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CONTENTS

Abstract

Searching a database is one of the most common procedures in everyday life. Usually,
the results of such a search match the query parameters perfectly. But if no perfect
match is found, the user usually has to find out by himself how to change search
parameters in order to get results.

To overcome this problem,Kießling has introduced a model of preferences in databases.
This model is based on simple strict partial orders as given in expressions like “red is
better than blue”. For every query, the best-matching objects are returned, whether
these are perfect matches or not. A best match is a tuple that matches the preference
not worse than any other tuple – or as we say – that is not dominated by any other
tuple. The specific problem we address is finding best matches for Pareto preferences,
the combination of preferences with all of them being equally important. This problem
is closely related to skyline queries.

Based on the better-than graph, a visualization of the strict partial orders constructed
by Pareto preferences, we have found a novel type of optimization called pruning that
can be applied to all existing generic algorithms. While common generic algorithms
rely on tuple-to-tuple comparisons to identify dominated tuples, our optimization
technique uses the structure of the better-than graph to identify elements in the
order that are definitively dominated by some given tuple. This enables us to omit
many comparisons.

By further analysis of the better-than graph, we were able to find a new kind of
algorithm. This generic algorithm, Hexagon, is capable of finding the best matches
in some previously unknown set of tuples in linear time with respect to the size of
the better-than graph. Apart from the standard algorithm, we present a number of
optimizations for it regarding its memory requirements. But Hexagon is not limited to
standard preference queries. We also address top-k queries with a variant of Hexagon.
These queries return the best k tuples of an input relation with respect to some rating
function.
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CONTENTS

The performance benchmarks we have made show the superiority of algorithms using
pruning and especially of Hexagon, although the latter cannot be used in all cases
due to memory requirements. Moreover, Hexagon can be combined with existing
algorithms that have been optimized by pruning to enable the cost-based algorithm
selection for Pareto preference evaluation.
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Chapter 1

Introduction

In real life, it is absolutely common for people to express preferences in product
searches or decision-making. Nevertheless, the subject of preferences has come into
the focus of research only in recent years in computer science, especially in the contexts
of artificial intelligence and of databases, with us dealing with the issue in the latter
field. Still, most database search engines can only deal with hard constraints: a tuple
either fulfills all given conditions or it does not belong to the search result. While this
concept works fine in many use-cases, it definitively has some weak points. Starting
with a small example, we will see how to solve this problem and what kind of new
problems this entails. This will lead directly to the main objectives of this book.

1.1 Motivation

Tom is looking for a used car. Apart from some hard constraints he has, he wants
both the mileage and the price of the car to be as low as possible. These two wishes
are clearly contrarian. Considering two cars that only differ in price and mileage, the
one with the lower mileage will probably be the one with the higher price.

When both the price and the mileage preference are interpreted as hard constraints,
the search interface will not be able to present any result to Tom, although there may
be lots of cars in the database. This phenomenon is called the empty result effect.

Kießling has described preferences as strict partial orders in [37] and outlined how to
integrate such preferences into database systems. By using strict partial orders, he
was able to overcome the problem of hard constraints. A value can be better than
another value, and the best matches are selected as search results.

1



1 Introduction

cars id color price mileage

1 black 5,000 100,000
2 blue 10,000 80,000
3 black 12,000 150,000
4 silver 20,000 10,000
5 black 15,000 20,000
6 silver 16,000 25,000
7 silver 10,000 30,000

Table 1.1: A relation

For our car example, this means that one car is better than another if and only if
it is cheaper and has a lower mileage. Table 1.1 holds some sample cars. When we
evaluate Tom’s preference on this relation, we find out that car 2 is worse than car
7, car 3 is worse than cars 1, 2, and 7, and car 6 is worse than car 5. The rest of the
input is not worse than any other car. So it would be best to present cars 1, 4, 5, and
7 to Tom. Each of them is not more expensive and has not more mileage than any
other car. They all match Tom’s preference best.

When two or more preferences are combined with all of them being equally important,
the result is called a Pareto preference ([37]). The concept of returning those tuples
that are not worse than any other is called best matches only (BMO).

In a more formal way, we can say that, when evaluating a Pareto preference P on a
database relation R, the best matches in R wrt P form the result set. These are tuples
of R that are not dominated by other tuples. A tuple r1 ∈ R dominates a tuple r2 ∈ R
if r1 is better at least in one preference contained in the Pareto preference and at the
same time r1 is not worse than or incomparable to r2 in all other preferences. While
two values that are equally good with respect to a preference, but not actually equal,
are classified as “incomparable” in common Pareto preferences, the SV-semantics
introduced in [38] often render them as “substitutable”.

Pareto preference queries are also known as skyline queries ([6]), although the latter
form just a specialization of Pareto preferences. Only Kießling’s very generic approach
of strict partial orders has the capability of dealing with numerical domains as well as
with non-numerical, categorical, domains. Skyline queries can only handle numerical
domains, although there are often preferences on categorical domains such as colors
or brands.

In the last few years, a number of different algorithms has been presented for efficient
BMO (or skyline) computation. As we will see in detail when related work is discussed
in chapter 2, all existing algorithms can generally be divided into two different types:

2



1.2 Objectives of this Book

Generic algorithms: No information on the input data is needed. Usually, these al-
gorithms use tuple-to-tuple comparisons to eliminate tuples that are dominated.
As in the worst case each tuple has to be compared with every other tuple, the
performance of such algorithms is rather poor, with runtimes quadratic with
respect to the number of input tuples.

Index-based algorithms: The algorithm reads the input tuples according to their
positions in one or more indexes. This way, only potentially matching tuples
have to be read at all and fast execution times are possible. But to be able to
use an index-based algorithm, a suitable index has to exist, which is difficult to
guarantee for all potential queries.

The general goal of this book is to solve the problem of finding the best matches for a
preference in some input relation by introducing completely new ways of dealing with
Pareto preference queries. We want to overcome the problem of either slow or only
scarcely useable algorithms.

1.2 Objectives of this Book

This book will describe different ways to improve the performance of Pareto preference
evaluation. Before we come to this, existing algorithms and other related work will
be discussed in chapter 2. Then Kießling’s preference model of [37] and [38]) will
be introduced in chapter 3. We will use this model throughout the whole paper.
The better-than graph as a visualization for the strict partial orders induced by our
preferences will be the subject of chapter 4, giving us the basis for the following
chapters. The focus will of course lie on Pareto preferences. After these basics, we
will focus on the main research issues of this book: algorithm optimization, design of
new algorithms and integration of both concepts into existing database optimizers.
We will give brief descriptions of these topics now.

1.2.1 Optimization

Based on the better-than graph, we will introduce a completely new kind of optimiza-
tion strategy for algorithms for Pareto preference queries. Many existing algorithms,
e.g. BNL or LESS ([6] and [31]), rely on tuple-to-tuple comparisons to identify the
BMO set in some input relation. We will be able to reduce the number of comparisons
that have to be made, and hence be able to cut down execution times by a notable
factor. This technique is called pruning and its integration in different algorithms will
be the subject of chapter 5.

3



1 Introduction

1.2.2 Algorithms

The better-than graph will also form the basis for the new algorithm we will intro-
duce in chapter 6, Hexagon. We will see that it can be applied on all kinds of input
relations and does not need any indexes. While common algorithms with these char-
acteristics have to rely on tuple-to-tuple comparisons, Hexagon only has to read every
input tuple once. The input relation may be completely unknown, as is often the
case for dynamically constructed relations such as join or set function results. The
overwhelming performance of Hexagon in comparison to known generic algorithms
will be shown in the benchmark results of chapter 7.

In chapter 6, we will also see that Hexagon can evaluate Pareto preferences containing
preferences that define any type of strict partial order. For the first time ever, a
generic algorithm can do this in linear time. Moreover, we will see that Hexagon is
not only capable of handling common Pareto preference queries, but, with only slight
modifications, can be used for related problems as well. Hexagon will be used to
compute multi-level BMO sets, in which not only the best matches, but also the second
best matches, third best matches and so on are relevant. Furthermore, Hexagon will
be used to answer top − k queries, in which each tuple is rated according to some
function and the k tuples with best function values are returned.

1.2.3 Cost-based Algorithm Selection

The novel optimization technique and the new type of algorithms will be benchmarked
of course. We will carry out a number of performance tests, varying preferences
and size and data distribution of input relations. The performance benchmarks will
be discussed in chapter 7. In the same chapter, we will use the results to define
rules for cost-based algorithm selection. These rules will enable us to find the fastest
algorithm for Pareto preference evaluation depending on factors like available memory
or distribution of input relations. Query optimization in database systems is usually
done in two phases. The first phase is the algebraic optimization of a query, which
has been discussed in [15, 34]. In this book, for the first time, the second phase, the
cost-based optimization can be addressed by our rules of algorithm selection.
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Chapter 2

Related Work

Pareto preference query processing belongs to the field of multi-dimensional optimiza-
tion. While we understand preferences to be capable of dealing with any type of strict
partial order (see [22]), most effort has been put into handling numeric values com-
bined in a Pareto way. This subject was examined wrt to special algorithm design
and computational complexity for the first time for finding maximal elements in a set
of vectors in [44]. In the database research community, skylining is the most common
term for this type of problem. It came into play with Börszonyi et al.’s skyline

operator in [6]. The size of skylines has been investigated in [30].

There have been a lot of algorithmic approaches to find the best matching tuples for
a query, based on some database relation. We will give an overview over the most
important of them and over recent research results. Generally, most algorithms were
designed for skyline queries dealing with totally ordered numerical domains but work
for weak orders (see [22]) as well. First, we will have a look at algorithms that use
indexes, then we will see more generic approaches. Finally, we will give an overview
on research on top-k and skyline queries and derivates of the latter.

2.1 Index-based Algorithms

This type of algorithms was introduced together with the skyline operator. Already
on first appearance in [6], applicability was the main problem. After having a look at
some index based algorithms, we will get back to this issue.

In [6], B-tree indexes on the simple attributes of the skyline query were used. The
authors of the paper did not expect good performance due to some deficits in the
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2 Related Work

design of the algorithm and therefore they did not further examine it. Börszonyi et
al. also outlined the use of R-trees but did not pursue this as well. With Index ([55]),
an algorithm using B+-trees was introduced. Just as for the B-tree-algorithm of [6],
there came a point after which tuple-to-tuple comparisons had to be used. As was
the intention for so-called progressive (or online) algorithms, fast delivery of the first
result tuple could be achieved, while it could happen that, for the complete result, all
indexes had to be scanned completely. Together with the large number of tuple-to-
tuple comparisons that occured in such cases, the algorithm did not run significantly
faster than generic algorithms.

For some time then, R-tree based indexes were the focus of research on skyline algo-
rithms. [42] introduced the R-tree based Nearest-Neighbor algorithm. It was designed
as an online algorithm. One of its main features was that results were returned with
respect to their quality in one or more of the contained dimensions: the better an un-
dominated tuple would fulfill the query preference, the earlier it would be delivered to
the user as a result. Using R-trees as well, Branch-and-Bound-Skyline (BBS, [49, 50])
proved to be even faster, outperforming generic algorithms by far. In [45], a new type
of index was presented: the ZBTree. This data structure was specifically designed for
skyline queries and made the ZSearch algorithms using it faster than BBS and less
memory consuming.

While index-based algorithms promise (and some of them also show) very good per-
formance, they suffer from a major problem: a large number of indexes on different
attributes or even the combination of any attributes is not available in many cases.
This leads to poor applicability for index-based algorithms if they are not used in
well-defined static use cases. Another problem arises from the index maintenance
costs. If the base data set of the index is constantly changing, index maintenance
may generate more computational costs than the queries themselves. Additionally,
index availability and maintenance costs always conflict in their objectives. The more
indexes on different attribute combinations there are, the more often the algorithm
based on the index type may be used. But at the same time, more indexes naturally
mean more maintenance costs as well. Also, a database will not hold indexes for
the results of table joins or set operations like UNION in most cases. Thus, if sky-
line computation on such dynamically constructed sets have to be made, index based
algorithms will usually fail.

2.2 Generic Algorithms

Generic algorithms for skylining can work on any kind of data. All information they
need is acquired directly when reading the data. Each input tuple has to be read
and analyzed at least once, something a good index-based algorithm never has to do.

6



2.2 Generic Algorithms

Hence, generic algorithms are never able to compete with progressive algorithms for
the fastest delivery of the first element of the result set. We will distinguish between
two types of generic algorithms: Those that are based on nested loops and those that
are not. Both types will be introduced in the following sections.

2.2.1 Classical Nested Loops

Determining the skyline of some dataset by tuple-to-tuple comparisons in a loop is
the most intuitive way and was already shown in [44]. For use in a database scenario,
a general loop however was not useful due to memory restrictions.

So in [6], Block-Nested-Loop was introduced. During execution, a number of un-
dominated tuples was kept in memory and compared to newly read tuples. A more
detailed overview of BNL can be found in Section 5.2.1. Sort-Filter-Skyline was pro-
posed in [16] and used presorting of the input relation wrt to a scoring function. Using
a sophisticated scoring function, it was possible to keep only the tuples belonging to
the result in the main memory buffer. Some optimizations and theoretical observa-
tions on it were published in [17]. Linear Elimination Sort for Skyline (LESS, [31])
combines sorting and removal during a dedicated first phase of the algorithm and so
is capable of removing dominated objects even during sorting. LESS will be one of
the topics of Section 5.2.2 and is described there in detail.

2.2.2 Other Approaches

Apart from the popular nested loop approach, there have also been some completely
different ways of solving the problem. Although they have not been found to be as
fast as other algorithms, we will outline them as well.

In both [40] and [6], the translation of a Pareto preference respectively a skyline query
into standard SQL was introduced. In the former, good performance benchmark
results were achieved for common e-commerce applications; in most cases three or
fewer skyline dimensions were used. The latter paper found that query rewriting is
scaling very badly wrt to the number of skyline dimensions and the size of the result
set. Both [40] and [6] found the performance of query rewriting to be comparable to
other algorithms for small skyline dimensions. But for five or more dimensions with
huge result sets, performance completely collapses, leading to execution times longer
than other algorithms in orders of magnitude.

The Divide & Conquer algorithm of [44] (enhanced in [6]) at first partitions the
input into smaller sets. After skylines have been computed for the smaller sets, these
partial result sets are merged. In the merge phase, nodes from one set may dominate
nodes. Of course, the dominated nodes have to be dismissed then. Using sophisticated
strategies when partitioning, such cases of domination at merge time can be minimized

7



2 Related Work

(as described in [6]). Still, the algorithm was outperformed by BNL even then.

Another completely different algorithm exists with Bitmap, proposed in [55]. It was
based on a mapping of domain values to binary numbers. Thus it was possible to
rely on Boolean operations to determine skyline tuples. Compared to tuple-to-tuple
comparisons, the mapping led to a much larger number of Boolean operations to
determine skyline tuples. As such operations can be executed extremely fast, per-
formance benefits were expected – and partially realized, too. But (mostly due to
the necessary preprocessing phase), Bitmap was shown to be less efficient than the
simultaneously presented Index. Hence, such an approach was never used again.

Most skyline algorithms basically address the problem of Pareto preferences over
weak orders. To overcome this restriction, BNL was generalized in [9] to an algorithm
called BNL+, dealing with Pareto preferences over general strict partial orders. The
elements of a strict partial order were mapped to two integer level values. Not all
orders could be represented completely, so in addition to the complexity of BNL, in
many cases the elements of the partial order had to be compared as well to determine
domination. Still, performance gains could be realized over the general approach
that only relies on element comparison. This kind of mapping was also used in [10],
when it was integrated into BBS, forming BBS+. As the mapping produces quite a
number of false or missing dominance relations, the algorithms SDC and SDC+ were
introduced, using optimized handling strategies for mapping errors. In [53], elements
of partial orders were once again represented by two integer level values. Although
the mapping was more general than in [9], it was still not possible to cover all types
of strict partial orders, as we will see in Section 4.5.2. The authors introduced the
algorithm TSS, which was, as they would show in some performance benchmarks,
multiple times faster than other algorithms dealing with skylines on strict partial
orders, among them BNL+, too.

While usual algorithms only deal with centralized data storages such as a single
database where all input is read from, in [19], PaDSkyline was presented, an algorithm
for dealing with distributed data sources. Intelligent filtering rules are used to reduce
network traffic by reducing the number of skyline candidates as early as possible.

With the presentation of Lattice Skyline in [47] and, simultaneously and indepen-
dently, the first version of Hexagon in [51], another type of algorithm appeared.
Both abstracted from tuple-to-tuple comparisons: Each tuple was mapped to a spe-
cific equivalence class and comparisons were made between those equivalence classes.
Other generic algorithms were outperformed by up to magnitudes of orders, as for
the first time, a generic algorithm had linear complexity. Hexagon is a major part of
this book and we will introduce and analyze it in detail in chapters 6 and 7. Still,
despite the similarity of Lattice Skyline and Hexagon, only the latter one is capable
of dealing with any number of numerical domains.
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2.3 Top-k and Skyline-related Queries

2.3 Top-k and Skyline-related Queries

Another important concept in multi-dimensional optimization is top-k search. Basi-
cally, the input is sorted according to some scoring function and the k elements with
the best score form the result. Special algorithms top-k queries have been proposed
in [7], based on the proposed new SQL keyword STOP AFTER. A number of other al-
gorithms for top-k query processing has been found, among them Prefer ([36]) and
Linear Programming Adaption of the Threshold Algorithm ([21]), which both use ma-
terialization in views, and the index based algorithms Onion ([12]) and Approximate
Solution for Robust Index ([59]). Quick Combine as introduced in [33] and Threshold
Algorithm ([26]) enhanced Fagin’s algorithm of [25] for top-k queries in multimedia
databases.

In [60], correlations between tuples belonging to a skyline and a top-k query result
are used when constructing the index structure Dominant Graph. Combining top-k
and skyline query evaluation has been done in [56], where SUBSKY was proposed, an
algorithm based on the transformation of multiple-dimensioned input-data into simple
numerical values indexed by a B-tree. Vlachou et al. proposed top-k evaluation based
on skylines for peer-to-peer networks. A peer finds the k results by evaluating skylines
retrieved from other peers. For online analytical query processing (OLAP), P-Cube
provides index structures and query algorithm for skyline and for top-k queries. The
previously mentioned BBS (cf. Section 2.1) is adjusted to deal with top-k queries as
well.

In [50], other related problems are discussed as well. Among those are constrained
skylines, meaning skylines combined with hard constraints filtering out some input
tuples. Skyband queries are used to find those tuples dominated by not more than a
given number of other tuples, whereas k-dominating queries find the number of tuples
that are dominated by some given tuple. All of these problems can be addressed by
special versions of BBS.
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Chapter 3

Background: the Preference
Framework

The modeling and handling of user preferences forms a complex challenge for applica-
tion designers seeking to integrate personalization in their software. There is the need
for a sophisticated but intuitive, a simple but comprehensive way to express prefer-
ences. Kießling’s preference model introduced in [37, 38] has these features on top
of a well-founded theoretical base. Needless to say, different preference models have
been introduced in the last ten years, but most of them lack some of the mentioned
key features. For a discussion of those, see [3, 58, 14, 15, 27, 43, 40, 38].

Figure 3.1: It’s a Preference World

“It’s a Preference World” (cf. Figure 3.1) has been the mantra of the Chair for
Databases and Information Systems for some years and perfectly shows the research
group’s affiliation to preferences. Several technologies based on Kießling’s preference
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3 Background: the Preference Framework

model have been developed at the institute, enabling the comfortable and productive
use of preferences in e-commerce and other applications. We will describe the basics
of Kießling’s work in this section and consider its implementations as well.

3.1 Preference Modeling

“I like red better than blue” is a completely natural way of formulating preferences
on the colors “red” and “blue”. Every person, even every child understands such
statements of preferences and is able to use similar phrases to express his or her own
preferences.

It is quite straight-forward to associate such a “better-than” semantics with the math-
ematical concept of strict partial orders. Being intuitive and easily expressible in
mathematics, “better-than” semantics form a perfect concept for preference model-
ing. This leads us to Kießling’s general definition of preferences ([37]):

Definition 1. Preference
Given a set of attribute names A, a preference P is a strict partial order P := (A, <P ),
where <P ⊂ dom(A) × dom(A). �

“x <P y” is interpreted as “I like y better than x”. As a strict partial order, <P

is irreflexive and transitive and thus asymmetric. If of two different objects none
is better wrt a preference, we call them indifferent or unranked. This is formally
described in Definition 2.

Definition 2. Indifference
Consider a preference P := (A, <P ) and two values x, y ∈ dom(A) with x 6= y. If
none of them is better than the other, they are indifferent, x ∼P y:

¬(x <P y ∨ y <P x) ⇔ x ∼P y �

Keep in mind that, in general, ‖P is reflexive, symmetric, but not transitive ([38]).
In many cases it may be useful to have indifference as a transitive relation. The
substitutable value semantics has been introduced in [38] for this reason.

Definition 3. Substitutable Values
Consider a preference P = (A, <P ). ∼=P is called P ’s substitutable values relation
(SV-relation) iff for all x, y, z ∈ dom(A):

a) x ∼=P y ⇒ x ∼P y

b) x ∼=P y ∧ ∃z : z <P x ⇒ z <P y

12



3.1 Preference Modeling

c) x ∼=P y ∧ ∃z : x <P z ⇒ y <P z

d) ∼=P is reflexive, symmectric and transitive

The relation x ∼=P y ⇔ x = y is called trivial SV-semantics. �

Such a preference model obviously meets our demands for simplicity and flexibility.
To enable intuitive use of preferences, different types of preference constructors for
single attributes will be introduced in the next section. Afterwards, we will look at
how to combine preferences intuitively to model complex user preferences.

3.1.1 Base Preferences

To express simple preferences like minimum or maximum for numerical values, there
are diverse base preference constructors. In this section, we will focus on base prefer-
ences that are not only strict partial orders, but even weak orders. As we will see, the
variety among those is big enough to model a huge number of preferences. (A strict
partial order base preference will be introduced in Section 4.5, though.) Generally
speaking, base preferences can be classified by the domains they are applied to. After
discussing some basics, we will look at various constructors for preferences on different
domains.

Definition 4. Weak Order Preferences
A weak order preference (WOP) is a preference with <P being a weak order, i.e. a
strict partial order for which negative transitivity holds ([22]). �

For WOPs, domination and indifference between different domain values can be de-
termined with the use of a numerical value. Thus, better-than tests can be specified
efficiently by a numerical score function. We will study WOPs that can be character-
ized by a level function which maps a domain value to an integer value.

Definition 5. WOP Level Function
For a WOP, every domain value can be mapped to an integer level value to determine
domination. The function level has the following signature:

level : dom(A) → N0

Better domain values have lower level values. The maximum level value for a specific
WOP P is denoted by max(P ), the minimum level value always is 0. �

Lemma 1. For every WOP there is an integer level function to determine domination
between two values:

x <P y ⇐⇒ levelP (x) > levelP (y)

13
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Figure 3.2: Taxonomy of weak order base preferences

Thus, substitutable values share the same level value. Every WOP we will discuss uses
regular SV-semantics, where x ∼=P y ⇔ x ∼P y. We say x and y are equivalent.

Proof. N0 is a fully ordered set wrt “>”. For every weak order, we can define a
function mapping its elements to a total order. This function is level in our case.

For each base preference constructor we will introduce now, there is a level function
so that Lemma 1 holds for it – as a consequence, they all are WOPs. In the tax-
onomy of base preference constructors shown in Figure 3.2, the SCORE preference
is the “super”-preference of all others, meaning that the others can be expressed by
suitable SCORE preferences. It is reasonable to start an overview on base preference
constructors with it.

A SCORE preference produces a numerical ranking. With our requirements for data
structures and algorithms in coming chapters in mind, we will propose a definition of
SCORE preferences slightly different from those presented in [37] and [38]. For our
numerical values, smaller means better and zero means best:

Definition 6. SCOREd Preference
Consider a scoring function f : dom(A) → R+

0 and a value d > 0. P is called a
SCOREd preference, iff for x, y ∈ dom(A):

x <P y ⇔

⌈

f(x)

d

⌉

>

⌈

f(y)

d

⌉

�

Please note that the original SCORE preference takes higher scores as “better” and
has the value set R (see [37]). Both modifications can be simulated by proper modi-
fications of f .
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3.1 Preference Modeling

The so-called d-parameter partitions the value set of f . Different input values that
may even have different function values for f are mapped to a single integer value and
so eventually become substitutable. This partition helps to model user preferences
better and more intuitive for a user as we will see later.

Theorem 1. A SCOREd preference with a scoring function f is a WOP. Its level
function is given by:

levelSCOREd
(x) :=

⌈

f(x)

d

⌉

Proof. It is enough to combine Definition 6 and Theorem 1:

x <P y ⇔
⌈

f(x)
d

⌉

>
⌈

f(y)
d

⌉

⇔ levelSCOREd
(x) > levelSCOREd

(y)

So we have shown that the SCORE preference is a WOP. For more convenience in
preference modeling, we will now derive a number of different preference constructors
from it. These constructors will consist of the preference name, the target attribute,
and the required parameters:

name(attribute; parameters)

A SCOREd preference is constructed by:

SCOREd(A; f)

The d-parameter is given in the index, the attribute is denoted by A, and the scoring
function f is the only parameter.

As already mentioned, there are different kinds of base preferences resulting from dif-
ferent kinds of domains. We distinguish between numerical and categorical domains.
First, we will see some numerical base preferences, afterwards categorical ones.

Numerical Base Preferences

As the name implies, numerical base preferences deal with numerical domains such as
physical measures or prices. We will start our overview of them with the most generic
one, BETWEENd, a direct child of SCOREd in the taxonomy of Figure 3.2.

With a BETWEENd preference, a user expresses that his favorite values lie between
a lower bound low and an upper bound up:
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3 Background: the Preference Framework

Definition 7. BETWEENd Preference
Consider a preference P on a domain A, and two values low, up ∈ dom(A) with
low ≤ up, P is a BETWEENd preference iff it is a SCOREd preference with the
following scoring function:

f(x) :=







low − x ⇔ x < low
0 ⇔ low ≤ x ≤ up

x − up ⇔ up < x

The constructor of a BETWEENd preference is given by:

BETWEENd(A; low, up)
�

Lemma 2. For a preference P := BETWEENd(A; low, up), the maximum level
value max(P ) can be found by

max(P ) = max(levelP (min(dom(A))), levelP (max(dom(A))))

with min(dom(A)) as minimal and max(dom(A)) as maximal element of dom(A).

Proof. Following Theorem 1, higher values for the scoring function f will lead to
higher level values (with a fixed value of d).

In Definition 7 we see that function values for f get bigger with:

a) x < low and getting smaller (hence low − x getting bigger)

b) x < up and getting bigger (and with it x − up)

The highest function value for case a) is generated by the smallest value of x, the
minimum of dom(A) or minA. Analogously, in case b) the maximum of dom(A)
yields the highest value for f . The overall maximum must be the maximum of these
two values, which is given by:

max(f(minA), f(maxA))

The maximum of the value for level that minA and maxA produce clearly is the max-
imum level value. Replacing f by level in the above formula, we see Lemma 2.

In Figure 3.3, we can see the coherence for f and level for a BETWEENd preference
schematically. Due to rounding up all non-integer values, level is always equal to
or higher than f . The biggest possible difference between both always is d. A brief
example will show us when and how BETWEENd preferences are used. Moreover, we
will see how the d parameter enables us to model preferences in a more comprehensible
and hence better way for users.
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Figure 3.3: BETWEENd: f(x) and levelBETWEENd
(x)

Example 1. John is looking for a rental car. He wants to spend e60 to e80 per day.
He does not care about price differences of e5 or less. John’s preference can easily be
expressed with a BETWEENd preference:

Pprice := BETWEEN5(price; 60, 80)

If the price domain would not be partitioned by d, a rental car with a price of e58.99
would be rated worse than one for e59.00. The values are numerically different, but
in a range that is not recognized by many users. Users would be rather surprised not
to get both results. Of course, the value for d has to be defined carefully for each and
every user and query.

In many cases, users will express preferences for precise values, not for intervals. Then
we speak of AROUNDd preferences.

Definition 8. AROUNDd Preference
Consider a preference P on a domain A, and a value z ∈ dom(A), P is an AROUNDd

preference iff it is constructed by:

AROUNDd(A; z) := BETWEENd(A; z, z)
�

Two other preferences can be derived from the BETWEENd preference: the extremal
preferences HIGHESTd and LOWESTd.

Definition 9. Extremal Preferences
HIGHESTd and LOWESTd model preferences for extremal values. Consider a rela-
tion R with an attribute A and a supremum sup ∈ dom(A) : ∄x ∈ R : sup < x and an
infimum inf ∈ dom(A) : ∄x ∈ R : x < inf , they can be defined using an AROUNDd

preference:
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3 Background: the Preference Framework

a) HIGHESTd(A; sup) := AROUNDd(A; sup)

b) LOWESTd(A; inf) := AROUNDd(A; inf)
�

The extremal preferences allow users to easily express their desire for values as high
or as low as possible, in some domains a very common wish. The next example will
present such a case:

Example 2. John has another preference for rental cars. He wants the car to be as
new as possible. The newest car in the database has an age of 0, which obviously is
the domain’s infimum value. John’s preference is expressed as follows:

Page := LOWEST1(age; 0)

We have seen a number of numerical preferences providing easy-to-use preference
modeling. Using them, even unexperienced users can express preferences on numerical
data, as they closely follow concepts known from everyday speech. As not all domains
are numerical, we will get to know another type of base preferences for such domains
in the following section.

Categorical Base Preferences

In many domains, numerical rankings cannot be applied, as, for example, for colors
or brands. To offer users intuitive preference modeling, we have to define special
constructors for non-numeric or – as we call them – categorical domains.

The first categorical base preference constructor we will look at is LAYEREDm, this
being also the most univeral one. Analog to BETWEENd, in the last section we will
see how to construct other preferences using the LAYEREDm constructor.

Definition 10. LAYEREDm Preference
Consider an attribute A, with L = (L1, L2, . . . , Lm+1) (with m ≥ 0) being an ordered
list of m + 1 sets forming a partition of dom(A). P is a LAYEREDm preference iff
it is a SCORE1 preference with the following scoring function:

f(x) := i − 1 ⇔ x ∈ Li

That means, ∀x ∈ Li : f(x) = i − 1. A LAYERED preference on attribute A is
constructed by:

LAY EREDm(A; L1, . . . , Lm+1)

For convenience, one of the Li may be named “others”, representing the set dom(A)
without the elements of the other subsets. �
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3.1 Preference Modeling

The level function for a LAYEREDm preference is trivial. Level values are determined
by the number of sets in the partition a domain value belongs to.

Lemma 3. For a LAYEREDm preference, it holds that f(x) = level(x). So, for a
LAYEREDm preference P , it holds that: ∀x ∈ Li : levelP (x) = i − 1.

Proof. According to Definition 10, the constructor for LAYEREDm preferences is
based on a SCORE1 preference. With the score function f having only positive integer
results for LAYEREDm preferences and a d parameter of 1, Theorem 1 shows the
lemma’s content.

So, in a LAYEREDm preference, elements are ordered in sets wrt the preference.
Elements of sets with lower indexes are preferred to others. Example 3 illustrates the
use of a LAYEREDm preference.

Example 3. The color of diamonds is graded in special scales. One of them is issued
by the Gemological Institute of America Inc1. It can be found in Table 3. Each
linguistic variable (e.g. “colorless”) is represented by some letters (e.g. D, E, and F).
The domain of ratings is all letters from “D” as best rating to “Z” and finally “Z+”
as worst rating and so forms a more fine-grained scale.

colorless near colorless faint yellow very light yellow fancy yellow fancy
D, E, F G, H, I, J K, L, M N, O, P, Q, R S to Z Z+

Table 3.1: GIA Diamond color scale

In databases, the color is usually represented by its letter. To express a preference for
less colorful diamonds based on the linguistic terms, a LAYEREDm preference can be
constructed as follows:

LAY ERED5 ( clarity; {D, E, F},
{G, H, I, J},
{K, L, M},
{N, O, P, Q, R},
others,
{Z+})

Of course, we could also specify the complete set {S, T, U, V, W, X, Y, Z} instead of
using “others” as a substitute for L4.

1http://www.gia.edu/library/4286/6281/faq detail page.cfm
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3 Background: the Preference Framework

The maximum level value for LAYEREDm preference is easy to determine, as we will
see in the next theorem. In contrast to base preferences on numerical domains (see
Lemma 2), only the definition of the preference is of interest.

Theorem 2. LAYEREDm preference P has a maximum level value of max(P ) = m.

Proof. Following the definition of LAYEREDm preferences, the highest value found
for its scoring function f is m for elements of Lm+1, and so it is for the level function
(see Lemma 3).

A number of special cases for LAYEREDm will cover the most common cases of user
preferences on categorical domains. The number of value sets a user can or wants to
distinguish between regarding quality is often relatively small. We will have a look
at these sub-constructors of LAYEREDm now.

Definition 11. POS/POS Preference
In a POS/POS preference on an attribute A, a set of values S1 ∈ dom(A) is preferred
to a set of values S2 ∈ dom(A). Both are preferred to other values in their domain.
A POS/POS preference can be constructed on base of a LAY ERED2 preference:

POS/POS(A; S1, S2) := LAY ERED2(A; S1, S2, others)
�

Definition 12. POS Preference
A POS preference on an attribute A specifies the preference of a set of values S ∈
dom(A) over all other values of dom(A). It is constructed as a special case of
POS/POS preference:

POS(A; S) := POS/POS(A; S, ∅)
�

Example 4. Marilyn has a preference for only the brightest diamonds. According to
the GIA color scale for diamonds in Table 3, the brightest color for those gemstones
is called “colorless”. Marilyn’s preference can be defined as follows:

PMarilyn := POS(color; ′colorless′)

It is common to explicitly express dislikes together with some preferences. The next
two preference constructors make this easy to formulate on the base of LAYEREDm

preferences.

Definition 13. POS/NEG Preference
With a set S1 ∈ dom(A) of liked and a set S2 ∈ dom(A) of disliked values, a
POS/NEG preference constructor on attribute A is defined as:

POS/NEG(A; S1, S2) := LAY ERED2(A; S1, others, S2) �
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Example 5. For a rental car, John prefers the colors red and blue above all others.
He completely dislikes purple. This can easily expressed by a POS/NEG-preference:

Pcol := POS/NEG(color, {red, blue}; {purple}).

Red and blue are unranked among each other, but better than any other element in
the domain of colors. Purple is worse than anything else.

In some cases, there may only be some domain values a user can specify as unfavored.
This special type of POS/NEG preference is the last base preference we will discuss
here.

Definition 14. NEG Preference
With a set of disliked values S ∈ dom(A), a NEG preference on attribute A can be
constructed as follows:

NEG(A; S) := POS/NEG(A; ∅, S)
�

We have now seen a number of weak order base preferences offering a wide range
of instruments for intuitive preference modeling. In many cases however, users will
have more than just one base preference on a domain. Some mechanism to combine
preferences in order to model complex preferences is therefore needed. This will be
the subject of the next section.

3.1.2 Complex Preferences

Base preferences on simple attributes clearly form the basis of preference modeling.
But when preferences on multiple attributes of one object or tuple are defined, we
need ways to combine them. In [37, 38], three different types of complex preferences
have been introduced: Pareto preferences, prioritization and numerical preferences.
We will discuss all of them now.

Pareto Preferences

The most intuitive way of combining preferences works without any need of rating
the importance of them. In a Pareto preference, all contained preferences are equally
important. A tuple is better than another one, if it is not worse in any contained
preference and better in at least one of them. This is called the Pareto principle
(named after Italian sociologist and economist Vilfredo Pareto).

21



3 Background: the Preference Framework

Definition 15. Pareto Preferences
For WOPs P1 = (A1, <P1

), . . . , Pm = (Am, <Pm
), a Pareto preference

P = ⊗(P1, . . . , Pm) = (A1 × . . . × Am, <P )

on two tuples x = (x1, . . . , xm), y = (y1, . . . , ym) is defined as:

(x1, . . . , xm) <P (y1, . . . , ym) ⇔ ∀i ∈ {1, 2, . . . , m} : levelPi
(xi) ≥ levelPi

(yi) ∧
∃j ∈ {1, 2, . . . , m} : levelPj

(xj) > levelPj
(yj)

�

As the domination relation for a Pareto preference is based on level values of the
contained preferences, it seems to be the logical consequence to define a recursive
level function for Pareto preferences as well.

Definition 16. Level function for Pareto preferences
The level function of a Pareto preference P = ⊗(P1, . . . , Pm) for an arbitrary input
tuple x = (x1, . . . , xm) is given by:

levelP (x) =
m
∑

i=1

levelPi
(xi)

�

We will see the reasons for this definition of a level function for preferences when we
will discuss better-than graphs in chapter 4. According to [15], Pareto preferences form
strict partial orders, even when combining only weak orders. So the WOP coherence
of domination and differences in level values (cp. Lemma 1) does not apply. In
particular, domination requires a higher level value, but a higher level value is not
synonymous with being dominated. We will see this in the following lemma.

Lemma 4. For a Pareto preference P it holds that

x <P y ⇒ levelP (x) > levelP (y).

Proof. Consider a Pareto preference P := (A, <P ) and two tuples s = (s1, . . . , sm),
t = (t1, . . . , tm) ∈ dom(A).

We assume s <P t. Following Definition 15, each level value for s is at least as high
as the corresponding value for t and one of the values for s has to be higher. The
minimum for the level value of s is levelP (t) + 1.

The next example will show the implication bigger level ⇒ worse value does not
hold for Pareto preferences (or strict partial orders in general). The determination of
domination by comparing a single numerical value is a computational privilege only
for WOPs.
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3.1 Preference Modeling

Example 6. We have a Pareto preference P := ⊗(P1, P2) with maximum level values
max(P1) = max(P2) = 4 and a number of tuples (attribute values are represented by
their level values for improved readability):

t1 := (1, 1), t2 := (1, 2), t3 := (2, 1), t4 := (0, 4)

t1 has a level value of 1 + 1 = 2 and dominates t2 and t3, both with level values of
3. But although t4 has the highest level value of all, it is not dominated by any of the
other tuples.

Prioritization

Preferences are not equally important in every case. Prioritized preferences or prior-
itizations, introduced in [37, 38], allow the modeling of combinations of preferences
that have different importance. Although generally not restricted, we will only deal
with prioritizations containing WOPs.

Definition 17. Prioritization
For WOPs P1 = (A1, <P1

), . . . , Pm = (Am, <Pm
), a prioritization

P = & (P1, . . . , Pm) = (A1 × . . . × Am, <P )

on two tuples x = (x1, . . . , xm), y = (y1, . . . , ym) is defined as:

(x1, . . . , xm) <P (y1, . . . , ym) ⇔ ∃k ∈ {1, . . . , m} : ∀i ∈ {1, . . . , k − 1} :
xi

∼=Pi
yi ∧ xk <Pk

yk

�

A prioritization containing only WOPs itself is a WOP again ([15]). Hence there has
to be a level function to calculate dominance.

Theorem 3. The level function for a tuple x := (x1, . . . , xm) in a prioritization
P := &(P1, . . . , Pm) with all the Pi being WOPs is given by:

level&(P1,...,Pm)(x) :=

m
∑

i=1



levelPi
(xi) ∗

m
∏

j=i+1

(max(Pj) + 1)





Proof. Consider a prioritization P := (A, <P ) and tuples s = (s1, . . . , sm), t =
(t1, . . . , tm), both in dom(A). We assume s <P t. Following Definition 17, there is
a k for which sk <Pk

tk. For all i < k, the corresponding attributes si and ki are
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substitutable and so (cp. Lemma 1) levelPi
(si) = levelPi

(ti). We will now look at
levelP (t) − levelP (s), which, with P being a WOP, has to be negative:

m
∑

i=k



(levelPi
(t) − levelPi

(s)) ∗
m
∏

j=i+1

(max(Pj) + 1)



 < 0

We know that levelPk
(sk) > levelPk

(tk). So the above inequation is true, iff the
amount the level value of s has to be higher than t’s level value due to sk <Pk

tk is
bigger than the sum of products with the biggest possible level values for t for Pk+1,
. . . , Pm.

As levelPk
(sk) has to be at least bigger than levelPk

(tk) by 1, hence it is to be proved:

m
∏

i=k+1

(max(Pi) + 1) >

m
∑

i=k+1



max(Pi) ∗
m
∏

j=i+1

(max(Pj) + 1)





For k = m this leads to 1 > 0 as base step of our induction. Assuming the statement
holds for some value of k, we will now check if it holds for k − 1 (for readability, we

will abbreviate
∏b

i=a(max(Pi) + 1) by Xb
a):

Xm
k+1 >

m
∑

i=k+1

(

max(Pi) ∗ Xm
i+1

)

(hypothesis)

Xm
k >

m
∑

i=k

(

max(Pi) ∗ Xm
i+1

)

(induction step: k → k − 1)

(max(Pk) + 1) ∗ Xm
k+1 >

m
∑

i=k+1

(

max(Pi) ∗ Xm
i+1

)

+ max(Pk) ∗ Xm
k+1

max(Pi) ∗ Xm
k+1 + Xm

k+1 >

m
∑

i=k+1

(

max(Pi) ∗ Xm
i+1

)

+ max(Pi) ∗ Xm
k+1

Xm
k+1 >

m
∑

i=k+1

(

max(Pi) ∗ Xm
i+1

)

By reducing the formula to our induction hypothesis, we have proved it to be correct.
Being able to reduce it as far back as to k = m, we even get the following equation:

m
∏

i=k+1

(max(Pi)+1) =

m
∑

i=k+1



max(Pi) ∗
m
∏

j=i+1

(max(Pj) + 1)



+1 (∗)

So all values from 0 to some max(P ) are valid level values.
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A prioritization defines a lexicographic order on a domain ([15]). The level function
maps each possible value to its position in the “lexicon”.

Lemma 5. The maximum level value for a prioritization P is given by:

max(P ) :=
m
∏

i=1

(max(Pi) + 1) − 1

Each integer value in the closed interval [0, max(P )] is a valid level value.

Proof. Following Theorem 3, the function value of max(P ) is computed by maximiz-
ing the Pi’s level values:

max(&(P1, . . . , Pm)) :=

m
∑

i=1



max(Pi) ∗
m
∏

j=i+1

(max(Pj) + 1)



 .

The formula marked with (∗) at the end of the proof of Theorem 3 shows that this is
equal to the product given in Lemma 5.

There are
∏m

i=1(max(Pi) + 1) different combinations of level values for contained
WOPs. As shown in the proof of Theorem 3, each combination of them yields a
different value. The interval [0, max(P )] holds exactly max(P )+1 =

∏m
i=1(max(Pi)+

1) − 1 + 1 values.

We will now see a level value function for a prioritization in an example.

Example 7. Consider preferences P1 and P2 with max(P1) = 3 and max(P2) = 2.
For the simple case of P = &(P1, P2), this leads to the following level function for a
parameter tuple x = (x1, x2):

level&(P1,P2)(x) := levelP1
(x1) ∗ (max(P2) + 1) + levelP2

(x2) =

levelP1
(x1) ∗ 3 + levelP2

(x2)

The maximum level value for P would be (max(P1) + 1) ∗ (max(P2) + 1) − 1 = 11.

Numerical Preference

Analogously to the SCORE preference, the numerical preference computes score val-
ues on the base of domain values. It uses a number of SCORE preferences (or sub-
constructors of SCORE as seen in Figure 3.2) as input and merges their (weighted)
function values to an overall score.
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3 Background: the Preference Framework

Definition 18. Numerical Preference
Given some SCOREd (or subconstructor) preferences P1, . . . , Pm with scoring func-
tions f1, . . . , fm. Then a numerical ranking preference rankF,d with an m-ary com-
bining function F : Rm → N0 is defined as:

(x1, . . . , xm) <P (y1, . . . , ym)⇔

⌈

F (f1(x1), . . . , fm(xm))

d

⌉

>

⌈

F (f1(y1), . . . , fm(ym))

d

⌉

�

Theorem 4. A numerical preference is a WOP with the following level function:

levelrankF,d
(x) :=

⌈

F (f1(x1), . . . , fm(xm))

d

⌉

Proof. Using this function in Definition 18 yields Lemma 1.

Weighting preferences according to their importance is not very intuitive. Hardly
anybody will be able to express that one preference is 2.0 or 2.5 times more im-
portant than another. Nevertheless, numerical preference can be used to simulate
prioritizations, as we will see in the next example.

Example 8. Consider the prioritization found in Example 7 with SCORE functions
f1 and f2 for P1 and P2. An equivalent numerical preference can be defined, using a
d-parameter of 1 and the ranking function

F (f1(x1), f2(x2)) := (max(P2) + 1) ∗ f1(x1) + f2(x2).

The simulation is done by defining the ranking function exactly identical to a pri-
oritization’s level function. A generalization to more than two input preferences is
straightforward.

3.2 Evaluation of Preferences

With the overview of Kießling’s most important preference constructors in mind, we
will now study how these preferences can be used to enable a user-centered approach
to database search. This surely is a key issue on the way to personalized systems.
After introducing a query model designed for using preferences, we will see how it can
be integrated into the standard database query language SQL, forming Preference
SQL.
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3.2 Evaluation of Preferences

3.2.1 The BMO Query Model

Common database search mechanisms (like SQL) only support hard constraints. The
search conditions are matched perfectly by each tuple in the result. But often there a
perfect match cannot be found for a user’s particular wish. An empty result set is the
logical consequence. This often frustrating outcome is known as the empty result effect
([37]). To avoid this notorious problem, preferences are evaluated as soft constraints.
That means, when a database is queried on base of some user preferences, those tuples
that best match the user’s wishes are returned. They may match perfectly, or they
may not – but only those tuples are returned for which no better tuple can be found.
This semantics of returning best matches only are formally defined as follows:

Definition 19. Best Matches Only
The result of a preference query are best matches only (BMO). For a preference
P := (A, <P ) on an input relation R, the BMO set is given by a preference selection:

σ[P ](R) := {x ∈ R| 6 ∃x′ ∈ R : x <P x′}

�

Please note that there is another way of avoiding the empty result effect. The number
of hard constraints may be reduced, or they may be changed from being conjunctive
(linked with AND) to disjunctive (linked with OR). But then a different problem arises:
the constraints may become too weak to provide reasonable filtering and the user is
flooded with results. This is called the flooding effect. An example will show how the
BMO is found:

Example 9. In Example 1 and Example 5, we have heard of John’s preferences on
cars. We will combine these preferences now to a Pareto preference:

PJohn := ⊗(BETWEEN5(price; 60, 80), POS/NEG(color; {red, blue}, {purple})

When this preference is evaluated on the data in Table 3.2, the BMO set consists of
the tuples with IDs 1, 2, and 3. The other tuples are discarded, as they are dominated.
Table 3.3 shows the level values for the WOPs in PJohn.

For tuple 4, the level value for the price preference is 1, just as for the color. This
tuple is dominated by tuple 2 and 3, both with level value of 0 for the price (and 1 for
the color). Tuple 5, the Skoda, has a perfect color, but its price is worse than the one
of tuple 1. Tuple 6 is worse than any of the other tuples.

We have seen the BMO semantics at work in the example. Obviously only a tuple
worse than at least one other with respect to the given preference is discarded. All
tuples in the BMO result set are either substitutable or indifferent.
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3 Background: the Preference Framework

RENTAL CARS id manufacturer color price
1 VW red 50
2 Audi black 70
3 BMW brown 75
4 Toyota yellow 55
5 Skoda red 45
6 Hyundai purple 45

Table 3.2: Sample database

id 1 2 3 4 5 6
levelPcol

(tid) 0 1 1 1 0 2
levelPprice(tid) 2 0 0 1 3 3

Table 3.3: Level values for Example 9

Example 10. Let’s have a look at the preference from Example 9 only using standard
SQL:

SELECT *

FROM rental_cars

WHERE price BETWEEN 68 AND 80

AND color IN ('red', 'blue')

No tuple in the database matches these constraints. The empty result effect occurs,
although a number of cars nearly matches the constraints – the results of the preference
query of Example 9.

The next section will show how preferences and BMO semantics are integrated in
common query languages.

3.2.2 Preference SQL

With its first steps made under the name of SEQUEL in 1974 ([8]), the Standard Query
Language (SQL) has now been the standard query language for relational databases
for more than 20 years. In order to make preference querying available to a large
audience, the preference based BMO query model was integrated into SQL, leading
to the first version of Preference SQL (PSQL) in [40].

In addition to hard constraints stated in the WHERE clause of a SQL statement, filtering
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3.2 Evaluation of Preferences

is also carried out in the new PREFERRING clause. A PSQL query has the following
schematical design:

SELECT ...

FROM ...

WHERE ...

PREFERRING ...

The preference is evaluated on the results of the hard constraint stated in the WHERE

clause. It follows the BMO semantics of Definition 19. As a consequence, empty result
sets can only occur in cases when all tuples are filtered out by the WHERE clause. With
knowledge of the preference constructors of Section 3.1, the syntax of the preference
extensions is straightforward. Table 3.4 shows the Preference SQL expressions for
some of them. The following issues have to be kept in mind for the syntax:

• The keyword REGULAR at the end of each base preference expression indicates
the use of regular SV semantics, which is a vital property of WOPs. (Non-weak-
order base preferences will be discussed later in Section 4.5.)

• The sets needed for a LAYEREDm preference and its sub-constructors are en-
tered as comma-separated values in brackets:

('a', 'b', 'c', ..., 'z')

• A scoring function cannot be stated directly in Preference SQL. Preference
SQL is implemented in Java, and there is the possibility to declare a Java class
providing a certain interface as scoring function. In the syntax of Table 3.4, the
name of the class providing the scoring function f would be Fclass, handed over
to the query engine as a string constant. This technique is used for numerical
preferences as well.

Example 11. John’s Pareto preference (as seen in Example 9) can easily be expressed
in Preference SQL:

SELECT *

FROM rental_cars

PREFERRING price BETWEEN 60 AND 80, 5 REGULAR

AND color IN ('red', 'blue')

NOT IN ('purple ') REGULAR

Now let’s say John’s company has a policy for renting cars. Renting cars from pre-
mium manufacturers like Audi or BMW is not permitted. This hard constraint has
to be added to the query:
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3 Background: the Preference Framework

Preference constructor Preference SQL expression

SCOREd(A; f) A SCORE ’Fclass’ d

BETWEENd(A; low, up) A BETWEEN low AND up, d REGULAR

AROUNDd(A; z) A AROUND z, d REGULAR

HIGHESTd(A; sup) A HIGHEST sup, d REGULAR

LOWESTd(A; inf) A LOWEST inf, d REGULAR

LAY EREDm(A; L1, . . . , Lm+1) A LAYERED (L1, ..., Lm+1) REGULAR

POS/POS(A; S1, S2) A IN S1 ELSE S2 REGULAR

POS(A; S) A IN S REGULAR

POS/NEG(A; S1, S2) A IN S1 NOT IN S2 REGULAR

NEG(A; S) A NOT IN S REGULAR

⊗(P1, . . . , Pm) P1 AND ... AND Pm

&(P1, . . . , Pm) P1 PRIOR TO ... PRIOR TO Pm

rankF,d(P1, . . . , Pm) (P1, ..., Pm) RANK ’Fclass’ d

Table 3.4: Preference SQL Syntax

SELECT *

FROM rental_cars

WHERE manufacturer <> 'Audi'

AND manufacturer <> 'BMW'

PREFERRING price BETWEEN 60 AND 80, 5 REGULAR

AND color IN ('red', 'blue')

NOT IN ('purple ') REGULAR

The tuples with IDs 2 and 3 are discarded by the hard constraint even before the
preference is evaluated. As a consequence, the query result changes. Tuple 1 stays
in the BMO set, and tuple 4 becomes the second element of it, as it had only been
dominated by tuples 2 and 3 (see Example 9).

The preference model and the preference algebra defined by Kießling can be seam-
lessly integrated in relational algebra and in particular into heuristical optimization
algorithms. As shown in [34], this leads to great performance gains.

PSQL is not the only example of integration of this preference model into standard
query languages. [39] presented an integration of it into the first version of W3C’s
XML query language XPath2 under the name of Preference XPath. With XPath being
less important than other XML query languages these days, and all of them playing
only marginal roles in databases nowadays, it is omitted here.

2http://www.w3.org/TR/xpath
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Chapter 4

The Better-Than-Graph

The preference model introduced in chapter 3 provides us with a powerful means to
express user preferences. We will now see a graphical representation of such prefer-
ences. Visualization in general can be a powerful technique to improve comprehen-
sibility, but in our case, this goes even further. Better-than graphs (BTGs) form the
basis of further results in this book. After introducing better-than graphs, we will
carefully examine their structure and their measures.

4.1 The BTG as a Graphical Representation

of Orders

Basically, a better-than graph (BTG) is simply a visualization of the domination of
domain elements for a preference. For each equivalence class it has a node, and for
each direct domination of one node over another, it has an edge.

Definition 20. Better-Than Graph
Consider a preference P := (A, <P ) on an attribute or attribute set A with the domain
dom(A). The better-than graph for P (BTGP ) than has:

• one node for each equivalence class in dom(A)

• a directed edge (a1, a2) from a1 to a2 for each pair of nodes a1, a2 for which
holds:

a2 <P a1 ∧ (¬∃a3 ∈ dom(A) : a2 <P a3 <P a1)

�
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4 The Better-Than-Graph

Please note that we will use the terms node and equivalence class synonymously, as
an equivalence class for a preference P is represented by exactly one node in the BTG
for P and vice versa.

As Definition 20 shows, edges following from transitivity of domination are omitted.
This kind of visualization for all kinds of partial orders is also known as Hasse diagram
([22]).

As a special characteristic of our graphs, we have a concept of levels of the nodes in
the BTG:

Definition 21. Level
The level of a node in a BTG is the length of the longest path leading to it from an
undominated node. �

BTGs for WOPs and BTGs for Pareto preferences differ very much, as Pareto prefer-
ences form no weak orders. Hence, we will analyze them separately from each other,
starting with the more simple BTGs for WOPs.

4.2 BTGs for WOPs

As we already know, for a WOP each level value represents exactly one equivalence
class in the input domain. Therefore, the BTG for a WOP P contains exactly one
node for each value in the value set of the function levelP , which is the closed interval
of integer numbers [0, max(P )]. Domination of one node over another can be directly
derived from the level value, which is a characteristic of WOPs. This leads to BTGs
as shown in Figure 4.1. We can see that this is a total order of the level values. Best
values have a level value of zero and therefore belong to the top node. The lowest
node of the BTG is the one with the largest possible level value, max(P ).

4.2.1 Structure

BTGs for WOPs show a chain structure. Each node is dominated by exactly one
node (except for the top node) and is dominating exactly one node itself (except for
the bottom node). The schematic Figure 4.1 illustrates this, while Example 12 shows
the BTG for a given instance of the POS/NEG preference.

Example 12. In Example 5, we heard about John’s preference on colors:

Pcol := POS/NEG(color, {red, blue}; {purple}).

Figure 4.2 shows the BTG for this preference and the domain values the nodes are
representing.
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[level = 0]

[level = 1]

[level = 2]

(1)

(2)

(0)

Figure 4.1: Structure of BTGs for WOPs

[level = 0]

[level = 1]

[level = 2]

{red, blue}

{purple}

dom(A) \ ({red, blue}     {purple})(1)

(2)

(0)

Figure 4.2: BTG for a POS/NEG preference

4.2.2 Measures

We will now discuss some measures of BTGs for WOPs. This will be width, height,
and the number of nodes. First, we will look at the relation of the level of a node in
the BTG and the level function value of domain values for the corresponding WOP.

Theorem 5. The value of the level function of a WOP P := (A, <P ) for any value
v ∈ dom(A) is equal to the level of v’s corresponding node in the BTG for P .

Proof. Consider a WOP P := (A, <P ) and a set of values T = (t1, . . . , tp) ∈ dom(A)
that is not dominated. For each of the ti ∈ T , levelP (ti) = 0 (cp. Definition 4). In
the BTG for WOP, all elements of T are mapped to the top node.

In another set of values V = (v1, . . . , vq) ∈ dom(A), each element is dominated
only by the elements of T (and no other values). As there is no other value w with
vi <P w <P t, ∀vi ∈ V : levelP (vi) = 1.

The node the different vi belong to has a level value of 1 as it can be reached by a
path with a length of 1 coming from the top node. If there were another node between
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4 The Better-Than-Graph

the one for T and the one for V , all vi would be dominated by elements of dom(A)
mapped to this node. This is a contradiction to the selection of V .

By induction, it is obvious that this correlation of BTG node level and preference level
holds for the full BTG.

With the equivalence of a preference’s level function and the level value in the cor-
responding BTG, we can now use level functions to form easily applicable functions
to compute BTG measures. Nonetheless, we will start with the trivial value of BTG
width.

Theorem 6. The width of a BTG for a WOP is 1 in each level.

Proof. Each equivalence class is identified by a single integer value. Each of them
therefore forms its own level.

Theorem 7. The height of the BTG of a WOP P is height(BTGP ) = max(P ) + 1.

Proof. Each equivalence class is in a separate level. As a consequence there are
max(P ) + 1 equivalence classes.

Theorem 8. A BTG for a WOP P has nodes(BTGP ) = height(BTGP ) different
nodes.

Proof. For each WOP P , there are height(BTGP ) different levels. The number of
nodes is identical to the number of equivalence classes.

The very simple chain structure of BTGs for WOPs makes their analysis very simple.
In the next section, we will study BTGs for Pareto preferences, which are more
complex and thus more interesting.

4.3 BTGs for Pareto Preferences

Just as for WOPs, the BTG of a Pareto preference has a node for every equivalence
class wrt the preference. But with Pareto preferences containing WOPs forming true
strict partial orders (cf. [15]), their BTGs are more complex.

As we will concentrate on Pareto preferences on WOPs, in our BTGs for Pareto
preferences, domain values will be represented by the level values they are mapped to
by the WOPs. As we have seen in Definition 15, the domain of a Pareto preference
P := ⊗(P1, . . . , Pm) is given by the Cartesian product of domains of the Pi ∈ P . As
each value in the domain of each Pi can be represented by its level value, a node in
a BTG for P will be a combination of level values for the Pi. Again, we will first
explore the structure of the BTG and analyze its measures afterwards.
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4.3.1 Structure

A BTG for a Pareto preference with only WOPs as input preferences is a complete
distributive lattice. To be able to prove this, we first have to provide a definition for
lattices (cp. [22]).

Definition 22. Lattice
An ordered set S that has an infimum and a supremum for any two of its elements
is a lattice. If an infimum and a supremum is defined for all subsets of S, we have a
complete lattice. �

The set the lattice is defined on only needs to be partially ordered, just as the
equivalence classes of a Pareto preference are (and hence the nodes of the BTG for
such a preference). The next theorem will show that BTGs are lattices.

Theorem 9. To find the supremum of nodes x = (x1, . . . , xm) and y = (y1, . . . , ym)
from a BTG, we have to use the minimum level value of these nodes for each WOP:

min(x, y) = (min(x1, y1), . . . , min(xm, ym))

To find the infimum of nodes x and y from a BTG, we have to use the maximum level
value of these nodes for each WOP:

max(x, y) = (max(x1, y1), . . . , max(xm, ym))

Domination in the BTG can be computed with these functions min and max. Thus
all BTGs are lattices.

Proof. Consider two nodes of a BTG, x = (x1, . . . , xm) and y = (y1, . . . , ym). If x
dominates y, clearly x has to be the supremum of both and y has to be the infimum.
As x dominates y, no xi can be bigger than the corresponding yi and at least one xi

has to be smaller (see Definition 15). Hence xi = min(xi, yi) and yi = max(xi, yi).

If x and y are indifferent, then ∃j : min(xj , yj) = xj ∧ ∃k : min(xk, yk) = yk.

A node s = (min(x1, y1), . . . , min(xm, ym)) is a candidate for the supremum of x and
y as it dominates both. If there is no node z with x <P z <P s, we have shown that
s must be the supremum.

Suppose there is such a z. We choose some j for which xj ≤ yj. If zj > sj, (with
all other values being equal), s would dominate z. But z would not dominate x as
xj = sj. Thus there can be no such z. It is clear that this is true just as well for any
k with xk ≥ yk and vice versa for the supremum.

Every pair of nodes has one infimum (or supremum), which is one node of the BTG.
To prove completeness, we can split finding the infimum (or supremum) of a set of
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one bottom element

one top element

maximum width

Figure 4.3: Structure of BTGs for Pareto preferences

nodes N into multiple problems of finding the infimum (or supremum) for pairs of
nodes of this set. We combine the resulting nodes in the same way until only one node
is left: the infimum (or supremum) of N .

The distibutive nature of min and max leads to component-wise distributivity of the
xi and yi and therefore to distributivity of the lattice.

Please note that this theorem also holds for Pareto preferences built from WOPs with
m = 1 and as a consequence for simple WOPs as well, although it is less relevant
as the BTGs for WOPs describe total orders on intervals on N0. Following [22], the
product of two lattices K and L produces a lattice with one instance of L for each
node in K (i.e. each level combination of L is joined with each level combination in
K), the BTG for a Pareto preference may also be interpreted as the product of the
lattices for the Pi ∈ P .

A BTG for a Pareto preference P := ⊗(P1, . . . , Pm) has a single top node (i.e. the
combination of best values for the Pi) and a single bottom node (i.e. the combination
of worst values for the Pi). The general structure of a BTG is a hexagon, as shown
in Figure 4.3. In Example 13 we can see a Pareto preference and the BTG formed by
it.

Example 13. Remember John’s preferences on the price (see Example 1) and color
of rental cars (see Example 5). In Example 9, the two WOPs were combined in a
Pareto preference:

PJohn := ⊗(BETWEEN5(price; 60, 80), POS/NEG(color; {red, blue}, {purple}))
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(1, 0)
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Figure 4.4: BTG for a Pareto preference

Using it on the car database of Table 3.2, we get a maximum level value of 3 for the
price preference. POS/NEG preferences always have a maximum level value of 2 (cp.
Theorem 2). So, BTGPJohn

is characterized by the values 3 and 2. Figure 4.4 shows
BTGPJohn

and its typical hexagon shape.

In the next section, we will discuss the measures of the BTG, giving us clear expla-
nations for the structure of the BTG for a Pareto preference.

4.3.2 Measures

Understanding the measures of a BTG for a Pareto preference is essential in under-
standing the BTG itself. The greater complexity (compared to BTGs for WOPs)
leads to a more complex analysis – that means, we will see a greater range of different
measures. This will give us the insight we need for the design of new algorithms in
later parts of this book. We will begin with the number of nodes in a BTG for a
Pareto preference.

Theorem 10. For a Pareto preference P := ⊗(P1, . . . , Pm), the number of nodes in
its better-than graph BTGP is:

nodes(BTGP ) =
m
∏

i=1

(max(Pi) + 1)
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Proof. Each node holds a different combination of level values for the Pi ∈ P . For
any Pi, the valid values are all max(Pi)+1 integer numbers in the interval [0, max(Pi)].
Combining all possible combinations of level values for all the Pi, we get the formula
in Theorem 10.

Closely connected with the number of nodes in a BTG is the number of edges, as we
will see in the next theorem.

Theorem 11. The BTG for a Pareto preference P := ⊗(P1, . . . , Pm) has the follow-
ing number of edges:

edges(BTGP ) =

m
∏

i=1

(max(Pi) + 1) ∗
m
∑

i=1

max(Pi)

max(Pi) + 1

Proof. Have a look at those edges in the Pareto preference P ’s BTG resulting from
domination because of one Pi. All nodes with a level value smaller than max(Pi) for
Pi have such an outgoing edge. The number of such nodes is given by

nodes(BTGP )

max(Pi) + 1
∗ max(Pi).

These are all nodes with any possible level values for all Pj ∈ P with i 6= j and a
level value in the interval of [0, max(Pi) − 1] for Pi. This leads to the following sum
of edges for all preferences in P :

m
∑

i=1

(

nodes(BTGP )

max(Pi) + 1
∗ max(Pi)

)

= nodes(BTGP ) ∗
m
∑

i=1

(

max(Pi)

max(Pi) + 1

)

Just as for WOPs, each node in a Pareto preference’s BTG has a level value, although
it is no longer a unique identifier of the node. In contrast to the simple BTGs for
WOPs, the number of nodes in the BTG for a Pareto preference does not have a
direct impact on the number of levels (which is equal to the height) of the BTG. The
following theorem shows how to determine such a node’s level value:

Theorem 12. For the BTG of a Pareto preference P := ⊗(P1, . . . , Pm), the level
function can be computed as follows:

levelP (a1, . . . , am) =

m
∑

i=1

levelPi
(ai)

Proof. Consider some tuple a ∈ dom(A) having the vector v0 = (0, . . . , 0) as its
equivalence class (or node in the BTG). By replacing exactly one of the 0’s by a 1,
we obtain the equivalence class v1 = (0, . . . , 0, 1, 0, . . . , 0).
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4.3 BTGs for Pareto Preferences

According to the Pareto definition of P we have v1 <P v0. With level being an
integer-valued function, v1 characterizes a direct successor of v0 in the BTG of P .

Thus if (a1, . . . , am) represents a value with level vector v1 and (a1, . . . , am) represents
a value with level vector v0, then

levelP (a1, . . . , am) = levelP (a1, . . . , am) + 1 = 0 + 1 = 1.

In general, consider

vn =(levelP1
(a1), . . . , levelPm

(am)) and

vn+1 =(levelP1
(a1), . . . , levelPi−1

(ai−1), levelPi
(ai) + 1, levelPi+1

(ai+1), . . .),

differing from vn by increasing exactly one level from levelPi
(ai) to levelPi

(ai) + 1.
Assuming that vn represents a node at level

n =

m
∑

i=1

levelPi
(ai)

in the BTG of P , then vn+1 represents a direct successor of vn at level

n + 1 =

m
∑

i=1

levelPi
(ai) + 1.

Thus by induction over the height of the BTG of P the proof is achieved.

With the level value being the sum of other values it is clear that there is more than
a single node in most of the levels. Theorem 13 shows how to determine the height
of the BTG for a Pareto preference.

Theorem 13. The height of the BTG for a Pareto preference P = ⊗(P1, . . . , Pm) is
given by:

height(BTGP ) = 1 +

m
∑

i=1

max(Pi)

Proof. The height of a BTG is defined by the number of different levels it has. The-
orem 12 describes how to find the level value for a single node. The minimum level
value is 0, the maximum level value is

∑m

i=1 (max(Pi)). As all integer numbers in
these two limits (and they themselves as well) are valid level values, we get the number
of levels given in the theorem.

Nodes in a BTG for a Pareto preference are not equally distributed over the different
levels of the graph. The width of such a BTG is not constant. While at the top of
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4 The Better-Than-Graph

the BTG there is always exactly one node with a level combination of (0, . . . , 0), we
already have a number of nodes in level 1. There are m different nodes containing 0
as a WOP level value m − 1 times and 1 exactly one time. Beginning at the bottom
node and moving up one level, there are also m different nodes with one of the values
for levelPi

being smaller than its max(Pi). The BTG is symmetric to its middle axis:

Lemma 6. A BTG for a preference P := ⊗(P1, . . . , Pm) is symmetric with respect
to its middle axis. That means, in a level x of the BTG, there are exactly as many
nodes as in level max(P ) − x.

Proof. Consider a node a = (a1, . . . , am) in level v. Without any problems, we can
find a node a = (a1, . . . , am) with ai := max(Pi) − ai. So the level of a is given by:

levelP (a) :=

m
∑

i=1

(max(Pi) − ai) =

m
∑

i=1

max(Pi) −
m
∑

i=1

ai = max(P ) − levelP (a)

As we can find a node a for each node a in level x, a’s level must have as many nodes
as level max(P ) − v. This is also known as the duality principle in lattices.

In the next theorem, we will see how to find the width of a given BTG for each of its
levels. The method is based on products of lattices as described in [22] (and already
mentioned in Section 4.3.1).

Theorem 14. Consider a Pareto preferences PK = ⊗(PK1
, . . . , PKm

) with m WOPs
and another Pareto preference PL = ⊗(PL1

, . . . ,PLn
) with n WOPs. We construct a

preference P = ⊗(PK1
, . . . , PKm

, PL1
, . . . , PLn

) by integrating all WOPs contained in
PK and PL.

The width of the BTG for P in level v can be found using the following formula:

width(P, v) =

v
∑

i=0

(width(PK , i) ∗ width(PL, v − i)

Using this formula, we can split every Pareto preference down to its WOPs to compute
the width of the BTG for any level.

Proof. As we have seen in Theorem 9, a BTG is a lattice. In our case, the BTG for
P is built as the product of the BTGs for PK and PL (with BTGs called K and L).

For level v, the algorithm combines the nodes of K in level 0 with those of L in level
v, those of K in level 1 with those of L in level v − 1 and so on. So all possible
combinations of nodes of K and L having v as combined sum of level values are
counted. These are all nodes in level v of the BTG for P .
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4.3 BTGs for Pareto Preferences

In some cases, there are shortcuts for this calculation. They are shown in Lemma 7.

Lemma 7. For m = 2 (and therefore P = ⊗(P1, P2)) we can find a shortcut for
the computation of the BTG width for a given level v to reduce computational effort.
There are three different cases:

1. v ≤ min(max(P1), max(P2)): width(BTGP , v) = v + 1

2. min(max(P1), max(P2)) < v ≤ 1
2 (max(P1) + max(P2)):

width(BTGP , v) = min(max(P1), max(P2)) + 1

3. 1
2 (max(P1) + max(P2)) < v:

width(BTGP , v) = width(BTGP , height(BTGP − v)

Proof. We will prove the different parts of the lemma one by one.

1. Consider a BTG node x = (x1, x2) in level v ≤ min(max(P1), max(P2)). So we
get v + 1 possible level combinations for x: (0, v), (1, v − 1), . . . , (v, 0).

2. Consider max(P1) < max(P2) and a node x = (x1, x2) in the BTG so that
max(P1) < x1 + x2 ≤ max(P2). Then, we have max(P1) possible combinations
in a given level v ≥ max(P1): (0, v), (1, v − 1), . . . , (max(P1), v − max(P1)).

3. This follows from the symmetry of BTGs shown in Lemma 6 and holds for BTGs
for Pareto preferences with any number of input WOPs.

With Theorem 14 in mind, we can analyze the maximum width of a BTG. This
maximum width is found in the middle of the BTG (see the BTG structure in Figure
4.3. Lemma 8 will show how to retrieve the correct value.

Lemma 8. The maximum width of the BTG for a Pareto preference P is computed
by the following function:

width(P ) = width(P, ⌊height(P )/2⌋)

The computation of the maximum width for a BTG can be seen in the following
example:

Example 14. Ringo has a Pareto preference consisting of 3 WOPs. The WOPs have
the following maximum level values:

max(P1) = 2, max(P2) = 4, max(P3) = 10
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4 The Better-Than-Graph

The number of nodes for the BTG for this preference is (2+1)∗(4+1)∗(10+1) = 165.
The BTG itself can be seen in Figure 4.5 (graphic created with the BTG Visualizer of
[54]). Its height is 2 + 4 + 10 + 1 = 17. So the BTG has the biggest width at level 8
(among others). The width for level 8 can now be computed by splitting the preference
in two parts: PK = P1 (whose BTG always has a width of 1) and PL = ⊗(P2, P3).
We find the following widths for the BTG for PK and PL using the shortcut formula:

level 0 1 2 3 4 5 6 7 8

width(PK , level) 1 1 1 0 0 0 0 0 0
width(PL, level) 1 2 3 4 5 5 5 5 5

Please note that for level values bigger than 2 the BTG for PK has no nodes and
therefore a width of 0. To find the width of BTGP , we will summarize the widths for
BTGPK

of each level i with those of BTGPL
for each level 8 − i.

1 ∗ 5 + 1 ∗ 5 + 1 ∗ 5 + 0 ∗ 5 + 0 ∗ 5 + 0 ∗ 4 + 0 ∗ 3 + 0 ∗ 2 + 0 ∗ 1 = 15

Complete measures for different BTGs can be explored in Example 15. It also shows
that width and height of a BTG hardly interdepend: there is a BTG with many nodes
that is wider than high and another BTG, having less nodes than the latter and being
much higher.

Example 15. Consider three Pareto preferences PA, PB, and PC with the following
maximum level values of the respectively contained WOPs:

• PA: 2, 2, 1

• PB: 2, 2, 100

• PC : 20, 20, 20

The BTGs for the preferences can be found in Figure 4.6. Due to the number of
nodes, only the shapes of BTGPB

and BTGPC
can be seen. Displaying the nodes of

BTGPC
in the same size as those of BTGPA

would lead to BTGPC
being over three

meters wide. The measures of the BTGs are:

preference nodes edges height width

PA 18 33 6 3
PB 909 2,112 105 9
PC 9,261 26,460 61 331
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Figure 4.5: Sample BTG with maximum level values of 2, 4, and 10
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(1,0,0)(0,1,0)(0,0,1)

BTGPA
BTGPB

BTGPC

Figure 4.6: BTGs for Example 15

BTGPA
shows a relatively good balance between height an width. In general, the graph

is quite small. The other two BTGs differ from it considerably not only by the node
count but also by their shapes. As we can see, BTGPB

is much higher than BTGPC

although the latter has ten times more nodes. When we look at the widths, we see
a different image with a very broad BTGPC

and a very thin BTGPB
. The different

shapes can also be nicely seen in Figure 4.6.

4.4 Unique Node IDs

We will now introduce a method to provide each of the nodes in a BTG with a unique
integer number: the node ID. A unique node ID that is easy to generate is crucial for
the algorithms in Section 6. Before we are able to find such IDs, we have to define
edge weights in our BTG.

4.4.1 Edge Weights

Each edge in a BTG is expressing direct domination of one node over another as a
result of domination in exactly one dimension of the level value combination. We
classify all edges in a BTG according to the preference they state domination for.

Definition 23. Edge Weight
For the BTG of a Pareto preference P := ⊗(P1, . . . , Pm), we define the weight of an
edge expressing domination with respect to any Pi ∈ P as follows:

weight(Pi) :=

m
∏

j=i+1

(max(Pj) + 1)

�
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4.4 Unique Node IDs

So each edge in a BTG has one of m different edge weights. Please note that for
WOPs for BTGs, all edges have a weight of 1. Example 16 shows edge weights for
the BTG of Figure 4.4.

Example 16. In Example 13, we have seen a Pareto preference P = ⊗(P1, P2) with
maximum level values 3 and 2. Therefore, for the edges of the BTG in Figure 4.4, we
get the weights:

weight(P1) = 3, weight(P2) = 1

The edges are classified into those with a weight of 3 (e.g. from (0, 0) to (1, 0) or from
(1, 1) to (2, 1)) specifying domination wrt P1 and those with a weight of 1, specifying
domination wrt P2 (e.g. from (0, 0) to (0, 1)).

4.4.2 From Edge Weights to Unique Node IDs

With the edge weights of Definition 23, we are now able to provide each node in a
BTG with a unique ID. This unique node ID is generated as follows:

Theorem 15. Let ID : (N0)
m → {0, 1, 2, . . . , |BTG| − 1} be a mapping such that

ID(a) :=

m
∑

i=1

(weight(Pi) ∗ ai)

Then the following properties hold:

1. The ID is unique for every node in the BTG.

2. Every value in the set {0, 1, 2, . . . , |BTG| − 1} is the ID of some node in the
BTG.

Proof. We will prove the two parts of the theorem one after the other:

1. Consider the two nodes

a = (a1, . . . , ai−1, ai, 0, . . . , 0) and

b = (a1, . . . , ai−1, ai − 1, max(Pi+1), . . . , max(Pm)).

Thus, we find ID(a) − ID(b) =

weight(Pi) −
m
∑

j=i+1

(weight(Pj) ∗ max(Pj)).
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4 The Better-Than-Graph

Now we will have a look at the computation of edge weights:

weight(Pm) = 1

weight(Pm−1) = weight(Pm) ∗ (max(Pm) + 1)

= weight(Pm) ∗ max(Pm) + weight(Pm)

weight(Pm−2) = weight(Pm−1) ∗ (max(Pm−1) + 1)

= weight(Pm−1) ∗ max(Pm−1) + weight(Pm−1)

=

m
∑

j=m−1

(weight(Pj) ∗ max(Pj)) + 1

...

weight(Pi) =

m
∑

j=i+1

(weight(Pj) ∗ max(Pj)) + 1

We notice that ID(a) = ID(b) + 1. Increasing some level value at index i by 1
increases the ID more than increasing all level values for higher indexes to their
maximum. All nodes with equal level values for a1, . . . , ai−1 and values smaller
than ai at index i have smaller IDs than a.

Considering two nodes, the one with a greater level value at a lower index will
always have the greater ID. Thus, there cannot be two nodes with the same ID
as by definition two nodes always have different level combinations.

2. The lowest ID of a node clearly is the one of the top node t = (0, . . . , 0). It is
always 0. The greatest value for the ID of a node of the BTG is achieved by
maximizing all values in the ID computation for node b:

ID(b) :=

m
∑

i=1

(weight(Pi) ∗ max(Pi))

This node b is the bottom node of the BTG. Replacing the term weight(Pi) by
its definition, we get:

ID(b) =

(

m
∏

i=1

(max(Pi) + 1)

)

− 1

All node IDs belong to the set {0, 1, 2, . . . , |BTG|−1}. Each node has a unique
ID and the set has |BTG| members.
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4.4 Unique Node IDs

Apart from finding the node ID to some level value combination, it is also possible to
find the level value combination to a given node ID. The following lemma will show
how to invert the node ID generation process.

Lemma 9. ID is a bijective mapping. ID−1(n) = (a1, a2, . . . , am) maps a unique
integer ID n to the corresponding level value combination (a1, a2, . . . , am), where the
ai are found the following way (DIV stands for integer division and MOD for the
remainder of the division):

n DIV weight(P1) = a1 MOD r1

r1 DIV weight(P2) = a2 MOD r2

...

rm−1 DIV 1 = am

In a more compact notation, we can calculate each ai’s value as follows:

ai =

⌊

ID(a) −
∑i−1

j=1 aj ∗ weight(Pj)

weight(Pi)

⌋

Proof. We can find the inverse function ID−1 by deconstructing the ID function:
ID(a) = weight(P1) ∗ a1 + r1, with r1 being some remainder. Then, we can interpret
r1 as weight(P2) ∗ a2 + r2 and so on.

As all edge weights for WOPs are 1, the ID function for them is trivial, just as well
as ID−1. The ID of a node is identical to the single level value its equivalence class
is identified by. But now, we will see some more interesting node IDs for the BTG of
a Pareto preference in the next Example:

Example 17. We have computed the edge weights for the BTG for Example 13 in
16 (weight(P1) = 3, weight(P2) = 1. Using these weights, we can compute unique
IDs for the nodes of the BTG, e.g. for the following:

ID(0, 2) = 3 ∗ 0 + 1 ∗ 2 = 2

ID(1, 1) = 3 ∗ 1 + 1 ∗ 1 = 4

Using the results of Lemma 9, we can find the level combination of any node with a
given ID. We will demonstrate this for the node with an ID of 7:

a1 =

⌊

7 − 0

3

⌋

=

⌊

7

3

⌋

= 2

a2 =

⌊

7 − a1 ∗ 3

1

⌋

= ⌊7 − 6⌋ = 1
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1|0,1

0|0,0

11|3,2

9|3,0

10|3,18|2,2

7|2,15|1,2

4|1,1 6|2,02|0,2

3|1,0

Figure 4.7: Sample BTG with node IDs for maximum level values (3, 2)

The BTG for this preference showing level combinations for the nodes and their IDs
can be found in Figure 4.7. The nodes are labeled with the ID and their level combi-
nations after the vertical line.

4.5 Integration of Strict Partial Orders

We have seen how to combine WOPs in a Pareto preference and thereby create strict
partial orders. By abstracting from the preferences we started with, we arrived at
BTGs in which integer level values are used to determine domination of nodes among
each other. Now, we will use this abstract view to integrate general strict partial
orders in our BTG. This will enable us to handle them just in the same way as we
handle BTGs for Pareto preferences containing only WOPs. As a first step, we will
show how to transform the orders defined by base preferences that use trivial instead
of regular SV-semantics (and as a consequence know incomparable values) into BTGs
as known from Section 4.3. Then, we will show how to embed all kinds of strict
partial orders in BTGs – giving us the ability to treat them in the same way as
Pareto preferences.
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4.5.1 Base Preferences Without Regular SV-semantics

In their primary form in [37], all preferences were defined with trivial instead of regular
SV-semantics of Definition 3. In general, this means that one value may be

• equal to

• better than

• worse than

• uncomparable to

another value. For categorical base preferences, all different values in the same set
(i.e. a layer or a POS- or NEG-set) are uncomparable to each other (more detailed
descriptions will be given in Theorem 16 and Theorem 17). Looking only at base
preferences, this makes no semantical difference to those described in Section 3.1.1
([38]). The BMO result holds the tuples with values from the best set found in the
input. The difference occurs (and the problem arises for us) when such preferences are
combined, for instance in a Pareto preference, as we will see in the following example:

Example 18. Consider John’s Pareto preference on cars from Example 9:

PJohn := ⊗(BETWEEN5(price; 60, 80), POS/NEG(color; {red, blue}, {purple})

We will now evaluate it on the sample database of Table 3.2 without using regular
SV-semantics. The level values as seen in Table 3.3 are no longer sufficient to check
for domination. An equal level value in one WOP may lead to incomparability of two
tuples.

The BMO result set without using regular SV-semantics holds tuple 4 as well, as for
price it is rated worse than tuples 2 and 3, but its color “yellow” is uncomparable to
the “black” of car 2 and the “brown” of car 3.

When, in a LAYERED preference, values of the same layer are uncomparable, the
level value of this layer alone is not sufficient to determine domination. Two different
attribute values may render two tuples uncomparable, despite having identical level
values. We will see how to overcome this limitation for both categorical and numerical
base preferences by replacing the single integer level value by two integers.

For this book, these base preferences with trivial SV-semantics are only exceptions
from the regular WOPs of Section 3.1.1. Instead of giving some additional syntax to
define them, we will derive them from their regular SV-semantics using counterparts
as we have done in Example 18. In the syntax of Preference SQL, base preferences
with trivial SV-semantics can be identified by the missing keyword REGULAR at the
end of their definition.
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Numerical WOPs With Trivial SV-Semantics

In the case of numerical base preferences the problem of trivial SV-semantics arises
only for BETWEENd and AROUNDd preferences. With the latter being a special
case of the former, it will be sufficient to analyze the problem only for BETWEENd

preferences.

Theorem 16. Consider a preference P := BETWEENd(A; low, up) and a prefer-
ence P ′ derived from P by replacing regular by trivial SV-semantics.

The level value each element of dom(A) is mapped to in P is replaced by two values
(l1, l2) in P ′. A value x is represented by the integer combination (l1, l2) that is found
as follows:

x → (l1, l2) =

{

(levelP (x), levelP (x) − 1) ⇔ up < x
(levelP (x) − 1, levelP (x)) ⇔ x < low

So l1 and l2 can be initialized with levelP (x) and then l1 resp. l2 is decremented iff
x < low resp. up < x.

Then P ′ models the same order wrt dom(A) as P , but distinguishes between values
lower and values higher than the interval borders.

Proof. Consider P ′ as a preference derived from a BETWEENd preference P by
replacing regular by trivial SV-semantics, a value v with level combination (v1, v2),
and a value w with level combination (w1, w2). The following cases may occur:

• levelP (v) = levelP (w) + 1:
◦ v < low ∧ w < low ⇒ (w1 = v1 + 1) ∧ (w2 = v2 + 1)
◦ v < low ∧ up < w ⇒ (w1 = v1 + 2) ∧ (w2 = v2)

• levelP (v) = levelP (w):
◦ v < low ∧ w < low ⇒ (v1, v2) = (w1, w2) ⇒ v ∼=P ′ w
◦ v < low ∧ up < w

⇒ (v1, v2) = (levelP (v), levelP (v) + 1),
(w1, w2) = (levelP (v) + 1, levelP (v))

⇒ v ∼P ′ w

All other possible cases can be derived from those above. So the level combination
assigned to domain values fulfills the specification of the preference.

For extremal preferences like HIGHESTd (or LOWESTd), the problem of incompa-
rable values does not arise. The supremum (or infimum) denotes the best available
value. Deviation from the optimum value is only possible in one direction – so no two
values can differ by more than d when they have the same level.
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id 1 2 3 4 5 6

price 50 70 75 55 45 45
levelPPaul

(price) 0 4 5 1 1 1
(l1, l2) (0, 0) (4, 3) (5, 4) (1, 0) (0, 1) (0, 1)

Table 4.1: Level combinations for non-WOP

Example 19. Paul wants to rent a car for approximately e50 per day and does not
care for differences of up to e5. So formally we get:

PPaul := AROUND5(price; 50)

We derive a preference with trivial SV-semantics from PPaul and create level pair
mappings for the sample database in Table 3.2. The results can be found in Table 4.1.
A perfect value of 50 is mapped to (0, 0). 45 and 55 (with levelP (45) = levelP (55) = 1
are mapped to incomparable value combinations.

From a technical point of view, two WOPs are connected and used to model the strict
partial order defined by the numerical base preference with trivial SV-semantics when
such a preference is evaluated. A “virtual” Pareto preference is constructed by the
numerical base preference. The size of the BTG for such a preference is given in the
following lemma:

Lemma 10. The size of the BTG P ′ defined by a BETWEENd preference P by
replacing regular by trivial SV-semantics is given by:

(max(levelP (min(dom(A))), levelP (max(dom(A)))) + 1)2 = (max(P ) + 1)2

Proof. Looking at the computation of level combinations for values to be rated, the
BTG that is constructed is identical to one for a Pareto preference containing two
WOPs with maximum level values of max(P ) + 1.

Not all nodes of such a BTG represent valid inputs. As we will see in Lemma 11,
the number of useable nodes is growing linear wrt the maximum level value of the
corresponding preference with regular SV-semantics:

Lemma 11. Consider a preference P ′ which is defined as a BETWEENd preference
P with trivial instead of regular SV-semantics. The number of used nodes (i.e. the
number of nodes that can be matched by values evaluated by P ′) in the BTG for P ′

is given by 2 ∗ max(P ) + 1.
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(0,0)

(5,4)

(4,3)

(1,0)(0,1)

Figure 4.8: BTG for an AROUNDd preference with trivial SV-semantics

Proof. The node (0, 0) is used for perfect matches. Other nodes used have level
combinations of (x, x+1) or (x+1, x), as stated in Theorem 16. The minimum value
for x is one, the maximum is max(P ), leading to 2 ∗ max(P ) + 1 values in use.

Example 20. For PPaul of Example 19 and the database of Table 3.2, we find
max(P ) = 5. The BTG constructed by P ′

Paul (i.e. PPaul with trivial instead of
regular SV-semantics) is shown in Figure 4.8.

The black nodes have tuples belonging to them (given Table 3.2 as input), the gray
nodes represent valid integers for l1 and l2, while the white nodes are unused dummy
nodes given by the graph structure. Just as Lemma 10 and Lemma 11 indicate, the
BTG has (5 + 1)2 = 36 nodes of which 2 ∗ 5 + 1 = 11 might be used.

Categorical WOPs With Trivial SV-Semantics

Incomparability of values is straightforward for categorical base preferences as well.
Considering some preference LAY EREDm(A; L1, . . . , Lm+1), all values in one of the
Li are incomparable (although having the very same level value) to each other (as
mentioned at the beginning of Section 4.5.1).

In Theorem 17, we will see how to map each value of the domain of a LAYERED
preference to a level combination to deal with these requirements.
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4.5 Integration of Strict Partial Orders

Theorem 17. Consider a preference P := LAY EREDm(A; L1, . . . , Lm+1) and a
preference P ′ derived from P by replacing regular by trivial SV-semantics. Each
value in dom(A) is mapped to a pair of integer level values.

The elements of the Li are labeled with indexes: Li := {li,1, li,2, . . . , li,|Li|}. Every
element of Li has to get a unique index value. Then, the level combination for each
li,j can be found with the following formula:

li,j →

(
∣

∣

∣

∣

∣

i−1
⋃

x=1

Lx

∣

∣

∣

∣

∣

− i + j,

∣

∣

∣

∣

∣

i
⋃

x=1

Lx

∣

∣

∣

∣

∣

+ 1 − (i + j) + |{x | x ≤ i ∧ |Lx| = 1 ∧ |Lx−1| = 1}|

)

Proof. Consider a preference P ′ = (A, <P ′) with trivial SV-semantics derived from
a LAYERED preference P (using regular SV-semantics) and three categorical values
li,j , li,k, li+1,q ∈ dom(A) with j < k. The level combination a value lx,y is mapped to is
(lx,y[0], lx,y[1]). We have to prove that P ′ constructs the same order as P on elements
of different layers and renders elements of the same layer indifferent. For readability,

we will abbreviate
∣

∣

∣

⋃i−1
x=1 Lx

∣

∣

∣ with s and |{x | x ≤ i∧|Lx| = 1∧|Lx−1| = 1}| with t(i).

• li,j ∼P ′ li,k:
◦ li,j [0] − li,k[0] = (s − i + j) − (s − i + k)

= j − k
⇒ li,j [0] < li,k[0]

◦ li,j [1] − li,k[1] = (s + |Li| + 1 − (i + j) + t(i))−
(s + |Li| + 1 − (i + k) + t(i))

= −j + k
⇒ li,j [0] > li,k[0]

With li,j [0] < li,k[0] ∧ li,j [0] > li,k[0] it follows that li,j ∼P ′ li,k.

• li+1,q <P ′ li,j:

◦ li,j [0] ≤ li+1,q[0] ⇔ s − i + j ≤ s + |Li| − (i + 1) + q
j ≤ |Li| − 1 + q

This always holds as j ≤ |Li| ∧ (−1 + q) ≥ 0.
⇒ j = |Li| − 1 − q ⇔ j = |Li| ∧ q = 1

j < |Li| − 1 − q ⇔ j < |Li| ∨ q > 1
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4 The Better-Than-Graph

◦ li,j [1] ≤ li+1,q[1] ⇔
s + |Li| + 1 − (i + j) + t(i) ≤ s + |Li| + |Li+1| + 1−

(i + 1 + q) + t(i + 1)
−j + t(i) ≤ |Li+1| − 1 − q + t(i + 1)

– case 1: |Li| = 1 ∧ |Li+1 = 1 ⇔ t(i + 1) = t(i) + 1 ⇒ j = 1 ∧ q = 1
⇒ −j + t(i) ≤ |Li+1| − 1 − q + t(i) + 1

−j ≤ |Li+1| − q
−1 ≤ 1 − 1

– case 2: |Li| > 1 ∨ |Li+1 > 1 ⇔ t(i + 1) = t(i)
⇒ −j + t(i) ≤ |Li+1| − 1 − q + t(i)

−j ≤ |Li+1| − 1 − q
j ≥ 1 + q − |Li+1| (∗)

For j = 1 ∧ q = |Li+1|, both sides are equal.
As (j ≥ 1) ∧ (q − |Li+1| ≤ 0), the inequation
holds in all other cases, too.

To sum up the preceding points, we can distinguish the following cases, showing
that li+1,q <P ′ li,j always holds:

j = 1 ∧ q = |Li+1| ⇒ li,j [0] < li+1,q[0] ∧ li,j [1] = li+1,q[1]
1 < j < |Li| ∧ 1 < q < |Li+1| ⇒ li,j [0] < li+1,q[0] ∧ li,j [1] < li+1,q[1]

j = |Li| ∧ q = 1 ⇒ li,j [0] = li+1,q[0] ∧ li,j [1] < li+1,q[1]

As we can see, all elements of the same layer are indifferent and better than all
elements of (wrt their indexes) higher layers.

Please note that there are different ways of mapping domain values to level value
combinations. Depending on the structure of the layers, easier mapping rules are
possible as well. We focused on a generic approach which is capable of handling all
possible LAYERED preferences.

Example 21. John’s color preference is well-known from Example 5, Example 12
and others:

Pcol := POS/NEG(color, {red, blue}; {purple})

Derived from it is a POS/NEG preference P ′
col with the same sets but trivial instead

of regular SV-semantics. The same preference can be expressed by a LAYERED pref-
erence as well (as POS/NEG is a sub-constructor of LAYERED, cp. Section 3.1.1).
The domain of the attribute, color shall be {yellow, red, purple, blue, brown, black}:

Pcol2 := LAY ERED2(color, {red, blue}; others; {purple})

So others = {yellow, brown, black}. Figure 4.9 shows the BTG for a LAYERED
preference P ′

col2
with the same sets, but trivial SV-semantics. Nodes with invalid level
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(0,1)

(3,3)

(3,1)(2,2)(1,3)

(1,0)

Figure 4.9: BTG for a LAYERED preference with trivial SV-semantics

combinations are white, nodes with other colors are labeled with the level combination
the color is assigned to. The BTG for the original Pcol can be found in Figure 4.2.

4.5.2 General Strict Partial Orders

Although it is a base preference, we have not yet mentioned the EXPLICIT preference
introduced in [37] in Section 3.1.1. We will discuss it in this section. An EXPLICIT
preference allows a user to express most of the possible strict partial order over a
domain. In contrast to the base preferences of Section 3.1.1, it does not construct a
weak order.

Definition 24. EXPLICIT preference
Consider a preference P := (A, <P ) and set of pairs of values E ⊂ dom(A)×dom(A).
With each of these pairs (a1, a2) stating domination of some a2 over some other value
a1 and the order being transitive, P is an EXPLICIT preference.

The constructor for an EXPLICIT preference is given by:

EXPLICIT (A, {(a1, a2), . . . , (ax, ay)})

Unmentioned values are considered worse than any value in some element of E. �

To be able to evaluate EXPLICIT preferences with algorithms of Section 6, we have
to embed the strict partial order defined by it into a distributive lattice. The problem
we are facing here is the general embedding of Hasse diagrams for arbitrary strict
partial orders into distributive lattices.
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4 The Better-Than-Graph

For this embedding, we start with a Hasse diagram representing the strict partial order
of the EXPLICIT preference. To each node, we will assign a so-called signature.
This signature is a combination of integer values. We call the signature of a node
a combination of integer values used to identify it. When the construction of the
distributed lattice structure is complete, the signature of a node is identical to the
level combination of the BTG node it is mapped to. The mapping is done in the
following four steps:

1. Identify non-dominated nodes and generate an unlabeled virtual top node △
for them. Add edges from △ to the non-dominated nodes. Also add a virtual
bottom node ▽ that is dominated by all the nodes not dominating other values
in the graph.

2. Do a depth-first search beginning at the top node. The algorithm used for the
depth-first search is irrelevant, but the following issues have to be kept in mind:

• Keep a counter. Each time the search finds a dead end, increase the counter
by one.

• Annotate each edge during the search with the counter value.

• Do no follow annotated edges.

3. Do a breadth-first search on the graph, starting at the top node again. There
are two possibilities in each node n:

• n is directly dominated by exactly one node and reached by an edge with
an annotated value of v. The signature value of n is the signature value of
its dominating node increased by one at position v.

• n is directly dominated by a number of nodes d1, d2, . . . , dx. The signature
of n at each position i is given by the maximum value of the di at the same
position.

4. Check the maximum values in use at each position of the node signature and
remove those positions with a maximum value of zero.

The mapping of domain values mentioned in the original Hasse diagram to their level
combination can be done using a hash table. As the values are a given subset of the
(possibly the whole, finite) domain, a minimal perfect hash function can be found
as described in [18, 20, 29] to make access as fast and memory requirements as low
as possible. For an EXPLICIT preference, all domain values not mentioned in any
better-than pairs given in its constructor are mapped to the virtual bottom node.

We have mentioned that EXPLICIT preferences are not capable of modeling any
strict partial order. Such an order can be found in the following example:
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’black’

’blue’’red’
(1,0)

(0,2)

(0,1)

(a) (b)

Figure 4.10: Hasse diagram for a strict partial order with corresponding BTG

Example 22. Paul tells a car vendor about his preferences on colors:

I like red more than black. And I like blue.

Figure 4.10(a) shows the Hasse diagram of this preference. As “black” is a preferred
value but not better than any other given value, we cannot model this preference with
the EXPLICIT operator. Figure 4.10(b) shows the BTG with the order embedded into
it. The colored nodes show the color they represent and are annotated with their level
combinations.

Our algorithm has no problem in integrating any kind of strict partial order. Isolated
nodes in a Hasse diagram belong to the set of top nodes that is linked to the virtual
single top node created in step one of the algorithm. Example 23 will show the
algorithm in action on a larger graph.

Example 23. A Hasse diagram for a strict partial order is given in Figure 4.11(a).
We add top and bottom nodes in Figure 4.11(b). Then, the depth-first marking of the
edges begins. Figure 4.11(c) shows the moment when the first edges has been marked
with “3”. In Figure 4.11(d), all edges are marked.

Then, we determine the node signatures, starting at △. As the highest number as-
signed to an edge is 4, the node signatures have four integer values. The top node has
a signature of (0, 0, 0, 0). For a, we get the signature (1, 0, 0, 0), as it is dominated by
the top node by an edge marked with 1 and so the signature value of △ is increased
by one at position 1. The next table shows signatures for all nodes after step 3 of the
algorithm:

node a b c d e f g
signature (1, 0, 0, 0) (2, 0, 0, 0) (3, 0, 0, 0) (0, 0, 1, 0) (0, 0, 2, 0) (2, 0, 2, 0) (0, 0, 0, 1)

We see that the maximum value at position 2 is 0. It is therefore removed. So we keep
the maximum signature values 3,2, and 1. The resulting BTG can be seen in Figure
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Figure 4.11: Embedding a strict partial order in a BTG

4.12 with part (a) showing all signature values and part (b) replacing those connected
to a value of the original order.

Please note that the algorithm for embedding a strict partial order in a distribu-
tive lattice like a BTG is not neccessarily producing minimal BTGs, as we will see
in Example 24. How to deterministically find the smallest BTG has to be further
investigated in later works.

Example 24. We will have another look at the strict partial order in Figure 4.11(a).
Some depth-first search algorithm yields the edge annotation of Figure 4.13(b). Then,
the maximum integer values for the embedding are 2, 1, 2, 1. With those maximum
values, the BTG that is constructed has 36 nodes; it is 50% bigger than the one shown
in Example 23.

Another mapping of partial orders to distributive lattices has been presented in [53].
Using only two integer numbers to represent each value in a partial order, a BTG
constructed according to the maximum signature levels tends to be smaller than
when using our algorithm. But not all partial orders can be expressed when such
a mapping is used. There are partial orders that cannot be expressed by only two
integer values as we will see in Lemma 12.

Lemma 12. We have some values a, b, . . . , f and a partial order on them defined
by d < a, d < b, e < a, e < c, f < b, and f < c. The Hasse diagram for this order is
given in 4.14(a). Then a mapping of each node to a BTG node defined by two integer
values is not able to preserve the original partial order.
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(2,2,0)

(3,2,1)

(1,2,0)

(2,1,1)(1,2,1)

(2,1,0)(2,0,1)(1,1,1)(0,2,1)

(1,1,0)(1,0,1)(0,1,1)

(3,0,1) (3,1,0)

(2,2,1) (3,1,1) (3,2,0)

(0,0,1) (0,1,0) (1,0,0)

(0,0,0)
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Figure 4.12: BTG for the preference expressed in Figure 4.11(a)
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Figure 4.13: Embedding a strict partial order in a BTG (2)
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(0,0,0)

fed

cba

(1,1,1)

(1,1,0)

(0,0,0)

(1,0,0)(0,1,0)(0,0,1)

(1,1,1)

(0,1,1) (1,0,1)

(a) (b)

Figure 4.14: Strict partial order needing more than two integer values

Proof. a = (a1, a2), b = (b1, b2), and c = (c1, c2) are indifferent. We will assume
a1 < b1 < c1 and a2 > b2 > c2. From the strict partial order we know:

e < a ∧ e < c ⇒ a1 ≤ e1 ∧ a2 ≤ e2 ∧ c1 ≤ e1 ∧ c2 ≤ e2

Hence, the combination of smallest possible values for e is (e1, e2) = (c1, a2). So e
always is dominated by b, too, which is a contradiction to the original partial ordered
set. There is no valid mapping with two integer level values.

Using the Hasse diagram structure of Figure 4.14(a) as a pattern, similar proofs for
more than two values in a signature can be found. The number of integers needed to
construct a BTG to embed a partial order depends on the partial order and does not
have an upper border.

In Example 25, a possible embedding of the given partial order into a BTG using
three integer values can be seen.

Example 25. Consider the partial order in Figure 4.14(a). A possible embedding to
a distributed lattice is shown in the BTG with maximum level values of (1, 1, 1) in
Figure 4.14(b). The mappings are:

node a b c d e f
signature (0, 0, 1) (0, 1, 0) (1, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0)

4.5.3 Combining WOPs and General Strict Partial Orders

As we have seen, a single integer level value is not enough to express the semantics of
base preferences with trivial SV-semantics or strict partial orders. We have overcome
this limitation by using two or more integer values. Now we have to integrate these
preferences in the standard Pareto preferences introduced in Definition 15.
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(0,0)

(1,0)

(2,1)

(2,0)(1,1)

(0,1)

Figure 4.15: BTG for a strict partial order

Theorem 18. Consider a strict partial order S embedded into a BTG GS and a
Pareto preference P and the corresponding graph BTGP .

The order constructed by the combination of P and S is visualized by the product of
GS and BTGP .

Proof. Both GS and BTGP are lattices. According to [22], the product of them yields
a lattice with a combined order of both input lattices.

The BTG for such a combination surely holds unused nodes (as the BTG for the strict
partial order does already), but as we have not examined the space-complexity of the
embedding of a strict partial order into a BTG, we cannot make profound statements
about the percentage of used nodes at all. Nevertheless the embedding can be very
useful as it enables us to evaluate base preferences that are strict partial orders just
like Pareto preferences and Pareto preferences consisting of strict partial orders just
as if as if they only used standard WOPs as input preferences. Example 26 defines a
BTG that is the result of the combination of a WOP and a strict partial order.

Example 26. Remember the strict partial order on colors of Example 22. The BTG
this order is embedded in is shown in Figure 4.15, where the nodes representing nodes
of the original order have a border of the respective color.

Now we combine this order with John’s price preference BETWEEN5(price; 60, 80)
(cf. Example 1), with its maximum level value of 3 (when evaluated on the sample
database of Table 3.2. The BTG for the combined order can be seen in Figure 4.16.
Nodes representing no reachable level combination (due to the strict partial order) are
printed in gray.
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(2,2,0)

(1,0,1)

(3,1,1)(2,2,1)

(1,2,1) (2,1,1)

(3,0,0)

(2,0,0)

(1,0,0)

(0,0,0)

(1,1,1)(0,2,1)

(0,1,1)

(3,2,0)

(1,2,0) (2,1,0)(2,0,1)

(1,1,0)(1,0,1)

(3,0,1) (3,1,0)

(0,0,1) (0,1,0)

(0,2,0)

Figure 4.16: BTG for the combination of a WOP and a strict partial order
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Chapter 5

Pruning and its Application

We will now use the knowledge of size and structure of BTGs we gained in the last
chapter to improve the performance of algorithms for BMO set generation. After
the definition and calculation of pruning levels for BTGs, we will see how this new
principle can be used in existing algorithms.

5.1 Pruning Levels

For every node in every BTG, we can find a level of the graph wherein all nodes
are dominated by the mentioned node. So, when we read a tuple t from the input
relation, we can determine a level from which point onward all nodes are dominated
by t. We call this t’s pruning level. When evaluating a preference on some input
relation, we speak of pruning the BTG there, because all tuples belonging to nodes in
the pruning level (or higher levels) are definitely dominated by t and no longer need to
be considered. As we will see later, this can lead to large performance improvements
for some algorithms.

Definition 25. Pruning Level
The pruning level plP (n) for a node n in the BTG for a preference P is the lowest
level for which all nodes of the current and of higher levels are dominated by this node.

plP : dom(A) → N0

plP (n) := w ⇔ ∄a ∈ dom(A) : (levelP (a) = w ∧ ¬(a <P n)) ∧
∃b ∈ dom(A) : (levelP (b) = w − 1 ∧ ¬(b <P n))

The pruning level of a value a ∈ dom(A) is the pruning level of the node of a’s
equivalence class. �
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5 Pruning and its Application

Just like the structure of BTGs for WOPs and for Pareto preferences, the compu-
tation of the pruning level of a node differs. Unsurprisingly, it is more complex for
Pareto preferences. We will learn about algorithms to compute both pruning levels
for nodes and pruning nodes for whole levels in the next sections, starting with the
determination of pruning levels for WOPs. Unfortunately, as there is no efficient way
to compute pruning levels for arbitrary strict partial orders as introduced in Section
4.5, we have to omit them.

5.1.1 Pruning Levels for WOPs

The pruning level for a BTG node in a WOP is easy to find. For a node in level x,
we have to find the level y in which all nodes are dominated by our starting node. As
there is exactly one node in each level, clearly y = x + 1. Theorem 19 outlines this
more formally:

Theorem 19. The pruning level for a node n in the BTG of a WOP P is given by
levelP (n) + 1.

Proof. The BTG of a WOP is a chain. Each node dominates all nodes of higher
levels.

This simple formula for finding the pruning level can be very helpful for all kinds of
algorithms. When evaluating a WOP on some input, at every point of time only the
one tuple with the best level value seen so far is of interest. It will be dominated by a
tuple with a lower level value, but it will dominate all tuples with higher level values.
The pruning level mirrors the key feature of WOPs as given in Lemma 1.

5.1.2 Pruning Levels for Pareto Preferences

For Pareto preferences, pruning is not as trivial a task as it is for WOPs. A better
level value does not cause domination, but is only a prerequisite as we will see in the
next example:

Example 27. Figure 5.1 shows the BTG for a Pareto preference with maximum level
values of the WOPs in it of 2, 2, and 1 (which is BTGPA

of Figure 4.6 with node
IDs). In Figure 5.1, node 6 belongs to level 1. Although it is dominating some nodes
in level 2, there are nodes indifferent to it as well (e.g. node 4). The same holds for
level 3. Only from level 4 on, all nodes are dominated by node 6.

Determining the pruning level of a node in a BTG for a Pareto preference is a complex
task. It was shown for the first time in [52], where the following calculation rule was
introduced:
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15|2,1,1

0|0,0,0

17|2,2,1

16|2,2,011|1,2,1

14|2,1,013|2,0,110|1,2,09|1,1,15|0,2,1

12|2,0,08|1,1,07|1,0,14|0,2,03|0,1,1

6|1,0,02|0,1,01|0,0,1

Figure 5.1: Sample BTG with node IDs

Theorem 20. For a Pareto preference P := ⊗(P1, . . . , Pm), a tuple t = (t1, . . . , tm)
has the following pruning level with respect to P :

plP (t) =



























1 ⇔ levelP (t) = 0

max(P ) + 1 ⇔ levelP (t) = max(P )

∑m
j=1 max(Pj) − min({max(Pi) − levelPi

(ti)|
∀i : 1 ≤ i ≤ m ∧ levelPi

(ti) > 0}) otherwise

Proof. The first two cases are obvious and we will be able to discuss them in a few
sentences. All level values of the top node are zero. According to the Pareto preference,
it dominates all other nodes in the BTG. It is clear that a worst node cannot prune
nodes from the BTG as it does not dominate any.

After these trivial first two cases, we will now address the general and complicated third
one. Consider a Pareto preference P := (P1, . . . , Pm) and a tuple a = (a1, . . . , am).
We select a tuple a = (a1, . . . , am) with a ∼P a and an overall level value as high
as possible. So there must be one attribute of a with levelPi

(ai) < levelPi
(ai). The

maximum value for this levelPi
(ai) clearly is levelPi

(ai)−1, while the other attributes’
level values should be as high as possible to maximize the overall level value of a. This
means the vector of level values for a is one of the following:

[ a(1) ] := (lP1
(a1) − 1, max(P2), max(P3), . . . , max(Pm))

[ a(2) ] := (max(P1), lP2
(a2) − 1, max(P3), . . . , max(Pm))

...
...

...

[ a(m) ] := (max(P1), max(P2), max(P3), . . . , lPm
(am) − 1)
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For any levelPj
(aj) = 0, the corresponding [a(j)] clearly is not valid as level values

smaller than 0 cannot occur. So no related aj can exist. We will disregard them in
the rest of the proof.

The overall levels of the different ai are:

levelP (a(i)) =

m
∑

j=1

max(Pj) − (max(Pi) − (levelPi
(ai) − 1))

The node representing a(i) itself only dominates one node in the next higher level: the
one with a value of levelPi

(ai) for preference Pi and maximum values for all other
preferences. So any value dominated by any of the a(i) is also dominated by a. That
means, when we find the highest level of a a(i), we will find the highest overall level a
value can have without being dominated by a.

In the algorithm, the sum of maximum level values is constant, so the result is maxi-
mized by minimizing the subtrahend, max(Pi)− (levelPi

(ai)− 1). The level computed
is the highest overall level for which not all values belonging to it are dominated by
a. When we increase this value by one and then choose the minimum for it upon all
a(i), we receive the formula introduced in Theorem 20. In this level, all values must
be dominated by a. If all values having one specific overall level are dominated, of
course all values with higher overall levels will be dominated, too. There are some
cases when no a(i) indifferent to a can be found:

• ∀ i ∈ {1, . . . , m} : levelPi
(ai) = 0: This means, a is represented by the top node.

We have already looked at this case.

• ∀ i ∈ {1, . . . , m} : levelPi
(ai) = max(Pi): So a’s level value is max(P ). This

special case has been discussed, too.

So we have found a general formula for determining a tuple’s pruning level for Pareto
preferences (and with the tuple just as well for the corresponding node of the BTG).

Please note that there is no strict relation between a node’s level and its pruning level.
A node with a higher level may have a lower, equal, or higher level than another node.
We will see this in Example 28.

Example 28. The BTG of Figure 5.1 has the bottom node (2, 2, 1). We will look at
node (0, 0, 1) in level 1 and node (1, 1, 0) in level 2. Their pruning levels are computed
as follows:

plP (0, 0, 1) := 5 − min({2 − 0, 2 − 0, 1 − 1}) = 5

plP (1, 1, 0) := 5 − min({2 − 1, 2 − 1, 1 − 0}) = 4
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As we can see, although levelP (0, 0, 1) < levelP (1, 1, 0), the pruning level of the latter
node is better.

In some cases, it may be more viable not to look for the pruning level of a node, but
find the pruning node for a level – i.e. the one node with the highest overall level that
dominates all nodes in a given level. We will address this issue in the next theorem:

Theorem 21. Consider a Pareto preference P := ⊗(P1, . . . , Pm). The pruning node
p(v) for all nodes in a level v of P ’s BTG (except for level 0 and level max(P )) can
be found by:

p(v) := (p
(v)
1 , . . . , p

(v)
m ) = ( min({n1 | ∀n := (n1, . . . , nm) : (

∑m
i=1 ni) = v}),

. . . ,
min({nm | ∀n := (n1, . . . , nm) : (

∑m

i=1 ni) = v}) )

The two exceptions for which the formula does not hold are the levels containing only
one node. The top node in level 0 has no pruning node, and the bottom node in level
max(P ) is dominated by any other node.

Proof. This follows from the BTG being a lattice and the construction of the supre-
mum of two or more nodes using the function min as described in Theorem 9.

With Theorem 21, it is easy to find the pruning node for a given level v of some
BTG. But the formula has the disadvantage of needing to know all nodes in the level.
Lemma 13 will show an easier way of computing the pruning node, only taking the
level v and the max(Pi) of the preference as an input.

Lemma 13. For a preference P := ⊗(P1, . . . , Pm), the level value levelPi
of the

pruning node of a level v of P ’s BTG for each of the Pi is given by:

p
(v)
i := max(0, v − (max(P ) − max(Pi)))

Proof. For some given i, the algorithm tries to maximize the sum of level values for
all j 6= i. If the possible maximum sum of this (given by max(P )−max(Pi)) is lower

than v, it follows that p
(v)
i must be higher than zero so the overall level of v can be

matched.

In Example 29, we will have a detailed look on the computation of pruning nodes for
all levels of a given BTG. We will see that, especially for small BTGs, the top node
is the pruning node for a huge majority of the different levels, leading to hardly any
pruning possibilities.

Example 29. Again, we will look at the BTG shown in Figure 5.1, whose preference
has the maximum level values 2, 2, and 1. The pruning nodes for the different levels
are:
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level 1 2 3 4
pruning node (0,0,0) (0,0,0) (0,0,0) (1,1,0)

As we can see, levels 1 throughout 3 are completely dominated by the top node only.
Looking at level 3 in the BTG, we see that for each of the Pi it contains at least one
node holding a value of 0 for it. For levels 1 and 2 this holds just as well. For level
4, we will see how the pruning node is found using Lemma 13:

p
(4)
1 := max(0, 4 − (5 − 2)) = max(0, 1) = 1

p
(4)
2 := max(0, 4 − (5 − 2)) = max(0, 1) = 1

p
(4)
3 := max(0, 4 − (5 − 1)) = max(0, 0) = 0

The standard algorithms used for Pareto preference evaluation as BNL, SFS, or LESS
have been developed for use in skyline queries and therefore were designed to deal
with floating point numbers. Until now, we have seen pruning as a technique only
capable of dealing with integer level values. The next theorem will show us how to
apply pruning to floating-point algorithms. We only have to restrict the preferences
to LOWEST and the domain to the interval of [0, 1], which (according to [16]) has no
impact on the general validity of the approach.

Theorem 22. For a Pareto preference P containing m lowest preferences on m
floating-point domains in the interval of [0, 1], a value x := (x1, . . . , xm) ∈ [0, 1]m has
the following pruning characteristics:

m
∑

i=1

(yi) > m − min({1 − xi|1 ≤ i ≤ m}) ⇒ y <P x

That means, all tuples with a component sum higher than m−min({1−xi|1 ≤ i ≤ m})
are dominated by x.

Proof. The proof is analog to the one for Theorem 20, as is the given formula. The
only difference in the formula is that for floating-point values, it is not possible to
give a specific pruning level (which would be a specific sum of component values), as
there is no discrete number of valid sums (in contrast to the discrete number of valid
integer level values). So we can only give the maximum component sum for a node not
dominated by x and state that all nodes with higher component sums are dominated.

Using the results given in Theorem 22, pruning can be used in any algorithm design
for the evaluation of skyline queries on floating-point domains as well. In the next
section, we will concentrate on the integration of pruning in algorithms for BMO set
generation, which is a more general case of skylining.
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5.2 Using Pruning in Algorithms

The pruning level for given tuples (or their corresponding nodes in the BTG) can be
used to omit comparisons of tuples in preference evaluation algorithms. We will now
study the integration in BNL, one of the most popular algorithms for BMO queries.
Subsequently we will analyze how to use pruning in other algorithms as well, even in
some designed for skyline queries.

5.2.1 BNL++

Block Nested Loop (BNL) is the most common algorithm for the evaluation of Pareto
preferences since its presentation in [6]. Before we can outline how to integrate pruning
in this algorithm, we will describe the workflow of BNL itself.

BNL

The basic BNL algorithm has been introduced in [6] as the first algorithm for multi-
dimensional optimization problems in the context of relational databases.

The algorithm uses a main memory buffer called “window” to keep a set of incompa-
rable and un-dominated tuples. When a tuple t is read from the input, it is compared
to the tuples in the window. In doing so, one of the following three cases may occur:

• Tuple t is dominated by a tuple in the window and therefore is discarded im-
mediately.

• One or more tuples within the window are dominated by t. All dominated tuples
are removed from the window and the new tuple is inserted.

• t is incomparable with all tuples in the window. If there is enough space left in
main memory, t is inserted. If not, t is written to some external memory.

When all tuples have been read from the input, those in the window that have been
compared to all tuples from the input can be returned as results. To identify these, all
tuples receive a timestamp when they are read. Those tuples with timestamps issued
earlier than any timestamp for a tuple that has been written to external memory have
been compared with all so far un-dominated tuples. As they have proven to be not
dominated by any of them, they can be returned as query results and are removed
from the window. Now the algorithm starts another iteration using the external
memory used in the previous iteration as new input. This continues until there is an
iteration without any tuple written to external memory. Then the whole content of
the window is returned and the algorithm is finished.
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The algorithm was presented together with some improvements for it. One of them is
to order tuples wrt their potential to dominate other tuples. So-called killer tuples are
moved to the beginning of the window so that new tuples are compared to them first
(and hopefully dominated without the need for many comparisons). In our algorithm,
we will exploit the characteristics of such killer tuples as well.

Integration of Pruning in BNL: BNL++

Using pruning is not the only optimization we will apply to BNL to improve perfor-
mance. BNL++ makes use of three different methods to identify and omit redundant
comparisons of input tuples:

• optimization of better-than tests by pruning the BTG

• omission of comparisons of nodes with the same overall level

• omission of multiple comparisons with tuples belonging to the same BTG node

To transform BNL to BNL++, we have to add an additional variable to the algorithm:
pruning lvl is the current pruning level, i.e. the lowest value for the pruning level found
in the tuples that have been read yet. This pruning lvl is initialized with max(P )+1,
with P being the preference which is about to be evaluated on some input data.

When a new tuple t is read, its overall level value is compared to pruning lvl. If t’s
overall level value is as high as or higher than pruning lvl, it is pruned and therefore
can be discarded without the need for any tuple-to-tuple comparison. Otherwise,
t’s pruning level is calculated and – if pruning lvl is higher than the new value –
pruning lvl is reset to the new value.

The list of BMO set candidates is kept in memory sorted by their overall level, with
the tuples belonging to the same level stored in lists. Within these lists, tuples are
grouped by the node they belong to. So comparisons have to be made only once for
each equivalence class.

Due to the sorting by level, t will be compared with tuples with lower levels first and
thus can be discarded earlier (if neccessary). When the list of tuples with the same
overall level is reached, we can add t to it, as t cannot be dominated by any tuple in
the window.

If t was added to the candidate list and the main memory buffer had been full before
reading t and no tuple had been removed, external memory access is needed. One of
the tuples with the highest overall level value in main memory is written to external
memory and removed from the buffer.
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When all tuples have been read from the input, those in the main memory buffer
that were compared to all other tuples, can be returned as part of the result set
and removed from the window. Just as in the original version, tuples therefore get a
timestamp when they are read. In addition to this, it is possible to return those tuples
with overall levels lower than the lowest overall level of a tuple written to external
memory. Due to their overall level value, it is obvious they cannot be dominated,
although they have not been compared with all tuples. The latter is the reason why
they have to remain in the memory buffer: they could still dominate some of the
other tuples.

Afterwards, a new iteration of the algorithm starts. The external memory of the last
iteration becomes the input of the current. The algorithm continues like this until
there is one iteration when all BMO set candidates fit into the main memory buffer
and no external memory is needed.

For ease of understanding, we will now see BNL++ in action. The window size chosen
is large enough to make external memory access unnecessary:

Example 30. John’s preference on rental cars has been introduced in Example 9. He
has a preference on the price and an equally important preference on the color:

PJohn := ⊗(BETWEEN5(price; 60, 80), POS/NEG(color; {red, blue}, {purple})

In our domain, the maximum level value is 3 for the BETWEEN5 preference and 2
for the POS/NEG preference. The BTG for this preference is shown in Figure 4.4
and has 12 nodes in 6 different levels.

We will use the sample database in Table 5.1. The level values and the pruning level
of course will not be stored in a database but be computed on the fly when reading a
tuple. We will start with an empty candidate list. The tuples will be added in order
of their ID.

t1 is added to the candidate list. The pruning level is set to 5. As there are no
other candidates, the tuple’s node is added without any comparisons.

t2 is simply added to its already existing node. No comparison is needed.

t3 is – for lack of existence – not compared to tuples with better levels. After being
added to the candidate list, worse nodes are searched – and one is found ((1, 2)
holding t1 and t2) and removed.

t4 is dismissed as its level value is equal to the pruning level.

t5 is added to the list of nodes with level 4. Of course, it was checked before that
it is not dominated by the only node in the candidate list: (0, 2).
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ID hp color levelPhp
levelPcolor

levelPJohn
plPJohn

t1 56 purple 1 2 3 5
t2 81 purple 1 2 3 5
t3 70 purple 0 2 2 5
t4 46 purple 3 2 5 6
t5 45 silber 3 1 4 5
t6 95 red 3 0 3 5
t7 84 blue 1 0 1 3
t8 88 black 2 1 3 4

Table 5.1: Sample car database with BNL++ evaluation data

t6 is added to the list of nodes with level 3 after being compared with (0, 2). Then,
t6 dominates and dismisses (3, 1) (t5).

t7 lowers the pruning level to 3. All nodes with this level or higher ones are removed
from the candidate list. t7 is added to level 1’s node list. As t7 does not dominate
(0, 2), t3 stays in the candidate list.

t8 is discarded as its level is equal to the pruning level.

In this scenario, only 5 comparisons have to be made. The simple BNL from [6] would
have needed 11. So the comparisons were cut by half, although the pruning level was
set to its final value only when reading the penultimate tuple – but it still helped to
reduce the number of comparisons (by pruning t6 at once and t8 later).

We have made some performance tests of BNL++ in cooperation with MAN Roland1,
the world’s second largest manufacturer of professional printing systems. The algo-
rithm was also used in the prototype implementation of an MAN Roland internal
online procurement shop described in [24]. Our tests were made on real data, in
particular a set of 4,925 drills. Preferences on eight (four numerical, four categorical)
different attributes were used in 256 preference queries. The result sizes where be-
tween 1 and 1,250 tuples. Compared to the execution time of BNL, BNL++ reduced
the mean query execution time by two thirds. In other words, it ran three times faster
than BNL.

1http://www.man-roland.com
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5.2.2 Integration in other Algorithms

Pruning can be integrated in any algorithm designed for the evaluation of Pareto
preferences. We will examine this in the next section. But even more is possible:
algorithms for skyline queries on floating-point domains can also benefit from pruning,
as we will see later.

Pruning in Level-based Algorithms

Basically, using pruning in an algorithm for BMO set computation for Pareto prefer-
ences is quite straight-forward. We will concentrate on the general steps of integration.
Special conditions arising from some given algorithm will not be considered.

Just as for BNL++, we add an integer variable pruning lvl to the algorithm. Again,
pruning lvl set to max(P ) + 1 at the beginning (with P as the preference to be
evaluated). When a new tuple is read from the input, its overall level is compared
to pruning lvl. If the new tuple’s level is higher than pruning lvl, it can be discarded
without any tuple-to-tuple comparisons. If the new tuple has a pruning level better
than pruning lvl, the variable is reset to the new value.

For testing and benchmarking this method of integration, we have created an im-
plementation of Godfrey et al.’s LESS algorithm ([31]) using pruning, which we call
LESS++.

We will now describe the basic workflow of LESS to be able to understand the adjust-
ments made to exploit pruning. LESS, just like BNL, consists of a number of passes,
although the first pass differs very much from later ones. In pass zero, when the input
relation is read for the first time, the memory buffer is split up into two parts, the EF
window and the sort window. The EF window (which usually is about 1% of the size
of the sort window ([31, 47])) is used to keep a small set of killer tuples which all are
by now un-dominated and show good values wrt some quality measure. This quality
measure has to provide a topological sorting of the tuples so that a tuple with good
quality cannot be dominated by a tuple with worse quality ([31, 16]). A good quality
measure in our context would be the overall level value of a tuple.

Each time a tuple is read, it is compared to all the tuples in the EF window. Hence,
a lot of tuples can be filtered out during the first pass. A tuple is added to the EF
window (and may replace another tuple in it), if its quality is higher than the quality
of a tuple in the EF window. Dealing with our preference model, this would mean
the new tuple has to have a lower overall level value. Another reason to add a tuple
is space available in the EF window. This occurs after removal of dominated tuples
(and of course at the beginning of the execution of the algorithm). All tuples that are
not discarded are stored in the sort window. As soon as this sort window is full, the
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contained tuples are sorted by their overall level value and stored in some external
memory. When all tuples are read from the input and have been filtered and sorted,
pass zero ends.

Before pass one begins, a complete sorting of the input is carried out using some
external sort algorithm. From now on, the complete memory buffer can be used to
store BMO set candidates. Due to the sorting, the tuples are read in order of their
quality (i.e. overall level value for us). Each time a tuple is not dominated when
compared to the current window content, it can be written to the output as it is part
of the result set. Keep in mind that no tuple can be dominated by a tuple that is
read later as the later tuple has a worse quality (resp. a higher overall level value).

Beginning with pass one, all passes work very similar to BNL. If not all input tuples
fit into the main memory buffer, the surplus ones are written to external memory
again. The algorithm continues with more passes until no tuples have to be written
to external memory anymore.

The changes in LESS that have to be made to form LESS++ are primarily made
in pass zero. There, the value of pruning lvl has to be adjusted as new tuples are
read. In pass one, we only have to filter out some tuples with worse overall levels that
occasionally were read (and stored on disk) before the pruning lvl was set to a value
discarding them. From pass two on, LESS++ behaves exactly like LESS.

Due to the very good filtering characteristics of the basic LESS algorithm, we could
only recognize mean performance enhancements of some percents for LESS++ over
LESS. Nevertheless, we think that pruning is a reasonable improvement for the algo-
rithm, especially in cases like the one described in the next example, where a huge
performance boost was made possible by pruning.

Example 31. Consider a Pareto preference of WOPs with the maximum level values
1, 1, and 100. The input relation starts with 100,000 tuples with overall levels from 5
to 102. Then, one of the last tuples t in the input relations has the level combination
{0, 0, 4}, having a pruning level of 6. In the second phase of the evaluation with
LESS++, we only need to read the nodes from level 5 from external memory to compare
it with t. As soon as the first tuple with an overall level of 6 is read, the algorithm is
finished as none of the following tuples can be part of the BMO set.

In our test system, LESS took 45s for the evaluation, whereas LESS++ only needed
21s. A performance gain of more than 50% was achieved.

As we have seen in our tests, the average case of a preference evaluation with LESS is
hardly affected by integrating pruning. But Example 31 has shown how some worst
cases for LESS can be bypassed by pruning.

Please note that although this basic method is relatively easy and yet leads to good
results, as seen in Example 31, the complete integration leading to maximum perfor-
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mance benefits may be far more complex, as we could see for BNL in Section 5.2.1.
Of course, this will entirely depend on the algorithm.

Pruning in Algorithms for Floating-Point Domains

As we have seen in Theorem 22, pruning may also be used for floating point domains,
which are common in skyline queries. Pruning can be integrated into an existing
algorithm by altering it in some minor, well-defined spots. In [16], a simplification of
skyline queries on floating-point domains was described. Every part of the query can
be reduced to the equivalent of a LOWEST preference on the interval of [0, 1]. So the
skyline consists of tuples with attribute values as low as possible.

There has to be a variable pruned sum that keeps track of the lowest sum of tuple
components that cannot be part of the result set (analog the pruning lvl of Section
5.2.1). The initial value of pruned sum is m, with m being the number of skyline
dimensions (which corresponds with the number of WOPs contained in a Pareto
preference P ). Each time a tuple is read, the sum of its components has to be
compared to pruned sum. If the new tuple’s sum is higher than pruned sum, it can be
discarded at once, without any further need for tuple-to-tuple comparisons at all. If
it is not discarded, the pruning characteristics of the new tuple have to be determined
as described in Theorem 22 and – if lower than pruned sum – can be used as new
value for pruned sum.
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Chapter 6

The Hexagon Algorithm

In this chapter, we will learn how to ultimatively exploit the lattice BTG for a prefer-
ence for BMO set generation. First, we will get to know the basic ideas of Hexagon, in-
cluding considerations of computational complexity and memory requirements. Then
we can have a closer look at different implementation strategies, that – apart from the
external version of Hexagon of Section 6.2 – primarily differ from each other in their
memory management. In Section 6.4 we will see how the algorithm not only works
fine for standard Pareto preference query evaluation, but can also be successfully
deployed to the related problems multi-level Pareto preference and top-k queries.

6.1 Layout and Characteristic Features

Hexagon is based on the BTG for a preference. Input tuples are only needed to know
if a node has tuples belonging to it or not. After getting to know the character-
istic workflow of a preference evaluation on some input relation using Hexagon, we
will learn about the theoretical computational complexity of the algorithm and the
memory consumption using straightforward programming techniques.

6.1.1 Principles of Hexagon Algorithms

Tuples are mapped to nodes of the BTGs and the computation of dominance and
indifference is done for nodes. This abstraction from tuple-to-tuple comparison is
the main advantage of Hexagon over other algorithms. The maximum number of
comparisons depends on the BTG. The distribution of input tuples accounts for the
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actual number of comparisons that have to be made. As we will see later, different
distributions of input tuples are cooperative to a different degree. Hexagon always
consists of three phases:

1. Construction Phase

2. Adding Phase

3. Removal Phase

It would be possible to speak of a forth phase, a returning phase, in which the tuples
belonging to the BMO result set are returned. But as this can be included in phase
three without any negative influence on the overall performance, we will address this
issue when reaching the removal phase. Lattice Skyline (LS), presented independently
in [47] at the same time as Hexagon in [51], works the same way.

We will now have a closer look at these phases.

Construction Phase

At the beginning, we have to initialize the BTG. Therefore, we have to determine its
size. As we have seen in Section 4.3.2, we need to know the maximum level values of
all WOPs in the Pareto preference. Some memory structure for the whole BTG has
to be iniatialized in main memory. As we have a unique integer ID for each node,
an array-like structure seems to be favorable. Please note that the Pareto preference
may contain strict partial orders in the way introduced in Section 4.5 as well. As each
preference is reduced to the BTG constructed by it, only integer value combinations
are important.

In the removal phase, we will have to do a breadth-first walk through the BTG. Nodes
should be reached in order of the level they belong to. Within each level, they should
be visited in ascending order of their IDs. Therefore, we construct a next/prev node
relation that keeps information about the predecessor and the successor of each node
in the breadth-first walk.

This breadth-first order relation can be computed by visiting each node of the BTG
in order of the node IDs. For each node, we need one pointer on its next and one on
its previous node, best initialized as arrays of pointers or ID values. In the following
description, we will concentrate on the next relation. Pointers on previous nodes are
set at the same time as a next pointer is set.

In an auxiliary array last, we keep the highest ID found belonging to each level so far
and in an array first, we keep the lowest ID for a node in each level. The next node of
the top node always is the one with ID 1. Now we visit each node in order of its ID.
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We compute the level a node belongs to by constructing its level value combination
from its ID as seen in Lemma 9 and then determining the level the node belongs to
(see Theorem 12). We look up the (until we reached the current ID) highest ID h for
a node in the same level in last and set the current ID as value for next of h (and x
as prev ID for the current value). Then, we set the current ID as the new highest ID
for its level in last (and if no node of this level has been found before), we also set it
as lowest ID in first.

When all IDs have been processed, we use the information in first and last to connect
the different levels in the breadth-first walk. For a level x, last holds the last node in
the breadth-first walk. The next node can be found in first for level x + 1. The value
of last for a level x is used as prev value for the ID stored in first for level x + 1. A
complete breadth-first walk over the BTG is created.

This breadth-first walk does not necessarily need to be constructed in this phase of
the algorithm. It is not needed before the removal phase and can also be constructed
then. The next example will show the initalization process. We will use it as a running
sample throughout the whole introduction of Hexagon.

Example 32. Remember John’s preference for cars (cp. Examples 9, 30):

PJohn := ⊗(BETWEEN5(price; 60, 80), POS/NEG(color; {red, blue}, {purple})

Together with the input relation of Table 5.1, we get maximum level values of 3 for
the BETWEEN5 preference and 2 for the POS/NEG preference. Following Theorem
10, the BTG has (3 + 1) ∗ (2 + 1) = 12 nodes. In memory, we initalize an array to
store the state of each node. At the beginning, each node of course is set to empty.
The table shows how the BTG is represented in main memory after the construction
phase:

id 0 1 2 3 4 5 6 7 8 9 10 11

state e e e e e e e e e e e e
next 1 3 4 2 6 7 5 9 10 8 11 -1
prev -1 0 3 1 2 6 4 5 9 7 8 10

Adding Phase

In the adding phase, the input relation is read. For each tuple, we have to determine
its equivalence class and so the node of the BTG it is represented by. We have to
store the information that a node’s state changes to non-empty. We will see different
approaches to the storing of the node state later in Section 6.3.
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Example 33. After adding all tuples from Table 5.1, the node states have changed
to the following (“n” stands for non-empty). The next/prev relations are omitted as
they are not relevant for this state.

id 0 1 2 3 4 5 6 7 8 9 10 11

state e e n n e n e n e n n n

Removal Phase

The last phase of the algorithm is the removal of dominated nodes. There are different
ways of walking through a BTG to visit each node and to determine if it is dominated
by some other node(s). The primary version of Hexagon (cp. [51]) used a combination
of breadth-first and depth-first walk. The nodes of a BTG are, in general, visited
level-by-level in the breadth-first order built in the construction phase.

When an empty node is reached, it is removed from the next/prev relation so that in
another breadth-first walk, it will not be visited anymore. Each time a dominated
node is found, a depth-first walk is done marking all dominated nodes. In this walk,
every node that is reached is marked as dominated and removed from the next/prev
relation. That way, it will not be visited in the further progress of the breadth-first
walk. The weight w of the edge a node is reached with during the depth-first walk
is very important. From each node, only edges with weights lower or equal to w are
followed. The depth-first walk reaches a dead end in a node, when no edge with a
lower weight can be found that leads to a non-dominated node.

Hence, during the walk, each node is reached by only one edge. Most of the edges are
not used and the computational complexity of the algorithm is based on the number
of nodes in the BTG. In Example 34, we will see the state of the complete BTG in
some phases during the removal phase.

Example 34. In Figure 6.1, the removal phase is visualized in several states. Each
part of the figure only shows those nodes still reachable by the next/prev relation,
together with the edges between them. At the beginning, the full BTG can be reached
following the breadth-first walk based on next/prev. Non-empty nodes are marked in
gray (Figure 6.1(a)).

Starting the breadth-first walk in the top node, the first interesting node is the first
non-empty node (1, 0), having the ID 3. Nodes (0, 0) and (0, 1) were removed from
next/prev as they are empty, as we see in part (b) of the figure.

Then, the depth-first walk starts. First we go to node (1, 1), reached from (1, 0) by an
edge with weight 1. From this node, we can only use the edge with weight 1, leading
to node (1, 2). As no edge with weight 1 emerges from (1, 2), a dead end is reached.
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This part of the walk is illustrated by the blue edges in Figure 6.1(c). Both visited
nodes are marked as dominated and removed from next/prev (see Figure 6.1 (d)).

Then, we follow the edge with weight 3 (green edges in 6.1(e)) coming from (1, 0),
reaching (2, 0) first. From this node, we follow edges with weight 1 (blue edges, again)
and edges with weight 3 (green). After removing the dominated nodes from next/prev,
we reach the state shown by Figure 6.1(f).

Continuing the breadth-first walk leads to node (2, 0). As all dominated nodes are
already marked as dominated, no depth-first search has to be done. As no non-
dominated next node exists, the removal phase ends here.

After the removal phase, the BTG in memory shows the following states (with “d” for
the state dominated. next/prev only holds valid entries for the remaining non-empty,
non-dominated nodes:

id 0 1 2 3 4 5 6 7 8 9 10 11

state e e n n d d d d d d d
next -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1
prev -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1

It is equally possible to walk through the BTG in order of the node IDs. Each time
a non-empty or a dominated node is reached, the nodes directly dominated by it
are marked as dominated. But, as a consequence, each edge in the BTG has to be
followed, leading to edges(BTGP ) node visits. This simpler approach is used in LS
([47]). Starting a depth-first walk as described for the removal phase in the top node
leads to an order of visiting the nodes exactly equal to the node IDs.

6.1.2 Computational Complexity

Due to the very strict partitioning of the algorithm into three different phases, it is
possible to split up the examination of the computational complexity in three parts
as well. In the last part of this section, the results for the three phases of Hexagon
will be merged and the overall theoretical complexity of the algorithm will be found.

Construction Phase

In the initialization phase of the algorithm, an array for the BTG nodes is constructed.
The size of this array is determined by the maximum level values of the given user
preferences and can be easily computed (see Theorem 10). For the creation of the
next/prev-relation, this array is traversed exactly once. The level of each node has to
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Figure 6.1: BTG during Hexagon’s removal phase
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be computed. Using the method of Lemma 9, this needs m steps. Apparently, the
costs in this phase have the tight bound of Θ(m∗|BTG|) = m∗Θ(

∏m

i=1(max(Pi)+1)).

Adding Phase

When the input tuples are added, we have to carry out some computations for each of
them. As seen in 15, calculating the unique ID of one tuple is done in Θ(m), where m
is the number of WOPs contained in the Pareto preference query. For n input tuples,
this clearly leads to a complexity linear in n: Θ(m ∗ n) = m ∗ Θ(n).

Removal Phase

Removal of nodes from the BTG again depends on the size of the BTG. Doing the
whole breadth-first walk defined by the next-relation is done in O(|BTG|). For each
node reached, it is possible that it contains tuples and the nodes dominated will
have to be removed. When a node is reached that has been removed from the next-
relation, the algorithm will not follow the edges down from this node. This can be
determined by the next/pref-relation: if the prev node’s next is not the same as the
current node, the current node has been removed already. As a (very high) upper
bound we could say that each node of the BTG is visited m times: once for every
directly dominating node. Of course, this can only happen for a very small number
of nodes: the maximum number of nodes belonging to the result set is given by the
maximum width of the BTG. Even if all nodes of the BTG were visited this often, it
would be done in O(m ∗ |BTG|) = m ∗ O(

∏m

i=1(max(Pi) + 1)).

Complete Computational Complexity

Using the results of the previous parts of this section, we can now easily state the
theoretical computational complexity of an execution of the Hexagon algorithm. Fol-
lowing the common principle of “space-time tradeoff”, Hexagon usually uses more
space but less time than other algorithms to evaluate a Pareto preference. Theorem
23 shows the results:

Theorem 23. Hexagon is linear wrt the BTG size.
For a Pareto preference P with a fixed number m of WOPs on an input relation R
of size n where the BTG size is at most linear in n, then Hexagon evaluates Pareto
preference queries in linear time Θ(n).
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Proof. We have the following parts to add to find the overall complexity of Hexagon:

• construction phase: m ∗ Θ(
∏m

i=1(max(Pi) + 1))

• adding phase: m ∗ Θ(n)

• removal phase: m ∗ O(
∏m

i=1(max(Pi) + 1))

The overall complexity can be found by simply adding complexities of the different
phases. As the adding phase is the only phase with a complexity depending on the
size of the input relation, it clearly depends on the size of the BTG and the number of
input tuples. As the BTG and especially m are fixed and usually very small compared
to n, we find a worst-case complexity of Θ(n).

Small sized BTGs frequently occur in practice, in particular for e-commerce applica-
tions. Due to their limited maximum level values, categorical preferences never pose
any problems, but numerical preferences like AROUNDd might do so. In the worst
case, each of the n tuples of an input relation could be mapped to a different equiv-
alence class, yielding a BTG size of (n + 1)m. For such extreme scenarios, Hexagon,
of course, cannot be used in an efficient way. However, apart from the exponential
complexity in such cases leading to long execution times, main memory requirements
for the BTG would exceed the possibilities of existing computers even for very small
values of n.

6.1.3 Memory Requirements

Each node of the BTG has one of three different states: empty, non-empty, and
dominated. The easiest way to encode these three states is by using two bits with
0x00 standing for empty, 0x01 for non-empty and 0x10 for dominated. This enables
us to use the extremely fast bit functions to check and change node states. The very
same encoding has been proposed for LS for the same reasons as well ([47]).

Lemma 14. The BTG for a Pareto preference P := ⊗(P1, . . . , Pm) requires the
following amount of memory:

mem(BTGP ) :=

⌈

nodes(BTGP )

4

⌉

=

⌈

1

4

m
∏

i=1

(max(Pi) + 1)

⌉

Proof. One byte can hold four nodes using two bits each.

So the memory requirement for Hexagon is linear wrt the size of the BTG. The next
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max(Pi) mem(BTGP )

PA 2, 2, 1 5 Bytes
PB 2, 2, 100 228 Bytes
PC 20, 20, 20 2316 Bytes
PJohn 3, 2 3 Bytes
PCC 20, 20, 20, 20, 20, 20 ∼ 20.5 MB

Table 6.1: Memory requirements for different BTGs

example shows memory requirements for some sample BTGs. We will see how to
evade the problem of high memory consumption in the next two sections.

Example 35. In Example 15, we got to know the Pareto preferences PA, PB, and
PC . We will also look at the BTG of the Hexagon Example 32 to Example 34 and a
preference PCC := ⊗(P1, . . . , P6). Table 6.1 holds the results. As we can see memory
requirements can be very high for a Pareto preference holding only six WOPs with
maximum level values of only 20 each.

6.2 Hexagon with External BTG: Hexagon++

Until now, we have always had to keep the complete BTG in main memory. As we
have seen in the last section, memory requirements can be very high in some cases.
The logical next step would be to keep only parts of the BTG in main memory while
evaluating the preference.

We have developed a Hexagon derivate holding in memory not the complete BTG but
only one of the BTG levels at a time. By marking dominated tuples in the BTG level
by level, this version of Hexagon is capable of finding the best pruning level for any
input relation. As we integrate pruning in Hexagon, analog to BNL++, we call this
algorithm Hexagon++.

When reading the input relation tuple by tuple, do the following:

1. Keep in memory a sorted list of all unique IDs of the nodes for which tuples
belonging to have been read. If a new tuple from a lower level is found, discard
the IDs in memory and only keep the new tuple.

2. Store the tuple on external memory together with the other tuples from its level.

Note that there are no comparisons made in the first round of the algorithm. Step
2 requires a dedicated external memory space for each level in the BTG. No specific
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sorting has to be carried out as the external memory for one level works as a bucket for
the tuples belonging to it. A bucket sort is done automatically. All tuples belonging
to the lowest level can be written to the output right after all input tuples have been
read. They cannot be dominated.

We then compute all nodes belonging to the lowest non-empty level and keep them in
ascending order wrt their unique IDs. We mark the nodes with input tuples belonging
to them as non-empty.

Now we walk through the BTG in a breadth-first order. In each node that we reach,
we do the following:

1. Create the nodes connected to the current node in the spanning tree and store
them in a list with the other nodes belonging to the next level.

2. If the node is marked as dominated or non-empty, mark its successors in the
spanning tree as dominated.

3. Store other dominated nodes in domination lists. For each WOP (except for
Pm), there is such a list.

4. Remove the current node from the current level.

After the new level has been constructed, tuples belonging to non-dominated nodes
in this level can be returned. Therefore, we read all tuples belonging to this level
from external memory. For each tuple we read, we have to check if the related node is
marked as dominated. If a node is marked as empty, we change it to non-empty and
return the tuple. So when constructing the next level, dominated nodes are marked
as such.

For each WOP (except for Pm), we keep a list of nodes dominated by it. These lists
keep nodes for which it is known they are dominated but that have not been reached
by the breadth-first walk.

When walking through the BTG in a breadth-first manner, in each node create those
nodes directly connected to the current node in the spanning tree of the BTG.

For non-empty and dominated nodes, we have to perform some additional tasks:

• mark nodes dominated in the spanning tree as dominated (as the spanning tree
contains each edge for domination due to Pm, we do not need a list for this
preference) and

• add other dominated nodes (those dominated by WOPs with greater edge
weights) to the respective lists of nodes dominated for some WOP.
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In each empty and non-dominated node, the lists of dominated nodes have to be
checked. All elements of nodes dominated by the respective WOP with IDs lower
than the current node’s ID plus the WOP’s edge weight are removed and all nodes
that are dominated in the spanning tree by the current node are marked as dominated.

Note that the lists always keep the node IDs sorted. We only have to check for
domination of the first node with a greater ID in the list (those with lower IDs are
removed). If the current node would dominate another node in some list, the first
node in the list would have been dominated because of the same WOP by a node
with a lower ID than the current node.

Assume that the current node would dominate the second node in the list for some
WOP, but not the first. Hence the ID of the first node is lower than the ID of the
current node plus the edge weight for the WOP. As IDs are increasing while walking
through a level, no node following the current node dominates this first node for this
WOP. The relevant node has been passed already.

When we have finished computations for the current level, a sorted list of tuples
belonging to the next level has to be produced. We read this list element by element
to check for non-empty nodes. Each time we reach a non-empty, non-dominated node,
the tuples belonging to it can be written to the output. The algorithm can stop as
soon as one level only holds dominated objects. Clearly this level and all following
levels are pruned.

For this algorithm, the memory buffer has to be at least the width of the BTG. During
the construction of a new level, all old nodes are removed as soon as they have been
used to construct their successors.

Example 36. In Example 34, John’s Pareto preference for cars was evaluated using
Hexagon. We will now evaluate it with Hexagon++. The BTG for this preference
and its database (Table 5.1) can be found in Figure 6.1(a), where non-empty nodes
are shaded in gray. For now, it is only relevant that (among others) nodes (1, 0) and
(0, 2) have tuples belonging to them.

The lowest level with non-empty nodes is level 1. After all tuples have been read, all
nodes of level 1 are computed and we begin to walk through level 1. The first node
we visit is (0, 1), which is empty. It has one direct successor, (0, 2). This is the first
node of level 2 in our breadth-first walk. The following table shows the relevant data
for the algorithm. The node states are indicated by the indexes (e for empty, n for
non-empty and d for dominated):

current level: (0, 1)e → (1, 0)n

next level: (0, 2)e

dominated by P1: {}
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The non-empty node (1, 0) is reached next. While processing it, we find two more
nodes of level 2, both dominated by (1, 0):

current level: (1, 0)n

next level: (0, 2)e → (1, 1)d → (2, 0)d

dominated by P1: {}

Now we are finished with level 1. Read tuples belonging to level 2 from external
memory and return those belonging to the non-dominated node (2, 0), which is marked
as non-empty. Level 2 now becomes the current level. (2, 0) has one successor it
dominates:

current level: (0, 2)n → (1, 1)d → (2, 0)d

next level:
dominated by P1: {(1, 2)}

When we reach (2, 2), we find one of its successors in the list of nodes dominated for
P1. We remove it and add it as dominated node to the next level:

current level: (1, 1)d → (2, 0)d

next level: (1, 2)d

dominated by P1: {}

The last node in level 2, (2, 0) completes the execution of the algorithm. As the current
level has no more nodes and all nodes in the next level are dominated, we can stop
now:

current level: (2, 0)d

next level: (1, 2)d → (2, 1)d → (3, 0)d

dominated by P1: {}

Hexagon++ is capable of reducing main memory requirements to a very promising
degree, but does this at the expense of performance – once again a typical case for
the well-known time-space tradeoff in computer science: less memory requirements
of an algorithm in comparison to another lead to more time consumption solving. In
most of our tests, BMO set computation of Hexagon++ was slower than even standard
BNL. We have identified as main problem the sorting of input tuples according to their
overall level value. But even in the case of a presorted input relation, the dynamic
construction of the BTG produced loads of computational overhead. Therefore, it just
could not compete with the common array-based approach of Hexagon as introduced
in Section 6.1.1. Besides, Hexagon++ could not outperform or at least approximate
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the benchmark results of LESS in any test.

As a consequence, we do not consider it as an appropriate approach for use cases
with limited main memory. To reduce memory complexity, we will concentrate on
optimizations for the standard version of Hexagon. The next section will show the
results of these efforts.

6.3 Reducing Memory Requirements for Hexagon

For Pareto preferences containing many WOPs or a number of WOPs with large max-
imum level values, the memory available for keeping the BTG may become a problem.
So it might occur that Hexagon cannot be used despite its superior performance.

In this section, we will describe various different ways to reduce Hexagon’s memory
requirements. The wingspan of methods reaches from bit efficiency via presorting up
to modeling issues. Afterwards, we will see if and how the introduced methods can
be combined for maximum memory savings.

6.3.1 Enhancing Memory Efficiency

The straightforward implementation of Hexagon dististinguishes between three dif-
ferent states for each node: empty, non-empty, and dominated. For LS, a trivial
approach of encoding the three states in two bits is used, leading to four nodes per
byte. We will now see two methods to overcome this waste of memory induced by
the unused forth state two bits can form.

Using “More” than 8 Bits per Byte

A single byte has 28 = 256 different states. Using 2 bits to store the status information
of one BTG node, we use 34 = 81 states of one byte. So the following can be
considered:

3x ≤ 28

iff x ≤
ln 28

ln 3
= 8 ∗

ln 2

ln 3
≈ 5.047

This is very much an encoding of the state of 5 nodes in a ternary number. That way
we are able to store the states of 5 nodes in one byte of main memory, leading to 25%
bigger BTGs that fit into main memory. Please note that reading and writing node
states cannot be done using extremely efficient bit operations anymore. The disad-
vantage of this method is that we have to use the comparatively expensive operations
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division and multiplication to read and write node states. But the effort is worth the
benefit, as the algorithm complexity of course remains linear.

As 5 nodes only use 35 = 243 of the available 256 states of one byte, we could go
further and use the whole memory to store one big ternary number for the BTG.
In doing so, however, it would no longer be possible to easily process division and
multiplication needed for access to single nodes. And with additional memory savings
of less than 1%, we consider this method not to be cost-efficient.

Eliminating One State and All Unused Byte States

Another possibility to increase memory efficiency is based on the reduction of the
number of relevant states for a node to two, dominated and non-dominated. Using
only two states, memory requirements are cut by half compared to the basic version
Hexagon. Then, each node can be represented by a single bit. Of course, some
modifications have to be made to the algorithm.

While in the original version of the algorithm, non-empty nodes were marked as such,
this is of course no longer possible or neccessary. However, dominated nodes still have
to be marked. So, if a tuple is read that belongs to a node that would already have
been marked non-empty in the original algorithm, the memory-enhanced version will
just start the depth-first walk to mark all dominated nodes. As the node has been
visited before, the walk ends very abruptly: all the directly dominated nodes are
already marked as dominated.

Computational effort increases of course, but in the tests we made, this had hardly
any impact on the overall performance of the algorithm. Using this method, we can
store status information for eight nodes in one byte, which means we are doubling
the BTG size fitting into a main memory buffer of some fixed size.

6.3.2 Storing the Best Value for one WOP

Another way of reducing memory requirements is breaking up the preference that
is evaluated in two parts. We split P = ⊗(P1, . . . , Pm−1, Pm) into sub-preferences
P ′ = ⊗(P1, . . . , Pm−1) and Pm. Please note that due to commutativity, we can
change the order of the Pi ∈ P without changing the semantics of the preference. In
fact, we can do this for any Pi ∈ P . For reasons of comprehensibility, the following is
explained using Pm.
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Node States and Best Values

In memory, we will construct a BTG for P ′ = ⊗(P1, . . . , Pm−1). In addition to the
node state, we keep a record on the best level value for Pm found for each node so far.
This value may have been found in a tuple with the level combination of the node
itself or a dominating node.

The workflow of the algorithm now has to change. Every time a tuple is read, the
node it belongs to is marked as non-empty. Apart from this, the lowest value found
for Pm for this node has to be stored. When a tuple is read with a higher level value
for Pm than the lowest value read until now, it is discarded at once. When all tuples
have been read, the BTG is walked through in breadth-first order. The best value for
Pm is the lowest value found in the node itself and the dominating nodes.

When the algorithm walks through the input tuples to return them, it is checked which
node they belong to. If a node is marked as dominated and a tuple’s level value for
Pm exceeds the one stored in the node, the tuple is dominated and discarded.

To store a level value for Pm,
⌈

ln(max(Pm))
ln 256

⌉

bytes are needed. In each byte, we store

the state of x nodes (with x = 4 for the common implementation as described in
Section 6.1.1). For the whole BTG, we get the following memory consumption:

⌈

m−1
∏

i=1

(max(Pi) + 1) ∗

(⌈

ln(max(Pm))

ln 256

⌉

+
1

x

)

⌉

Only for very small BTGs with memory requirements of 5 or fewer bytes this value
may be bigger than the usual amount of memory needed. Comparing this formula
to the usual BTG size introduced in Section 4.3.2, it is obvious that the best size
reduction is achieved if Pm has the highest maximum level value of all Pi. The
following example will show the great potential of this approach:

Example 37. Let’s analyze BTG memory consumption for some Pareto preferences
with three WOPs. Their maximum level values can be found in the three first columns
of Table 6.2. Column four shows the memory required using the storage method in-
troduced in Section 6.3.1. In the fifth column, the amount of memory for the reduced
storage is shown. In the last column, the reduction rate is shown. We see that the
memory requirements are cut by up to 99%.

This method is quite similar to the Extended LS proposed in [47], although Morse et
al. use it to make LS capable of dealing with one unrestricted domain, not to reduce
main memory requirements.
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max(P1) max(P2) max(P3) normal BTG reduced BTG reduction quota

10 10 10 267B 146B 45%
10 10 100 2,445B 146B 94%

100 100 100 206,061B 12,242B 94%
100 100 1000 2,042,241B 22,443B 99%

Table 6.2: Sizes of normal vs. reduced BTG

Best Values – and No Node States

The method described in the last section can be enhanced further. Basically, again
one of the preferences Pi is extracted from P and the best values for it are kept
separated. But this time, we omit storing node states completely.

The BTG is constructed for the sub-preference P ′ := ⊗(P1, . . . , Pm−1) of P :=
⊗(P1, . . . , Pm). For each node, we store one value representing the best value for
Pm seen for the node itself or dominating nodes.

The function enc returns the encoded value for all values for which levelPm
is defined:

enc : dom(Am) → int

val(am) := max(Pm) + 1 − levelPm
(am)

The function values for enc range from 1 to max(Pm) + 1. Note that for enc, better
(in terms of Pm) means higher values. For empty nodes, the BTG in memory should
hold a value of zero. As this is not a possible result of enc for a tuple, the status of
the node is clear.

The definition of enc yields domination tests as simple comparisons of integer values.
Empty nodes show the worst possible value wrt Pm and are practically ignored.

The algorithm then has the following workflow:

1. Construct the BTG as an array of |BTPP ′ | integer values. Node IDs are defined
by those for BTPP ′ .

2. Read the tuples from the input.

For each tuple, store the enc value in the corresponding node. The new value
for enc is the maximum of the old enc value and the new tuple’s enc value.

If the tuple has a higher value for enc than the previous value, it can be discarded
at once. There must have been another tuple with equal level values for P1 to
Pm1

and a better level value for Pm.

Otherwise the new tuple can be stored in external memory.
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3. Walk through the BTG (e.g. in order of node IDs).

In each non-empty node, do a depth-first walk to propagate the enc value in-
creased by 1 downwards in the graph. The new enc value for a node is the
maximum of the old and the propagated value.

4. Read the cached tuples from external memory. If the enc value kept for the
corresponding node for P ′ in the BTG representation is lower than current
tuple’s enc value, the tuple is discarded.

Phases two and three may be combined. Each time a tuple is read (and not discarded),
a depth-first walk is made to adjust the enc values for dominated nodes.

Due to the addition of 1 in step three, the maximal propagated value is max(Pm)+2,
representing the (impossible) level value of −1. This value is used if a tuple t has a
level value of zero for Pm. A tuple that is dominated by t wrt P ′ (and hence reached in
the depth-first walk starting at the node representing t) would need the hypothetical
level value of -1 for Pm to be not dominated by t wrt P .

Please note that for small values of max(Pm), more than one value could be stored in
a single byte, reducing the required memory even more. Example 38 will show this.

Example 38. Consider a preference P := ⊗(P1, P2, P3) with maximum level values
max(P1) = 2, max(P1) = 5, and max(P3) = 12. The BTG is constructed for P ′ :=
⊗(P1, P2) with 18 nodes. For each node, a value of up to 14 has to be stored for P3.
This can be done in 4 bits, so two values can be stored in one byte. The memory
requirements then are given by 18 ∗ 1

2 = 9 bytes.

6.3.3 Exploiting Presortings

In some cases, input data is sorted according to the level values for one or more
WOPs of some Pareto preference P . For instance, this may be the case if the input
is the result of a join operation (like e.g. sort-merge joins). We will now see how to
exploit such prerequisites. Let’s assume an input relation R that is sorted ascendingly
according to the level values of a WOP P1 in a Pareto preference P . Note that
reordering the Pi does not change the semantics of P , so the following also holds for
any other Pi.

We will detach P1 from P and define P ′ = ⊗(P2, P3, . . . , Pm). R is split into a number
of subsets Rv with Rv = {t|t ∈ R∧ levelP1

(t) = v}. As R is already sorted by levelP1
,

the Rv are automatically read one after each other (with ascending v).

The BTG of P ′ is constructed and kept in memory. For the first Rv (holding those
tuples with the lowest occuring level value for P1), the algorithm is executed just like
the original Hexagon described in Section 6.1.1. The BMO set members are computed
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and can be returned, as they cannot be dominated by any subsequent tuple. Lemma
15 shows that every un-dominated tuple of one Rv cannot be dominated by an element
of a subsequent Rw.

Lemma 15. For dominance between partial BTGs and wrt the corresponding com-
plete BTG, it holds that:

a) A tuple t ∈ Rv cannot be dominated by another tuple t′ ∈ Rw with w > v.

b) As all t ∈ Rv are equivalent wrt P1, we can ignore P1 when evaluating P on Rv.
Only P ′ needs to be evaluated.

c) For two values v and w, a node (v, b2, . . . , bm) dominates a node (w, b2, . . . , bm) iff
v < w.

Proof. Consider t ∈ Rv, t′ ∈ Rw with w > v:

w > v ⇒ levelP1
(t′) > levelP1

(t) ⇒ ¬(t <P t′)

This follows directly from the definitions of Pareto preferences (see Definition 15),
just as items b) and c) do.

After one subset of R has been processed, we mark all non-empty nodes as dominated,
as for a bigger value for v, these nodes are dominated. We then start reading the tuples
of the next subset of R. Tuples belonging to dominated nodes can be discarded at
once. Each time a subset has been processed completely, Hexagon is executed on the
BTG that already holds information about dominated nodes and the BMO members
of the previous Rv can be returned. The algorithm continues until either no more
subsets of R need to be processed or the top node of P ′ is found being dominated. In
the latter case, not even all input tuples would have to be read by Hexagon.

Example 39. In the preference P = ⊗(P1, P2, P3), all Pi’s are WOPs. They have
maximum level values of 3, 1, and 2. Level values for tuples of a sample input relation
that is sorted ascendingly by P1’s level value can be found in Table 6.3. The BTG
for this preference has 18 nodes. Due to our optimization, we only have to keep the 6
nodes of the partial BTG for P ′ = ⊗(P2, P3) in memory (see Figure 6.2 (a)).

First, tuples t1 and t2 with a level value of 0 for P1 will be inserted in the memory
representation of the BTG. These tupels belong to R0. The result can be seen in
Figure 6.2 (b). Dominated nodes are omitted, non-empty nodes are shaded in gray.

The only (undominated) non-empty node is node (0, 1, 1). Now the level value for
P1 increases and non-empty nodes are marked as dominated. The node (0, 1, 1) is
not represented in our new partial BTG anymore. We only find (1, 1, 1), which is
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r id levelP1
(t) levelP2

(t) levelP3
(t)

t1 0 1 2
t2 0 1 1
t3 1 0 2
t4 1 1 0
t5 2 0 0
t6 3 0 1

Table 6.3: Sample sorted input relation

(1,2)

(1,0)(0,1)

(0,0)

(0,2) (1,1)

(1,0)(0,1)

(0,0)

(0,2) (1,1) (0,2)

(0,0)

(0,1) (1,0)

(0,0)

(a) (b) (c) (d)

Figure 6.2: Partial BTGs during input processing

dominated by (0, 1, 1). There are only three empty, non-dominated nodes left. Figure
6.2 (c) shows the new partial BTG after processing all tuples with level value 1 for
P1. When t5, represented by node (2, 0, 0) has been read, the BTG looks like Figure
6.2 (d). Only the top node of the partial BTG is not dominated. Now, we do not have
to continue the evaluation with more subsets of R. All nodes of Rx with x ≥ 3 will be
dominated by t5.

We will now generalize this strategy of exploiting presorted data to multiple attributes.
After using data presorted in one dimension, we will now see how to utilize presortings
in more than one dimension of an input relation.

First, we will discuss the case of two presorted dimensions P1 and P2. Let’s assume
the input relation is sorted wrt P1, and tuples with equal level values for P1 are sorted
according to P2. The BTG we keep in memory always represents the current partial
BTG for one combination of level values for P1 and P2. While the level value for P1

is constant, we follow exactly the algorithm for only one presorted domain, as it is
irrelevant for evaluating P (see Lemma 15 (b)).

But when the level value for P1 increases, a problem arises: no node in the current
partial BTG will definitely dominate a node of the following one, as the following
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partial BTG will have a higher level value for P1 and possibly a lower level value for
P2. In this case, corresponding nodes of the two partial BTGs will be indifferent.
And from now on, we will always have to look for dominated notes at two previously
handled partial BTGs: the one with the same level value for P1 and a lower level
value for P2 and and the one with a lower level value for P1 and the same level value
for P2.

Using more than two presorted dimensions would reduce memory requirements even
more, but in this case, the problem of multiple relevant previous partial BTG scales
up.

This leads the following theorem:

Theorem 24. For a Pareto preference P := ⊗(P1, . . . , Pm) and an input relation R
presorted according to levelP1

, . . . , levelPk
, it holds:

1. We can reduce the number of nodes for the (then partial) BTG in memory to:

m
∏

i=k+1

(max(Pi) + 1) =
nodes(BTG)

∏k
i=1(max(Pi) + 1)

Each of the partial BTGs can be identified by the combination of level values for
the preferences P1, . . . , Pk.

2. When switching to the next partial BTG, we need to check k previously visited
BTGs to identify dominated domains.

Proof. We will prove the parts of the theorem one by one.

1. For each of the level values for the P1, . . . , Pk, there are max(Pi) + 1 different
level values. This is analogous to the size of the BTG.

2. Given a node (ak+1, . . . , am) of the partial BTG identified by the level combina-
tion (a1, . . . , ak). The node is directly dominated by the top nodes of the partial
BTGs identified by (a1−1, . . . , ak), . . ., (a1, . . . , ak −1). There are up to k such
nodes.

Managing the partial BTG for one presorted dimension is easy, as we have seen in
Example 39. The first partial BTG that is looked at has no dominated nodes. In
the next one, dominated and non-empty nodes from the last partial BTG are the
dominated nodes. No additional computational or I/O costs arise.

Using two presorted dimensions, we have to provide two partial BTGs. One of them
can be kept in memory. The other one has to be stored in external memory. Example
40 illustrates this problem.

96



6.3 Reducing Memory Requirements for Hexagon

Example 40. Consider a Pareto preference P of four WOPs P1 to P4, all with
maximum level values of 2. The input relation is presorted for P1 and P2, the partial
BTG in memory consists of level values for P3 and P4. This means we have a BTG
with 9 nodes in memory instead of a BTG with 81 nodes.

A partial BTG is identified by the level values for P1 and P2. So 0, 1 identifies the
partial BTG for a level value of 0 for P1 and 1 for P2. We will have a look at the
order of processed partial BTGs and the respectively required predecessors:

partial BTG 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2

req. for P1 - - - 0,0 0,1 0,2 1,0 1,1 1,2
req. for P2 - 0,0 0,1 - 1,0 1,1 - 2,0 2,1

We can draw some conclusions from Example 40. For P2, the relevant previous
partial BTG can be kept in main memory. Each time the level value for P1 changes,
the partial BTG in main memory is discarded. The partial BTGs required due to
an increased level value for P1 show exactly the same order as we use to visit the
partial BTGs, although each of them is needed exactly max(P2)+1 steps later. Each
time a partial BTG (together with all tuples belonging to it) has been processed (and
non-empty nodes have been marked as dominated), its complete state may be stored
in serial order on a kind of external tape drive. Then, reading these partial BTGs
one after each other later can easily be implemented.

When using k presorted dimensions, each time the partial BTG is switched, k − 1
previous BTGs have to be analyzed. With increasing k, this clearly becomes more
and more inefficient. There is no way of storing them in the correct order as most
of them are needed more than once. So sequential reading is not possible anymore.
This is also shown in Example 41.

Example 41. Consider the Pareto preference of Example 40, but this time with three
presorted dimensions. The partial BTG identified by the level combination (1,1,1)
requires information on the partial BTGs (0,1,1), (1,0,1), (1,1,0). The first of them
is also needed when the partial BTGs identified by (0,2,1) and by (0,1,2) are processed.
In general, each BTG will be needed three times and hence has to be kept in external
memory at least twice.

Efficient retrieval of node states of more than two previous partial BTGs can only
be provided if the external memory provides random access performing as efficiently
as serial access. For today’s most common external memory type, hard disks, this is
unfortunately not the case. With the increasing importance of solid state drives, this
may change in the future.
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cars id vendor color price age mileage

1 Honda green 5,000 14 100,000
2 Dodge blue 10,000 11 80,000
3 Volkswagen red 15,000 7 150,000
4 BMW red 20,000 7 100,000

Table 6.4: A sample car database

6.3.4 Data Structure and Query Modeling

In some cases, query modeling issues can change a query or the BTG relevant for its
evaluation. We will study how to adjust the maximum level values for WOPs to the
input data and how d-parameter manipulation can reduce BTG sizes. After that, we
will see how to consider hard constraints given in the original query.

Reduction on Existing Values

In many cases, only a small number of domain values actually appear in a relation.
For WOPs on numerical domains, this can have the effect that only some of the
possible level values are met. Such a scenario is outlined in the following example:

Example 42. Ringo is looking for a car. He has the following preference on the
price:

PRingo = AROUND1000(price, 4000)

Applying PRingo to the car database of Table 6.4, we find that max(PRingo) = 16,
even though there are only four different level values for the whole input relation: 1,
6, 11, and 16. A mapping of these values to 0, 1, 2, and 3 would reduce the size of
every BTG for a preference containing PRingo to less than one fourth.

One way to gain information of unused domain values could be the use of a his-
togram or a simple B-tree index. With this we can find existing level values for the
corresponding WOP(s). We could efficiently reduce BTG sizes by “removing” (or
more appropriate: preventing the existence of) unused nodes, leading to less mem-
ory needed and less effort for marking dominated empty nodes. It could be applied
easily and with hardly any costs in cases in which histograms or B-tree indexes exist.
The mapping of domain values to the few required level values could be done using
minimal perfect hashing functions, leading to constant access times and minimum
memory requirements ([18, 20, 29]).
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d for P1 ⇒ max(P1) d for P2 ⇒ max(P2) BTG size

1 18000 1 50,000 9.0 ∗ 108

50 360 100 500 1.8 ∗ 105

100 180 1,000 50 9.2 ∗ 103

200 90 10,000 5 550

Table 6.5: Impact of d-values on BTG sizes

Using the d-Parameter

Query composition is often not totally under the user’s control. Many applications
alter queries slightly to influence result set content and size. Setting d for some
preference is done as a modeling decision for the application. One can reduce BTG
sizes by slightly modifying user preferences, reducing the max(Pi).

If a d-parameter is very small, the range of input values is split into a large number
of partitions. Increasing d decreases the number of partitions and hence the maxi-
mum level value. With some sharp maximum amount of main memory for the query
evaluation, it could probably be reasonable to allow increases of d in a small range
to enable usage of Hexagon. A case study in Example 43 gives an overview over the
impact of the d-parameter.

Example 43. George has the following preference on cars:

⊗(P1, P2) := ⊗( AROUNDd(price, 2, 000),

AROUNDd(mileage, 100, 000))

With attribute ranges as seen in Table 6.4, different values for d strongly influence
the BTG size. Table 6.5 shows different d-values and their impact on maximum level
values and BTG sizes for the query. It becomes clear that in this use case, d values
of 1 would lead to an incredibly big BTG. But already in line 2, when the d value
flattens deviations of not more than 2.5% of the desired value, the BTG would fit
into memory. Lines 3 and 4 show BTGs for d values of 5% resp. 10% of the query
parameters. While such deviations still appear relatively small, the BTG gets as small
as 550 nodes.

Another case of the potentially very high impact of very small changes in the values
of d-parameters will be examined later in Example 50.
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SELECT *

FROM cars

PREFERRING price AROUND 10000 , 1000 AND

color IN ('red', 'black')

BUT ONLY LEVEL(price) <= 5

Figure 6.3: PSQL statement with BUT ONLY clause

Quality Checks

In the syntax of Preference SQL, there is a BUT ONLY clause, evaluated after the pref-
erence selection. This clause can be used to remove elements from the BMO set with
too great deviations from desired values. In Figure 6.3, we see such a PSQL state-
ment. The maximum level value tolerated in the BUT ONLY clause for the preference
on the attribute price is 5. Tuples with higher level values for price will not be in
the result set even if they belong to the BMO set.

In Hexagon, this could be exploited to set the maximum level value for the preference
on price. Tuples with higher level values could be discarded at once. Example 44
shows possible reductions of BTG sizes.

Example 44. Consider the car database of Table 6.4 and the query defined in Figure
6.3. Without using the restrictions from the BUT ONLY clause, the maximum level
value for the preference on price would be 10, leading to a BTG size of 22.

Integrating the BUT ONLY clause into the execution of Hexagon, the maximum level
for price is only 5. The corresponding BTG has a size of 12, which is a reduction
by approx. 45%.

Please note that another but-only-filtering method has been described in [28]. There,
BMO result set elements are enriched by a quality rating representing the degree
of similarity to a possibly virtual perfect match. This practice follows methods of
sales psychology. One key issue is the removal of tuples with too great a deviation
from the desired value. This is called but-only-filter. When such a filter is known at
query evaluation time in the database, the required quality could be translated in a
maximum level value and exploited in the very same way as a PSQL BUT ONLY clause.
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6.3.5 Combined Memory Saving Potential

We have seen different options to reduce memory consumption for Hexagon. A major
advantage of the different optimization is that they are indepedent from each other
and can therefore be combined for best results.

Without any preconditions, two of them can be applied in all cases: storing 5 nodes
per byte and keeping the best value for Pm. Presorting in one dimension may be a by-
product of a join of input data or some other database operation. They do not affect
or even trade off each other’s effect. An example of possible reductions of required
memory will show the big potential of the different strategies and their combination.

Example 45. We have a Pareto prefence of four WOPs with maximum level values
(5, 10, 10, 100) and an input relation presorted wrt to P1. Table 6.6 shows memory
requirements following from the different applied optimization strategies from Section
6.3.1 (enhancing memory efficiency), Section 6.3.2 (storing the best value for one
WOP), and Section 6.3.3 (exploitation of presortings). Without presorted data, we
are able to reduce the required memory from approx. 18KB to 872B, i.e. to less than
5%. If we have presorted data, we can reduce it to 146 B, i.e. to less than 1%.

Section method description nodes memory req.

usual BTG 73,326 18,332B
6.3.1 memory efficient BTG 73,326 14,666B
6.3.2 Pm detached 726 908B
6.3.3 exploit presorting of P1 12,221 3,056B

combinations of methods from Sections
6.3.1 & 6.3.2 726 872B
6.3.1 & 6.3.3 12,221 2,445B
6.3.2 & 6.3.3 121 152B
6.3.1 & 6.3.2 & 6.3.3 121 146B

Table 6.6: Results of the combination of memory saving techniques
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6.4 Hexagon for Multi-Level BMO Sets and Top-k

Queries

In some cases, not only the BMO set is of interest, but also the tuples directly dom-
inated by those of the BMO set, the tuples directly dominated by the latters, and
so on. Therefore, we extend the definition of the BMO set by a level value to form
multi-level BMO sets, denoted as BMOml sets.

Definition 26. BMO set of level k
The multi-level BMO set of level k, BMOk

ml, for a preference P and an input relation
R is found by a preference selection σk[P ](R). It is defined by:

σk[P ](R) := σ[P ](R \
k−1
⋃

i=0

(σi[P ](R)))

BMOkmax

ml denotes the non-empty BMOml set with the highest level. The size of
BMOk

ml is given by |BMOk
ml| or |σk[P ](R)|. For each tuple r ∈ R, the level of the

BMO set it belongs to is denoted by the function value of mlP : dom(A) → N0. �

Please note that σ0[P ](R) is identical to the standard preference selection σ[P ](R)
introduced in Definition 19. The concept of multi-level result sets for preference
queries has also been described for Chomicki’s winnow operator under the term of
iterated preferences in [15]. It has been stated that all tuples in an input relation
belong to a BMOml set of some level:

Theorem 25. For each tuple in a relation R, there is exactly one BMOk
ml set it

belongs to:

∀r ∈ R :
(

(∃k : r ∈ σk[P ](R)) ∧ (∄j 6= k : r ∈ σj [P ](R))
)

Proof. A preference selection on a set of tuples never yields an empty result. For
increasing values of k (starting with 0 and ending with kmax), the input relation
diminishes as all selection results for smaller values for k are removed from the input:

R 6= ∅ ⇒ σ[P ](R) 6= ∅ (see Definition 19)
⇒ R \ σ[P ](R) = R \ σ0[P ](R) ⊂ R

⇒ R \
⋃k

i=0(σ
i[P ](R)) \ σ[P ](R) ⊂ R \

⋃k−1
i=0 (σi[P ](R))

As R’s size is finite, there has to be some kmax for which the following holds:

kmax−1
⋃

i=0

(σi[P ](R)) ⊂ R ∧
kmax
⋃

i=0

(σi[P ](R)) = R

So each tuple in R belongs a σi[P ](R).
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So an order on R wrt a preference P is induced. The next theorem describes this
order:

Theorem 26. All elements of σk+1[P ](R) are dominated by elements of σk[P ](R)
for all k < kmax:

∀a ∈ σk+1[P ](R) : (∃b ∈ σk[P ](R) : a <P b))

Proof. Consider a tuple a ∈ σk+1[P ](R) that is not dominated by any element of
σk[P ](R). Following Definition 26, a ∈ σk[P ](R). This is a contradiction. Theorem
26 holds.

For every preference query on every non-empty relation, there is at least a BMOml

set of level 0. If it is the only one, no tuple in R is worse than any other wrt the
preference. It is equally possible that all tuples in R belong to BMOml sets of different
levels. The preference then defines a total order on the elements of R.

For each node n in the BTG, we can determine the level of the BMOml set it belongs
to. Of course, all tuples in one equivalence class (which is represented by one node)
are elements of the same BMOml set. To find the BMOml set for each node, we start
at level 0 at the top node of the BTG. All tuples belonging to the standard BMO
set have a BMOml set level of 0. As the following lemma will show, the level of each
tuple is the highest level of all tuples dominating it, increased by one:

Lemma 16. BMO set level for a tuple
For a tuple r ∈ R (or the BTG node representing its level values), mlP (r) can be

computed as follows:

mlP (r) :=

{

0 ⇔ r ∈ σ0[P ](R)
1 + max({mlP (s)|s ∈ R ∧ r <P s}) ⇔ r 6∈ σ0[P ](R)

Proof. This follows directly from Definition 26 and Theorem 26.

With these concepts for multi-level BMO sets in mind, we will see how to adjust
Hexagon to be able to assign a BMO set level to each node of the BTG in the next
section.

6.4.1 Multi-level Hexagon

We will now see how Hexagon can be adjusted to support BMOml set queries. The
algorithm we propose is called Hexagonml. Just as Hexagon, it consists of three
phases, with the first two phases of the algorithm, construction and adding, remaining
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unchanged in Hexagonml. Modifications have to be done solely in the removal phase.
Actually, as dominated nodes are not removed anymore, the removal phase is replaced
by a node classification phase.

The only node states we need are empty and non-empty (enabling us to store one
node state per bit), but we need to store a temporary value for the BMOml set level
a node belongs to.

The classification phase uses the same breadth-first walk as the original Hexagon does.
When a node n is reached, we reset the temporary BMOml set level tmpml of the
nodes d1, d2, . . . , that are directly dominated by n. The value tmpml(di) for a node
di is computed as follows:

tmpml(di) =

{

max(tmpml(di), tmpml(n)) ⇔ n is empty
max(tmpml(di), tmpml(n) + 1) ⇔ n is not empty

When a node is visited, its value for tmpml is identifying the BMOml set level it
belongs to. For a more convenient and efficient access to each of the BMOml sets
after the removal phase, we generate a list of nodes belonging to each BMOml set
while walking through the BTG. This is analog to the single next relation for standard
BMO evaluation after the removal phase. Each time a non-empty node is reached, it
is appended to the respective list of nodes belonging to the same BMOml set.

In Example 46, the evaluation of a preference on an input relation using Hexagonml

is outlined.

Example 46. We will revisit John’s preference for cars (cp. Example 32):

PJohn := ⊗(BETWEEN5(price; 60, 80), POS/NEG(color; {red, blue}, {purple})

For the input relation of Table 5.1, we find maximum level values of 3 and 2 for the
contained WOPs. The BTG is shown in Figure 6.4(a), with non-empty nodes shaded
in gray.

In the classification phase of Hexagonml, (1, 0) is the first non-empty node we reach
Hence it belongs to BMO0

ml. We set the (temporary) BMOml set level tmpml of the
dominated nodes (1, 1) and (2, 0) to 1. Getting to node (0, 2), we see that it also
belongs to BMO0

ml. Later, we reach node (1, 2) which has a tmpml value of 1. So we
set tmpml for the dominated node (2, 2) to 2.

Figure 6.4(b) shows the different BMOml sets after the end of Hexagonml’s breadth-
first walk. Nodes belonging to the same BMOml set are surrounded by gray areas.
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Figure 6.4: BTG for Hexagonml

Different approaches are possible to return the tuples. If only one specific BMOml

set is requested, it is most efficient to read the input relation from external memory
and return only those tuples belonging to the specified set. To return more than one
BMOml set, it may be better to do a bucket sort on the input relation, with each
BMOml set level defining one bucket. Sorting and returning of the first requested set
can easily be combined.

6.4.2 Top-k Queries

Although neither Hexagon nor Hexagonml were designed to deal with top-k queries,
we will now see that the latter seems to have been made for it. First, we have to see
what the top-k approach, introduced in [7], is about.

Definition 27. Top-k Queries
In a top-k query on a data set D, each input value gets a quality rating of some kind.
Only the k elements of D with the best quality values are returned as a query result.

�

We will now apply the principle of top-k queries to Hexagonml. Minor modifications
will lead us to a new top-k algorithm.

105



6 The Hexagon Algorithm

Instead of dealing with node states, each node is represented by an integer counter,
counting the number of tuples belonging to the node. During the adding phase, this
counter is increased.

When all tuples are read, the classification is done just as described in Section 6.4.1.
For each level of BMOml, we keep track of the number of tuples belonging to it. Each
time the BMO set level for a non-empty node is determined, the number of tuples
belonging to this BMO set is increased by the number of tuples belonging to the node.

After that, we start to determine what the top k results may be. It is reasonable to
say that the top |σ0[P ](R)| tuples are the best results for the query. We will then
have to deal with one of the following three different cases in each query:

1. |σ0[P ](R)| > k:
Not all elements of σ0[P ](R) can be returned due to result set size limitations.
When the tuples are re-read from external memory, the first k tuples belonging
to σ0[P ](R) are returned.

2. |σ0[P ](R)| = k:
Probably the most unlikely case, but the easiest one: the result set is σ0[P ](R),
and all tuples belonging to it are returned as the result set. For this case, there
is no difference between the BMO and the top-k result set.

3. |σ0[P ](R)| < k:
The elements of σ0[P ](R) are too few for an adequate answer. We have to find
a value x which meets the following criteria:

∣

∣

∣

∣

∣

x−1
⋃

i=0

σi[P ](R)

∣

∣

∣

∣

∣

< k ≤

∣

∣

∣

∣

∣

x
⋃

i=0

σi[P ](R)

∣

∣

∣

∣

∣

That means, not only all elements of σ0[P ](R) are returned, but also some of
σ1[P ](R) (if the number of result tuples is still lower than k, σ2[P ](R) and so on
may also be returned). Please note that this case is a generalization and covers
cases 1 and 2 as well.

To return the correct number of results, we will loop through the different BMOml

set in order of their level and keep the sum of tuples belonging to them. We have to
find the BMOml sets that completely belong to the top-k results. In most cases, there
will be one BMOml set S only partially belonging to the top-k results. Of S, only so
many tuples are to be returned that the total number of k results is matched.

After we have found S, we read the input relation once more. All tuples of BMOml

set with levels smaller than S are returned. For S, only the computed number of
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i 0 1 2 3 4

(0,0,1) (0,2,0) (2,0,1) (2,1,1) (2,2,1)
nodes in

(0,1,0) (1,0,1) (1,2,1)
σi[P ](R)

(2,0,0) (2,2,0)
|σi[P ](R)| 4 4 32 12 14

Table 6.7: Nodes and BMOml set levels

tuples needed to get k results are returned. All other tuples are discarded. Example
47 will show the Hexagonml with the top-k extension.

Example 47. Consider a Pareto preference P := ⊗(P1, P2, P3) with maximum level
values 2, 2, and 1. The BTG for this preference is given in Figure 6.5. The small
index numbers next to each node show the number of tuples represented by each node.
Nodes without index are empty. After reading all input tuples and classifying the
nodes, k tuples should be returned. The different BMOml set levels and their sizes can
be found in Table 6.7. We will see what happens for different values of k. The three
cases correspond to those described above:

1. k = 3:
Three of four tuples belonging to the nodes of σ0[P ](R) are returned.

2. k = 4:
σ0[P ](R) is returned.

3. k = 10:
σ0[P ](R) and σ1[P ](R) are returned completely, leading to 8 tuples in the result
set. Additionally, k − 8 = 2 tuples from σ2[P ](R) are returned.

Please note the proposed algorithm will not return tuples in a progressive way. A
tuple with a higher overall level than another could be returned, just because of the
order of the input relation. The next example will outline such a scenario:

Example 48. We will work with the same preference and input as in Example 47.
The top 1 result should be returned. Tuples belonging to the resp. nodes are read from
external memory in the following order:

(0,2,0), (2,1,1), (2,0,0), . . .

The third tuple read is the first one in σ0[P ](R). As the top-1 query is looking for
only one result, the algorithm will stop after reading (and returning) (2, 0, 0).
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Figure 6.5: BTG for Example 47

Generally, tuples of higher level BMO sets may be returned earlier due to their position
in the input relation. Result tuples could easily be ordered after they have been
identified. In a reasonable query environment (where the k of the top-k query is much
smaller than the size of the input relation), this sorting would take much less time
than reading the complete input relation and therefore have hardly any impact on
the overall performance.

Other approaches to pick the top k results from the different equivalence classes (i.e.
node) are of course possible as well. Only those tuples belonging to some specific
equivalence classes could be returned. The information on the number of tuples in the
different equivalence classes may as well be another input to determine a weighting of
the WOPs best suited to a user. By using this information, a number of different top-k
queries could be executed with only a small need for computations. An additional
weighting of the WOPs can be used to sort the nodes differently. Still, information
on the BMOml set level of a node can be used, taking it as some attribute result
candidates are ordered by. Whichever additional conditions and characteristics are
used, the top k results can be taken then from the nodes coming first in the new order,
as Example 49 shows.

Example 49. After the computations for answering the query in Example 47, some
kind of presentation preference may induce a different weighting for the WOPs. P1 is
now more important than P2 and P3. Such presentation preferences often are added
to user preferences in online shops ([28]).
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To answer this query, the set of non-empty nodes in the BTG has to be identified.
Then, these nodes are ordered ascending wrt the level value for P1. Nodes with equal
level value for P1 are ordered ascending wrt their BMOml set level. For the non-empty
nodes of the BTG, this leads to the following order wrt the query (with best elements
being on top):

{(0,0,1), (0,1,0)},
{(0,2,0)},
{(1,0,1)},
{(1,2,1)},
{(2,0,0)},

{(2,0,1), (2,2,0)},
{(2,1,1)},
{(2,2,1)}

Nodes pooled in {, } remain unordered, due to Pareto preferences being strict partial
orders ([15]).

The nodes holding the top k tuples than can now be identified by suming up the number
of tuples belonging to each of the nodes. Using the values of Example 47 (and Figure
6.5), a top-5 query could be answered by returning all tuples of the nodes (0, 0, 1),
(0, 1, 0), and (0, 2, 0).

Please note that a top-4 query would return all tuples of nodes (0, 0, 1) and (0, 1, 0),
but not all of (0, 2, 0).

As there are a lot of possibilies to impose an order on the nodes of the BTG, we omit
the discussion of the effects of different order strategies here. We have seen that in
spite of being developed for Pareto preference (or skyline) queries, Hexagonml can
easily be applied to top-k queries as well. Its greatest advantage remains: the linear
complexity on previously unknown input data.
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Chapter 7

Performance

We have seen that Hexagon has a linear runtime behaviour with respect to the size
of the input relation (for BTGs with fixed sizes, as stated in Theorem 23). While
this is clearly superior to all other algorithms that do not need indexes, we have to
investigate what this means in practice. We will now examine Hexagon’s performance
experimentally compared to existing algorithms like LESS with and without pruning
with a variety of Pareto preference queries and input relations. The results of the
performance benchmarks will then be used to build a cost-based algorithm selector,
promising the best performance for all kinds of Pareto preferences and input relations.

7.1 Benchmarks

In this section, we present the results of the experimental evaluation of our algorithms.
We will use LESS as a yardstick for the performance of algorithms for skyline com-
putations on generic data. The benchmark diagrams show the algorithm LESS++.
LESS++ is LESS combined with the pruning techniques we have introduced in chap-
ter 5. This implementation has constantly shown nearly equal or better runtimes
than LESS. One use case with very unequal runtimes for the two algorithms has been
presented in Example 31, where pruning enables a huge performance boost.

All algorithms were implemented in Java and run under Java 6. Our experiments
have been run on a 1.7GHz Xeon running Windows 2003 Server. The system has a
total amount of 12GB of RAM, although only small parts of it were used for each
single test. As a result of the lack of direct control of memory usage in Java, we have
restricted the number of tuples to be held in memory concurrently for nested-loop
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based algorithms. In our tests, 1,000 tuples were allowed. Assuming a typical size of
1 KB per tuple (as done in [6] and most of the following work) gives us virtually 1MB
of memory. This 1MB is then used to determine the maximum size of a BTG we
are able to keep in memory. Our tests have been carried out with the non-memory-
optimized Hexagon with memory requirements as stated in Lemma 14. This means 2
bits are used to keep the current state of a node or up to four nodes can be stored in
one byte. Thus, 1 MB of main memory would be capable of holding BTGs with over
4,000,000 nodes. This was the maximum size of BTGs used in our tests. Although we
did the performance benchmarks without any of the memory optimizations of Section
6.3, the results hold for optimized versions of Hexagon as well, as the optimizations
have hardly any effect on runtimes. Especially the detachment of one of the WOPs in
a Pareto preference (cf. Section 6.3.2 has absolutely no effect on the algorithms overall
performance. Also, runtimes for Java code are not directly comparable to runtimes for
C code. Therefore, our test results show ratios rather than best achievable execution
times using highly-optimized C code.

The data we have chosen for our experiments are synthetic. We use data with different
distributions, in particular correlated, independent and anti-correlated. The test data
domains and the test preferences were chosen to form two different BTG sizes:

• BTGs fitting into main memory: ∼ 106 nodes

• BTGs too large for main memory: ∼ 109 nodes

We have chosen different combinations of maximum level values to get 32 BTGs in
each of the sizes for Pareto preferences with 3 up to 8 dimensions. We have created
some Pareto preferences holding only WOPs with similar maximum level values and
some with one WOP’s maximum level value exceeding the others’ maximum level
values by far. As seen in BTGPB

in Figure 4.6, the latter leads to BTGs with small
widths and big heights. Note that these special preferences with one of the maximum
level values being far bigger than the others is still different from the LS variant
allowing one unrestricted attribute. Such an unrestricted attribute could still be
integrated into our implementations.

Similar tests for LS and LESS have also been carried out in [47], where the experi-
mental results clearly showed the superiority of LS. Due to the similarity of LS and
Hexagon, we did not expect anything else.

We have carried out tests for BNL++, LESS, LESS++ (being LESS combined with the
pruning mechanism also used in BNL++), Hexagon, and the latter’s external version
using pruning, Hexagon++. We have left out the performance data of Hexagon and
Hexagon++ for large BTGs for two reasons:

112



7.1 Benchmarks

• BTGs with around 1 billion nodes require more main memory than we have
used as buffer for the other algorithms.

• Hexagon++’s performance is inadequate for BTGs in these sizes with input
relations that are much smaller (in such cases, most of the BTG nodes are
empty).

In general, the performance of Hexagon++ has proven to be disappointing in all of
our tests. The reason for this is that the algorithm needs input data to be sorted
before it can start processing. Compared to other algorithms, the sorting procedure
takes too long.

Apart from Figure 7.2, results for LESS are omitted as well, as they were found to be
worse than those of LESS++ by only some percentage points in nearly all test cases.
Hence, plotting the execution times for both algorithms would only impair readability
of those figures with a large range of values for execution times.

In Figure 7.1 and Figure 7.2, we see that Hexagon is running overwhelmingly faster
than any other algorithm. Even the increasing number of domains does not really
affect its execution times. With more domains, the number of incomparable tuples
increases, just like the number of incomparable nodes in the BTG. For those algo-
rithms based on tuple-to-tuple comparisons, this leads to an increase in the workload.
As Hexagon only has to walk through the BTG once and this walk can be done in
practically no time (compared to I/O costs), this is no surprise.

Please note that Figure 7.2 is showing the same results for Hexagon and LESS++ as
Figure 7.1. By omitting the “slow” algorithms BNL++ and Hexagon++, we are able
to to add results for LESS that can be distinguished from those of LESS++.

For the evaluation of preferences with BTGs that do not fit into main memory,
Hexagon cannot be used. Hence our performance tests in these cases are restricted
to BNL++, LESS++ and Hexagon++. The results can be found in Figure 7.3, where
LESS++ shows the best results. For 8 dimensions, it takes only 10% of the runtime
of the worst algorithm, Hexagon++.

In our second test series (see Figure 7.4 to Figure 7.6), we focus on different input
tuple distributions and input sizes. Please note that we have used logarithmic scale
for both axes. With the linear runtime of nested-loop based algorithms for average
cases like correlated data (cp. [31]), Hexagon has only slight performance advantages
over BNL++ and LESS++ for correlated data. But anti-correlated data, Hexagon is
even better by an order of magnitude. These relations have been shown to be quite
similar for LS and LESS in [47]. The groundbreaking performance of Hexagon (and
LS) obviously is not affected at all by any kind of data distribution.

We have also run some tests for input relations with 1 million and 10 million tuples.

113



7 Performance

 0

 20

 40

 60

 80

 100

 120

3 4 5 6 7 8

se
co

nd
s

dimensions m

BNL++
LESS++
Hexagon

Hexagon++

Figure 7.1: Performance for BTGs fitting in main memory (1)
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Figure 7.2: Performance for BTGs fitting in main memory (2)
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Figure 7.6: Performance for anti-correlated data
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Hexagon needed 9.8 s to find the BMO set for 1 million tuples and 89.7 s for 10 million
tuples. Still, in our test setup, Hexagon was able to process approximately 100,000
tuples per second. In other words, Hexagon is able to deal with half a million tuples
in the reasonable time of 5 s. For comparison, LESS++ took 89.2 s to process 1 million
tuples and over 1,000 s for 10 million tuples, both times far beyond the latency a user
accepts when querying a database.

In all our tests, Hexagon has proven to be the fastest algorithm available, sometimes by
orders of magnitude. As we have also found out that up to 95% of Hexagon’s execution
time was spent reading the input, we realized that finding the nodes belonging to the
BMO took hardly any time at all. Even with the increasing computational effort
resulting from the optimizations of Section 6.3.1 to Section 6.3.3, Hexagon will still
be faster than any kind of other generic algorithm.

7.2 Cost-based Algorithm Selection

We will now use the knowledge we have gained in the performance benchmarks to
find a formula helping a cost-based database optimizer to determine which algorithm
to use for some (possibly unknown) input data.

Even for small input relations with only 1,000 tuples we have found Hexagon to be
the fastest algorithm available. As a consequence, we propose to use Hexagon where
possible, i.e. when there is enough available main memory. This seems especially
reasonable as awkward input tuple distributions (e.g. anti-correlated data) are com-
mon in real applications. As we have already seen in the example used in Section 1.1,
mileage and price of used cars are anti-correlated.

Another result from Section 7.1 is that Hexagon++ has permanently performed worse
than at least one of the other algorithms. This leads us to the following heuristics:

For a preference query on a relation R using a Pareto preference P = ⊗(P1, . . . , Pm),
we assume a dynamically allocated main memory buffer size of k bytes is available for
query execution. We can formulate heuristics for algorithm selection in pseudo code
as follows:

Preconditions: The Pi of P are sorted such that

• P1 is the one Pi with the highest maximum level
value that R is presorted for,

• Pm has the highest maximum level value of all Pi

(except for P1 iff R is sorted by levelP1
).
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IF R is sorted according to levelP1

LET P ∗ = ⊗(P2, . . . , Pm−1)
ELSE

LET P ∗ = ⊗(P1, . . . , Pm)
END IF

IF k ≥
⌈

∏

p∈P∗(max(p) + 1) ∗ (
⌈

ln(max(Pm)
ln 256

⌉

+ 1
5 )
⌉

EVALUTE P USING Hexagon

ELSE

EVALUTE P USING LESS++

END IF

Note that the buffer size k is usually not a constant, but depends on the current
state and workload of the database system and hence has to be identified for each
query. The given decision formula applies the memory requirement formula from
Section 6.3.2 together with the implementation technique from Section 6.3.1. This
means that the preference with the highest maximum level value is detached. Each
node of the reduced BTG holds the best value for this detached preference. Node
states are stored as ternary numbers, leading to five node states per byte. The cost-
based algorithm selection has been integrated into the Preference Query Optimizer
of Preference SQL in [32]. There, it has shown its power working together with the
algebraic optimization strategies of [34].

As we can see, the formula is completely independent of the number of tuples in the
input relation R. The benchmarks of Section 7.1 showed that Hexagon is better than
LESS++ for all input sizes, so we need not take this feature into account.

Another case study will show how big the impact can be when, due to memory
restrictions, a preference has to be evaluated using LESS++ instead of Hexagon.

Example 50. Consider a Pareto preference with m = 4 with all max(Pi) being 100.
The available main memory buffer for query evaluation is 1MB. The input relation
R has 10,000 tuples that are not sorted according to any levelPi

.

The algorithm selection yields P ∗ = ⊗(P1, . . . , Pm−1). The BTG we have to keep in
main memory to use Hexagon has the following size:

⌈

1013 ∗ (1 +
1

5
)

⌉

B =
6 ∗ 1013

5
B = 1, 236, 362B = 1.18MB

This exceeds the available memory buffer of 1MB, so LESS++ has to be used. On
our test system, evaluation of such a query took 35 s for anti-correlated data. If the
input relation had been sorted wrt one Pi or the memory buffer had been bigger by
only 20%, Hexagon could have been used – taking less than 3 s for the evaluation.
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As we have seen, small differences in BTG size may have a significant impact on the
runtimes, in this case a 20% increase in main memory size would lead to a reduction
in execution time of over 90%. As a result of this study, we can say that main memory
extension can lead to significantly faster execution.
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Chapter 8

Summary & Outlook

We will now summarize the results of this book, looking in particular at the main
contributions to our field of research. The chapter, and with it this book, will conclude
with proposals for more fields of applications for Hexagon and for possibilities that
could be created by technological progress.

8.1 Summary

One of the main contributions of this book is the abstraction from the better-than
relation defined by a preference to the better-than graph, being nothing more than its
graphical representation. Thereby, all our further results were made possible. The
most important achievements are:

• BTG as a lattice:
We have shown that the BTG for a Pareto preference with nothing but WOPs
as input preferences is a lattice. Together with our algorithm for embedding any
kind of strict partial order in a distributive lattice, we can find a lattice-BTG
for every kind of preference. While we have already exploited characteristics
of lattices when we introduced Hexagon, this could lead to more unexpected
optimizations coming from the field of lattice theory.

• Pruning:
The identification of values that are definitively dominated by a given tuple
without further need for comparisons is a completely new kind of optimization
for Pareto preference evaluation and skyline algorithms. Moreover, it was found
to be compatible with all the existing optimization techniques used in present
algorithms.
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• Hexagon:
Not only has a new algorithm been introduced with Hexagon: it stands for
a completely new kind of algorithm with groundbreaking performance on un-
known data. For the first time ever, Pareto preference evaluation can be carried
out in guaranteed linear time. This is obviously the optimum in the given case
of previously unknown or even dynamically created input as e.g. table join re-
sults. The algorithm Lattice Skyline of [47], that was introduced independently
and simultaneously, follows the same principles and it shows the same theoret-
ical and practical performance power, but is not able to deal with more than
one numerical domain. Still, in addition to the basic algorithm, we have not
only presented a number of techniques to reduce the memory requirements of
Hexagon that do not affect its computational complexity and effort, but also
have shown how to adapt the algorithm to deal with multi-level BMO sets and
top-k queries. The detachment of one of the WOPs to reduce memory complex-
ity can also be used to make Hexagon capable of dealing with an unrestricted
numeric element.

But even without applying any of our optimizations, Hexagon can be used per-
fectly on common computer systems. A machine with 1 GB of free RAM is able
to handle BTGs with up to 4 billion nodes. A Pareto preference query hold-
ing two categorical WOPs with maximum level values of 4 and two numerical
WOPs with maximum level values of 100 leads to a BTG of under 65KB. Thus,
1GB of RAM is capable of holding over 16,000 BTGs of this size in parallel. Of
course, BTG size and the number of queries handled in parallel trade off each
other. But the above values clearly show that Hexagon is ready to be used with
today’s computers.

• Algorithm selection:
Finally, we are the first to provide a simple but powerful heuristics for algo-
rithm selection given constraints as the amount of available main memory or
characteristics of data structure. Integration in a query optimizer like the one
of Preference SQL (see [34]) can easily be achieved. In fact, optimization strate-
gies for preference queries as in [34] and [15] only address algebraic issues, which
usually form the first part of query optimization in database systems. We were
– to our best knowledge – the first to deal with the second task of optimizers,
the cost-based selection of the adequate algorithm for preference evaluation.

Summing up, we have used the abstraction provided by a graphical representation
of a given strict partial order to form a new kind of optimization and a new type of
algorithm for Pareto preference evaluation.
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8.2 Future Work

The concepts behind pruning and Hexagon are very promising. The field of application
for them seems to be incredibly wide and a complete analysis would be beyond the
scope of this book. Hence, we can only outline some approaches that would be
interesting to explore in the future.

In this book, we could only present pruning capabilities for single nodes. The ability
to determine the pruning level for more than a single node could help to improve
the performance of algorithms like BNL++ or LESS++. Consider a Pareto preference
consisting of two WOPs with maximum levels of 10. The BTG node (0, 4) has a
pruning level of 14 (and so has (4, 0)). Looking at (0, 4) and (4, 0) together, we find
a pruning level of 7.

Hexagon has shown great performance when it was used for traditional Pareto pref-
erence or skyline queries. As we have also seen, multi-level BMO sets can also be
computed with hardly any additional effort. There are a number of closely related
problems, for which Hexagon could also be adapted:

• Skyband queries ([50]):
The k-skyband of a query is the number of tuples that is not dominated by more
than k other tuples. Hence this forms some combination of classical skyline and
top-k queries.

• K-dominating queries ([50]):
For each tuple, the number of tuples it dominates is computed as a kind of
quality measure. Then, the k tuples dominating the largest numbers of other
tuples is chosen as result set.

• Skylines on data streams or temporary data ([46, 48]):
For finding the best matches for some preference in a data stream, the algorithm
has to keep track of the last n tuples read from the stream. On demand, it has to
find the BMO set of these n tuples. Temporary data is a generalization of this,
as each tuple that is read has its own specific period of validity. When the BMO
set is requested, only those tuples valid at the moment must be considered.

• Convex hulls ([4]):
Interpreting a tuple in a database relation as a point in a vector space, Hexagon
could be the base for a high-performance algorithm to determine the convex
hull of some tuples. Nowadays, good algorithms are merely known for two or
three dimensions (e.g. Chan’s algorithm in [11]), not for the general problem.

Despite its very good performance as a generic algorithm, Hexagon cannot compete
with progressive algorithms regarding the time elapsed to return the first result. Still,
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with the ability to process unknown input data in linear time, Hexagon also has some
advantages over progressive algorithms that need some kind of index structure on the
input data. And as we have seen, in case of presorted domains, Hexagon does not
need to read through the whole set of input tuples to return the first query results.
So in addition to memory savings, simple indexes on some attributes could be used
to create a progressive version of Hexagon.

Apart from that, hardware development could lead to better applicability of the
existing algorithm and the optimizations for it. The most straight-forward approach
is about RAM. Clearly, more available main memory leads to bigger (or more) BTGs
that can be held in memory. As the price per GB of RAM seems to follow Moore’s
law1, we can expect future computers to have much more main memory at the same
price. So technological progress alone will improve Hexagon’s applicability.

Another promising approach could be the removal of some of the processing work
from the CPU. The main part of the computation is done walking the BTG to identify
dominated nodes. This part only uses integer numerics, a field in which graphics pro-
cessing units have huge performance advantages over common multi-purpose CPUs.
Therefore, massive parallelizing of the algorithm would be neccessary. Experimental
results for performance gains of up to 500% for numerical computations can be found
in [5, 35, 57].

Exploiting presortings (Section 6.3.3) may become interesting for multiple domains
as well once solid state drives become more and more common. At the moment,
presorting can only be efficiently exploited for one or two dimensions, as for more
dimensions we need external memory having random access times that are not sig-
nificantly slower than sequential access times. Conventional hard disk drives cannot
provide this at the moment, and due to their physical design probable never will. Solid
state drives, based on flash memory, already show very good access times and hence
could offer sufficient performance. With decreasing prices and increasing deployment
(leading SSD manufacturer Toshiba expects market share growths of over 300% in the
next few years, as stated in its presentation “Strategies for growth: 2008”2), multi-
dimensional presorting could be the method of choice in some years. As we have
seen, most of the evaluation time of Hexagon is used to read the input. So improving
I/O times for external memory will lead directly to improved execution times of the
algorithm.

With both memory and computational capacity of mobile devices increasing more
and more, the evaluation of preference queries on mobile phones or PDAs becomes
an option, too. Apple’s IPhone for example comes with a 412MHz processor and

1http://www.intel.com/pressroom/kits/events/moores law 40th/
2http://www.toshiba.co.jp/about/ir/en/library/pr/pdf/tpr20080508e.pdf
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128MB of RAM3. With only half of it being addressable by non-operating-system
applications, the remaining 64MB are enough to handle BTGs in sizes up to 260
million nodes – without applying any of the optimizations of Section 6.3.

All in all, we have seen different strategies to improve the performance of classic
Pareto preference queries. The guaranteed linear complexity is very big step forward
in opening the doors for a broad support of Pareto preference queries in common
database management systems.

3http://www.semiconductor.com/resources/reports database/view device.asp?sinumber=18016
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