFORMING ITERATIONS 7

Theorem 3.4. Convergence of the RT iteration scheme
Let Assumptions 2.1 and 3.2 hold true and assume that every subproblem (3) is solved by at
least k iterations, k ≥ 1, with initial guesses z(0) = 0.
Then, for any 0 < ε < 1 − r and sufficiently large k, for the spectral radius of LRT (k) there
holds

̺(LRT (k)) ≤ C0(ε, k0)
(r + ε)k

1 − r − ε
. (9)

Hence, ̺(LRT (k)) < 1 for k large enough, i.e., scheme (6) is convergent for any right hand
side b. Here, C0 is a constant depending on ε (nondecreasing as ε decreases).

Proof. According to Proposition 3.1, we need to estimate ̺(H(k)). For more clarity, we divide
the proof into six steps:

(i) We recall some useful well-known facts from numerical linear algebra. Here, A stands for
an arbitrary matrix in RN×N (or CN×N ), N ∈ N.

(a) For given A and ε > 0, there exists a matrix norm ‖ · ‖∗ with ‖A‖∗ ≤ ̺(A) + ε (see for
example [17], Lemma 5.6.10).

(b) If V , W ∈ CN×N are nonsingular and ‖ · ‖ is a submultiplicative matrix norm, then
‖V −1 · W‖ defines a matrix norm on C

N×N which is pseudo-submultiplicative in the
sense

‖V −1ABW‖ ≤ c ‖V −1AW‖‖V −1BW‖ (10)

with c = ‖W−1V ‖.
(c) ̺(A) ≤ ‖A‖ for any submultiplicative matrix norm ‖ · ‖ (not only for those induced by

vector norms), cf. [17], Theorem 5.6.9. If ‖ · ‖ is pseudo-submultiplicative with constant
c, then ̺(A) ≤ c‖A‖.

(d) If ‖A‖ < 1 for some submultiplicative matrix norm, then there holds (IN − A)−1 =∑∞
i=0 Ai ([17], Corollary 5.6.16).

(ii) From Assumption 3.2 and Remark 3.3 it follows that S(k)−1f → S−1f and ST (k)−1f →
S−T f , f ∈ Rn, as k → ∞. This implies that A(k) and D(k)−1 (cf. Remark 2.2) as well as
S(k), ST (k) exist for k large enough. For such k we estimate

̺(H(k)) ≤ c ‖H(k)‖⋄

= c ‖A(k)−1(A(k) − A) + A(k)−1BT D(k)−1BA(k)−1(A(k) − A)‖⋄

≤ c2 ‖A(k)−1 + A(k)−1BT D(k)−1BA(k)−1‖⋄ ‖A(k) − A‖⋄ (11)

with a pseudo-submultiplicative matrix norm ‖·‖⋄ : C2n×2n → R to be specified below, likewise
for the constant c. Note that

A(k) − A =

(
0 ST (k) − ST

S(k) − S 0

)

and that
‖A(k)−1 + A(k)−1BT D(k)−1BA(k)−1‖⋄ ≤

‖A−1 + A−1BT D−1BA−1‖⋄ + Ĉ(k0) =: C1(k0, K,S) (12)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–16
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8 C. LINSENMANN

due to the continuity of the norm. For the latter estimate it is important that the norm ‖ · ‖⋄
does not depend on k (cf. (13) and (15) below). We could stop at this point of the proof,
if we were just interested in a convergence result. We just had to apply the same continuity
argument to the second term in (11) and were done. However, since we are also interested
in the rate of contraction, we have to estimate the expression ‖A(k) − A‖⋄ appropriately to
obtain a dependency on r.

(iii) Definition of appropriate norms:
Choose 0 < ε < 1 − r, which gives

R = R(ε) := ̺(S) + ε = ̺(ST ) + ε < 1

(with S, ST as in Assumption 3.2 and Remark 3.3). Using (i)(a), there exist matrix norms
‖ · ‖∗,1 : Cn → R and ‖ · ‖∗,2 : Cn → R such that

‖S‖∗,1 ≤ R < 1 and ‖ST ‖∗,2 ≤ R < 1. (13)

Note that ‖ ·‖∗,j , 1 ≤ j ≤ 2, only depend on S, ST , n, ε, but not on k. A closer look at Lemma
5.6.10 in [17] reveals that ‖ · ‖∗,j is constructed according to

‖A‖∗,j := ‖V −1
j AVj‖1 , A ∈ C

n×n (14)

with nonsingular matrices Vj of the form Vj = UjD(tj)
−1 ∈ Cn×n, Uj being unitary,

D(tj) = diag(tj , . . . , t
n
j ) and tj ∈ R+ chosen large enough. Now, for C = (Cij)

2
i,j=1 ∈ C2n×2n

we define

‖C‖⋄ :=

∥∥∥∥
(

V −1
2 0
0 V −1

1

)(
C11 C12

C21 C22

)(
V1 0
0 V2

)∥∥∥∥
1

. (15)

Here, the matrices Vj , 1 ≤ j ≤ 2, stem from the norms ‖·‖∗,j as in (13). It is straightforward to
check that this defines a matrix norm on C2n×2n which is pseudo-submultiplicative (cf. (10))
with constant

c :=

∥∥∥∥
(

V −1
1 V2 0
0 V −1

2 V1

)∥∥∥∥
1

as in (11) and independent of k. It follows that

‖A(k) − A‖⋄ ≤

∥∥∥∥
(

0 0
S(k) − S 0

)∥∥∥∥
⋄

+

∥∥∥∥
(

0 ST (k) − S
0 0

)∥∥∥∥
⋄

.

By construction and due to the 1-norm used in definition (15), we get

‖A(k) − A‖⋄ ≤ ‖S(k) − S‖∗,1 + ‖ST (k) − ST ‖∗,2 . (16)

This step is crucial to break down the problem from A(k) − A to its submatrices S(k) − S
resp. ST (k) − ST in appropriate norms.

(iv) Representation of S(k) − S:
Pick an arbitrary right hand side f for the problem Sz = f with unique solution z = S−1f .
Denoting by e(k) = z(k)− z the error associated with the k-th iterate, k ≥ 0, for a stationary

iterative method, we get e(k) = S
k
e(0) and consequently, for z(0) := 0

S(k)−1f
def

= z(k) =
(
In − S

k)
z =

(
In − S

k)
S−1f

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–16
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ON THE CONVERGENCE OF RIGHT TRANSFORMING ITERATIONS 9

for all f and, hence, for sufficiently large k there holds

S(k) = S
(
In − S

k)−1
.

Exploiting ‖S‖∗,1 < 1 from (13), observing ‖S
k
‖∗,1 < 1 due to submultiplicativity of ‖ · ‖∗,1

and using (i)(d), we obtain

S(k) = S

∞∑

i=0

(S
k
)i.

Consequently,

S(k) − S = S
( ∞∑

i=0

(S
k
)i − In

)
= S

∞∑

i=1

(S
k
)i. (17)

(v) Norm estimate for S(k) − S:

We want to estimate the first term of the right hand side in (16). We set s := ‖S
k
‖∗,1 < 1.

Due to (17), we have

‖S(k) − S‖∗,1 ≤ ‖S‖∗,1

∞∑

i=1

si = ‖S‖∗,1

( ∞∑

i=0

si − 1
)

= ‖S‖∗,1
s

1 − s
≤ ‖S‖∗,1

‖S‖k
∗,1

1 − ‖S‖∗,1
≤ ‖S‖∗,1

(r + ε)k

1 − r − ε
, (18)

where we have used (13).

(vi) Conclusion:
Steps (iv)-(v) can be repeated for ‖ST (k) − ST ‖∗,2 analogously. Combining Proposition 3.1,
(11), (12), (16), and (18), we arrive at

̺(LRT (k)) = ̺(H(k)) ≤ 2 c2C max(‖S‖∗,1, ‖S
T ‖∗,2)

(r + ε)k

1 − r − ε
.

For k ≥ k1 = k1(ε), we get ̺(LRT (k)) < 1, since 0 < r + ε < 1. The dependence of the
constant C0 := 2 c2C1 max(‖S‖∗,1, ‖S

T ‖∗,2) in (9) is due to the dependence of tj (cf. (iii)) on
ε, 1 ≤ j ≤ 2. 2

Definition 3.5. (Contraction rate, convergence rate)
Let x(i), i ≥ 0, be the iterates generated by an iterative method and let x = K−1b be the exact
solution. By e(i) := x(i) − x we denote the error associated with the i-th iteration. Let the
iteration matrix be given by L, with ̺(L) < 1.
We refer to

Ri := ‖e(i)‖/‖e(i−1)‖ , i ≥ 1

as the i-th rate of contraction (or contraction factor or factor of reduction for successive error
norms) and, following [12] or [21], to

Ri :=
− ln ‖Li‖

i

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–16
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10 C. LINSENMANN

as the average rate of convergence for i iterations. From the known fact that ̺(L) =
limi→∞ ‖Li‖1/i for any matrix norm ‖ · ‖, it can be deduced that

lim
i→∞

Ri = − ln(̺(L)),

which is called the asymptotic rate of convergence.
Assuming that i is large and that ‖Li−1e(0)‖ ≈ ‖Li−1‖ ‖e(0)‖, we further obtain Ri ≈ ̺(L).
Hence, ̺(L) will be referred to as the asymptotic rate of contraction. 3

Corollary 3.6. Let the assumptions of Theorem 3.4 hold true with a sharp bound r = ̺(S).
For large i, the quantity RRT (k) = ‖x(i)(k)− x‖/‖x(i−1)(k)− x‖ is called the contraction rate
of the RT iterative scheme (6), with x(i)(k) being the i-th RT iterate constructed by means of k
applications of the subsolver(s) as in Assumption 3.2. Then, we obtain an estimated asymptotic
contraction rate

RRT (k) ≈ O(rk) (19)

and consequently, the asymptotic convergence rate

−ln(̺(LRT )) ≈ k ln(1/r) − c. 2

4. NUMERICAL EXAMPLES

We consider system (1) stemming from a shape optimization problem subject to box constraints
on the design parameters ui, 1 ≤ i ≤ m, and subject to PDE constraints representing
stationary incompressible flow. The design parameters are chosen as Bézier control points in a
parametrization of the walls of a channel-like domain. The inequality constraints are treated
by an interior point approach with barrier parameter µ > 0, and the (nonlinear) optimality
conditions of the associated perturbed optimization subproblems (with associated solutions
x(µ)) lead, after applying Newton’s method, to a system exactly of the form as in (1). For
further details, the reader is referred to [4]. In this case, the matrix S is the Stokes matrix

S =

(
SA ST

B

SB 0

)
= ST

arising from a P2-P1 Taylor-Hood discretization of the Stokes equations with Dirichlet and
Neumann-type boundary conditions resulting in a nonsingular matrix S. As iterative solver,
we choose the augmented Lagrangian solver from [6]. It has recently been shown† that this
iterative procedure can be written as a stationary preconditioned Richardson scheme. The
spectral radius of its associated iteration matrix can be specified as ̺(S) = 1/(1 + ρ λ1)
(this result is also known from [6]), where ρ > 0 (usually ≫ 0) is the penalty and update
parameter of the augmented Lagrangian algorithm and λ1 = min σ(SBS−1

A ST
B) > 0 is the

smallest eigenvalue of the Schur complement associated with the matrix S. Hence, Assumption
3.2 is fulfilled. Moreover, it is known from [7] that under certain regularity assumptions on the
local minimizer, the matrix K = K(x̃(µ)) is regular for µ small enough and a sufficiently good
approximtion x̃(µ) ≈ x(µ). Then also Assumption 2.1 holds true for our test cases.

†Linsenmann C. The augmented Lagrangian method as smoother for the multigrid solution of the Stokes
equations. In preparation.
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ON THE CONVERGENCE OF RIGHT TRANSFORMING ITERATIONS 11

4.1. Test problem 1

As computational domain we choose a channel-like geometry and pick h := 0.35 as maximal
mesh width, resulting in n1 = 938 velocity nodes and n2 = 127 pressure nodes, so that
n = n1 + n2 = 1065. We further choose m := 8 design parameters. It turns out that here
λ1 = 1.85e–3. Choosing ρ := 5.41e+5 for the augmented Lagrangian algorithm, we obtain

r := ̺(S) = 0.5.

In view of Corollary 3.6, we want to check whether the contraction factors

Ri(k) :=
‖x(i)(k) − x‖2

‖x(i−1)(k) − x‖2
, i ≥ 1

from RT iteration (i − 1) to iteration i satisfy Ri(k) = O(rk). Indeed, Figure 1 displays

5 10 15 20 251 2 3 4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

RT iterations i

co
nt

ra
ct

io
n 

ra
te

k=3

k=1
(divergence)

k=7

k=5

k=8

k=9

k=10

k=11

k=13

k=12

k=6

k=4

k=2

Figure 1. First problem: The observed contraction rates vs. the by rk predicted
asymptotic contraction rates (horizontal lines) for k = 1, 2, . . . , 13 and r = 0.5.
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12 C. LINSENMANN

the coincidence between the observed rates of contraction and the predicted asymptotic rate
(horizontal lines). For k = 1 the algorithm does not converge, underlining the requirement
that k must be “large enough”. For k ≥ 2 the predicted rate is confirmed impressively, and
the asymptotic character of the quantity Ri(k) (cf. Definition 3.5) shows up clearly. The fact
that for k = 2 and 12 the observed rates are slightly larger than the predicted ones does not
contradict estimate (19). It can also be observed that the larger k, the faster Ri(k) attains its
asymptotic behavior, which is what we expect: Large values of k lead to a fast damping of
eigenvectors associated with small eigenvalues contributing to the iteration error. Note further
that in general we overestimate the contraction rate.

4.2. Test problem 2

This problem differs from the first one by choosing hmax := 0.0625 and ρ := 1.42e+5. This
results in λ1 = 6.35e–5, r = 0.25, and n = 28 234 + 3 578 = 31 812. Hence, the overall number
of unknowns (63 632) is significantly larger compared to the first problem. Also this test case
confirms our contraction rate estimate Ri(k) ≈ rk, as can be seen in Figure 2. Note that
compared to the first example, there is no change in the qualitative behavior of the ’ratio’ of
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Figure 2. Second test problem: The observed contraction rates vs. the by rk

predicted asymptotic rates (horizontal lines) for k = 1, . . . , 6 and r = 0.25.
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ON THE CONVERGENCE OF RIGHT TRANSFORMING ITERATIONS 13

predicted and observed contraction rates, although the dimension of the problem is significantly
larger. Interestingly, for k = 1 the algorithm shows the same unusual periodic development of
the contraction rate as in the first example (where it occurs for k = 1 and 2 due to the larger
value of r = 0.5 compared to 0.25 in test problem two). The typical asymptotic development
emerges for k ≥ 2 and again reveals the behavior ’the larger k, the faster the approximation
of the asymptotic contraction rate’.

5. RIGHT TRANSFORMATIONS ALGORITHM (I)

For the following algorithm in pseudo-form, we use the notation known from Matlab or the
standard monograph [8], where exemplarily A(:, j) denotes the j-th column of a matrix A. For
simplicity, we drop the (k)-notation.

Note that the computation of Gy, Gλ does not rely on information of previous iterations j,
whence the pre-processing step qualifies for parallelization.

Algorithm 5.1. Right transformations for solving the system (1)

% Initialization:
Let the right hand side b = (by, bλ, bu)T and the matrix K with blocks as in (1) be given.
Specify a tolerance ǫ ≪ 1 and set x(0) := 0.

% Pre-processing: Compute the matrices Gy, Gλ ∈ Rn×m columnwise:
for j = 1 : m

Solve S Gy(:, j) = B2(j, :)
T iteratively.

Solve ST Gλ(:, j) = B1(j, :)
T − Q Gy(:, j) iteratively.

end

Compute the matrix D := C − B1Gy − B2 Gλ.

% Iteration:
for i = 0, . . . until convergence

Compute the residual ξ = (ξy, ξλ, ξu)T = b − Kx(i).

% Check for convergence:
if ‖ξ‖ < ǫ ‖b‖

Solution is x := x(i), stop.
end

% Computation of z := M1(k)−1ξ:
Solve Szy = ξλ iteratively.
Solve ST zλ = ξy − Qzy iteratively.
Solve D zu = ξu − B1zy − B2 zλ directly.

% Update of x:
Set x(i+1) := x(i) + (zy − Gyzu, zλ − Gλzu, zu)T .

end
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14 C. LINSENMANN

We point out that the right transforming iterative scheme requires the approximate solution
of m subproblems Sz = f and ST z = f (with generic right hand sides f) plus 1 solution
in each iteration. From a computational point of view it is therefore applicable only if fast
PDE solvers are available or if m is “not too large”, for example in case of shape optimization
problems where only a small number of design parameters ui, 1 ≤ i ≤ m, is involved.

6. RIGHT TRANSFORMATIONS ALGORITHM (II)

To be able to treat a larger class of problems, we propose a different version of the RT algorithm
where matrix D(k) is not computed explicitly. Instead, an iterative solver for the system
Dzu = ξu −B1zy −B2 zλ is used which requires only evaluations of the form Dv, v ∈ Rm, that
can be computed implicitly.

Algorithm 6.1. Right transformations (iterative version)

% Initialization:
Let the right hand side b = (by, bλ, bu)T and the matrix K with blocks as in (1) be given.
Specify a tolerance ǫ ≪ 1 and set x(0) := 0.

% Iteration:
for i = 0, . . . until convergence

Compute the residual ξ = (ξy, ξλ, ξu)T = b − Kx(i).

% Check for convergence:
if ‖ξ‖ < ǫ ‖b‖

Solution is x := x(i), stop.
end

% Computation of z := M1(k)−1ξ:
Solve Szy = ξλ iteratively.
Solve ST zλ = ξy − Q zy iteratively.
Solve Dzu = ξu − B1zy − B2 zλ iteratively, e.g., by GMRes. (∗)

Thereby, each matrix-vector multiplication Dv is done implicitly by:

Compute Sw1 = BT
2 v iteratively.

Compute ST w2 = BT
1 v − Q w1 iteratively.

Set Dv := Cv − B1w1 − B2 w2.

% Update of x:
Solve Sz̃y = BT

2 zu iteratively.
Solve ST z̃λ = BT

1 zu − Q z̃y iteratively.
Set x(i+1) := x(i) + (zy − z̃y, zλ − z̃λ, zu)T .

end

Comments & Discussion:

• If S = ST , Q = QT , and C = CT , then also the matrix D is symmetric and we can
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ON THE CONVERGENCE OF RIGHT TRANSFORMING ITERATIONS 15

apply, for example, Lanczos’ method in (∗), resulting in less memory requirements.
• Based on experience, we recommend to solve (∗) at least to an accuracy (w.r.t. the relative

residual) of roughly 10−1rk, i.e., one magnitude lower than the predicted contraction rate.
Otherwise, the obtained contraction rates may be significantly worse than those obtained
from Algorithm 5.1.

• In the version above, each RT iteration requires (2 + 2ℓ) approximate solutions of
subproblems (3), where ℓ is the number of iterations spent for the solution of (∗). Thus,
if iRT denotes the overall number of RT iterations, it is necessary to solve 2 iRT (1 + ℓ)
times the subproblems (3), in contrast to m + iRT for Algorithm 5.1. Hence, only for
ℓ < m

2 iRT
Algorithm 6.1 turns out to be more economical than Algorithm 5.1 (assuming

that the overall computational cost is dominated by the subproblems). Therefore, one is
well advised to use a good preconditioner for D.

• The iterative version forfeits the possibility of parallelizing the code due to the successive
character of its main loop.

The latter two issues lead to a nearby resort: Use a combination of Algorithm 5.1 and
Algorithm 6.1, where the matrices Gy, Gλ and D are computed in a pre-processing step
explicitly and, preferably, in a parallelized way. Then, in each iteration step, the linear system
Dzu = ξu − B1zy − B2 zλ is solved iteratively as in Algorithm 6.1, but without the necessity
to compute matrix-vector products Dv implicitly.
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