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INVARIANCE ENTROPY OF CONTROL SETS

CHRISTOPH KAWAN∗†

Abstract. Invariance entropy for continuous-time control systems measures how often open-
loop controls have to be updated in order to render a compact and controlled invariant subset of
the state space invariant. A special type of a controlled invariant set for a control-affine system is
the closure of a control set, i.e., a maximal set of approximate controllability. In this paper, we
investigate the properties of the invariance entropy of such sets. Our main result gives an upper
bound of this quantity in terms of the positive Lyapunov exponents of a periodic solution in the
interior of the control set. Moreover, for one-dimensional systems with a single control vector field
we provide an analytical formula for the invariance entropy of a control set in terms of the drift
vector field, the control vector field and their derivatives. As an application, we study a controlled
linear oscillator.
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1. Introduction. In [4], we introduced invariance entropy for continuous-time
control systems on Euclidean space, to measure how often open-loop control functions
have to be readjusted in order to stay in a compact and controlled invariant set Q
in the state space from a subset K ⊂ Q of initial states. Precisely, we considered
two quantities, the invariance entropy hinv(K,Q) and the strict invariance entropy
h∗inv(K,Q), whereas in the definition of hinv(K,Q) we only required that trajectories
stay in an arbitrarily small neighborhood of Q. In the PhD Thesis [6], we proved that
the strict invariance entropy h∗inv(Q) equals the infimal data rate necessary to render
Q invariant by a causal coding and control law. In [7], we extended the concept of
invariance entropy to systems on arbitrary smooth manifolds and provided general
upper and lower bounds. The present paper deals with control-affine systems on
smooth manifolds and the invariance entropy of compact sets which are the topological
closures of control sets, i.e., maximal sets of approximate controllability.

Let M be a smooth manifold, endowed with a metric d (not necessarily a Rie-
mannian distance). On M consider a control-affine system

ẋ(t) = f0(x(t)) +
m∑
i=1

ui(t)fi(x(t)), u ∈ U , (1.1)

with L∞-controls and a compact and convex control range U ⊂ Rm. For simplicity,
the vector fields f0, f1, . . . , fm are assumed to be smooth and complete, guaranteeing
that for any initial value x ∈M and control u ∈ U a unique solution ϕ(t, x, u) exists for
all t ∈ R. By [5, Sec. 4.2 and 4.3] these assumptions imply compactness of U endowed
with the weak∗-topology of L∞(R,Rm) = L1(R,Rm)∗, and continuity of the cocycle
ϕ : R×M×U →M . A control set D ⊂M of system (1.1) is a controlled invariant set
such that for all x, y ∈ D and ε > 0 there are u ∈ U and t > 0 with d(ϕ(t, x, u), y) < ε,
and such that D is maximal with these properties. In Section 4, we will give the easy
proof that controlled invariance of a set carries over to the closure of that set. Hence,
if D is a relatively compact control set, the (strict) invariance entropy h

(∗)
inv(K, clD)

for each compact subset K ⊂ clD is defined. The main lemma of this paper, Lemma
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2 C. KAWAN

4.2, states that h(∗)
inv(K, clD) does actually not depend on the set K as long as it is

contained in D and has nonvoid interior. The common value of h(∗)
inv(K, clD) for K

with the described properties will simply be called the (strict) invariance entropy of
the control set D. Using this lemma, we prove our main theorem, Theorem 4.4, which
yields an upper bound for the strict invariance entropy of a control set in terms of the
positive Lyapunov exponents of a periodic solution with controllable linearization in
the interior of the control set. The proof of the theorem is a modification of the proof
of a result by Nair, Evans, Mareels and Moran. In [10], they derived a formula for the
local topological feedback entropy of a discrete-time control system in Euclidean space
at a fixed point with controllable linearization in terms of the unstable eigenvalues of
the fixed point Jacobian. Combining our main theorem with the lower estimate for
invariance entropy, which we derived in [7], we are able to provide a formula for the
invariance entropy of a control set for one-dimensional control-affine systems with a
single control vector field. Moreover, we show that here hinv(K,Q) and h∗inv(K,Q)
coincide. We apply this result to systems on the unit circle which are the projections
of bilinear control systems in the plane. As a special case, we study a controlled
mathematical pendulum, linearized at the unstable position. The first-order equations
of such a pendulum can be regarded as a bilinear control system in the plane, which
we project to the unit circle. Under suitable conditions, this projected system has
two pairs of antipodal control sets, one pair of invariant and one of variant control
sets. The double cone over the pair of variant control sets is exactly the region in
the state space of the planar system, where stabilization at the unstable position is
possible, and the number of control functions necessary to keep the planar system in
that double cone for some positive time coincides with the number of control functions
necessary to keep the projected system in the corresponding control sets. Hence, the
invariance entropy of these control sets measures how often control functions have to
be updated in order to stay in the region where stabilization is possible.

The present paper is organized as follows: In Section 2, we provide notation and
recall facts on Riemannian manifolds, control-affine systems and invariance entropy.
Section 3 introduces the linearization of a control system along a controlled trajectory.
In Section 4, the central results are formulated and proved. Finally, Section 5 deals
with the applications, including projected bilinear systems on the unit sphere and—
as a special case of that—a model for a damped mathematical pendulum linearized
around the unstable equilibrium.

2. Notation and Preliminaries.

2.1. Notation. The term “smooth” always stands for C∞. By a smooth man-
ifold we understand a connected, second-countable, topological Hausdorff manifold
endowed with a smooth differentiable structure. A chart of a smooth d-dimensional
manifold M is a pair (φ, V ) such that V ⊂M is an open set and φ is a diffeomorphism
from V onto an open subset of Rd. By TpM we denote the tangent space of the man-
ifold M at p ∈ M , and by TM the tangent bundle. For the space of smooth vector
fields on M we write X (M). A Riemannian manifold (M, g) consists of a smooth
manifold M and a Riemannian metric g on M , i.e., a family (gp)p∈M of positive defi-
nite symmetric bilinear forms on TpM , depending smoothly on p. By L(γ) we denote
the length of a smooth curve γ : I →M on a Riemannian manifold.

If (X, d) is a metric space, we write Bε(x) for the ε-ball centered at x ∈ X. We
write intA and clA for the interior and the closure of a set A ⊂ X, respectively.
The support of a continuous function f : X → R is denoted by supp f . By σ(A)
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we denote the spectrum of an endomorphism A. I stands for the identity matrix,
and (·)T for the transposed of a vector or a matrix. Hom(V,W ) is the space of
homomorphisms between the vector spaces V and W . ‖ · ‖ denotes a vector or an
operator norm. If F (x, u) is a differentiable function of two arguments, we write
D1F (x, u) or DxF (x, u) for the derivative with respect to the first, and D2F (x, u) or
DuF (x, u) for the derivative with respect to the second argument, respectively. b·c
denotes rounding down. Finally, we write ‖u‖[0,τ ] for the L∞-norm of an essentially
bounded measurable function u : [0, τ ]→ Rm.

2.2. Riemannian Manifolds. Let (M, g) be a Riemannian manifold with as-
sociated Levi-Civita connection ∇ : X (M) × X (M) → X (M), (g, f) 7→ ∇gf . Using
the fact that (∇gf)(x) is independent of the values of g except for g(x), the covariant
derivative of a vector field f ∈ X (M) at a point x ∈M is defined by

∇f(x) : TxM → TxM, v 7→ (∇vf)(x).

For every point x ∈M the Riemannian exponential function expx : TxM ⊃ W →M
is defined on an open neighborhood W of the origin 0 ∈ TxM and has the property
that c(t) := expx(tv) is the unique geodesic on M such that c(0) = x and ċ(0) = v,
where v ∈ TxM . Moreover, expx is a local diffeomorphism around 0 ∈ TxM and
satisfies D expx(0) = idTxM .

2.3. Control-affine Systems. Let M be a d-dimensional smooth manifold. A
family of ordinary differential equations

ẋ(t) = f0(x(t)) +
m∑
i=1

ui(t)fi(x(t)), u ∈ U , (2.1)

on M is called a control-affine system. Here f0, f1, . . . , fm ∈ X (M) are smooth and
complete vector fields and the family of admissible control functions is given by

U = {u : R→ Rm : u measurable with u(t) ∈ U a.e.} ,

where U ⊂ Rm is compact and convex. f0 is also called the drift vector field and
f1, . . . , fm the control vector fields of the system. We also denote the right-hand side
by F (x, u),

F (x, u) = f0(x) +
m∑
i=1

uifi(x).

By smoothness of the vector fields f0, f1, . . . , fm, for every initial value x ∈ M and
every control function u ∈ U a unique solution ϕ(·, x, u) exists such that ϕ(0, x, u) = x.
We also write ϕt,u(x) or ϕt(x, u) instead of ϕ(t, x, u). Note that ϕ(t, x, u) is also
defined for an arbitrary L∞-function u : R→ Rm, and by completeness, all solutions
are defined on R. On U we introduce the shift flow (Θt)t∈R by

Θ : R× U → U , (Θtu)(s) := u(t+ s).

By [5, Lem. 4.3.2], both Θ and ϕ are continuous and thus we obtain a continuous
skew-product flow

Φ : R× (U ×M)→ (U ×M), Φ(t, (u, x)) = (Θtu, ϕ(t, x, u)),



4 C. KAWAN

the so-called control flow of system (2.1).
For a point x ∈M we define the set of points reachable from x up to time T > 0

by

O+
≤T (x) := {y ∈M | ∃u ∈ U , t ∈ [0, T ] : y = ϕ(t, x, u)} ,

and the set of points controllable to x within time T > 0,

O−≤T (x) := {y ∈M | ∃u ∈ U , t ∈ [0, T ] : x = ϕ(t, y, u)} .

Furthermore, the positive and negative orbits of x are defined by

O+(x) :=
⋃
T>0

O+
≤T , O−(x) :=

⋃
T>0

O−≤T (x).

System (2.1) is called locally accessible from x ∈M if both O+
≤T (x) and O−≤T (x) have

nonvoid interior for all T > 0. The system is called locally accessible on a set A ⊂M
if it is locally accessible from all x ∈ A.

A set D ⊂M is called a control set if it is maximal with the following properties:
(i) Controlled invariance: For all x ∈ D there is u ∈ U with ϕ(R+

0 , x, u) ⊂ D.
(ii) Approximate controllability : For all x ∈ D it holds that D ⊂ clO+(x).

Control sets with nonvoid interior have the so-called no-return property, i.e., if x ∈ D
and ϕ(τ, x, u) ∈ D for some τ > 0 and u ∈ U , then ϕ([0, τ ], x, u) ⊂ D (see [5,
Prop. 1.3.8]).

By an equilibrium pair of system (2.1) we mean a pair (x0, u0) ∈ M × U such
that F (x0, u0) = 0, which is equivalent to ϕ(t, x0, u0) = x0 for all t ∈ R.

2.4. Invariance Entropy. Consider the control-affine system (2.1) and let Q ⊂
M be a compact and controlled invariant set. The latter means that for every x ∈ Q
there is u ∈ U with ϕ(R+

0 , x, u) ⊂ Q. Moreover, let K ⊂ Q be compact. A set S ⊂ U
is called (T, ε,K,Q)-spanning, where T, ε > 0, if for all x ∈ K there is u ∈ S with

ϕ(t, x, u) ∈ Nε(Q) for all t ∈ [0, T ],

where

Nε(Q) = {x ∈M | ∃y ∈ Q : d(x, y) < ε}

is the ε-neighborhood of Q. Let rinv(T, ε,K,Q) be the minimal cardinality of such a
set. Then the invariance entropy of (K,Q) is defined by

hinv(K,Q) := lim
ε↘0

hinv(ε,K,Q), hinv(ε,K,Q) := lim sup
T→∞

1
T

ln rinv(T, ε,K,Q).

Existence of the limit easily follows from monotonicity of rinv(T, ε,K,Q) in ε, and
finiteness of rinv(T, ε,K,Q) follows from compactness ofK and continuous dependence
on initial conditions (see [4, Prop. 3.2(i)] or [6, Prop. 2.1.7]). Moreover, hinv(K,Q)
does not depend on the metric d imposed on M (see [7, Prop. 6] or [6, Prop. 2.1.10(i)]).

A set S∗ ⊂ U is called (T,K,Q)-spanning if for all x ∈ K there is u ∈ S∗ with

ϕ(t, x, u) ∈ Q for all t ∈ [0, T ].
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By r∗inv(T,K,Q) we denote the minimal cardinality of such a set, and we define the
strict invariance entropy of (K,Q) by

h∗inv(K,Q) := lim sup
T→∞

1
T

ln r∗inv(T,K,Q).

Here, existence of finite T -spanning sets is not guaranteed (see [6]). If there are no
finite (T,K,Q)-spanning sets for some T > 0, h∗inv(K,Q) is defined as∞. Since every
(T,K,Q)-spanning set is obviously (T, ε,K,Q)-spanning for all ε > 0, the inequality

hinv(K,Q) ≤ h∗inv(K,Q) (2.2)

holds. In [4], we conjectured that here equality holds if h∗inv(K,Q) <∞. In the present
paper, we prove equality for control-affine systems with a single control vector field
and one-dimensional state space, in the case that Q is the closure of a control set (see
Corollary 4.6).

The following proposition shows that for the computation of the invariance en-
tropy it is sufficient to consider the system at times which are integer multiples of
some fixed time step τ > 0. For a proof see [4, Prop. 3.4(ii)] or [6, Prop. 2.2.9].

Proposition 2.1. For all τ, ε > 0 it holds that

hinv(ε,K,Q) = lim sup
n→∞
n∈N

1
nτ

ln rinv(nτ, ε,K,Q),

and

h∗inv(K,Q) = lim sup
n→∞,
n∈N

1
nτ

ln r∗inv(nτ,K,Q).

3. Linearization along Controlled Trajectories. In this section, we intro-
duce the linearization of a control system along a controlled trajectory and show that
the solutions of the linearization approximate the solutions of the nonlinear system
in a neighborhood of the controlled trajectory. Moreover, we discuss controllability
of the linearization along periodic trajectories.

Definition 3.1. Consider the control-affine system (2.1) and let g be a Rieman-
nian metric on M . Let ϕ(·, x0, u0) : R→M be a solution corresponding to an initial
value x0 ∈M and a control function u0 ∈ U . Define

A(t) := ∇Fu0(t)(ϕt,u0(x0)) : Tϕt,u0 (x0)M → Tϕt,u0 (x0)M,

B(t) := D2F (ϕt,u0(x0), u0(t)) : Rm → Tϕt,u0 (x0)M

for all t ∈ R. The pair (ϕ(·, x0, u0), u0) is called a controlled trajectory and the
family

Dz

dt
(t) = A(t)z(t) +B(t)µ(t), µ ∈ L∞(R,Rm), (3.1)

of differential equations, where D
dt denotes the covariant derivative along the solution

ϕ(·, x0, u0), is called the linearization of (2.1) along (ϕ(·, x0, u0), u0). A solution of
(3.1) with initial value λ ∈ Tx0M corresponding to a control function µ ∈ L∞(R,Rm)
is a locally absolutely continuous vector field z : I → TM along ϕ(·, x0, u0), defined
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on an interval I with 0 ∈ I, satisfying equation (3.1) for almost all t ∈ I such that
z(0) = λ.

For the elementary but long and technical proof of the following proposition we
refer to [6, Prop. 1.2.22]. Statements (i) and (ii) can be concluded from the corre-
sponding “Euclidean version” (see, e.g., Theorem 1 in [9]) by writing everything in
local coordinates. Statement (iii) immediately follows from (ii), and the identity in
(iv) easily follows from periodicity and uniqueness of solutions.

Proposition 3.2. Consider the control-affine system (2.1). Let (ϕ(·, x0, u0), u0)
be a controlled trajectory with corresponding linearization (3.1). Then the following
statements hold:

(i) For every τ > 0 the mapping

ϕτ : M × L∞([0, τ ],Rm)→M, (x, u) 7→ ϕ(τ, x, u),

is continuously differentiable.
(ii) For every initial value λ ∈ Tx0M and every control function µ ∈ L∞(R,Rm)

there exists a unique solution ϕl(·, λ, µ) : R→ TM of (3.1) satisfying

ϕl(t, λ, µ) = Dϕt(x0, u0)(λ, µ) (3.2)

for all t ∈ R and (λ, µ) ∈ Tx0M × L∞(R,Rm).
(iii) For every τ > 0 the mapping

ϕl(τ, ·, ·) : Tx0M × L∞([0, τ ],Rm)→ Tϕ(τ,x0,u0)M

is linear and continuous.
(iv) Assume that the controlled trajectory (ϕ(·, x0, u0), u0) is T0-periodic for some

T0 > 0. Then for all k ∈ Z, t ∈ R and λ ∈ Tx0M it holds that

ϕl(t, ϕl(kT0, λ, 0), 0) = ϕl(t+ kT0, λ, 0).

Statement (ii) of Proposition 3.2 shows that the linearization (3.1) is an object
which actually does not depend on the Riemannian metric g imposed on M , since the
solutions are the same for every metric.

Proposition 3.3. Consider the control-affine system (2.1) and its linearization
along the controlled trajectory (ϕ(·, x0, u0), u0). Then for all τ, C > 0 there exist δ > 0
and a function ζ = ζτ,C : [0, δ)→ R+

0 with

lim
b↘0

ζ(b) = 0

such that ∥∥∥exp−1
ϕ(τ,x0,u0)(ϕ(τ, x, u))− ϕl(τ, exp−1

x0
(x), u− u0)

∥∥∥ ≤ ζ(b)b (3.3)

for all x ∈M with d(x, x0) < b and u ∈ L∞([0, τ ],Rm) with ‖u−u0‖[0,τ ] ≤ Cb, where
b ∈ [0, δ) is small enough that exp−1

x0
(x) and exp−1

ϕ(τ,x0,u0)(ϕ(τ, x, u)) are defined.
Proof. For given τ > 0 consider the mappings

α : M × L∞([0, τ ],Rm)→M, (x, u) 7→ ϕ(τ, x, u),

and

α̃ : Tx0M × L∞([0, τ ],Rm) ⊃ W̃ → Tϕ(τ,x0,u0)M,

(y, u) 7→ exp−1
ϕ(τ,x0,u0)(α(expx0

(y), u)),
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where W̃ is an open neighborhood of (0, u0) ∈ Tx0M × L∞([0, τ ],Rm), chosen small
enough such that α̃ is well-defined. Since α(expx0

(0), u0) = ϕ(τ, x0, u0) and α is
continuous, which follows from Proposition 3.2(i), such W̃ exists. By Proposition
3.2(i) both α and α̃ are continuously differentiable. Differentiating α̃ at (0, u0) by the
chain rule yields

Dα̃(0,u0)(λ, µ) = D exp−1
ϕ(τ,x0,u0)(ϕ(τ, x0, u0))Dα(x0,u0)D(expx0

× id)(λ, µ).

Using that Dα(x0,u0)(λ, µ) = ϕl(τ, λ, µ) (see Proposition 3.2(ii)) and that the deriva-
tive of the Riemannian exponential map at 0 is the identity, we obtain

Dα̃(0,u0)(λ, µ) = ϕl(τ, λ, µ).

Thus,

exp−1
ϕ(τ,x0,u0)(ϕ(τ, expx0

(y), u)) = α̃(y, u)

= α̃(0, u0)︸ ︷︷ ︸
=0

+Dα̃(0,u0)(y, u− u0) + r(y, u)

= ϕl(τ, y, u− u0) + r(y, u)

for all (y, u) ∈ W̃ , where r is a function that satisfies

lim
(y,u)→(0,u0)

r(y, u)
‖y‖+ ‖u‖[0,τ ]

= 0. (3.4)

Hence, we obtain∥∥∥exp−1
ϕ(τ,x0,u0)(ϕ(τ, expx0

(y), u))− ϕl(τ, y, u− u0)
∥∥∥ ≡ ‖r(y, u)‖ . (3.5)

Since W̃ is an open neighborhood of (0, u0), for given C > 0 there exists δ > 0 such
that Bδ(0)×BCδ(u0) ⊂ W̃ . Define ζτ,C : [0, δ)→ R+

0 by

ζC,τ (b) :=

{
b−1 sup ‖y‖≤b,

‖u−u0‖[0,τ]≤Cb
‖r(y, u)‖ for b ∈ (0, δ),

0 for b = 0.

Then from (3.5) we obtain (3.3). From (3.4) it follows that for every ε > 0 there is
b > 0 such that ‖y‖ ≤ b and ‖u− u0‖[0,τ ] ≤ Cb implies ‖r(y,u)‖

‖y‖+‖u‖[0,τ]
≤ ε. Hence, from

‖r(y, u)‖
‖y‖+ ‖u‖[0,τ ]

=
‖r(y, u)‖

b

b

‖y‖+ ‖u‖[0,τ ]
≤ ε

it follows that

‖r(y, u)‖
b

≤ ε‖y‖+ ‖u‖[0,τ ]

b
≤ εb(C + 1)

b
= ε(C + 1).

For b = b(ε) this implies

ζC,τ (b) = sup
‖y‖≤b,

‖u−u0‖[0,τ]≤Cb

‖r(y, u)‖
b

≤ ε(C + 1),
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which finishes the proof.
Next, we introduce the notion of controllability for the linearization along a con-

trolled periodic trajectory.
Definition 3.4. Let (ϕ(·, x0, u0), u0) be a T0-periodic controlled trajectory of

system (2.1). Then the linearization along (ϕ(·, x0, u0), u0) is called controllable
(on [0, T0]) if for all λ1, λ2 ∈ Tx0M there exists µ ∈ L∞([0, T0],Rm) such that

ϕl(T0, λ1, µ) = λ2,

or equivalently, if for each λ ∈ Tx0M there is µ ∈ L∞([0, T0],Rm) with

ϕl(T0, λ, µ) = 0.

Proposition 3.5. Consider the control-affine system (2.1) and its lineariza-
tion along a T0-periodic controlled trajectory (ϕ(·, x0, u0), u0). If the linearization
is controllable, then there exists C > 0 such that for all λ ∈ Tx0M there is µ ∈
L∞([0, T0],Rm) with

ϕl(T0, λ, µ) = 0 and ‖µ‖[0,T0] ≤ C‖λ‖.

Proof. By controllability, for every λ ∈ Tx0M there exists at least one µ ∈
L∞([0, T0],Rm) such that ϕl(T0, λ, µ) = 0, or equivalently

ϕl(T0, 0, µ) = ϕl(T0,−λ, 0).

Consider the automorphism Q : Tx0M → Tx0M , Qλ := ϕl(T0,−λ, 0), and the contin-
uous linear operator

L : L∞([0, T0],Rm)→ Tx0M, µ 7→ ϕl(T0, 0, µ).

Obviously, controllability is equivalent to L being surjective. Hence, by the bounded
inverse theorem (see [2, Theo. 16.5]), there exists a constant C̃ > 0 such that for all
λ ∈ Tx0M there is µ ∈ L∞([0, T0],Rm) with Lµ = Qλ and ‖µ‖[0,T0] ≤ C̃‖Qλ‖. Thus,
with C := C̃‖Q‖ the assertion holds.

Remark 3.1. For control systems on Euclidean space our notion of controllability
for the linearization along a (periodic) controlled trajectory coincides with the usual
one, as it is defined, e.g., in [9]. In particular, in the case of an equilibrium pair
(x0, u0), controllability is equivalent to controllability of the matrix pair (A,B) given
by A = DxF (x0, u0) and B = DuF (x0, u0).

4. The Main Results. In this section, we state and prove our main results
about the invariance entropy of control sets. First, we prove the following easy lemma,
which shows that controlled invariance of a set carries over to the closure of that
set. This guarantees that h(∗)

inv(K, clD) is a well-defined quantity if D is a relatively
compact control set and K ⊂ D is compact.

Lemma 4.1. Consider the control-affine system (2.1) and let A ⊂ M be a con-
trolled invariant set. Then also clA is controlled invariant.

Proof. Let x ∈ clA be chosen arbitrarily. Then there exists a sequence (xn)n∈N in
A with xn → x. By controlled invariance, there are un ∈ U with ϕ(R+

0 , xn, un) ⊂ A
for all n ≥ 1. By compactness of U (in the weak∗-topology) we may assume that
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un → u ∈ U . By continuity of ϕ we have ϕ(t, xn, un) → ϕ(t, x, u) for each t ≥ 0,
which implies ϕ(R+

0 , x, u) ⊂ clA. Hence, the assertion holds.
Next we prove our main lemma, which justifies to speak of the (strict) invariance

entropy of a control set.
Lemma 4.2. Let D be a control set of the control-affine system (2.1) with compact

closure Q = clD and nonvoid interior. Further, let K1,K2 ⊂ D be compact sets with
nonvoid interior. Then

hinv(K1, Q) = hinv(K2, Q) and h∗inv(K1, Q) = h∗inv(K2, Q).

Proof. Consider the first equality. Obviously, it suffices to prove that the left-hand
side is less than or equal to the right-hand side. By approximate controllability on D,
we can assign to each x ∈ K1 a control function ux ∈ U and a time tx ≥ 0 such that
ϕ(tx, x, ux) ∈ intK2. By the no-return property, we also have ϕ([0, tx], x, ux) ⊂ D.
By continuous dependence on initial conditions, one finds a neighborhood Vx of x with
ϕ(tx, Vx, ux) ⊂ intK2. The family {Vx}x∈K1 is an open cover of K1. By compactness,
there exist x1, . . . , xn ∈ K1 with K1 ⊂

⋃n
i=1 Vxi . Now, for arbitrary T, ε > 0 let

S = {v1, . . . , vk} be a minimal (T, ε,K2, Q)-spanning set. For every index pair (i, j)
with 1 ≤ i ≤ n and 1 ≤ j ≤ k such that there exists x ∈ K1 with yx := ϕ(txi , x, uxi) ∈
intK2 and ϕ([0, T ], yx, vj) ⊂ Nε(Q) we define the control function wij by

wij(t) :=
{
uxi(t) for t ∈ [0, txi ],
vj(t− txi) for t > txi .

The number of these control functions is bounded from above by nk = nrinv(T, ε,K2, Q).
Consider the set Ŝ consisting of the control functions wij . Let T̂ := T+mini=1,...,n txi .
Then, by construction, Ŝ is a (T̂ , ε,K1, Q)-spanning set. Consequently,

rinv(T, ε,K1, Q) ≤ rinv(T̂ , ε,K1, Q) ≤ nrinv(T, ε,K2, Q).

Hence, we obtain

hinv(ε,K1, Q) ≤ lim sup
T→∞

(
lnn
T

+
ln rinv(T, ε,K2, Q)

T

)
= hinv(ε,K2, Q).

For ε ↘ 0, the desired inequality hinv(K1, Q) ≤ hinv(K2, Q) follows. The proof for
the strict invariance entropy works analogously.

For the proof of our main theorem we also need the following well-known property
of the matrix exponential, which can easily be concluded from [8, Theo. 5.1], for
instance.

Lemma 4.3. Let A ∈ Rd×d and denote by α(A) the maximum of the real parts of
all eigenvalues of A. Then

∀δ > 0 : ∃c > 0 : ∀t ≥ 0 : ‖eAt‖ ≤ ce(α(A)+δ)t,

where ‖ · ‖ denotes any operator on Rd×d.
Now we are able to prove our main theorem, whose proof is a modification of

the second part of the proof of Theorem 3 in [10], which states that the local topo-
logical feedback entropy of a discrete-time system xk+1 = F (xk, uk) at an equilib-
rium pair (x∗, u∗) is given by

∑
η∈σ(A) max{0, log2 |η|}, where A = DxF (x∗, u∗) and

B = DuF (x∗, u∗).
Theorem 4.4. Let D be a control set of the control-affine system (2.1) with

nonvoid interior and compact closure Q := clD. Let (ϕ(·, x0, u0), u0) be a T0-periodic
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controlled trajectory with ϕ([0, T0], x0, u0) ⊂ intD. Moreover, assume that u0(t) is
contained in a compact subset of intU for almost all t ∈ [0, T0], and that the lin-
earization of (2.1) along (ϕ(·, x0, u0), u0) is controllable. Let ρ1, . . . , ρr be the differ-
ent Lyapunov exponents of the solution ϕ(·, x0, u0) with corresponding multiplicities
d1, . . . , dr. Then for every compact set K ⊂ D it holds that

h∗inv(K,Q) ≤
r∑
j=1

dj max{0, ρj}. (4.1)

Proof. We prove the theorem in three steps.
Step 1: Consider the automorphism

A := Dϕ2T0(x0, u0)(·, 0)
(3.2)
= ϕl(2T0, ·, 0) : Tx0M → Tx0M. (4.2)

By Proposition 3.2(iv) it holds that A = ϕl(T0, ·, 0)2 and hence from the fundamental
lemma of Floquet theory (see, e.g., [3, Theo. 2.4.7]) it follows that there exists a linear
endomorphism R : Tx0M → Tx0M with

A = e2T0R. (4.3)

By Proposition 3.2(iv) it follows that

ϕl(2T0k, λ, 0) = Akλ = e2T0kRλ for all λ ∈ Tx0M, k ∈ N. (4.4)

The real parts of the eigenvalues of R are exactly the Lyapunov exponents of the
solution ϕ(·, x0, u0). To show this, we write t > 0 as t = 2T0k + s with k ∈ N0 and
s ∈ [0, 2T0). Then for all λ ∈ Tx0M we obtain

ϕl(t, λ, 0) = ϕl(s, ϕl(k(2T0), λ, 0), 0)
(4.4)
= ϕl(s, ·, 0)e2T0kRλ.

Hence,

l1
∥∥e2kT0Rλ

∥∥ ≤ ∥∥ϕl(t, λ, 0)
∥∥ ≤ l2 ∥∥e2kT0Rλ

∥∥
with the positive constants

l1 := min
s∈[0,2T0]

∥∥ϕl(s, ·, 0)−1
∥∥−1

, l2 := max
s∈[0,2T0]

∥∥ϕl(s, ·, 0)
∥∥ .

By Proposition 3.2(ii) we have Dϕt,u0(x0)λ = ϕl(t, λ, 0) and hence the exponential
growth rate of ‖Dϕt,u0(x0)λ‖ for t→∞ equals the growth rate of ‖e2T0b t

2T0
cRλ‖ for

all λ ∈ Tx0M , which proves the claim.
Choose a basis Bx0 of Tx0M adapted to the real Jordan structure of R. Let

L1(R), . . . , Lr(R) be the different Lyapunov spaces of R. Then we have the decom-
position

Tx0M = L1(R)⊕ · · · ⊕ Lr(R).

Let dj = dimLj(R) and denote by λ(j) ∈ Lj(R) the jth component of a vector
λ ∈ Tx0M with respect to this decomposition. Moreover, denote by ρj the common
real part of the eigenvalues corresponding to Lj(R). For the restriction of R to Lj(R)
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we write Rj . Now, let g be a Riemannian metric on M such that the basis Bx0 is
orthonormal with respect to gx0 , and let d denote the distance on M induced by g. In
order to construct a metric with this property, one can start with an arbitrary metric
g̃ on M . Then one takes a chart (φ, V ) around x0 and a scalar product (·, ·) on Rd such
that Bx0 is orthonormal with respect to the induced scalar product (Dφx0 ·, Dφx0 ·)
on Tx0M . On V consider the pullback ĝ of (·, ·) by φ, i.e.,

ĝ(x)(v, w) := (Dφxv,Dφxw) for all x ∈ V, v, w ∈ TxM.

Then let θ : M → [0, 1] be a smooth cut-off function such that supp θ ⊂ V and
θ(x) = 1 on a compact neighborhood W of x0. Define g by

g(x) :=
{
θ(x)ĝ(x) + (1− θ(x))g̃(x) for all x ∈ V,

g̃(x) for all x ∈M\V.

It can easily be seen that g is a Riemannian metric on M with gx0 having the desired
property.

Step 2: We fix some constants: Let S0 be a real number which satisfies

S0 >

r∑
j=1

dj max{0, ρj}. (4.5)

Choose ξ = ξ(S0) > 0 such that

0 < dξ < S0 −
r∑
j=1

dj max{0, ρj}. (4.6)

Let δ ∈ (0, ρ) be chosen small enough such that ρj < 0 implies ρj + δ < 0 for all
j ∈ {1, . . . , r}. From Lemma 4.3 it follows that there exists a constant c = c(δ) > 0
such that

∀j ∈ {1, . . . , r} : ∀k ∈ N0 :
∥∥ekT0Rj

∥∥ ≤ ce(ρj+δ)kT0 , (4.7)

where ‖ · ‖ denotes the operator norm on Hom(Tx0M,Tx0M) induced by gx0 . For
every t > 0 we define positive integers

Mj(t) :=
{
be(ρj+ξ)tc+ 1 if ρj ≥ 0

1 if ρj < 0
, j = 1, . . . , r. (4.8)

Moreover, we define a function β : (0,∞)→ (0,∞) by

β(t) := c
√
r max

1≤j≤r

[
e(ρj+δ)t

√
dj

Mj(t)

]
. (4.9)

If ρj < 0, then (by our definitions) ρj + δ < 0 and Mj(t) ≡ 1. This implies that

e(ρj+δ)t

√
dj

Mj(t)
converges to zero for t → ∞. If ρj ≥ 0, we have Mj(t) ≥ e(ρj+ξ)t by

(4.8) and hence

e(ρj+δ)t

√
dj

Mj(t)
≤ e(ρj+δ)t

√
dj

e(ρj+ξ)t
=
√
dje

(δ−ξ)t.
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Since δ ∈ (0, ξ), we have δ − ξ < 0 and hence the term above converges to zero for
t → ∞. Thus, also β(t) → 0 for t → ∞. This implies that for given ε > 0 we can
choose a number τ = 2kT0 with k ∈ N big enough such that

β(τ) < 1 and d
τ ln(2) < ε. (4.10)

Since we assume that the linearization along (ϕ(·, x0, u0), u0) is controllable, by Propo-
sition 3.5 there exists a constant C > 0 with the following property (Note that con-
trollability on [0, T0] implies controllability on [0, τ ]):

∀λ ∈ Tx0M : ∃µ ∈ L∞([0, τ ],Rm) : ϕl(τ, λ, µ) = 0 and ‖µ‖[0,τ ] ≤ C‖λ‖. (4.11)

Let W1 ⊂ Tx0M and W2 ⊂ M be open neighborhoods of 0 ∈ Tx0M and x0, respec-
tively, such that

expx0
: W1 →W2

is a diffeomorphism. The inverse of expx0
|W1 will simply be denoted by exp−1

x0
. Now,

choose b0 > 0 small enough that the following conditions are satisfied:
clBb0(0) ⊂W1,
clBb0(x0) ⊂ D,
clBC√db0(u0(t)) ⊂ U for almost all t ∈ [0, T0],
ϕ(τ, clBb0(x0), u) ⊂W2 if ‖u− u0‖[0,τ ] ≤ C

√
db0.

 (4.12)

The second and third inclusion are possible, since x0 ∈ intD and u0(t) is contained
in a compact subset of intU for almost all t ∈ [0, T0]. The last one is possible by
continuity of (x, u) 7→ ϕ(τ, x, u) (see Proposition 3.2(i)). By Proposition 3.3 there
exists a function ζ = ζτ,

√
dC : [0, α)→ R+

0 (α > 0) with∥∥exp−1
x0

(ϕ(τ, x, u))− ϕl(τ, exp−1
x0

(x), u− u0)
∥∥ ≤ ζ(b)b (4.13)

for all (x, u) ∈M ×U with d(x, x0) ≤ b ≤ b0 and ‖u− u0‖[0,τ ] ≤ C
√
db, and ζ(b)→ 0

for b → 0. We can assume that b0 < α and hence ζ(b0) is defined. Because of the
strict inequality β(τ) < 1 we can also assume that b0 is chosen small enough that

√
rζ(b0) + β(τ) ≤ 1. (4.14)

Step 3: By Lemma 4.2 and (4.12) we can assume that K = clBb0(x0). Consider a
d-dimensional cube C in Tx0M centered at the origin with sides of length 2b0 parallel
to the vectors of the orthonormal basis Bx0 . Then exp−1

x0
(K) = clBb0(0) ⊂ Tx0M

and hence exp−1
x0

(K) ⊂ C. Partition C by dividing each coordinate axis corresponding
to a component of the jth Lyapunov space of R into Mj(τ) intervals of equal length.
The total number of subcuboids in this partition is

∏r
j=1Mj(τ)dj . Now pick an

arbitrary x ∈ clBb0(x0). Let γ0 : [0, 1] → M be a shortest geodesic from x0 to x
and let λx ∈ C be the center of a subcuboid which contains exp−1

x0
(x) = γ̇0(0). (Note

that ‖γ̇0(0)‖ = L(γ0) = d(x0, x) ≤ b0.) Then the following estimate holds, where
the additional superscripts denote components of vectors within the corresponding
Lyapunov spaces of R:

∥∥∥γ̇0(0)(j) − λ(j)
x

∥∥∥ =

 dj∑
l=1

(
γ̇0(0)(j,l) − λ(j,l)

x

)2

1/2

≤

 dj∑
l=1

(
b0

Mj(τ)

)2
1/2

=

√
dj

Mj(τ)
b0. (4.15)
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By (4.11) there exists ux ∈ L∞([0, τ ],Rm) such that ϕl(τ, λx, ux − u0) = 0 or equiva-
lently,

ϕl(τ, λx, ux) = ϕl(τ, 0, u0) (4.16)

and

‖ux − u0‖[0,τ ] ≤ C‖λx‖ ≤ C

 r∑
j=1

dj∑
l=1

∥∥∥λ(j,l)
x

∥∥∥2

1/2

≤ C
√
db0, (4.17)

since λx ∈ C implies ‖λ(j,l)
x ‖ ≤ b0 for each component. By (4.12) it holds that ux ∈ U

and

ϕ(τ, x, ux) ∈W2. (4.18)

Let γ1 : [0, 1]→M be a shortest geodesic from x0 to ϕ(τ, x, ux). Then

d(ϕ(τ, x, ux), x0) = L(γ1) =
∫ 1

0

‖γ̇1(t)‖︸ ︷︷ ︸
= constant

dt = ‖γ̇1(0)‖. (4.19)

By the triangle inequality we have∥∥∥γ̇1(0)(j)
∥∥∥ ≤ ∥∥∥γ̇1(0)(j) − ϕl(τ, γ̇0(0), ux − u0)(j)

∥∥∥+
∥∥∥ϕl(τ, γ̇0(0), ux − u0)(j)

∥∥∥ .
Since g is chosen such that the Lyapunov spaces of R are orthogonal, for the first
term we obtain∥∥∥γ̇1(0)(j) − ϕl(τ, γ̇0(0), ux − u0)(j)

∥∥∥ =
∥∥∥[γ̇1(0)− ϕl(τ, γ̇0(0), ux − u0)

](j)∥∥∥
≤
∥∥γ̇1(0)− ϕl(τ, γ̇0(0), ux − u0)

∥∥
=
∥∥exp−1

x0
(ϕ(τ, x, ux))− ϕl(τ, exp−1

x0
(x), ux − u0)

∥∥ (4.13)

≤ ζ(b0)b0.

By linearity of ϕl(τ, ·, ·) for the second term we get∥∥∥ϕl(τ, γ̇0(0), ux − u0)(j)
∥∥∥ =

∥∥∥ϕl(τ, γ̇0(0), ux)(j) − ϕl(τ, 0, u0)(j)
∥∥∥

(4.16)
=

∥∥∥ϕl(τ, γ̇0(0), ux)(j) − ϕl(τ, λx, ux)(j)
∥∥∥

=
∥∥∥ϕl(τ, γ̇0(0)− λx, 0)(j)

∥∥∥
(4.4)
=

∥∥∥[e2kT0R(γ̇0(0)− λx)
](j)∥∥∥

=
∥∥∥[eτR(γ̇0(0)− λx)](j)

∥∥∥ .
By invariance of the Lyapunov spaces of R under eτR we obtain∥∥∥ϕl(τ, γ̇0(0), ux − u0)(j)

∥∥∥ =
∥∥∥eτR(γ̇0(0)− λx)(j)

∥∥∥
≤
∥∥eτRj∥∥∥∥∥(γ̇0(0)− λx)(j)

∥∥∥
(4.7)

≤ ce(ρj+δ)τ
∥∥∥(γ̇0(0)− λx)(j)

∥∥∥ .
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Altogether, we have∥∥∥γ̇1(0)(j)
∥∥∥ ≤ ζ(b0)b0 + ce(ρj+δ)τ

∥∥∥(γ̇0(0)− λx)(j)
∥∥∥

(4.15)

≤ ζ(b0)b0 + ce(ρj+δ)τ

√
dj

Mj(τ)
b0.

By orthogonality of the Lyapunov spaces of R it follows that

d(ϕ(τ, x, ux), x0) = ‖γ̇1(0)‖ =

 r∑
j=1

∥∥∥γ̇1(0)(j)
∥∥∥2

1/2

≤

 r∑
j=1

(
ζ(b0)b0 + ce(ρj+δ)τ

√
dj

Mj(τ)
b0

)2
1/2

(∆)

≤ √rζ(b0)b0 +

 r∑
j=1

(
ce(ρj+δ)τ

√
dj

Mj(τ)
b0

)2
1/2

≤ √rζ(b0)b0 + c
√
r max

1≤j≤r

[
e(ρj+δ)τ

√
dj

Mj(τ)

]
b0

(4.9)
= [
√
rζ(b0) + β(τ)]b0

(4.14)

≤ b0.

The estimate (∆) follows from the triangle inequality in Rr. Hence, we have proved
that

∏r
j=1Mj(τ)dj admissible control functions are sufficient to steer from every initial

value in K back to K in time τ . By the no-return property of control sets it follows
that the trajectories do not leave Q within the time interval (0, τ). By iterated
concatenation of these control functions we can construct an (nτ,K,Q)-spanning set
for each n ∈ N with (

∏r
j=1Mj(τ)dj )n elements and hence we obtain

r∗inv(nτ,K,Q) ≤

 r∏
j=1

Mj(τ)dj

n

(4.8)
=

 ∏
j: ρj≥0

(
be(ρj+ξ)τc+ 1

)djn

,

which implies

h∗inv(K,Q) = lim sup
n→∞

1
nτ

ln r∗inv(nτ,K,Q) ≤ 1
τ

∑
j: ρj≥0

ln
(
be(ρj+ξ)τc+ 1

)dj
=

∑
j: ρj≥0

dj
1
τ

ln
(
be(ρj+ξ)τc+ 1

)
≤

∑
j: ρj≥0

dj
1
τ

ln
(

2e(ρj+ξ)τ
)

=
∑

j: ρj≥0

dj

(
ln(2)
τ + (ρj + ξ)

)
≤ d

τ ln(2) + dξ +
∑

j: ρj>0

djρj

(4.6)
< d

τ ln(2) + S0

(4.10)
< S0 + ε.

The first equality follows from Proposition 2.1. Since ε can be chosen arbitrarily small
and S0 arbitrarily close to

∑r
j=1 dj max{0, ρj}, the assertion of the theorem follows.

Remark 4.1. We do not know if periodicity of the controlled trajectory in our
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main theorem is an essential assumption or if it can be weakened. But we think that
some regularity property will be necessary.

Remark 4.2. If D is a control set of the control-affine system (2.1) with nonvoid
interior and if the system is locally accessible on intD, then from [5, Prop. 4.3.3] it
follows that there exist controlled periodic trajectories in intD. But in general it is
not clear if the linearization along any of those trajectories is controllable.

Since an equilibrium is a periodic solution for every period T0 > 0, and the corre-
sponding Lyapunov exponents are the real parts of the eigenvalues of the linearization
at the equilibrium, the following corollary immediately follows.

Corollary 4.5. Consider the control-affine system (2.1) and let g be a Rieman-
nian metric on M . Let D ⊂ M be a control set with nonvoid interior and compact
closure Q = clD. Let (x0, u0) ∈ intD× intU be an equilibrium pair with controllable
linearization. Then for every compact set K ⊂ D it holds that

h∗inv(K,Q) ≤
∑

λ∈σ(∇Fu0 (x0))

max{0,Re(λ)},

where every eigenvalue λ is counted with its multiplicity.
For one-dimensional control-affine systems with a single control vector field we

can derive a formula for the invariance entropy of a control set from Corollary 4.5
and Theorem 14 in [7]. Moreover, here we can show that hinv(K,Q) and h∗inv(K,Q)
coincide, which is not clear at all in the general case, but can also be shown for control
sets of linear systems (see [6, Theo. 4.2.4]).

Corollary 4.6. Consider a control-affine system of the form

ẋ(t) = f0(x(t)) + u(t)f1(x(t)), u ∈ U , (4.20)

on M = R. Let D be a bounded control set with nonvoid interior, and assume that
local accessibility holds on Q := clD. Then for every compact set K ⊂ D with nonvoid
interior we have

h∗inv(K,Q) = hinv(K,Q) = max
{

0,min
x∈Q

[
f ′0(x)− f0(x)

f1(x)
f ′1(x)

]}
. (4.21)

Proof. The proof proceeds in three steps.
Step 1: By [5, Lem. 3.2.13] D is connected and thus Q is a compact interval. In

order to show that formula (4.21) makes sense, we have to prove that f1(x) 6= 0 for
all x ∈ Q: Assume to the contrary that f1(x∗) = 0 for some x∗ ∈ Q. From [5, Theo.
8.1.1] it follows that for every x ∈ Q there exists ux ∈ U with f0(x) + uxf1(x) = 0.
Hence, f0(x∗) = 0, which implies ϕ(t, x∗, u) = x∗ for all t ∈ R and u ∈ U and therefore
contradicts local accessibility on Q.

Step 2: Now we prove the lower bound, using [7, Theo. 14]. To this end, we define
a volume form on a small open neighborhood W of Q by

ω(x) := f1(x)−1 · ω0(x),

where ω0 denotes the standard volume form. Since f1(x) 6= 0 on Q implies f1(x) 6= 0
on a neighborhood of Q, the definition of ω makes sense. The divergence of the vector
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field x 7→ f0(x) + uf1(x) with respect to ω is (cp. [1, Prop. 6.5.17])

divω(f0(x) + uf1(x)) = f ′0(x) + uf ′1(x) +
α′(x)
α(x)

(f0(x) + uf1(x))

= f ′0(x) + uf ′1(x)− f ′1(x)
f1(x)

(f0(x) + uf1(x))

= f ′0(x) + uf ′1(x)− f ′1(x)
f1(x)

f0(x)− uf ′1(x)

= f ′0(x)− f0(x)
f1(x)

f ′1(x).

Hence, [7, Theo. 14] immediately implies

hinv(K,Q) ≥ max
{

0,min
x∈Q

[
f ′0(x)− f0(x)

f1(x)
f ′1(x)

]}
.

Step 3: We prove the upper bound, using Corollary 4.5. To this end, let x ∈ intD.
Then, by [5, Theo. 8.1.1], there exists ux ∈ U such that f0(x) + uxf1(x) = 0. Since
f1(x) 6= 0, ux is unique, namely ux = − f0(x)

f1(x) . By approximate controllability on D

there also exist u± ∈ U such that f0(x) + u−f1(x) < 0 and f0(x) + u+f1(x) > 0,
which implies that ux lies in the interior of the interval with endpoints u− and u+,
and hence ux ∈ intU . The linearization of system (4.20) at the equilibrium pair
(x, ux) is controllable, which in this case is equivalent to f1(x) 6= 0 by the Kalman
rank condition. Corollary 4.5 yields

h∗inv(K,Q) ≤ max {0, f ′0(x) + uxf
′
1(x)} = max

{
0, f ′0(x)− f0(x)

f1(x)
f ′1(x)

}
.

The point x was chosen arbitrarily in intD and thus we get

h∗inv(K,Q) ≤ inf
x∈intD

max
{

0, f ′0(x)− f0(x)
f1(x)

f ′1(x)
}

= min
x∈Q

max
{

0, f ′0(x)− f0(x)
f1(x)

f ′1(x)
}

= max
{

0,min
x∈Q

[
f ′0(x)− f0(x)

f1(x)
f ′1(x)

]}
.

Now, by (2.2) the assertion of the corollary follows.
Remark 4.3. In the PhD thesis [6], an alternative proof for Corollary 4.6 can

be found which does not use Theorem 4.4 in order to obtain the upper bound, but a
combination of Lemma 4.2 and the upper bound proved in [7, Theorem 12].

5. Applications. In this section, we apply our results to projected bilinear con-
trol systems on the unit sphere.

Example 5.1. Consider a bilinear control system

ẋ(t) =

[
A0 +

m∑
i=1

ui(t)Ai

]
x(t), u ∈ U ,

on Rd and its projection to the unit sphere Sd−1 = {x ∈ Rd : ‖x‖ = 1},

ṡ(t) = Fu(t)(s(t)), Fu(s) = F (s, u) = (A(u)− sTA(u)sI)s, u ∈ U .
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Let D ⊂ Sd−1 be a control set of the projected system with nonvoid interior and set
Q := clD. Since Sd−1 is compact, also Q is compact. In [7], we derived the following
formula for the covariant derivative of Fu:

∇Fu(s) = Qs(A(u)− sTA(u)sI), Qs = I − ssT .

A pair (s0, u0) ∈ intD × intU is an equilibrium pair if and only if

0 = F (s0, u0) = A(u0)s0 − (sT0 A(u0)s0)s0,

i.e., if and only if s0 is an eigenvector of A(u0). We write λ for the corresponding
eigenvalue sT0 A(u0)s0. We want to compute the spectrum of ∇Fu0(s0). To this end,
let v ∈ Ts0Sd−1 = s⊥0 . Then

∇Fu0(s0)v = Qs0
(
A(u0)v − (sT0 A(u0)s0)v

)
= Qs0A(u0)v − λv.

Hence, it suffices to determine the eigenvalues of the linear map L := Qs0A(u0)|Ts0Sd−1 .
To this end, let µ ∈ C be an arbitrary eigenvalue of A(u0) and z /∈ 〈s0〉 a correspond-
ing (complex) eigenvector. Consider the vector ζ := Qs0z ∈ Ts0S

d−1 ⊕ iTs0S
d−1.

Then we obtain

Lζ = Qs0A(u0)Qs0z = Qs0A(u0)(I − s0s
T
0 )z = Qs0A(u0)z −Qs0A(u0)s0s

T
0 z

= µQs0z −Qs0(A(u0)s0)(sT0 z) = µζ −Qs0(λs0)(sT0 z)
= µζ − λ(sT0 z)Qs0s0 = µζ.

Hence, the eigenvalues of L coincide with eigenvalues of A(u0) and the eigenvalues
of ∇Fu0(s0) are the eigenvalues of A(u0) minus λ. Therefore, under the assumption
that the linearization at (s0, u0) is controllable, by Corollary 4.5 the estimate

h∗inv(K,Q) ≤
d−1∑
j=1

max {0, (Re(µj)− λ)}

holds true for every compact set K ⊂ D, where λ, µ1, . . . , µd−1 are the eigenvalues of
A(u0).

Remark 5.1. By [5, Theo. 7.3.3], for the projected system on projective space
Pd−1 there exist (finitely many) control sets with nonvoid interior under the assump-
tion of local accessibility. The connected components of the lifts of these control sets
to the unit sphere are control sets for the system on the sphere.

Example 5.2. Consider a bilinear control system on R2 of the form

ẋ(t) = (A0 + u(t)A1)x(t), u ∈ U . (5.1)

Let A0 = (a0
ij), A1 = (a1

ij), and A(u) = A0 + uA1. Consider the projection of (5.1)
to the unit circle S1, given by

ṡ(t) = (A(u(t))− s(t)TA(u(t))s(t)I)s(t), u ∈ U . (5.2)

Let D ⊂ S1 be a control set of system (5.2) with nonvoid interior, which is not the
whole circle, and assume that local accessibility holds on Q := clD. We want to
compute h∗inv(K,Q) for every compact set K ⊂ D with nonvoid interior. To this end,
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we describe system (5.2) in polar coordinates. By writing s(t) = (cosϕ(t), sinϕ(t)) a
simple calculation leads to the system

ϕ̇(t) = f0(ϕ(t)) + u(t)f1(ϕ(t)), u ∈ U ,

where f0, f1 : [0, 2π)→ R are given by

fk(ϕ) = (ak22 − ak11) sinϕ cosϕ− ak12 sin2 ϕ+ ak21 cos2 ϕ, k = 0, 1.

For the derivatives f ′k we get

f ′k(ϕ) = (ak22 − ak11) cos(2ϕ)− (ak12 + ak21) sin(2ϕ).

By Corollary 4.6 we obtain that h∗inv(K,Q) is the maximum of 0 and the minimum of
the following function on Q:

ϕ 7→ (a0
22 − a0

11) cos(2ϕ)− (a0
12 + a0

21) sin(2ϕ)

− [(a0
22−a

0
11) sinϕ cosϕ−a0

12 sin2 ϕ+a0
21 cos2 ϕ][(a1

22−a
1
11) cos(2ϕ)−(a1

12+a1
21) sin(2ϕ)]

(a1
22−a1

11) sinϕ cosϕ−a1
12 sin2 ϕ+a1

21 cos2 ϕ

The next example provides an application of this formula.
Example 5.3. We consider the scalar second-order system

ÿ(t) + 2bẏ(t)− (1 + u(t))y(t) = 0, u ∈ U ,

with b > 0 and control range U = [−ρ, ρ], where 0 < ρ < b2 + 1. This equation de-
scribes the linearization of a controlled damped mathematical pendulum at the unstable
position (a linear oscillator). The corresponding first-order system is the following bi-
linear control system:

ẋ(t) =
(

0 1
1 −2b

)
︸ ︷︷ ︸

=:A0

x(t) + u(t)
(

0 0
1 0

)
︸ ︷︷ ︸

=:A1

x(t), u ∈ U .

The eigenvalues of the matrix A0 are given by

λ± = −b±
√
b2 + 1.

Since b > 0, λ− is negative and λ+ is positive. Hence, the uncontrolled system has
one stable and one unstable direction. From the preceding example it follows that the
projected system on S1 is given by

ϕ̇ = (−2b sinϕ cosϕ− sin2 ϕ+ cos2 ϕ) + u(t) cos2 ϕ, u ∈ U .

From [5, Theo. 8.1.1] it follows that the control sets on S1 consist of equilibria. Hence,
in order to determine these sets, we have to find the zeros of the right-hand side. To
this end, we divide by cos2 ϕ (which is possible for ϕ /∈ {π2 , 3π

2 }). This yields

tan2 ϕ+ 2b tanϕ− (1 + u) = 0 ⇔ tanϕ = −b±
√
b2 + 1 + u.

Hence, we obtain the solutions

ϕ1,± = arctan
(
−b±

√
b2 + 1 + u

)
∈
(
−π2 , π2

)
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and, by π-periodicity of the tangent function,

ϕ2,± = π + arctan
(
−b±

√
b2 + 1 + u

)
∈
(
π
2 ,

3π
2

)
.

The solutions are real numbers, since

b2 + 1 + u ∈
[
b2 + 1− ρ, b2 + 1 + ρ

]
⊂ (0, 2(b2 + 1)).

Hence, in (−π2 , π2 ) we obtain the following two intervals of equilibria, which are the
closures of control sets:

Q1,− =
[
arctan

(
−b−

√
b2 + 1 + ρ

)
, arctan

(
−b−

√
b2 + 1− ρ

)]
,

Q1,+ =
[
arctan

(
−b+

√
b2 + 1− ρ

)
, arctan

(
−b+

√
b2 + 1 + ρ

)]
,

and in (π2 ,
3π
2 ) we obtain the sets Q2,± = π + Q1,±. Applying the result from the

preceding example we can calculate the invariance entropy of these control sets. An
elementary computation gives

h
(∗)
inv(K,Qi,±) = max

{
0, min
ϕ∈Qi,±

(−2b− 2 tanϕ))
}
, i = 1, 2.

Hence, we obtain

h
(∗)
inv(K,Qi,−) = max

{
0, min
u∈[−ρ,ρ]

(
2
√
b2 + 1− u

)}
= 2
√
b2 + 1− ρ,

h
(∗)
inv(K,Qi,+) = 0.

The sets Qi,+ are easily seen to be invariant control sets, while the sets Qi,− are the
closures of open, variant control sets. The following figure illustrates the situation.

x1

x2

Q1,−

Q1,+Q2,−

Q2,+

C

C

Fig. 5.1. The control sets on the unit circle
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The set Q1,− contains the point ϕ0 = arctan(−b−
√
b2 + 1), which is an equilibrium

for the constant control u = 0, i.e., the vectors ±(cos(ϕ0), sin(ϕ0)) are eigenvectors
of A0 corresponding to the stable eigenvalue λ− = −b −

√
b2 + 1. On intQ1,− and

intQ2,− the projected system is controllable. This implies that from any point in the
interior of the cone over Q1,− and Q2,−, C := π−1(Q1,− ∪Q2,−), where

π(x) =
x

‖x‖ , π : R2\{0} → S1,

it is possible to steer to the stable axis, i.e., the eigenspace of A0 corresponding to λ−.
Hence, here it is possible to stabilize the system. It is easily seen that outside of C
stabilization is not possible.
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