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Introduction

The aim of this thesis is the formulation of a numerical algorithm for finding
guaranteed bounds for all solutions of a nonlinear control affine system with
bounded control functions and an initial interval on a given time range. The
main tools are the theory for Fliess-expansions, the automatic differentiating
method and interval arithmetics.

The motivation comes originally from the numerical computation of via-
bility kernels (see Aubin [1]), reachability sets and control sets (see Colonius,
Kliemann [5]) with set valued numerics, in particular with the program pack-
age GAIO (see Dellnitz, Froyland, Junge [6]). GAIO is made for the anal-
ysis of ordinary differential equations and difference equations on bounded
state spaces with subdivison techniques. The extension of the subdivison
algorithms on control systems was done by Szolnoki [32] in 2001. He com-
puted many two- and three-dimensional examples for control systems with
GAIO . Grüne [11] introduced an adaptive subdivision algorithm to find the
boundaries of reachability sets. Marquardt [28] computed a time periodic
oscillator equation and Gayer [10] analysed the bifurcation of control sets
for perturbed systems.

The idea of subdivision algorithms is, starting with an initial collection of
sets, to subdivide each set into two parts and select from the newly generated
finer collection those which satisfy a selection criterion. This criterion is
based on the reachability relations amongst the sets in the given collection
for a small time step. For the reachability information of one set the initial
value problem has to be solved for each point, where all allowed control
functions are taken into account. This is realized by choosing a sufficient
number of test points in the appropriate set and simulate the differential
equation numerically for different constant control functions with standard
ODE solvers. The crucial part is to determine a chosen number of test points
and control function as sufficient. In practice collections consist of boxes or
in other words full dimensional intervals. This leads us directly to the wide
field of interval analysis. In chapter 4 we will compute a simple example
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2 Introduction

with GAIO but with our new algorithm from interval analysis.

Starting point is an algorithm developed by Lohner [26] in 1988 to find
the solution for an initial value problem by approximating it with a Taylor-
expansion. This method was already known in numerics as the power series
method. But therefore the derivatives up to a given order of the right
hand side need to be computed. Lohner used a method which was known
from automatic differentiating (see Rall [30]). There the right hand side
was computed out of the power series for the solution. Therefore many
mathematical operations, like the basic arithmetic operations and intrinsic
functions, were defined for power series. So the series representations for
the right and left hand side of the ODE could be compared coefficient-wise.
This results in recursive equations for the coefficients of the power series.

Lohner gave a strategy to enclose the Lagrange remainder term of the
Taylor-expansion on a given bounded time interval. Therefore an initial en-
closure for all solutions is needed and Lohner developed a sufficient condition
to identify an initial enclosure. After realizing this computations with in-
terval arithmetics, the enclosure becomes guaranteed. Lohner extended the
algorithm on initial interval problems by interpreting the initial interval as
an error bound for the initial value. Then he enclosed the error propagation
for the coefficients and the remainder of the solution’s power series.

For control affine systems we proceed like Lohner for ODEs. Instead
of Taylor-expansions the Fliess-expansions have to be used. The Taylor-
expansions have a linear sequence of coefficients. The coefficients of Fliess-
expansions have a tree structure and are indexed by multi-indices. In liter-
ature they are also known as the Chen-Fliess-expansions and conditions for
their convergence are already given (cp. Isidori [17, chapter 3]). Grüne and
Kloeden [12] used them to formulate numerical schemes to approximate the
solution of control affine systems.

For computing the coefficients for the solution’s Fliess-expansion using
automatic differentiating the expansion has to be compared with the expan-
sion for the integral of the systems’ right hand side coefficient-wise. This
can only be done if for an arbitrary function, which possesses a finite Fliess-
expansion, every coefficient is unique. Fliess [9] gave already an algebraic
motivated proof for the uniqueness of infinite expansions for solutions of
control affine systems. In chapter 2 we will define finite Fliess-expansions
formally and prove uniqueness of their coefficients in notions of analysis.

In order to get Fliess-expansions for the right hand side vector fields
of the control affine system, we must be able to calculate with Fliess-
expansions. First of all the basic arithmetic operations must be defined.
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Where the addition is achieved coefficient-wise, the multiplication is unlike
more difficult. It take some effort to show that the product function of two
Fliess-expansion is again a Fliess-expansion and to give a recursion formula
for its coefficients. With the multiplication formula recursions for division
and for arbitrary Taylor-expansions with Fliess-expansions in the argument
can be derived.

Before we can formulate an appropriate algorithm we need to provide a
little toolbox in chapter 1. After the definition of control affine problems and
their solutions we will give some basic definitions from interval arithmetics
following the book of Jaulin et al. [18]. We will illustrate the wrapping effect,
which is a frequent source for overestimating results in interval analysis. We
will show how to reduce it using the patching strategy, which is one out of
a huge number of proposals to reduce the wrapping effect

Secondly we will develop a small multi-index theory. Multi-indices are
usually used to abbreviate the notation of higher order partial derivatives.
Here we use an similar definition to denote higher order Lie-derivatives and
we will determine iterated integrals with multi-indizes. Therefore we will
define multi-indices and operations on multi-indices in chapter 1. This helps
us to perform arithmetics for the operators on the index-level. Apart from
the shuffle-product, which was defined by Fliess [9], we define some very
special operations like the selection and the insertion operator.

In chapter 3 we need to restrict the range of the control functions. This
assumption is very natural, because even in the case of controllable linear
systems any point can be reached in any time for unbounded control func-
tions.

We will formulate the recursion formulas for the solution and for the
remainder’s enclosure. For the latter we need an initial enclosure of all
solutions on the given time interval. We will formulate a criterion to identify
an enclosure and a strategy to find it. Next we linearise the solution’s
coefficients in the initial value. This leads us to the propagation of the initial
interval. At the end of chapter 3 we formulate and dicuss the algorithm.

As a further important motivation for using interval analysis and verified
numerics the field of numerical proofs should be mentioned. For instance
Kapela and Zgliczynski [21] proved the existence of special periodic solu-
tions for the N -body problem. Their idea is as follows. They assume some
properties for a solution and formulate the so called Krawczyk operator.
The Krawczyk operator needs an enclosure for all solution of an initial in-
terval problem. Therefore the Lohner-algorithm [26] is used. With interval
analysis it can be shown that the Krawczyk operator has as fixed point
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a solution with the asserted properties. The computations are done with
interval arithmetics which take into account the rounding and truncation
errors. The fixed point equation is solved by the interval Newton method
(see Krawczyk [24]) for finding enclosures for all roots of an algebraic equa-
tion. In Kapela [20] many very interesting types of solutions for the N -body
problem are given and their existence is proved numerically. An analytic ex-
istence proof is for most of them impossible. Colonius and Kapela [3] proved
already the existence of periodic and homoclinic orbits for several control
systems. With theoretical knowledge for choosing the control functions they
were able to reduce the control systems to ODEs.

Now I like to express my deep thanks and gratitude to Prof. Dr. Fritz
Colonius for his instructive supervision, guidance and valuable advice ex-
pending much time and effort through the progress of this thesis. I thank
my colleague Torben Stender for proofreading this thesis. Him and Tobias
Gayer I am grateful for the pleasant time at the joint office. At the end I
like to mention the “Graduiertenkolleg: Nichtlineare Probleme in Analysis,
Geometrie und Physik” at the University of Augsburg. It made this work
possible by a scholarship.

Augsburg, November 2005



Chapter 1

Problem Formulation and

the Toolbox

In this chapter we first introduce the notion of control affine systems. The
right hand side vector fields are numbered from 1 to m, which denotes the
dimension of controls. In literature the uncontrolled part is indexed with 0,
but we will need the 0-index for the time dependency. We will introduce
a notion for the solution and prove its existence and uniqueness under the
assumption of a Lipschitz condition on the right hand side vector fields.

Next we will introduce the interval arithmetic with the definitions we
use in this thesis and we will have a look on the wrapping effect, which was
already described by Lohner [27]. It often appears in numerical computa-
tions in more than one dimensions with interval arithmetics. The patching
method is one out of many strategies to reduce this effect. We will use this
method for the application in chapter 4.

Third in this chapter we will develop a multi-index theory. We will
define some operations on the multi-index set like resorting, concatenation,
separation and the shuffle-product. At the end we will identify the multi-
index set with the nonnegative integer numbers and define the operators on
N0, which are important for the implementation. The definition of multi-
indices is recursive like the operators they will index in section 2. For this
reason most of the proofs will be done by induction.

The interval arithmetic and the multi-index theory compose the toolbox
we need to define and to analyse Fliess-expansions in the following two
chapters.
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6 CHAPTER 1. PROBLEM FORMULATION AND THE TOOLBOX

1.1 Control Affine Systems

We define now the mathematical problem for which we will develop a nu-
merical algorithm to enclose its solution. Many systems in control theory
are control affine systems. This are differential equations where the right
hand side vector fields are multiplied by scalar control functions.

Definition 1.1 (control affine systems)

ẋ(t) =
m∑

α=1

fα(t, x(t))uα(t), x : R → Rn, (1.1)

fα : [τ, T ]× Rn −→ Rn,

uα ∈ U , α ∈ {1, . . . , m} .

Thereby n ∈ N denotes the dimension of the state space and m ∈ N
is the dimension of control or number of scalar control functions. We
assume the system to exist on a compact real time interval [τ, T ]. The
space of control functions is the space of all integrable functions on the
given time interval:

Um :=

{
u : [τ, T ] −→ Rn, u is Lebesgue-integrable

and essentially bounded.

}
.

We call the vector of control functions u =
(
u1, . . . ,um

)
the control

vector. In practice the first control function is defined by u1 ≡ 1. Then by
choosing uα ≡ 0, for α = 2, . . . ,m the system results in the corresponding
uncontrolled problem: ẋ(t) = f1(t, x(t)). Usually the vector fields fα are
well known and smooth enough, i.e. all partial derivatives in t and x we need
do exist. The control functions can be generated by a stochastic process or
are just uncertain functions. Next we define the general solution of the
control affine system.

Definition 1.2 (general solution) The general solution of system 1.1
is denoted by

λ : R× R× Rn × Um −→ Rn.
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It depends on the initial time τ , the initial value x(τ) = x0 ∈ Rn and
on the control vector u ∈ Um. The general solution is required to be
differentiable in the first component and to satisfy the solution’s identity

λ̇(t, τ, x0, u) =
m∑

α=1

fα(t, λ(t, τ, x0, u))uα(t) (1.2)

and the initial condition λ(τ, τ, x0, u) = x0, for all x0 ∈ Rn and all
u ∈ Um.

In some cases, mainly in section 2.3, when we deal with any arbitrary
solution of the control system we will denote it with the state space variable
x. We will use the denotation λ if the dependence on the initial conditions
and the vector of control functions is relevant.

As for ordinary differential equations a sufficient criterion for the ex-
istence and uniqueness of the solution is the right hand side satisfying a
Lipschitz condition in the second argument. We generalise the strategy of
Walter [34] for control affine systems.

We assume the vector fields fα to fulfil a Lipschitz-condition in the
second argument for all α ∈ {1, . . . , m}, that is there exist positive real
numbers 0 < lα ∈ R with

||fα(s, y(s))− fα(s, z(s))||∞ ≤ lα ||y(s)− z(s)||∞ ,

for any s ∈ [τ, T ] and y, z ∈ C ([τ, T ], Rn), where ||·||∞ denotes the maxi-
mum norm in Rn. With the norm

||y|| := max
s∈[ τ,T ]

e−µ(s−τ) ||y(s)||∞ ,

for an arbitrary µ > 0 the function space C ([τ, T ], Rn) turns into a Banach-
space. For given initial conditions τ, x0 and control functions

(
u1, . . . ,um

)
we define the operator W : C ([τ, T ], Rn) → C ([τ, T ], Rn)

(Wy) (t) := x0 +
m∑

α=1

∫ t

τ
fα(s, y(s))uα(s) ds.

In the next theorem we will prove the existence and uniqueness of a solution
for the control system. Therefore we use the operator W , which will turn
out to be a contraction on the Banach space.
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Theorem 1.3 (uniqueness of the solution) On condition that the
right hand sides fα, α ∈ {1, . . . , m}, satisfy Lipschitz-conditions with
Lipschitz-constants lα > 0 on the given time interval [τ, T ] the solution
λ (·, τ, x0, u) of system 1.1 exists and is unique.

Proof: For two functions y, z ∈ C ([τ, T ], Rn) we estimate the maximum
norm from above at a fixed time t ∈ [τ, T ]:

||(Wy −Wz) (t)||∞ ≤

≤
m∑

α=1

∫ t

τ
||(fα(s, y(s))− fα(s, z(s)))uα(s)||∞ ds

≤
m∑

α=1

∫ t

τ
lα ||(y(s)− z(s))||∞ |u

α(s)|e−µ(s−τ)eµ(s−τ) ds

≤
m∑

α=1

lα ||y − z|| ess sup
s∈[ τ,T ]

|uα(s)|
∫ t

τ
eµ(s−τ) ds

≤ eµ(t−τ)

µ
||y − z||

m∑
α=1

lα ess sup
s∈[ τ,T ]

|uα(s)|.

We choose µ := 2
∑m

α=1 lα ess sups∈[ τ,T ] |uα(s)| and get immediately

||Wy −Wz|| ≤ 1
2
||y − z|| .

Thus the operator W is a contraction on C ([τ, T ], Rn). We can apply the
Banach fixed point theorem and get a function x ∈ C ([τ, T ], Rn) as the
unique solution of the fixed point equation

Wx = x.

This equation is the integral formulation of the control system 1.1. So every
solution of the fixed point equation is a solution of the control system and
vice versa. �

We assume the vector fields fα, α ∈ {1, . . . , m} to fulfil the Lipschitz
condition. So the unique solution λ(t, τ, x0, u) is well-defined for all times
t ∈ [τ, T ], for all initial values x0 ∈ Rn and all control vectors u ∈ Um and
solves the equation 1.1. For the proof of theorem 1.3 we used the version of
the Banach fixed point theorem, which acts on a Banach space. The other
version, which acts on a closed subset of a Banach space, we will use later
in section 3.3.
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1.2 Interval Arithmetics

In this section we give a short and of course non complete introduction into
the wide field of interval arithmetics. In the 1950’s several people introduced
the idea of computing with error box around specific values. The field of
interval arithmetic began in 1966 with a book by Moore [29]. Afterwards
many articles and books were published till today on this subject. The first
purpose of interval arithmetic was to handle rounding and truncation errors
of numerical computations, which are caused by technical reasons.

Later the idea of enclosing the solution of problems from analysis was
coming up. For instance the evaluation of a function was calculated via its
Taylor series and the rigorous enclosure of the remainder term. So the wide
field of interval analysis was born to handle discretisation errors and method
errors.

We give a short introduction into the objects of interval arithmetics, we
are using in this thesis. The definitions and notations are mainly taken from
Jaulin, Kieffer, Didrit, Walter [18]. First we define intervals and interval
vectors. We confine ourselves to closed intervals. So a one-dimensional
interval is a closed and connected subset of R. Higher dimensional intervals
are rectangles, parallel to the coordinate axes.

Definition 1.4 (intervals) The set of closed real intervals in one and
in n ∈ N dimensions is defined by:

I := {[a, b ] | a ≤ b, a, b ∈ R},

In :=


[v1 ]
...

[vn ]

 , where [v1 ], . . . , [vn ] ∈ I.

We want the calculate with intervals like we are used to do it with real
numbers. Therefore we need to define operations on intervals.

Definition 1.5 (operations on intervals) Let [a ] ∈ In1 and [b ] ∈ In2 be
intervals with n1, n2 ∈ N and let the operation a ◦ b be defined for all a ∈ [a ]
and b ∈ [b ]. Then we define with

[a ] ◦ [b ] := {a ◦ b | a ∈ [a ], b ∈ [b ]}
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the interval operation ◦. With

[ [a ] ◦ [b ] ] := [min [a ] ◦ [b ],max [a ] ◦ [b ] ]

we denote a interval enclosure [a ] ◦ [b ]. The min- and max-functions are
defined componentwise.

Note, that [ [a ] ◦ [b ] ] exists only if the set [a ] ◦ [b ] is bounded. One can
identify easily the enclosures for the componentwise basic operations for two
intervals [a ], [b ] ∈ In, n ∈ N. We define a := min [a ], a := max [a ] and b, b

respectively. Then we have

[a ] + [b ] =
[
a + b, a + b

]
,

[a ]− [b ] =
[
a− b, a− b

]
,

[a ] ∗ [b ] =
[
min

{
ab, ab, ab, ab

}
,max

{
ab, ab, ab, ab

}]
and with 0 /∈ [b ]

[a ] / [b ] =
[
min

{
a/b, a/b, a/b, a/b

}
,max

{
a/b, a/b, a/b, a/b

}]
.

For the basic operations we discover the distributivity law not being
valid any more. We have to replace it by the sub-distributivity.

Lemma 1.6 (sub-distributivity) Let [a ], [b ], [c ] ∈ I be intervals. Then
the following inclusion holds:

[a ]([b ] + [c ]) ⊆ [a ][b ] + [a ][c ].

Proof: By giving the definition of both sides, we easily see the correctness
of the inclusion.

[a ]([b ] + [c ]) = {a(b + c) | a ∈ [a ], b ∈ [b ], c ∈ [c ]},
[a ][b ] + [a ][c ] = {a1b + a2c | a1, a2 ∈ [a ], b ∈ [b ], c ∈ [c ]}.

�

Next we want to insert intervals into mappings.

Definition 1.7 (mappings for intervals) Let G : R → R be a real valued
mapping and [a ] ∈ I an arbitrary interval. Then we define

G([a ]) := {G(a)| a ∈ [a ]} ⊂ R.
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If G([a ]) is bounded we define

[G([a ]) ] := [minG([a ]),max G([a ]) ] ⊂ R.

The n-dimensional case is again defined componentwise. Let F =


F1

...
Fn

 :

R → Rn be a n-dimensional function and [a ] ∈ I an interval. Then we
define

F ([a ]) :=


F1([a ])

...
Fn([a ])

 ⊂ Rn.

If F ([a ]) is bounded in all components, we define

[F ([a ]) ] :=


[F1([a ]) ]

...
[Fn([a ]) ]

 ⊂ Rn.

We can factor out a constant interval from a real integral.

Lemma 1.8 (integration) Let [a ] ∈ I be an interval and G : R → R be a
Lebesgue-integrable mapping. Then∫

[a ]G(s) ds = [a ]
∫

G(s) ds.

Proof: We calculate easily∫
[a ]G(s) ds =

{∫
a G(s) ds

∣∣∣∣ a ∈ [a ]
}

=
{

a

∫
G(s) ds

∣∣∣∣ a ∈ [a ]
}

= [a ]
∫

G(s) ds.

�
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As a tool to increase the size of an interval by a relative amount we
introduce the ε-inflation.

Definition 1.9 (ε-inflation) Let [a ] ∈ In be an interval. Then we define
for ε > 0

[a ]ε := (1 + ε)[a ]− ε[a ]

the ε-inflation of [a ].

Lemma 1.10 Consider an interval [a ] ∈ In. Then the following inclusion
holds true

[a ] ⊆ [a ]ε.

Proof: For every component [ai ] of [a ] we get with a := min [ai ] and
a := max [ai ], thus a ≤ a:

min [ai ]ε = (1 + ε)a− εa = a + ε(a− a) ≤ a

max [ai ]ε = (1 + ε)a− εa = a + ε(a− a) ≥ a

=⇒ [ai ] ⊆ [ai ]ε, for all i = 1, . . . , n

=⇒ [a ] ⊆ [a ]ε

�

Example 1.11

[0.0, 1.0]0.1 = [0.0, 1.1]− [0.0, 0.1] = [−0.1, 1.1]

Now we will discuss a famous problem of interval arithmetic. It is the so
called wrapping effect. To illustrate it we look at a two-dimensional example.
Figure 1.1 shows a simple rotating map A ∈ R2×2. We apply xi+1 = Axi

recursively on an initial interval x0 and get a sequence x0, x1, x2, . . . of sets.
With interval arithmetics we compute in every iteration step an interval
enclosure [xi+1 ] = [A[xi ] ] for the set A[xi ] (black box). So we overestimate
the real result in every computation step. In the example the red interval
[x4 ] is much bigger than the exact result x4 = A4x0 (blue box).

One possibility to reduce the wrapping effect is the patching strategy.
We subdivide the interval [x0 ] = Uk=1,...,n[x0 ]k into a collection of intervals
and execute the map [xi+1 ]k = [A[xi ]k ] for each of them separately. The
result gets better, i.e. [xi ] ⊃ Uk=1,...,n[xi ]k ⊃ xi. For illustration compare
figure 1.2. Of course, this strategy increases the numerical effort.
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x0

x1

x2

x3

x4

A =

(
cos ϕ sinϕ

− sinϕ cos ϕ

)
, ϕ = 2π

7

Figure 1.1: Illustration of the wrapping effect: The blue boxes x0, . . . , x4 show the
iteration xi+1 = Axi, a clockwise rotation, for the initial box x0 = [−1.1, 0.9]. The
red box [xi+1 ] gives the smallest interval enclosure for A[xi ], which is the black
rotated rectangle.

Another idea to handle the wrapping effect is given by Lohner [26]. He
recommended not to restrict the intervals to be parallel to the coordinate
axes, but to represent a set with a rotated interval. In [27] Lohner gives
an overview over recent strategies against the wrapping effect in various
mathematical problem.

In computer sciences already a recent number of numerical tools and
libraries for interval arithmetics exists. We refer at least to the tools used in
this thesis. MATLAB users can easily get started with the toolbox INTLAB
[31]. Hargreaves [13] gives a detailed introduction into interval arithmetic
and provides a tutorial to learn INTLAB . He describes several basic appli-
cations like solving a linear equation and the interval Gaussian elimination.
As a popular example of interval analysis an interval Newton algorithm for
finding enclosures of all roots of a nonlinear system is discussed amongst
others.

The C++ library C-XSC was developed and made available for academic
use by Kulisch [22]. Now the group around Krämer and Hofschuster [15,16]
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x0

x1

x2

x3

x4

A =

(
cos ϕ sinϕ

− sinϕ cos ϕ

)
, ϕ = 2π

7

Figure 1.2: Patching strategy: The initial interval x0 is subdivided in four intervals
and the interval results of the iterative map [xi+1 ]k = [A[xi ]k ], k = 1, . . . , 4 are
given by the red boxes. The result is better (smaller) than the computation for big
box (gray). The exact result is given by the blue boxes.

provides the C-XSC 2.0 class library. The C-XSC library is not only good
for interval arithmetic. It is a huge library for scientific computing. It pro-
vides matrix and vector classes and represents real and complex numbers,
of which the precision can be adjusted be the user. For these data types it
provides a huge number of mathematical standard functions of high accu-
racy. Again as standard example the Interval Newton Method is introduced
in the tutorial [16].

1.3 Multi-Index Theory

For the concatenation of indexed operators we define in this section multi-
indices together with some useful manipulations. We will learn how a multi-
index can be separated into two parts and how two multi-indices can be
inserted into each other, while the internal sequence is preserved. We want
to understand the shuffle product of two indices, which is defined recursively
and can be express explicitly.
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1.3.1 Definition

Reading from the right to the left one can see which operations of an indexed
operator are executed consecutively. We define the multi-index set on the
basis of the integer numbers and on the basis set {0, . . . , m}, where m will
be the dimension of the control vector in system (1.1).

Definition 1.12 (multi-indices) A multi-index is a row vector of
nonnegative integer numbers with arbitrary dimension l ≥ 0:

b := (βl , . . . , β1) ∈ Nl
0

The empty index we denote by �. We are interested in different sets of
multi-indices:

Ml := Nl
0 = {(βl , . . . , β1), βi ∈ N0, 1 ≤ i ≤ l} ,

M :=
∞⋃
l=0

Ml = {(βl , . . . , β1), l ≥ 0, βi ∈ N0, 1 ≤ i ≤ l} .

Now we restrict the index elements to the basis set {0, . . . , m}:

Ml
m := {0, . . . , m}l = {(βl , . . . , β1), βi ∈ {0, . . . , m}, 1 ≤ i ≤ l} ,

Mm :=
∞⋃
l=0

Ml
m = {(βl , . . . , β1), l ≥ 0, βi ∈ {0, . . . , m}, 1 ≤ i ≤ l} .

One can easily assert the inclusions:

Ml
m ⊂Ml ⊂M

Ml
m ⊂Mm ⊂M.

Next we define the length and the concatenation and separation opera-
tors for multi-indices:

Definition 1.13 Let b ∈ M be an arbitrary multi-index b = (βl , . . . , β1).
Then we define the length as the number of indices of b:

|b| := l. (1.3)
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With a second index a =
(
α|a| , . . . , α1

)
∈M we define the concatenation

(α , b) := (α , βl , . . . , β1), for all α ∈ N0,

(a , b) :=
(
α|a| , . . . , α1 , β|b| , . . . , β1

)
.

The separation into right and left part, for k = 0, . . . , |b| is:

Rk (b) := (βk , . . . , β1), (1.4)

Lk (b) :=
(
β|b| , . . . , β|b|−k+1

)
. (1.5)

One can easily see, that the concatenation an the separation cancel out each
other

b =
(
L|b|−k (b), Rk (b)

)
, for all k = 0, . . . , |b|,

a = L|a| ((a , b)) and b = R|b| ((a , b)).

Definition 1.14 (summation of multi-indices)
For i ∈ N and b1, . . . , bi, c ∈M we define the sum notation by i∑

j=1

bj , c

 :=
i∑

j=1

(bj , c). (1.6)

Its length is only well defined if the lengths of the indices on the right hand
side coincide

|b1| = . . . = |bi| ⇐⇒

∣∣∣∣∣∣
i∑

j=1

bj

∣∣∣∣∣∣ := |b1|.

Definition 1.15 (hierarchical index-set and its remainder-set) A fi-
nite index-set H ⊂Mm is called hierarchical, if

∀b ∈ H \ {�} =⇒ R|b|−1 (b) ∈ H.

The remainder-set of a hierarchical index-set is defined by

R(H) :=
{
b ∈Mm \ H| R|b|−1 (b) ∈ H

}
.

In particular, for every p ∈ N0 the set Gp
m := U

p
i=0Mi

m is hierarchical.
Its remainder set is R (Gp

m) = Mp+1
m .
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1.3.2 Shuffle-Product

Where the addition of multi-indices is defined in a canonical way, we will
define in this section a concept for the multiplication. This notion was
already given by Fliess [9] and is called “shuffle-product”. The term “shuffle”
is taken from card-playing. There the dealer separates the pack of cards into
two stacks and shuffles them into each other. The sequence of each stack
is preserved. The sum over all possibilities to shuffle the cards in this way
corresponds to the shuffle product on multi-indices. We define it recursively.

Definition 1.16 (shuffle-product) For b, c ∈ M and β, γ ∈ N0 we
define:

b � := � b := b

(b , β) (c , γ) := (b (c , γ) , β) + ((b , β) c , γ)

Lemma 1.17 (symmetry of the shuffle-product) Let b, c ∈ M be ar-
bitrary multi-indices. Then

b c = c b.

Proof: We prove by induction over the sum of the lengths L := |b|+ |c|.
Initial step L = 0:

� � = � = � �.

Induction step L − 1 → L, for all L > 0: First we look at the trivial
case, where b = � and |c| = L:

� c = c = c �.

The same holds true for c = � and |b| = L.
Otherwise there exist indices b′, c′ ∈ M and β, γ ∈ N0 with b = (b′ , β) and
c = (c′ , γ).(

b′ , β
) (

c′ , γ
)

=
(
b′

(
c′ , γ

)
, β
)

+
((

b′ , β
)

c′ , γ
)

=
((

b′ , β
)

c′ , γ
)

+
(
b′

(
c′ , γ

)
, β
)
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With |(b′ , β)| + |c′| = |b′| + |(c′ , γ)| = L − 1 we can apply the induction
hypothesis

=
(
c′

(
b′ , β

)
, γ
)

+
((

c′ , γ
)

b′ , β
)

=
(
c′ , γ

) (
b′ , β

)
.

�

1.3.3 Combinatorial Selection

For developing an explicit version of the shuffle-product we now define an
operator K (b, k, i). It selects k indices out of the multi-index b. Therefore

we have

(
|b|
k

)
possibilities. The parameter i fixes one of the realizations.

Definition 1.18 (combinatorial selection) Let b ∈ M be an arbi-
trary multi-index and β ∈ N0 a nonnegative integer number. Then
we define for all integer numbers k, i, with 0 ≤ k ≤ |b| + 1 and

1 ≤ i ≤

(
|b|+ 1

k

)
the selection operators recursively

K (�, 0, 1) := �, K̂ (�, 0, 1) := �,

and with σ :=

(
|b|

k − 1

)
:

K ((b , β), k, i) :=


(K (b, k − 1, i) , β), 1 ≤ i ≤ σ,

K (b, k, i− σ), σ < i ≤

(
|b|+ 1

k

)
.

Analogously we define the complementary selection operator

K̂ ((b , β), k, i) :=


K̂ (b, k − 1, i), 1 ≤ i ≤ σ,(
K̂ (b, k, i− σ) , β

)
, σ < i ≤

(
|b|+ 1

k

)
.

Thereby for all j ∈ N0 the degenerated binomial coefficients are

(
j

0

)
:=

1 and

(
j

−1

)
:= 0.
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Remark 1.19 For arbitrary b ∈ M the operators K (b, k, i) and K̂ (b, k, i)
are well defined with k and i in the ranges

0 ≤ k ≤ |b|, 1 ≤ i ≤

(
|b|
k

)
.

For the marginal value we get σ =

(
|b| − 1
k − 1

)
.

Lemma 1.20 (simple properties of K (·, ·, ·) and K̂ (·, ·, ·)) For all b ∈

M, 0 ≤ k ≤ |b| and 1 ≤ i ≤

(
|b|
k

)
the following assertions hold true:

K (b, 0, 1) = �, K̂ (b, 0, 1) = b,

K (b, |b|, 1) = b, K̂ (b, |b|, 1) = �,

|K (b, k, i)| = k,
∣∣∣K̂ (b, k, i)

∣∣∣ = |b| − k.

Proof: The assertions follow directly from definition 1.18. �

For better understanding we look at a simple example:

Example 1.21 Consider b = (α , β , γ) as a multi-index of length 3.

k = 0, i = 1:

K (b, 0, 1) = �

k = 1, i = 1, . . . ,

(
3
1

)
:

K (b, 1, 1) = (K ((α , β), 0, 1) , γ) = (γ)

K (b, 1, 2) = K ((α , β), 1, 1) = (K ((α), 0, 1) , β) = (β)

K (b, 1, 3) = K ((α , β), 1, 2) = K ((α), 1, 1) = (α)

k = 2, i = 1, . . . ,

(
3
2

)
:

K (b, 2, 1) = (K ((α , β), 1, 1) , γ) = (K ((α), 0, 1) , β , γ) = (β , γ)

K (b, 2, 2) = (K ((α , β), 1, 2) , γ) = (K ((α), 1, 1) , γ) = (α , γ)

K (b, 2, 3) = K ((α , β), 2, 1) = (α , β)
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k = 3, i = 1:

K (b, 3, 1) = b

The operator K̂ (·, ·, ·) gives the corresponding complements.

K̂ (b, 0, 1) = b K̂ (b, 2, 1) = (α)

K̂ (b, 1, 1) = (α , β) K̂ (b, 2, 2) = (β)

K̂ (b, 1, 2) = (α , γ) K̂ (b, 2, 3) = (γ)

K̂ (b, 1, 3) = (β , γ) K̂ (b, 3, 1) = �

By the following lemma we learn how to rearrange the set of multi-indices
of a given length using the selection operators. We will use this later for
changing the succession of summations.

Lemma 1.22 Fix the length l ∈ N0. Then we get for all k = 0, . . . , l and

i = 1, . . . ,

(
l

k

)

Ml
m =

{(
K (b, k, i) , K̂ (b, k, i)

)
, b ∈Ml

m

}
.

Proof: We prove the assertion by induction over the length l.
Initial step l = 0: The index-set M0

m includes only the empty index �.
So this case becomes trivial.
Induction step l − 1 → l: We first look at the simple case k = 0: With
K (b, 0, 1) = � and K̂ (b, 0, 1) = b (cp. lemma 1.20) it immediately follows{(

K (b, 0, 1) , K̂ (b, 0, 1)
)
, b ∈Ml

m

}
=
{

b, b ∈Ml
m

}
= Ml

m.

Next we analyse the case 0 < k ≤ l and 1 ≤ i ≤

(
l − 1
k − 1

)
:

Ml
m =

{
b, b ∈Ml

m

}
=
{(

b′ , β
)
, b′ ∈Ml−1

m , β ∈ {0, . . . , m}
}

.

We move β to the k-th position in multi-index (b′ , β):

=
{(

Lk−1

(
b′
)

, β , Rl−k

(
b′
))

, b′ ∈Ml−1
m , β ∈ {0, . . . , m}

}
.

We apply the induction hypothesis for Ml−1
m and are now able to replace

b′ by
(
K (b′, k − 1, i) , K̂ (b′, k − 1, i)

)
, where |K (b′, k − 1, i)| = k − 1 and
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∣∣∣K̂ (b′, k − 1, i)
∣∣∣ = l−k (cp. lemma 1.20). For the left and right parts we get

then:

Lk−1

((
K
(
b′, k − 1, i

)
, K̂

(
b′, k − 1, i

)))
= K

(
b′, k − 1, i

)
,

Rl−k

((
K
(
b′, k − 1, i

)
, K̂

(
b′, k − 1, i

)))
= K̂

(
b′, k − 1, i

)
.

Then we get

Ml
m =

=
{(
K
(
b′, k − 1, i

)
, β , K̂

(
b′, k − 1, i

))
, b′ ∈Ml−1

m , β ∈ {0, . . . , m}
}

and can apply definition 1.18 of K (·, ·, ·) and K̂ (·, ·, ·)

=
{(
K
((

b′ , β
)
, k, i

)
, K̂

((
b′ , β

)
, k, i

))
, b′ ∈Ml−1

m , β ∈ {0, . . . , m}
}

=
{(
K (b, k, i) , K̂ (b, k, i)

)
, b ∈Ml

m

}
.

The remaining case 0 < k ≤ l and

(
l − 1
k − 1

)
< i ≤

(
l

k

)
can be proved

analogously, but there the index β has not to be moved within the multi-
index. �

1.3.4 Insertion Operator

Now we define the insertion operator. It is the counterpart to the selection
operator, which selects a partial index out of a given multi-index. The in-
sertion operator inserts two multi-indices into each other, where the internal
order of each index is conserved.

Definition 1.23 (combinatorial insertion operator) We consider
two multi-indices c, d ∈M, two integer numbers γ, δ ∈ N0 and a nonzero

integer number i ∈ N, with 1 ≤ i ≤ Σ :=

(
|c|+ |d|+ 2
|c|+ 1

)
. Then we de-

fine recursively

A (c,�, 1) := c, A (�, d, 1) := d

and with σ :=

(
|c|+ |d|+ 1

|c|

)

A ((c , γ), (d , δ), i) :=

{
(A (c, (d , δ), i) , γ), 1 ≤ i ≤ σ,

(A ((c , γ), d, i− σ) , δ), σ < i ≤ Σ.
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Remark 1.24 For arbitrary multi-indices c, d ∈ M the operator A (c, d, i)
is well defined with

1 ≤i ≤ Σ :=

(
|c|+ |d|
|c|

)
and the marginal value

σ :=

(
|c|+ |d| − 1
|c| − 1

)
.

The following theorem gives us an explicit representation for the recur-
sively defined shuffle product. With C(l, k) we denote the binomial coeffi-

cient

(
l

k

)
.

Theorem 1.25 (explicit shuffle product) Let c, d ∈ M be two ar-
bitrary multi-indices. Then their shuffle product can be explicitly repre-
sented by

c d =
C(|c|+|d|,|c|)∑

i=1

A (c, d, i).

Proof: We prove by induction over the common length L := |c|+ |d|.
Initial step L = 0:

� � = � = A (�,�, 1).

Induction step L − 1 → L: First we look at the two trivial cases L = |c|
and L = |d|

c � = c = A (c,�, 1),

� d = d = A (�, d, 1),

and second we analyse the case |c| > 0 and |d| > 0. Here exist indices
c′, d′ ∈ M and integers γ, δ ∈ N0 with c = (c′ , γ) and d = (d′ , δ). They
follow the recursive definition of the shuffle product 1.16

c d =
(
c′ , γ

) (
d′ , δ

)
=
((

c′ , γ
)

d′ , δ
)

+
(
c′

(
d′ , δ

)
, γ
)

=
(
c d′ , δ

)
+
(
c′ d , γ

)
.
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We apply the induction hypothesis

=
C(|c|+|d|−1,|c|)∑

i=1

(
A
(
c, d′, i

)
, δ
)

+
C(|c|+|d|−1,|c|−1)∑

i=1

(
A
(
c′, d, i

)
, γ
)
.

With the combinatorial formula

(
l

k

)
=

(
l − 1

k

)
+

(
l − 1
k − 1

)
, for all l, k ∈ N,

we get

=
C(|c|+|d|,|c|)∑

i=1+C(|c|+|d|−1,|c|−1)

(
A
(
c, d′, i− C(|c|+ |d| − 1, |c| − 1)

)
, δ
)

+
C(|c|+|d|−1,|c|−1)∑

i=1

(
A
(
c′, d, i

)
, γ
)
.

From definition 1.23 follows the assertion

=
C(|c|+|d|,|c|)∑

i=1

A (c, d, i).

�

Now we analyse the relation between the selection and insertion opera-
tors.

Theorem 1.26 (duality of selection and insertion operator)

For all b ∈M, k = 0, . . . , |b| and i = 1, . . . ,

(
|b|
k

)
it holds true:

A
(
K (b, k, i), K̂ (b, k, i), i

)
= b

Proof: We prove by induction over the length L := |b|:
Initial step L = 0:

A
(
K (�, 0, 1), K̂ (�, 0, 1), 1

)
= A (�,�, 1) = �.

Induction step L− 1 → L:
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First we look at the two trivial cases k = 0 and k = L (cp. lemma 1.20).

A
(
K (b, 0, 1), K̂ (b, 0, 1), 1

)
= A (�, b, 1) = b

A
(
K (b, L, 1), K̂ (b, L, 1), 1

)
= A (b, �, 1) = b.

Second we analyse the case 0 < k < L and 1 ≤ i ≤

(
L− 1
k − 1

)
. There exist

b′ ∈M and β ∈ N0 with b = (b′ , β).

A
(
K (b, k, i), K̂ (b, k, i), i

)
=

= A
(
K
((

b′ , β
)
, k, i

)
, K̂
((

b′ , β
)
, k, i

)
, i
)

= A
((
K
(
b′, k − 1, i

)
, β
)
, K̂
(
b′, k − 1, i

)
, i
)

=
(
A
(
K
(
b′, k − 1, i

)
, K̂
(
b′, k − 1, i

)
, i
)

, β
)
.

We apply the induction hypothesis.

=
(
b′ , β

)
= b

The last case, 0 < k < L and

(
L− 1
k − 1

)
< i ≤

(
L

k

)
, we treat analogously,

where σ :=

(
L− 1
k − 1

)
.

A
(
K (b, k, i), K̂ (b, k, i), i

)
=

= A
(
K
((

b′ , β
)
, k, i

)
, K̂
((

b′ , β
)
, k, i

)
, i
)

= A
(
K
(
b′, k, i− σ

)
,
(
K̂
(
b′, k, i− σ

)
, β
)
, i
)

=
(
A
(
K
(
b′, k, i− σ

)
, K̂
(
b′, k, i− σ

)
, i− σ

)
, β
)

=
(
b′ , β

)
= b.

�

1.3.5 Serial Number Representation

In applications the multi-index set Mm is used to name coefficients. It is a
countable set so it can be identified with serial numbers, which is the set of
nonnegative integer numbers N0. In implementations it is easier to handle
serial numbers than indices. Therefore we define in this section operators to
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map from Mm to N0 and vice versa and we define the counterpart for the
selection operator acting on serial numbers. We begin with the definition of
the operator L to compute serial numbers out of multi-indices.

Definition 1.27 For b ∈ Mm and β ∈ {0, . . . , m} we define the operator
L : Mm → N0 recursively by

L [�] := 0,

L [(b , β)] := L [b] (m + 1) + β + 1.

And we define the operator M to get the multi-index out of a serial number
analogousely.

Definition 1.28 For l ∈ N0 we define the operator M : N0 → Mm recur-
sively by

M [l] :=

{
�, for l = 0,

(M [(l − 1)\(m + 1)] , (l − 1) mod (m + 1)), otherwise.

Thereby the operator “ \” denotes the integer division and “ mod” denotes
its remainder.

Definition 1.29 We define the length of an integer index l ∈ N0 by the
length of its corresponding multi-index:

|l| := |M [l]|.

The length |l| can be easily computed without explicitly computing M [l]:

|l| =

{
0, for l = 0,

|(l − 1)\(m + 1)|+ 1, otherwise.
(1.7)

Lemma 1.30 The operators L and M are inverse, that is for all b ∈ Mm

and all l ∈ N0

L [M [l]] = l, M [L [b]] = b.

Proof: Obviously the integer division and its remainder satisfy the equation

l − 1 = [(l − 1)\(m + 1)] (m + 1) + (l − 1) mod (m + 1).

And we use the recursive formula for the length of l > 0 (cp. equation 1.7):

|l| − 1 = |(l − 1)\(m + 1)|.
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We prove the first assertion of lemma 1.30 by induction over the length |l|.
Initial step |l| = 0:

L [M [0]] = L [�] = 0.

Induction step |l| − 1 → |l|: We apply the definitions 1.28 and 1.27

L [M [l]] = L [(M [(l − 1)\(m + 1)] , (l − 1) mod (m + 1))]

= L [M [(l − 1)\(m + 1)]] · (m + 1) + (l − 1) mod (m + 1) + 1,

by using the induction hypothesis we get

= ((l − 1)\(m + 1)) · (m + 1) + (l − 1) mod (m + 1) + 1

= l − 1 + 1 = l.

The second assertion we prove by induction, too. Therefore we recall that
for every β ∈ {0, . . . , m} the integer division gives β\(m + 1) = 0 with the
remainder β mod (m + 1) = β. Let be b ∈ Mm a multi-index with length
|b|.
Initial step |b| = 0:

M [L [�]] = L [0] = �.

Induction step |b| → |b| + 1: We apply the definitions 1.27 and 1.28 and
then the induction hypothesis.

M [L [(b , β)]] = M [L [b] · (m + 1) + β + 1]

= (M [(L [b] · (m + 1) + β) \(m + 1)] , (L [b] · (m + 1) + β) mod (m + 1))

= (M [L [b]] , β)

= (b , β).

�

From our previously defined operators on multi-indices the selection op-
erator is the only one we use for the implementation, namely for the product
formula of Fliess-expansions (cp. theorem 2.33), which we will develop in
chapter 2. The shuffle-product and the selection operator are matters of
theoretical interest.

We define the selection operator of a serial number by the selection
operator of its corresponding multi-index.
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Definition 1.31 For all l ∈ N0, k = 0, . . . , |l| and i = 1, . . . ,

(
|l|
k

)
we

define the selection operators on serial numbers by:

K (l, k, i) := L [K (M [l] , k, i)] ,

K̂ (l, k, i) := L
[
K̂ (M [l] , k, i)

]
.

From the definitions 1.18 and 1.31 we immediately get the trivial case
K (0, 0, 1) = 0 and K̂ (0, 0, 1) = 0. For l > 0 we formulate the following
lemma. In the following lemma we give recursive formulas for the selection
operator on serial numbers without the detour on multi-indices.

Lemma 1.32 For all l ∈ N we get with k = 0, . . . , |l|, i = 1, . . . ,

(
|l|
k

)
and

the marginal value σ :=

(
|l| − 1
k − 1

)
:

K (l, k, i) =


K (D, k − 1, i) · (m + 1) + R + 1, 1 ≤ i ≤ σ,

K (D, k, i− σ), σ < i ≤

(
|l|
k

)
,

K̂ (l, k, i) =


K̂ (D, k − 1, i), 1 ≤ i ≤ σ,

K̂ (D, k, i− σ) · (m + 1) + R + 1, σ < i ≤

(
|l|
k

)
,

where D := (l − 1) \ (m + 1) and R := (l − 1) mod (m + 1).

Proof: We will only prove the first assertion of lemma 1.32. The assertion
for the complementary selection operator can be proved analogously. We
start with definition 1.31 and apply definition 1.28

K (l, k, i) = L [K (M [l] , k, i)] = L [K ((M [D] , R), k, i)] .

Now we use the definition 1.18 of the selection operator

K (l, k, i) =


L [(K (M [D] , k − 1, i) , R)] , 1 ≤ i ≤ σ,

L [K (M [D] , k, i− σ)] , σ < i ≤

(
|l|
k

)
.

(1.8)

The first case we simplify with definition 1.27

=


L [K (M [D] , k − 1, i)] · (m + 1) + R + 1, 1 ≤ i ≤ σ,

L [K (M [D] , k, i− σ)] , σ < i ≤

(
|l|
k

)
,
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what becomes with definition 1.31

=


K (D, k − 1, i) · (m + 1) + R + 1, 1 ≤ i ≤ σ,

K (D, k, i− σ), σ < i ≤

(
|l|
k

)
.

�



Chapter 2

Fliess-Expansions

In this chapter we introduce Fliess-expansions. They are a generalisation of
Taylor-expansions for solutions of ordinary differential equations on control
affine systems. They depend on the time variable and the vector of control
functions.

First we will define the Lie-derivatives which gives the derivatives of the
solution in direction of the right hand side vector fields. The Lie-derivatives
of the solution at the initial conditions basically give the coefficients of its
Fliess-expansion.

The Fliess-expansion is a higher order integral representation of the ini-
tial value problem for system (1.1). For a readable notation we define the it-
erated integral operator. It integrates a given kernel multiplied with control
functions determined by a given multi-index on an high-dimensional time
triangle. We will discover many properties of iterated integrals in order to
perform the basic arithmetic operations on Fliess-expansions. Especially we
develop multiplication formulas in quantitative and qualitative versions for
iterated integrals.

We will give a new proof for the uniqueness of Fliess-expansions. It was
already proved by Fliess [9]. He used an algebraic approach, which is hard
to understand in our context and notation. So we use his tools, i.e. the
Fliess-derivative, but in terms of analysis. The Fliess-derivative allows us
to isolate any coefficient of the Fliess-expansion. Then we will be able to
compare Fliess-expansions coefficientwise.

We will learn to represent other functions than a solution as Fliess-
expansion, i.e. the right hand side vector fields or control independent func-
tions, which are smooth enough. We develop the basic arithmetic operations
for Fliess-expansions. That allows us to compute new expansions out of the
solution in order to get a Fliess representation of the right hand side vector

29
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fields.

2.1 Lie derivatives

The following definition for Lie derivatives is taken from Grüne, Kloeden [12].
First they are defined for variables in time and state space. Later we will
insert an arbitrary time dependent solution.

Definition 2.1 (Lie derivatives) Let F : [τ, T ]× Rn −→ Rn be continu-
ously differentiable. Then we define the linear operator L0F (t, x) := dF

dt (t, x)
as the derivative of F in the first variable. For α ∈ {1, . . . , m} the linear
operator LαF (t, x) := dF

dx (t, x)fα(t, x) is the derivative of F in direction of
the vector field fα.

We insert the independent time variable t and the function x : [τ, T ] →
Rn, which now denotes an arbitrary solution of the control system 1.1 for
a fixed vector of control functions u ∈ Um, and get a function F (·, x(·)) :
[τ, T ] → Rn. The next lemma extends the First Fundamental Theorem of
Calculus for control affine systems.

Lemma 2.2 For all t ∈ [τ, T ] and any solution x we have

F (t, x(t)) = F (τ, x(τ)) +
∫ t

τ

m∑
α=0

LαF (s, x(s))uα(s) ds. (2.1)

Proof: From the chain rule and the solution identity follows:

d

ds
F (s, x(s)) =

dF

dt
(s, x(s)) +

dF

dx
(s, x(s))ẋ(s)

=
dF

dt
(s, x(s)) +

m∑
α=1

dF

dx
(s, x(s))fα(s, x(s))uα(s)

= L0F (s, x(s)) +
m∑

α=1

LαF (s, x(s))uα(s)

=
m∑

α=0

LαF (s, x(s))uα(s), where u0 ≡ 1

Then the proof is given by the First Fundamental Theorem of Calculus. �
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For F (t, x) = x we get the integral equation corresponding to system 1.1:

x(t) = x(τ) +
∫ t

τ

m∑
α=0

Lαx(s)uα(s) ds. (2.2)

By Lαx we denote the Lα-operator applied to the identity F (t, x) = x. By
Lαx(s) we denote the evaluation at (s, x(s)). The empty index defines the
identity L�x := x.

We abbreviate the concatenation of Lie derivatives with the multi-index
notation. For any b =

(
β|b| , . . . , β1

)
∈Mm we write:

Lb = Lβ|b| ◦ . . . ◦ Lβ1 .

For F (·, x) := Lbx equation (2.1) leads to

Lbx(t) = Lbx(τ) +
∫ t

τ

m∑
α=0

L(α , b)x(s)uα(s) ds. (2.3)

Lemma 2.3 For every b ∈ Mm and α ∈ {0, . . . , m} we get as the Lie-
derivatives of the solution:

L(b,α)x =

{
0, for α = 0,

Lbfα, for α ∈ {1, . . . , m}.

Proof: For the identity F (t, x) = x the L0-operator gives L0x = 0, because
F is independent of the first variable. This propagates to the concatenation
of Lie-derivatives. For α ∈ {1, . . . , m} we get Lαx = fα immediately. �

Note that from the point of view of lemma 2.3 the Lie-derivatives of
the solution depend on the solution itself only indirectly through the vector
fields fα, α ∈ {1, . . . , m}.

To prevent mistakes we recall the meaning of Lbx : [τ, T ]× Rn −→ Rn.
It depends only on the right hand side vector fields, but is independent from
the solution x. Here x is used as the state space variable. On the other
hand we denote with Lbx(t) the evaluation of Lbx at (t, x(t)). In this case
x is used as the solution.

2.2 Iterated Integrals

In this section we introduce another operator, which uses our concept of
multi-indices for concatenation. The iterated integral is a multi-integral,
that includes a scalar control function determined by the multi-index in
every iteration. Again the definition is taken from Grüne, Kloeden [12].
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Definition 2.4 Denote with G : [τ, T ] × Um −→ Rn a Lebesgue-
integrable function which depends on the vector of control functions. For
all multi-indices b ∈Mm and α ∈ {0, . . . , m} we define the iterated in-
tegral recursively by

I� [G] (t, u) := G(t, u)

I(α , b) [G] (t, u) := Ib

[∫ .

τ
G(s, u)uα(s) ds

]
(t, u), (2.4)

where u0 ≡ 1

For the identity integral kernel we abbreviate

Ib(t, u) := Ib [1] (t, u).

Remark 2.5 In fact the vector of control functions u =
(
u1, . . . ,um

)
∈ Um

should include the 0-component. But by convention we need not extent u for
the constant component u0 ≡ 1.

The representation for indices b of length |b| = 1, 2, 3 can be computed
by recursive insertion. For α, β, γ ∈ {0, . . . ,m} we get

I(γ) [G] (t, u) =
∫ t

τ
G(s1, u)uγ(s1) ds1

I(β , γ) [G] (t, u) =
∫ t

τ

∫ s1

τ
G(s2, u)uβ(s2) ds2 uγ(s1) ds1

I(α , β , γ) [G] (t, u) =
∫ t

τ

∫ s1

τ

∫ s2

τ
G(s3, u)uα(s3) ds3 uβ(s2) ds2 uγ(s1) ds1.

Continuing this procedure for multi-indices b =
(
β|b| , . . . , β1

)
∈ Mm

of arbitrary length leads to

I(β|b| , ... , β1) [G] (t, u) = (2.5)

=
∫ t

τ

∫ s1

τ
· · ·
∫ s|b|−1

τ
G(s|b|, u)uβ|b|(s|b|) ds|b| · · ·uβ2(s2) ds2 uβ1(s1) ds1.

Next we formulate several lemmas which help us to deal with iterated in-
tegrals. Because control functions are not continuous in general, the iterated
integrals are differentiable only once and the derivative is not continuous.
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Lemma 2.6 (derivative of iterated integrals) Consider a multi-index
b ∈ Mm and an index α ∈ {0, . . . , m} and let G : [τ, T ] × Um −→ Rn be
a integrable function. Then the time derivatives of the iterated integrals are
given by

d

dt
I(b , α) [G] (t, u) = Ib [G] (t, u) uα(t).

Proof: We prove by induction on the length L := |b|.
Initial step: L = 0, thus b = �:

d

dt
I(α) [G] (t, u) =

d

dt
I�

[∫ ·

τ
G(s, u)uα(s) ds

]
(t, u) = G(t, u)uα(t)

Induction step: L − 1 → L,L ≥ 1: There exists a multi index b′ ∈ Mm

and an integer number 0 ≤ β ≤ m with b = (β , b′).

d

dt
I(b , α) [G] (t, u) =

d

dt
I(β , b′ , α) [G] (t, u)

=
d

dt
I(b′ , α)

[∫ ·

τ
G(s, u)uβ(s) ds

]
(t, u)

With |b′| = L− 1 we can apply the induction hypothesis for I(b′ , α)

= Ib′

[∫ ·

τ
G(s, u)uβ(s) ds

]
(t, u)uα(t)

= I(β , b′) [G] (t, u)uα(t) = Ib [G] (t, u)uα(t)

�

The derivative for iterated integrals gives us the possibility to extend the
multi-index from the right hand side. We get a more convenient iteration
than the definition of the iterated integrals 2.4.

Lemma 2.7 For the extension from the right of the multi-index b ∈Mm of
an iterated integral by α ∈ {0, . . . , m} we get

I(b , α) [G] (t, u) =
∫ t

τ
Ib [G] (s, u) uα(s)ds.

Proof: The assertion follows directly from the First Fundamental Theorem
of Calculus by using lemma 2.6

I(b , α) [G] (t, u) = I(b , α) [G] (τ, u) +
∫ t

τ

d

ds
I(b , α) [G] (s, u)ds

=
∫ t

τ
Ib [G] (s, u) uα(s)ds.

�
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For an easier denotation of the sum of iterated integrals we move the
sum into the index if the integral kernels coincide.

Definition 2.8 (sum of iterated integrals) Consider multi-indices b, c ∈
Mm and a integrable function G : [τ, T ]× Um −→ Rn. Then we define the
iterated integral for the sum of multi-indices as the sum of the iterated inte-
grals for each of the multi-indices

Ib+c [G] (t, u) := Ib [G] (t, u) + Ic [G] (t, u).

Lemma 2.9 For all b, c ∈ Mm, α ∈ {0, . . . , m} and G : [τ, T ] × Um −→
Rn we get the following summation formula for iterated integrals

I(b+c , α) [G] (t, u) = I(b , α) [G] (t, u) + I(c , α) [G] (t, u).

Proof: We apply lemma 2.7 in both directions.

I(b+c , α) [G] (t, u) =
∫ t

τ
Ib+c [G] (s, u) uα(s)ds

=
∫ t

τ
Ib [G] (s, u) uα(s)ds +

∫ t

τ
Ic [G] (s, u) uα(s)ds

= I(b , α) [G] (t, u) + I(c , α) [G] (t, u).

�

Lemma 2.10 (linearity of iterated integrals) The iterated integral op-
erator is linear in the integral kernel.

Proof: To show linearity we verify for all multi-indices b ∈ Mm, all
integrable functions G, H : [τ, T ]× Um −→ Rn and all numbers n1, n2 ∈ R:

n1Ib [G] (t, u) + n2Ib [H] (t, u) = Ib [n1G + n1H] (t, u).

We prove by induction over the length L := |b|.
Initial step: L = 0, thus b = �: This case is trivial.
Induction step: L − 1 → L: There exist b′ ∈ Mm and β ∈ {0, . . . , m}
with b = (b′ , β). We apply lemma 2.7 twice and add up the iterated integrals
using the induction hypothesis

n1I(b′ , β) [G] (t, u) + n2I(b′ , β) [H] (t, u) =

=
∫ t

τ
n1Ib′ [G] (s, u)uβ(s) ds +

∫ t

τ
n2Ib′ [H] (s, u)uβ(s) ds

=
∫ t

τ
Ib′ [n1G + n2H] (s, u)uβ(s) ds

= I(b′ , β) [n1G + n2H] (t, u).

�
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The next lemma will analyse the case, where the integral kernel of an
iterated integral is again an iterated integral.

Lemma 2.11 Let b, c ∈Mm be multi-indices and G : [τ, T ]×Um −→ Rn be
a function depending on the control functions. Then inserting one iterated
integral into another is the same as concatenating their multi-indices.

I(b , c) [G] (t, u) = Ic [Ib [G]] (t, u).

Proof: We prove by induction over the length L := |b|.
Initial step: L = 0, thus b = �:

Ic [G] (t, u) = Ic [I� [G]] (t, u).

Induction step: L − 1 → L,L ≥ 1: There exist a multi-index b′ ∈ Mm

and an index β ∈ {0, . . . , m} with b = (β , b′). We apply now definition 2.4
and the induction hypothesis and get

I(β , b′ , c) [G] (t, u) = I(b′ , c)

[∫ ·

τ
G(s, u)uβ(s) ds

]
(t, u)

= Ic

[
Ib′

[∫ ·

τ
G(s, u)uβ(s) ds

]]
(t, u)

= Ic

[
I(β , b′) [G]

]
(t, u).

�

2.3 Integral representations

The purpose of the iterated integrals we defined in the last section is the
integral representation for the solution as well as for the right hand side
vector fields depending on the solution. We use the notation of Grüne and
Kloeden [12]. The integral representation uses the Lie-derivatives of the
right hand side vector fields. We assume the existence of all used partial
derivatives of the vector fields fα, α ∈ {1, . . . , m}.

Theorem 2.12 (Integral representation for the solution)
Consider an hierarchical multi-index set H ⊂ Mm. Then any solution
of the control system (1.1) can be represented as

x(t) =
∑
b∈H

Lbx(τ) Ib(t, u) +
∑

b∈R(H)

Ib

[
Lbx

]
(t, u). (2.6)
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Proof: We prove the assertion by induction over the cardinal number of
the set H. For simplicity we skip the argument (t, u) in the notation of the
iterated integrals.

Initial step |H| = 1 ⇔ H = {�}:
We deduce the assertion directly from the integral equation (2.2) of the
control affine system. The remainder set R(H) = {(0), . . . , (m)}.

x(t) = x(τ) +
m∑

α=1

∫ t

τ
fα(s, x(s))uα(s) ds

= x(τ) +
m∑

α=0

∫ t

τ
L(α)x(s)uα(s) ds

= x(τ) +
m∑

α=0

I(α)

[
L(α)x

]
= L�x(τ)I� [1] +

∑
b∈R(H)

Ib

[
Lbx

]

Induction step |H| − 1 → |H|:
We construct a hierarchical set G ⊂ H with |G| = |H|− 1. Denote bmax ∈ H
the (not necessarily unique) index with maximum length

|bmax| ≥ |b|, for all b ∈ H.

Then the set G := H \ {bmax} is again hierarchical, with bmax ∈ R(G). The
relation of the remainder sets is

R(H) = R(G)U{(bmax , 0), . . . , (bmax , m)}.

Because of |G| = |H| − 1 we can apply the induction hypothesis:

x(t) =
∑
b∈G

Lbx(τ)Ib [1] +
∑

b∈R(G)

Ib

[
Lbx

]
=
∑
b∈G

Lbx(τ)Ib [1] +
∑

b∈R(G)\{bmax}

Ib

[
Lbx

]
+ Ibmax

[
Lbmaxx

]
.
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From equation (2.3) follows for the last term

Ibmax

[
Lbmaxx

]
=

= Ibmax

[
Lbmaxx(τ) +

∫ .

τ

m∑
α=0

L(α , bmax)x(s)uα(s) ds

]

= Ibmax

[
Lbmaxx(τ)

]
+

m∑
α=0

Ibmax

[∫ .

τ
L(α , bmax)x(s)uα(s) ds

]

= Lbmaxx(τ)Ibmax [1] +
m∑

α=0

I(α , bmax)

[
L(α , bmax)x

]
.

So we get for x

x(t) =
∑
b∈G

Lbx(τ)Ib [1] + Lbmaxx(τ)Ibmax [1]

+
∑

b∈R(G)\{bmax}

Ib

[
Lbx

]
+

m∑
α=0

I(α , bmax)

[
L(α , bmax)x

]
=
∑
b∈H

Lbx(τ)Ib [1] +
∑

b∈R(H)

Ib

[
Lbx

]
.

�

Next we develop an integral representation of the right hand side vector
fields fα(·, x), α ∈ {1, . . . , m}.

Theorem 2.13 (integral representation of fα) Consider an arbi-
trary hierarchical multi-index set H ⊂ Mm. Then for every α ∈
{1, . . . , m} we get an integral representation for the vector field fα.

fα(t, x(t)) =
∑
b∈H

L(b , α)x(τ)Ib(t, u) +
∑

b∈R(H)

Ib[L(b , α)x](t, u) (2.7)

Proof: The proof has the same structure as the proof of theorem 2.12,
namely the induction over the size of the hierarchical set H. Again we skip
the argument (t, u) of the iterated integrals.
Initial step |H| = 1 ⇔ H = {�}:
The remainder set is R(H) = {(0), . . . , (m)}. We apply lemma 2.2 for
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fα(t, x(t)) and use the identity Lαx = fα(·, x).

fα(t, x(t)) = fα(τ, x(τ)) +
∫ t

τ

m∑
β=0

Lβfα(s, x(s))uβ(s) ds

= Lαx(τ) +
m∑

β=0

∫ t

τ
LβLαx(s)uβ(s) ds

= Lαx(τ) +
m∑

β=0

∫ t

τ
L(β , α)x(s)uβ(s) ds

= Lαx(τ) +
∑

b∈R(H)

Ib

[
L(b , α)x

]

Induction step: |H| − 1 → |H|:
We construct the hierarchical set G ⊂ H like in the proof of theorem 2.12.
Because of |G| = |H| − 1 the induction hypothesis holds true:

fα(t, x(t)) =
∑
b∈G

L(b , α)x(τ)Ib +
∑

b∈R(G)

Ib

[
L(b , α)x

]
=
∑
b∈G

L(b , α)x(τ)Ib

+
∑

b∈R(G)\{bmax}

Ib

[
L(b , α)x

]
+ Ibmax

[
L(bmax , α)x

]
.

From equation (2.3) we get

Ibmax

[
L(bmax , α)x

]
=

= Ibmax

L(bmax , α)x(τ) +
∫ .

τ

m∑
β=0

L(β , bmax , α)x(s)uβ(s) ds


= Ibmax

[
L(bmax , α)x(τ)

]
+

m∑
β=0

Ibmax

[∫ .

τ
L(β , bmax , α)x(s)uβ(s) ds

]

= L(bmax , α)x(τ)Ibmax +
m∑

β=0

I(β , bmax)

[
L(β , bmax , α)x

]
.
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Then it follows for the vector field fα

fα(t, x(t)) =

=
∑
b∈G

L(b , α)x(τ)Ib + L(bmax , α)x(τ)Ibmax

+
∑

b∈R(G)\{bmax}

Ib

[
L(b , α)x

]
+

m∑
β=0

I(β , bmax)

[
L(β , bmax , α)x

]
=
∑
b∈H

L(b , α)x(τ)Ib +
∑

b∈R(H)

Ib

[
L(b , α)x

]
.

�

We can choose for a given order p ∈ N0 the hierarchical set H :=
{b ∈Mm| |b| ≤ p} with its remainder set R = Mp+1

m and get with the equa-
tions (2.6) and (2.7):

x(t) =
p∑

i=0

∑
b∈Mi

m

Lbx(τ)Ib(t, u) +
∑

b∈Mp+1
m

Ib

[
Lbx

]
(t, u), (2.8)

fα(t, x(t)) =
p∑

i=0

∑
b∈Mi

m

L(b , α)x(τ)Ib(t, u) +
∑

b∈Mp+1
m

Ib

[
L(b , α)x

]
(t, u).

(2.9)

These two representations of functions depending on u are the motivation
for the definition of Fliess-expansions in the next section. But first we want
compute the integral representation of order p = 5 for the solution of a
one-dimensional example.

Example 2.14 We look at a simple one-dimensional control system:

ẋ = u− x2, x(0) = 0.

Using the notation from definition 1.1 we get a control affine system
with n = 1, m = 2. For the vector fields we get f1(t, x) = −x2 and
f2(t, x) = 1 and the control functions are u1 ≡ 1 and u2 = u.

Because f1 and f2 are autonomous, their time derivatives vanish. Thus
the following implication holds true for all b =

(
β|b| , . . . , β1

)
∈Mm:

∃j ∈ {1, . . . , |b|} with βj = 0 =⇒ Lbx ≡ 0.
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b Lbx

� x

(1) −x2

(2) 1

(1 , 1) 2x3

(2 , 1) −2x

(1 , 1 , 1) −6x4

(1 , 2 , 1) 2x2

(2 , 1 , 1) 6x2

(2 , 2 , 1) −2

(1 , 1 , 1 , 1) 24x5

(1 , 1 , 2 , 1) −4x3

(1 , 2 , 1 , 1) −12x3

(2 , 1 , 1 , 1) −24x3

(2 , 1 , 2 , 1) 4x

(2 , 2 , 1 , 1) 12x

(1 , 1 , 1 , 1 , 1) −120x6

(1 , 1 , 1 , 2 , 1) 12x4

(1 , 1 , 2 , 1 , 1) 36x4

(1 , 2 , 1 , 1 , 1) 72x4

(1 , 2 , 1 , 2 , 1) −4x2

(1 , 2 , 2 , 1 , 1) −12x2

(2 , 1 , 1 , 1 , 1) 120x4

(2 , 1 , 1 , 2 , 1) −12x2

(2 , 1 , 2 , 1 , 1) −36x2

(2 , 2 , 1 , 1 , 1) −72x2

(2 , 2 , 1 , 2 , 1) 4
(2 , 2 , 2 , 1 , 1) 12

b Lbx

(1 , 1 , 1 , 1 , 1 , 1) 720x7

(1 , 1 , 1 , 1 , 2 , 1) −48x5

(1 , 1 , 1 , 2 , 1 , 1) −144x5

(1 , 1 , 2 , 1 , 1 , 1) −288x5

(1 , 1 , 2 , 1 , 2 , 1) 8x3

(1 , 1 , 2 , 2 , 1 , 1) 24x3

(1 , 2 , 1 , 1 , 1 , 1) −480x5

(1 , 2 , 1 , 1 , 2 , 1) 24x3

(1 , 2 , 1 , 2 , 1 , 1) 72x3

(1 , 2 , 2 , 1 , 1 , 1) 144x3

(2 , 1 , 1 , 1 , 1 , 1) −720x5

(2 , 1 , 1 , 1 , 2 , 1) 48x3

(2 , 1 , 1 , 2 , 1 , 1) 144x3

(2 , 1 , 2 , 1 , 1 , 1) 288x3

(2 , 1 , 2 , 1 , 2 , 1) −8x

(2 , 1 , 2 , 2 , 1 , 1) −24x

(2 , 2 , 1 , 1 , 1 , 1) 480x3

(2 , 2 , 1 , 1 , 2 , 1) −24x

(2 , 2 , 1 , 2 , 1 , 1) −72x

(2 , 2 , 2 , 1 , 1 , 1) −144x

Table 2.1: The non-vanishing Lie derivatives up to order 6
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We compute for all multi-indices b ∈ Mm with |b| ≤ p + 1 = 6 the Lie
derivatives Lbx. The non vanishing ones are itemised in table 2.1. We insert
the initial condition x(0) = 0 and get only four non zero coefficients (blue
items in table 2.1). Equation (2.8) becomes

λ(t, u) = I(2)(t, u)− 2 I(2 , 2 , 1)(t, u) + 4 I(2 , 2 , 1 , 2 , 1)(t, u) (2.10)

+ 12 I(2 , 2 , 2 , 1 , 1)(t, u) + R6
λ(t, u),

where the remainder term is:

R6
λ =

∑
b∈M6

m

Ib

[
Lbx

]
=

= I(1 , 1 , 1 , 1 , 1 , 1)

[
720x7

]
+ I(1 , 1 , 1 , 1 , 2 , 1)

[
−48x5

]
+

+ I(1 , 1 , 1 , 2 , 1 , 1)

[
−144x5

]
+ I(1 , 1 , 2 , 1 , 1 , 1)

[
−288x5

]
+

+ I(1 , 1 , 2 , 1 , 2 , 1)

[
8x3
]

+ I(1 , 1 , 2 , 2 , 1 , 1)

[
24x3

]
+

+ I(1 , 2 , 1 , 1 , 1 , 1)

[
−480x5

]
+ I(1 , 2 , 1 , 1 , 2 , 1)

[
24x3

]
+

+ I(1 , 2 , 1 , 2 , 1 , 1)

[
72x3

]
+ I(1 , 2 , 2 , 1 , 1 , 1)

[
144x3

]
+

+ I(2 , 1 , 1 , 1 , 1 , 1)

[
−720x5

]
+ I(2 , 1 , 1 , 1 , 2 , 1)

[
48x3

]
+

+ I(2 , 1 , 1 , 2 , 1 , 1)

[
144x3

]
+ I(2 , 1 , 2 , 1 , 1 , 1)

[
288x3

]
+

+ I(2 , 1 , 2 , 1 , 2 , 1) [−8x] + I(2 , 1 , 2 , 2 , 1 , 1) [−24x]+

+ I(2 , 2 , 1 , 1 , 1 , 1)

[
480x3

]
+ I(2 , 2 , 1 , 1 , 2 , 1) [−24x]+

+ I(2 , 2 , 1 , 2 , 1 , 1) [−72x] + I(2 , 2 , 2 , 1 , 1 , 1) [−144x].

We skipped the argument (t, u) for clearness and denote with λ(t, u) :=
λ(t, τ, x0, u) the solution for τ = 0 and x0 = 0.

2.4 Fliess-expansions

The following definition of causality continues along the definition of Hin-
richsen and Pritchard [14, definition 2.3.24]. It is a very natural condition
requiring that the value of a control dependent function, only depends on
the past part but not on the future part of the control functions.

Definition 2.15 (causality condition) Consider G : [τ, T ]×Um −→ Rn

as a function which depends on the time and on the vector of control func-
tions. It fulfils the causality condition if for every s ∈ [τ, T ] and for all
u, v ∈ Um with u|[ τ,s ) = v|[ τ,s ) the following equation is satisfied:

G(·, u)|[ τ,s ] = G(·, v)|[ τ,s ]

We call a function, which fulfils the causality condition, causal function.
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Chen and Fliess introduced the Fliess-expansion (see [7,8]), which is the
series expansion for the solutions of control affine systems. They were inter-
ested in the convergence if the order tends to infinity and in the uniqueness.
Convergence is assured by constraints on the control functions and on the
right hand side vector fields.

Definition 2.16 (Fliess-expansion) For a given order p ∈ N we de-
fine a Fliess-expansion of a function µ : [τ, T ]× Um −→ Rn by

µ(t, u) =
p∑

i=0

∑
b∈Mi

m

(µ)b Ib(t, u) +
∑

b∈Mp+1
m

Ib [µb] (t, u),

where u :=
(
u1, . . . ,um

)
is the vector of control functions. The coeffi-

cients (µ)b ∈ Rn, for |b| ≤ p are constant vectors and the integral kernels
µb : [τ, T ]× Um −→ Rn, for |b| = p + 1 are causal functions.

The integral representation of the solution in equation (2.8) is a Fliess-
expansion of order p, because the Lie-derivatives in the remainder term are
causal. Thus the following definition is well-defined.

Definition 2.17 (Fliess-expansion of the general solution)
We call the Fliess-expansion of order p of the general solution 1.2:

λ(t, τ, x0, u) =
p∑

i=0

∑
b∈Mi

m

(λ(τ, x0))b Ib(t, u) + Rp+1
λ(τ,x0)(t, u),

with (λ(τ, x0))b := Lbx(τ, x0),
Rp+1

λ(τ,x0)(t, u) :=
∑

b∈Mp+1
m

Ib

[
Lbx(τ, x0)

]
(t, u),

where u :=
(
u1, . . . ,um

)T denotes the vector of control functions and x(τ) =
x0 gives the initial condition.

We skipped the vector of control functions u in the denotation of the co-
efficients (λ(τ, x0))b. Because of the causality of the Lie-derivatives of the
solution the coefficients do not depend on u.

Remark 2.18 (Volterra-expansions) There is another series expansion
for the solution of control systems. It is known as the Volterra-expansion
(cp. Isidori [17, Chapter 3.2]). It is defined in a more general context than
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the Fliess-expansion and has non-constant integral kernels for the coeffi-
cients. The uniqueness of Volterra-expansions is discussed by Lesiak and
Krener [25].

2.5 Uniqueness of Fliess-expansions

Important for us is the uniqueness of the coefficients of finite Fliess-ex-
pansions. Fliess has already given an algebraically motivated proof for the
uniqueness of Fliess-expansions in [9]. Our proof will only use methods from
analysis to fit better in the framework of this work. There is also an older
proof of Fliess in [7] which is cited by Isidori [17]. It turned out that this
version is rather incomplete.

Now we define a very technical tool. We construct based on a given
vector of control functions the vector of control functions chopped off at a
fixed time.

Definition 2.19 (chopped-off control functions)
Based on the given vector of control functions u =

(
u1, . . . ,um

)
∈ Um,

a time s ∈ [τ, T ] and a coordinate α ∈ {0, . . . , m} we construct a new
control vector suα :=

(
su

1
α , . . . , su

m
α

)
∈ Um. It coincides up to time s with

the vector u and afterwards with the α-unit vector (Thereby the 0-unit vector
is assumed to be the zero vector.):

su
β
α :=


uβ , on [τ, s)

1, on [s, T ], for β = α

0, on [s, T ], for β 6= α

Again by convention we define su
0
α ≡ 1.

Here the concept of causality comes into play. In particular a causal
G : [τ, T ]× Um −→ Rn satisfies due to suα|[ τ,s ) = u|[ τ,s ) the equation

G(s, suα) = G(s, suα)|[ τ,s ] = G(s, u)|[ τ,s ] = G(s, u), (2.11)

for all α ∈ {0, . . . , m}.

Lemma 2.20 Let the function G : [τ, T ] × Um −→ Rn fulfil the causality
condition. Then for every multi-index b ∈ Mm the iterated integral with
integral kernel G satisfies the equation

Ib [G] (s, suα) = Ib [G] (s, u),

for all α ∈ {0, . . . , m}.
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Proof: We prove by induction over the length |b|.
Initial step |b| = 0, thus b = �: With equation 2.11 we get

I� [G] (s, suα) = G(s, suα) = G(s, u) = I� [G] (s, u).

Induction step |b| → |(b , β)|, β ∈ {0, . . . , m}: It follows from the induc-
tion hypothesis, from su

β
α (s1) = uβ(s1), for s1 < s, and from lemma 2.7:

I(b , β) [G] (s, suα) =
∫ s

τ
Ib [G] (s1, suα) su

β
α (s1) ds1

=
∫ s

τ
Ib [G] (s1, u)uβ(s1) ds1

= I(b , β) [G] (s, u).

�

Lemma 2.21 Let the function G : [τ, T ] × Um −→ Rn be a integrable
function. Then the iterated integral for any multi-index b ∈Mm, except the
empty index, vanishes at the initial time τ :

Ib [G] (τ, u) =

{
G(τ, u), for b = �,

0, otherwise.

Proof: First we prove the trivial case, where b is the empty index. Then
we will look at the nonempty indices.

• b = �:

I� [G] (τ, u) = G(τ, u)

• |b| > 0, thus there exists a multi-index b′ ∈ Mm and a number β ∈
{0, . . . , m}, with b = (b′ , β):

Ib [G] (τ, u) =
∫ τ

τ
Ib′ [G] (s1, u)uβ(s1) ds1 = 0

Here we get a non-degenerated iterated integral from τ to τ .

�

Before we can prove the uniqueness of Fliess-expansions we need to
develop a tool to isolate an arbitrary coefficient. Then we can compare
two expansions coefficient-wise. Therefore we utilise the previously defined
chopped-off functions (see definition 2.19).
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Definition 2.22 (Fliess-derivatives) Let µ : [τ, T ] × Um −→ Rn

be a function which depends on the vector of control functions u =(
u1, . . . ,um

)
∈ Um. For α ∈ {0, . . . , m} we define

α = 0 : F0[µ](s, u) := lim
h→0

µ(s + h, su0)− µ(s, su0)
h

α = 1, . . . ,m : Fα[µ](s, u) := lim
h→0

µ(s + h, suα)− µ(s, suα)
h

−F0[µ](s, u).

The concatenation for b =
(
β|b| , . . . , β1

)
∈Mm is denoted by

Fb[µ](s, u) := Fβ|b| · · · Fβ1 [µ](s, u).

Remark 2.23 The operator Fα again creates a function, which depends on
the time and the vector of control functions and has values in Rn:

Fα[µ] : [τ, T ]× Um −→ Rn.

Hence the concatenation Fb is well defined.

Now we analyse some properties of the Fliess-derivative. Later we can
detect its effect on Fliess-expansions.

Lemma 2.24 (linearity of Fliess-derivatives)
For all b ∈Mm the Fliess-derivative Fb is linear.

Proof: Let µ, ν : [τ, T ] × Um −→ Rn be functions and let n1, n2 ∈ R be
arbitrary real numbers. Then we can show the linearity of the operators F0

and Fα, for α = 1, . . . ,m:

F0[n1µ + n2ν](s, u) =

= lim
h→0

n1µ(s + h, su0) + n2ν(s + h, su0)
h

− n1µ(s, su0) + n2ν(s, su0)
h

= lim
h→0

n1µ(s + h, su0)− n1µ(s, su0)
h

+ lim
h→0

n2ν(s + h, su0)− n2ν(s, su0)
h

= n1F0[µ](s, u) + n2F0[ν](s, u),
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and

Fα[n1µ + n2ν](s, u) =

= lim
h→0

n1µ(s + h, suα) + n2ν(s + h, suα)
h

− n1µ(s, suα) + n2ν(s, suα)
h

−

−F0[n1µ + n2ν](s)

= lim
h→0

n1µ(s + h, suα)− n1µ(s, suα)
h

− n1F0[µ](s)

+ lim
h→0

n2ν(s + h, suα)− n2ν(s, suα)
h

− n2F0[ν](s)

= n1Fα[µ](s, u) + n2Fα[ν](s, u).

Of course, the linearity carries forward to the concatenation of Fliess-deriv-
atives Fb, for all b ∈Mm . �

For control independent functions the Fliess-derivative coincides for all
multi-indices consisting only of zeros with the conventional time-derivative.
Otherwise it vanishes.

Lemma 2.25 Let G : [τ, T ]× Um −→ Rn be a function, which is indepen-
dent of the vector of control functions and is sufficiently many times dif-
ferentiable in the first component, thus G(s, u) = G(s). Then the following
equation holds true for all b ∈Mm:

Fb[G](s, u) =

{
G(|b|)(s), for b = (0 , . . . , 0),

0, otherwise.

Thereby G(k) denotes the k-th derivative concerning the first component.

Proof: First we prove the assertion for |b| = 1,

F0[G](s, u) = lim
h→0

G(s + h)−G(s)
h

= G′(s).

For α = 1, . . . ,m it applies:

Fα[G](s, u) = lim
h→0

G(s + h)−G(s)
h

−F0[G](s, u) = 0.

For multi-indices of length i ∈ {2, 3, . . .} follows after i-times recurrence
immediately

F(βi , ... , β1)[G](s, u) =

{
G(i)(s), for β1 = · · · = βi = 0,

0, otherwise.

�
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Now we analyse the effect of Fliess-derivatives on iterated integrals in
order to apply them later to Fliess-expansions.

Lemma 2.26 (Fliess-derivative for iterated integrals)
Let G : [τ, T ] × Um −→ Rn be a function, which is sufficiently many times
differentiable in the first component and fulfils the causality condition. Then
the Fliess-derivative of an iterated integral is

Fα

[
I(b , β) [G]

]
(s, u) =

{
Ib [G] (s, u), for β = α,

0, otherwise,

Fa[Ib [G]](s, u) =


Ic [G] (s, u), for b = (c , a),

Fc[G](s, u), for a = (c , b),

0, otherwise.

Thereby a, b ∈Mm are two arbitrary multi-indices and α, β ∈ {0, . . . , m}.

In the second equation the conditions are abbreviated. With this formula-
tions we mean, that there exists a multi-index c ∈Mm with b = (c , a) and
a = (c , b), respectively.

Proof: For the case α = 0 of the first assertion we apply lemma 2.7 to the
definition 2.22 of Fliess-derivatives:

F0

[
I(b , β) [G]

]
(s, u) = lim

h→0

I(b , β) [G] (s + h, su0)− I(b , β) [G] (s, su0)
h

= lim
h→0

1
h

(∫ s+h

s
Ib [G] (s1, su0) su

β
0 (s1) ds1

)
.

For s1 > s is su
β
0 (s1) = 1 for β = 0 and it vanishes for β > 0, thus

F0

[
I(b , 0) [G]

]
(s, u) = lim

h→0

1
h

(∫ s+h

s
Ib [G] (s1, su0) ds1

)
= Ib [G] (s, su0)

= Ib [G] (s, u).

The last step follows from lemma 2.20. Here the causality concept applies.
We combine to

F0

[
I(b , β) [G]

]
(s, u) =

{
Ib [G] (s, u), for β = 0,

0, otherwise.
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Now we prove the first assertion for α ∈ {1, . . . , m}:

Fα

[
I(b , β) [G]

]
(s, u) = lim

h→0

I(b , β) [G] (s + h, suα)− I(b , β) [G] (s, suα)
h

−F0

[
I(b , β) [G]

]
(s, u)

= lim
h→0

1
h

(∫ s+h

s
Ib [G] (s1, suα) su

β
α (s1) ds1

)
−F0

[
I(b , β) [G]

]
(s, u).

For 0 = β 6= α follows, where su
0
α ≡ 1 by convention:

Fα

[
I(b , 0) [G]

]
(s, u) = lim

h→0

1
h

(∫ s+h

s
Ib [G] (s1, suα) su

0
α (s1) ds1

)
−F0

[
I(b , 0) [G]

]
(s, u)

= Ib [G] (s, suα)− Ib [G] (s, u) = 0,

which follows again from lemma 2.20 with causality. For 0 6= β = α we get,
remembering su

α
α ≡ 1 on [s, T ]:

Fα

[
I(b , α) [G]

]
(s, u) = lim

h→0

1
h

(∫ s+h

s
Ib [G] (s1, suα) su

α
α (s1) ds1

)
−F0

[
I(b , α) [G]

]
(s, u)

= Ib [G] (s, suα)

= Ib [G] (s, u).

And for 0 6= β 6= α follows (su
β
α ≡ 0 on [s, T ]):

Fα

[
I(b , β) [G]

]
(s, u) = lim

h→0

1
h

(∫ s+h

s
Ib [G] (s1, suα) su

β
α (s1) ds1

)
−F0

[
I(b , β) [G]

]
(s, u)

= 0.

After collecting all cases the first assertion is proved:

Fα

[
I(b , β) [G]

]
(s, u) = lim

h→0

1
h

(
I(b , β) [G] (s + h, u)− I(b , β) [G] (s, u)

)
=

{
Ib [G] (s), for β = α,

0, otherwise.
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Now we check the second assertion, which describes the multiple Fliess-
derivatives:

Fa[Ib [G]](s, u) =


Ic [G] (s, u), for b = (c , a),

Fc[G](s, u), for a = (c , b),

0, otherwise.

For the trivial case b = � we get

Fa[I� [G]](s, u) = Fa[G](s, u),

which fulfils the second case of the assertion. For the case b 6= � there exist
b′ ∈ Mm and β ∈ {0, . . . , m} with b = (b′ , β). Now we can give the proof
by induction over the length L := |a|.
Initial step: L = 0, thus a = �: In this trivial case we apply the Fliess-
derivative with empty index, which is the identity by definition:

F�[Ib [G]](s, u) = Ib [G] (s, u).

This comes up to the first case of the assertion.
Induction step: L − 1 → L: Thus there is a multi-index a′ ∈ M and
an index α ∈ {0, . . . , m} with a = (a′ , α). Then we get from the first
assertion

Fa[Ib [G]](s, u) = Fa′Fα

[
I(b′ , β) [G]

]
(s, u)

=

{
Fa′ [Ib′ [G]](s, u), for β = α,

0, otherwise.

Because all the others vanish, we only need to deal with the case β = α.
Therefore it follows from the induction hypothesis:

Fa[Ib [G]](s, u) = Fa′ [Ib′ [G]](s, u) =


Ic [G] (s, u), for b′ = (c , a′),

Fc[G](s, u), for a′ = (c , b′),

0, otherwise.

Last we transform the conditions on the multi-indices to get the conditions
for the extended indices (a , α) and (b , β):

b′ =
(
c , a′

)
⇐⇒

(
b′ , β

)
=
(
c , a′ , α

)
⇐⇒ b = (c , a),

a′ =
(
c , b′

)
⇐⇒

(
a′ , α

)
=
(
c , b′ , β

)
⇐⇒ a = (c , b).

For the case β 6= α the derivative of the iterated integral Fa[Ib [G]] vanishes
and becomes part of the “otherwise”-case of the second assertion. �
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Next we evaluate the Fliess-derivative of iterated integrals at the initial
time τ and get the simple result, that it gives only an nonzero value if the
multi-indices of the derivative and the integral coincide.

Lemma 2.27 (Fliess-derivative for iterated integrals at τ) For arbi-
trary multi-indices a, b ∈Mm we get:

Fa[Ib](τ, u) =

{
1, for a = b,

0, otherwise.

For |a| < |b| follows for arbitrary causal integral kernels G

Fa[Ib [G]](τ, u) = 0.

Proof: For G ≡ 1 lemma 2.26 becomes

Fa[Ib](s, u) =


Ic(s, u), for b = (c , a),

Fc[1](s, u), for a = (c , b),

0, otherwise.

In particular follows with s = τ :

Ic(τ, u) =

{
1, for c = �,

0, otherwise,
and Fc[1](τ, u) =

{
1, for c = �,

0, otherwise.

The conditions c = � and a = b are equivalent. That implies the first
assertion. For the second assertion with |a| < |b| we use again lemma 2.26

Fa[Ib [G]](τ, u) =

{
Ic [G] (τ, u), for b = (c , a),

0, otherwise,

where |c| > 0. Lemma 2.21 yields to

Fa[Ib [G]](τ, u) = 0.

�

We defined the Fliess-derivative and discussed its effect on iterated inte-
grals and Fliess-expansions. This allows us now to prove the uniqueness of
the coefficients of finite Fliess-expansions.
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Theorem 2.28 (uniqueness of Fliess-expansions)
Let y, z : [τ, T ]×Um −→ Rn be functions with a given Fliess-expansion
of order p and denote their coefficients by (y)b and (z)b, respectively, for
|b| ≤ p. Then the following implication holds:

y(s, u) = z(s, u) ∀s∈[ τ,T ],u∈Um =⇒ (y)b = (z)b ∀b∈Mm,|b|≤p.

Proof: We define the new function µ(t, u) := y(t, u) − z(t, u) ≡ 0. There
exist causal functions yb and zb for all b ∈Mp+1

m as kernels of the remainder
integrals of y and z. We insert the Fliess-expansion into the definition of µ:

µ(s, u) =
p∑

i=0

∑
b∈Mi

m

(y)b Ib(s, u) +
∑

b∈Mp+1
m

Ib [yb] (s, u)

−
p∑

i=0

∑
b∈Mi

m

(z)b Ib(s, u)−
∑

b∈Mp+1
m

Ib [zb] (s, u).

By applying lemma 2.10 we subtract the iterated integrals and get:

µ(s, u) =
p∑

i=0

∑
b∈Mi

m

((y)b − (z)b) Ib(s, u) +
∑

b∈Mp+1
m

Ib [yb − zb] (s, u).

Thereby the functions yb − zb, for all b ∈ Mp+1
m , are causal. For every

c ∈ Mm with |c| ≤ p we apply the Fliess-derivative to µ and evaluate at
s = τ . We recall the linearity of the operator Fc (lemma 2.24).

Fc[µ](τ, u) =
p∑

i=0

∑
b∈Mi

m

((y)b − (z)b)Fc[Ib](τ, u)

+
∑

b∈Mp+1
m

Fc[Ib [yb − zb]](τ, u).

With Lemma 2.27 we get

Fc[µ](τ, u) = (y)c − (z)c .

From linearity of Fc (lemma 2.24) and from the assumption µ ≡ 0 we know

Fc[µ](τ, u) = 0,

what is equivalent to (y)c = (z)c. �
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The uniqueness of Fliess-expansions is one of basic tools in this work. It
allows us to compare the Fliess-expansion for the derivative of the solution
of the control system with the right hand side computed out of the solution’s
Fliess-expansion coefficient-wise. This will give us the possibility to rewrite
the system as conditions on the coefficients.

2.6 Operations on Fliess-expansions

For solving problems we are interested in computing Fliess-expansions for
functions of Fliess-expansions. We consider a function f : [τ, T ]×Rn −→ Rn

and a given Fliess-expansion x of order p ∈ N. Then we assume the existence
of the Fliess-expansion of f(·, x) of order p.

Therefore we need to know how f is looking like. If for instance f is
a composition of basic operations on known Fliess-expansions, we need to
define the basic operations for Fliess-expansions.

In this section we will give the Fliess-expansion for some basic functions
like constants or only time dependent sufficiently often differentiable func-
tions. Then we will learn how to perform the basic operations addition,
multiplication and divison on Fliess-expansions. If the Taylor-expansion
of order p for the function f is known we will learn how to compute the
Fliess-expansion for f(·, x) and prove its existence.

2.6.1 Special Fliess-expansions

To assemble f out of basic operations it is important to know the Fliess-
expansions of “simple functions”. Without proof we point out the existence
of Fliess-expansions for the following expressions. The constant µ ∈ Rn has
the Fliess-coefficients

(µ)b =

{
µ, b = �,

0, otherwise,

for all b ∈Mm, |b| ≤ p. Its remainder vanishes. The time t ∈ [τ, T ] has the
Fliess-coefficients

(t)b =


τ, b = �,

1, b = (0),

0, otherwise,

for all b ∈ Mm, |b| ≤ p, which can be easily proved by writing down the
Fliess-expansion for an arbitrary order p ∈ N. Of course, its remainder



2.6. OPERATIONS ON FLIESS-EXPANSIONS 53

vanishes, too. For a given Taylor-expansion of a (p + 1)-times differentiable
function g : [τ, T ] −→ Rn we get the corresponding Fliess-expansion by

(g(t))b =

{
g(|b|)(τ)

i! , b = (0 , . . . , 0),

0, otherwise,

for all b ∈ Mm, |b| ≤ p, which can again be easily proved by writing down
the Fliess-expansion for an arbitrary order p ∈ N. As remainder term we
get

I(0 , . . . , 0)︸ ︷︷ ︸
|·|=p+1

[
g(p+1)

]
(t, u),

where g(p+1) is independent of the vector of control functions u and in par-
ticular causal.

2.6.2 Addition

The sum of two Fliess-expansions is obviously obtained by adding the co-
efficients componentwise. Consider the Fliess-expansions y and z of order
p.

y(t) =
p∑

i=0

∑
b∈Mi

m

(y)b Ib(t) +
∑

b∈Mp+1
m

Ib [yb] (t)

z(t) =
p∑

i=0

∑
b∈Mi

m

(z)b Ib(t) +
∑

b∈Mp+1
m

Ib [zb] (t)

We prove the existence and compute the coefficients of

(y + z)(t) = y(t) + z(t) =
p∑

i=0

∑
b∈Mi

m

(y + z)b Ib(t) +
∑

b∈Mp+1
m

Ib [[y + z]b] (t)

by applying lemma 2.10 to every iterated integral in particular in the sum
of the remainder terms. Then we get

(y + z)b = (y)b + (z)b , for all b ∈Mm, |b| ≤ p.

2.6.3 Multiplication

For the computation of the product of Fliess-expansions we first analyse
how iterated integrals can be multiplied. Therefore we formulate a lemma,
which shows for the product of iterated integrals a behaviour similar to the
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definition 1.16 of the shuffle product of their multi-indices. Depending on
the type of the integral kernels and on the iteration order of the involved
integrals, we then develop three theorems, which tell us how to multiply
iterated integrals.

Lemma 2.29 For the multiplication of iterated integrals for arbitrary multi-
indices b, c ∈Mm, indices β, γ ∈ {0, . . . , m} and functions G, H : [τ, T ]×
Um −→ Rn we have

I(b , β) [G] (t, u) · I(c , γ) [H] (t, u) =

= Iβ

[
Ib [G] · I(c , γ) [H]

]
(t, u) + Iγ

[
I(b , β) [G] · Ic [H]

]
(t, u).

Proof: We apply lemma 2.7 to both factors and nest the right into the left
integral

I(b , β) [G] (t, u) · I(c , γ) [H] (t, u) =

=
∫ t

τ
Ib [G] (s1, u)uβ(s1) ds1 ·

∫ t

τ
Ic [H] (s2, u)uγ(s2) ds2

=
∫ t

τ

∫ t

τ
Ib [G] (s1, u) · Ic [H] (s2, u)uγ(s2)uβ(s1) ds2 ds1

=
∫ t

τ

∫ s1

τ
Ib [G] (s1, u) · Ic [H] (s2, u)uγ(s2)uβ(s1) ds2 ds1

+
∫ t

τ

∫ t

s1

Ib [G] (s1, u) · Ic [H] (s2, u)uγ(s2)uβ(s1) ds2 ds1.

Now we interchange s1 and s2 in the second integral:

=
∫ t

τ

∫ s1

τ
Ib [G] (s1, u) · Ic [H] (s2, u)uγ(s2)uβ(s1) ds2 ds1

+
∫ t

τ

∫ s1

τ
Ib [G] (s2, u) · Ic [H] (s1, u)uγ(s1)uβ(s2) ds2 ds1

=
∫ t

τ
Ib [G] (s1, u)

∫ s1

τ
Ic [H] (s2, u)uγ(s2) ds2u

β(s1) ds1

+
∫ t

τ
Ic [H] (s1, u)

∫ s1

τ
Ib [G] (s2, u)uβ(s2) ds2u

γ(s1) ds1.

Then we repeatedly apply lemma 2.7 again

=
∫ t

τ
Ib [G] (s1, u) · I(c , γ) [H] (s1, u)uβ(s1) ds1

+
∫ t

τ
Ic [H] (s1, u) · I(b , β) [G] (s1, u)uγ(s1) ds1
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= Iβ

[
Ib [G] · I(c , γ) [H]

]
(t, u) + Iγ

[
I(b , β) [G] · Ic [H]

]
(t, u).

�

For iterated integrals with constant integral kernels we get exactly the
shuffle product of their multi-indices. That leads us directly to the next
theorem.

Theorem 2.30 (multiplication of iterated integrals) For arbi-
trary multi-indices b, c ∈ Mm the iterated integrals are multiplied like
the shuffle-product:

Ib(t, u) · Ic(t, u) = Ib c(t, u).

Proof: We prove by induction over the common length L := |b|+ |c| of the
multi-indices.
Initial step L = 0:

I�(t, u) · I�(t, u) = 1 = I� �(t, u).

Induction step L − 1 → L, for all L > 0: First we analyse the trivial
case b = � and |c| = L:

I�(t, u) · Ic(t, u) = Ic(t, u) = Ic �(t, u).

The same applies for the opposite case |b| = L and c = �. In the remaining
case there are multi-indices b′, c′ ∈Mm and indices β, γ ∈ {0, . . . , m} with
b = (b′ , β) and c = (c′ , γ). From lemma 2.29 follows with G = H ≡ 1:

I(b′ , β)(t, u) · I(c′ , γ)(t, u) =

=
∫ t

τ
Ib′(s1, u) · I(c′ , γ)(s1, u) uβ(s1) ds1

+
∫ t

τ
I(b′ , β)(s2, u) · Ic′(s2, u) uγ(s2) ds2.

With |(b′ , β)|+|c| = |b′|+|(c′ , γ)| = L−1 we apply the induction hypothesis
and get

=
∫ t

τ
Ib′ (c′ , γ)(s1, u) uβ(s1) ds1 +

∫ t

τ
I(b′ , β) c′(s2, u) uγ(s2) ds2
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= I(b′ (c′ , γ) , β)(t, u) + I((b′ , β) c′ , γ)(t, u)

= I(b′ , β) (c′ , γ)(t, u).

�

For non-constant integral kernels of the iterated integrals we can formu-
late at least the following qualitative theorem:

Theorem 2.31 (multiplication of iterated integrals) For all
b, c ∈ Mm, all causal functions G, H : [τ, T ] × Um −→ Rn and all
d ∈ Mmin {|b|, |c|}

m there exist causal functions zd : [τ, T ] × Um −→ Rn,
such that the product of two iterated integrals can be represented as a
sum of iterated integrals:

Ib [G] (t, u) · Ic [H] (t, u) =
∑

d∈Mmin {|b|, |c|}
m

Id [zd] (t, u).

Proof: We prove by induction over the common length of the multi-indices
L := |b|+ |c|.
Initial step L = 0, thus b = � = c: With z� := G ·H there is

I� [G] (t, u) · I� [H] (t, u) = G(t, u) ·H(t, u) = I� [z�] (t, u).

Induction step L− 1 → L, or all L > 0: First we analyse the case b = �
and |c| = L:

I� [G] (t, u) · Ic [H] (t, u) = G(t, u) · Ic [H] (t, u) = I� [z�] (t, u),

where z� := G · Ic [H]. The same applies for the symmetric case c = �
and |b| = L. Otherwise there exist multi-indices b′, c′ ∈ Mm and indices
β, γ ∈ {0, . . . , m} with b = (b′ , β) and c = (c′ , γ). From lemma 2.29
follows:

I(b′ , β) [G] (t, u) · I(c′ , γ) [H] (t, u) =

= Iβ

[
Ib′ [G] · I(c′ , γ) [H]

]
(t, u) + Iγ

[
I(b′ , β) [G] · Ic′ [H]

]
(t, u).
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By the induction hypothesis there exist causal functions Ĝd, for all d ∈
Mmin {|b|−1, |c|}

m and Ĥe, for all e ∈Mmin {|b|, |c|−1}
m with

=
∑

d∈Mmin {|b|−1, |c|}
m

Iβ

[
Id

[
Ĝd

]]
(t, u) +

∑
e∈Mmin {|b|, |c|−1}

m

Iγ

[
Ie

[
Ĥe

]]
(t, u)

=
∑

d∈Mmin {|b|−1, |c|}
m

I(d , β)

[
Ĝd

]
(t, u) +

∑
e∈Mmin {|b|, |c|−1}

m

I(e , γ)

[
Ĥe

]
(t, u).

Now we distinguish three cases by the relative length of the multi-indices b

and c. First we analyse the case |b| = |c|. Then the lengths of the multi-
indices in both sums are all equal, namely |e| = |d| = min {|b| − 1, |c|} =
|b|− 1. Now we define for all f ′ ∈M|b|−1

m and all ϑ ∈ {0, . . . , m} the causal
function

z(f ′ , ϑ) :=


Ĝf ′ + Ĥf ′ , for β = ϑ = γ,

Ĝf ′ , for β = ϑ 6= γ,

Ĥf ′ , for β 6= ϑ = γ,

0, for β 6= ϑ 6= γ.

Then we get immediately the assertion:

Ib [G] (t, u) · Ic [H] (t, u) =
∑

f∈M|b|
m

If [zf ] (t, u).

Next we deal with the case |b| < |c|. There is min {|b| − 1, |c|} = |b| − 1 and
min {|b|, |c| − 1} = |b| ≥ 1. Thus the iterated integrals of the first summand
have the shorter multi-index length, namely |b|. Then we get for the second
summand by using lemma 2.11∑

e∈M|b|
m

I(e , γ)

[
Ĥe

]
(t, u) =

∑
e′∈M|b|−1

m

m∑
δ=0

I(δ , e′ , γ)

[
Ĥ(δ , e′)

]
(t, u)

=
∑

e′∈M|b|−1
m

I(e′ , γ)

[
m∑

δ=0

Iδ

[
Ĥ(δ , e′)

]]
(t, u).

So we created a sum of iterated integrals with multi-index length |b| similar
to the first summand. Then we define again for all multi-indices f ′ ∈M|b|−1

m

and all indices ϑ ∈ {0, . . . , m} the causal function

z(f ′ , ϑ) :=



Ĝf ′ +
∑m

δ=0 Iδ

[
Ĥ(δ , f ′)

]
, for β = ϑ = γ,

Ĝf ′ , for β = ϑ 6= γ,∑m
δ=0 Iδ

[
Ĥ(δ , f ′)

]
, for β 6= ϑ = γ,

0, for β 6= ϑ 6= γ,
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and add up both summands

Ib [G] (t, u) · Ic [H] (t, u) =
∑

f∈M|b|
m

If [zf ] (t, u).

The third case with |b| > |c| runs similar. �

Next we will formulate another theorem for the multiplication of iterated
integrals. We assume one integral kernel to be an arbitrary causal function
and the other one to be constant. Theorem 2.31 gives as a special case
already an answer of “low order”. The next theorem formulates a “higher
order” conclusion.

Theorem 2.32 (multiplication of iterated integrals) For all
multi-indices b, c ∈Mm, all causal functions G : [τ, T ]×Um −→ Rn and
all multi-indices d ∈M|c|

m exist causal functions zd : [τ, T ]×Um −→ Rn,
such that the product of two iterated integrals with one constant integral
kernel can be transformed into a sum:

Ib(t, u) · Ic [G] (t, u) =
∑

d∈M|c|
m

Id [zd] (t, u).

Proof: We prove by induction over the common length of the multi-indices
L := |b|+ |c|.
Initial step L = 0, thus b = � = c: With z� := G we get

I�(t, u) · I� [G] (t, u) = G(t, u) = I� [z�] (t, u).

Induction step L−1 → L, for all L > 0: First we analyse the case b = �
and |c| = L. We get

I�(t, u) · Ic [G] (t, u) = Ic [G] (t, u) = Ic [zc] (t, u),

where zc := G. For c = � and |b| = L we get

Ib(t, u) · I� [G] (t, u) = Ib(t, u) ·G(t, u) = I� [z�] (t, u),

with z� := Ib(t, u) ·G.
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Otherwise there are multi-indices b′, c′ ∈ M and indices β, γ ∈ {0, . . . , m}
with b = (b′ , β) and c = (c′ , γ). We get from lemma 2.29

I(b′ , β)(t, u) · I(c′ , γ) [G] (t, u) =

= Iβ

[
Ib′ · I(c′ , γ) [G]

]
(t, u) + Iγ

[
I(b′ , β) · Ic′ [G]

]
(t, u).

Applying the induction hypothesis there exist causal functions Ĝd, d ∈M|c|
m

and Ĥe, e ∈M|c|−1
m for replacing products by sums

=
∑

d∈M|c|
m

Iβ

[
Id

[
Ĝd

]]
(t, u) +

∑
e∈M|c|−1

m

Iγ

[
Ie

[
Ĥe

]]
(t, u)

=
∑

d′∈M|c|−1
m

m∑
δ=0

Iβ

[
I(δ , d′)

[
Ĝ(δ , d′)

]]
(t, u) +

∑
e∈M|c|−1

m

Iγ

[
Ie

[
Ĥe

]]
(t, u)

=
∑

d′∈M|c|−1
m

I(d′ , β)

[
m∑

δ=0

Iδ

[
Ĝ(δ , d′)

]]
(t, u) +

∑
e∈M|c|−1

m

I(e , γ)

[
Ĥe

]
(t, u).

Next we define for all multi-indices f ′ ∈ M|c|−1
m and all integer numbers

ϑ ∈ {0, . . . , m} the causal function

z(f ′ , ϑ) :=



∑m
δ=0 Iδ

[
Ĝ(δ , f ′)

]
+ Ĥf ′ , for β = ϑ = γ,∑m

δ=0 Iδ

[
Ĝ(δ , f ′)

]
, for β = ϑ 6= γ,

Ĥf ′ , for β 6= ϑ = γ,

0, for β 6= ϑ 6= γ.

Then we get the assertion:

Ib(t, u) · Ic [G] (t, u) =
∑

f∈M|c|
m

If [zf ] (t, u).

�

Now we know how to multiply iterated integrals with causal and with
constant integral kernels and also how the mixed multiplications can be
represented. For the multiplication with non-constant kernels we are only
interested in the existence of the representation of the sum of “high” order.

Next we will use the last three theorems to multiply complete Fliess-
expansions including their remainder terms. We consider two functions
y, z ∈ [τ, T ] × Um −→ Rn. Their Fliess-expansions of order p are assumed
to exist, that is there exist coefficients (y)b , (z)b ∈ Rn, for all b ∈ Mm with
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|b| ≤ p, and there exist causal functions yb, zb ∈ [τ, T ]× Um −→ Rn, for all
b ∈Mp+1

m , such that

y(t, u) =
p∑

i=0

∑
b∈Mi

m

(y)b Ib(t, u) +
∑

b∈Mp+1
m

Ib [yb] (t, u),

z(t, u) =
p∑

i=0

∑
b∈Mi

m

(z)b Ib(t, u) +
∑

b∈Mp+1
m

Ib [zb] (t, u).

Theorem 2.33 (multiplication of Fliess expansions) There exists
a Fliess-expansion for the product function yz : [τ, T ]×Um −→ Rn. Its
coefficients are

(yz)b =
|b|∑

k=0

C(|b|,k)∑
i=1

(y)K(b,k,i) (z)bK(b,k,i)
, (2.12)

for all b ∈Mm.

Proof: We multiply the two Fliess-expansions for y and z. For simpler
notation we define

R1(t, u) :=
2p∑

i=p+1

p∑
k=i−p

∑
b∈Mi−k

m

∑
c∈Mk

m

(y)b (z)c Ib(t, u) Ic(t, u),

R2(t, u) :=
p∑

i=0

∑
b∈Mi

m

∑
c∈Mp+1

m

(y)b Ib(t, u) Ic [zc] (t, u),

R3(t, u) :=
p∑

i=0

∑
c∈Mi

m

∑
b∈Mp+1

m

(z)c Ic(t, u) Ib [yb] (t, u),

R4(t, u) :=
∑

b∈Mp+1
m

∑
c∈Mp+1

m

Ib [yb] (t, u) Ic [zc] (t, u).

So we can write down the product:

y(t, u)z(t, u) =
p∑

i=0

p∑
j=0

∑
b∈Mi

m

∑
c∈Mj

m

(y)b (z)c Ib(t, u) Ic(t, u)+

+ R2(t, u) + R3(t, u) + R4(t, u).
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We apply a Cauchy-like product to the two outer sums and replace the
product of the iterated integrals by the shuffle-product of their multi-indices
(cp. theorem 2.30)

=
p∑

i=0

i∑
k=0

∑
b∈Mi−k

m

∑
c∈Mk

m

(y)b (z)c Ib c(t, u) + R1(t, u)+

+ R2(t, u) + R3(t, u) + R4(t, u).

First we analyse only the first sum:

p∑
i=0

i∑
k=0

∑
b∈Mk

m

∑
c∈Mi−k

m

(y)b (z)c Ib c(t, u) =

=
p∑

i=0

∑
d∈Mi

m

i∑
k=0

(y)Lk(d) (z)Ri−k(d) ILk(d) Ri−k(d)(t, u),

where the decomposition operators L and R from definition 1.13 are used.
Then we insert the explicit version for the shuffle-product (cp. theorem 1.25):

=
p∑

i=0

∑
d∈Mi

m

i∑
k=0

C(i,k)∑
j=1

(y)Lk(d) (z)Ri−k(d) IA(Lk(d),Ri−k(d),j)(t, u).

We resort the sums using lemma 1.22 and the properties

Lk

((
K (d, k, j) , K̂ (d, k, j)

))
=K (d, k, j)

R|d|−k

((
K (d, k, j) , K̂ (d, k, j)

))
=K̂ (d, k, j)

and get rid of the L and R operators:

=
p∑

i=0

i∑
k=0

C(i,k)∑
j=1

∑
d∈Mi

m

(y)K(d,k,j) (z)bK(d,k,j)
IA(K(d,k,j), bK(d,k,j),j)(t, u).

Then it follows from theorem 1.26 and another reordering of the sums

=
p∑

i=0

∑
d∈Mi

m

i∑
k=0

C(i,k)∑
j=1

(y)K(d,k,j) (z)bK(d,k,j)
Id(t, u)

=
p∑

i=0

∑
d∈Mi

m

(yz)d Id(t, u),
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with (yz)d :=
|d|∑

k=0

C(|d|,k)∑
j=1

(y)K(d,k,j) (z)bK(d,k,j)
.

This is already the recursion formula for the coefficients (yz)d, |d| ≤ p. So
it remains to prove that R1 + R2 + R3 + R4 represents a remainder of a
Fliess-expansion. We have:

R1(t, u) =
2p∑

i=p+1

p∑
k=i−p

∑
b∈Mi−k

m

∑
c∈Mk

m

(y)b (z)c Ib(t, u) Ic(t, u) =

As we did above we get

=
2p∑

i=p+1

∑
d∈Mi

m

p∑
k=i−p

C(i,k)∑
j=1

(y)K(d,k,j) (z)bK(d,k,j)
Id(t, u)

=
2p∑

i=p+1

∑
e∈Mp+1

m

∑
f∈Mi−(p+1)

m

p∑
k=i−p

C(i,k)∑
j=1

(y)K((f , e),k,j) (z)bK((f , e),k,j)
I(f , e)(t, u).

From lemma 2.11 follows

=
∑

e∈Mp+1
m

2p∑
i=p+1

∑
f∈Mi−(p+1)

m

p∑
k=i−p

C(i,k)∑
j=1

(y)K((f , e),k,j) (z)bK((f , e),k,j)
Ie [If ] (t, u)

=
∑

e∈Mp+1
m

Ie

[
C1

e

]
(t, u),

with C1
e =

2p∑
i=p+1

∑
f∈Mi−(p+1)

m

p∑
k=i−p

C(i,k)∑
j=1

(y)K((f , e),k,j) (z)bK((f , e),k,j)
If .

The causality of If carries forward to C1
e .

We continue with R2:

R2(t, u) =
p∑

i=0

∑
b∈Mi

m

∑
c∈Mp+1

m

(y)b Ib(t, u) Ic [zc] (t, u)

From theorem 2.32 follows the existence of causal functions Ĉ2
e ∈ [τ, T ] ×

Um −→ Rn, e ∈Mp+1
m with

=
p∑

i=0

∑
b∈Mi

m

∑
c∈Mp+1

m

(y)b

∑
e∈Mp+1

m

Ie

[
Ĉ2

e

]
(t, u)



2.6. OPERATIONS ON FLIESS-EXPANSIONS 63

=
∑

e∈Mp+1
m

Ie

 p∑
i=0

∑
b∈Mi

m

∑
c∈Mp+1

m

(y)b Ĉ2
e

 (t, u)

=
∑

e∈Mp+1
m

Ie

[
C2

e

]
(t, u),

with C2
e =

p∑
i=0

∑
b∈Mi

m

∑
c∈Mp+1

m

(y)b Ĉ2
e

= (m + 1)(p+1)
p∑

i=0

∑
b∈Mi

m

(y)b Ĉ2
e .

The functions C2
e [τ, T ]× Um −→ Rn are causal. Next we analyse R3:

R3(t, u) =
p∑

i=0

∑
c∈Mi

m

∑
b∈Mp+1

m

(y)c Ic(t, u) Ib [zb] (t, u).

From theorem 2.32 follows the existence of causal functions Ĉ3
e ∈ [τ, T ] ×

Um −→ Rn, e ∈Mp+1
m with

=
p∑

i=0

∑
b∈Mi

m

∑
c∈Mp+1

m

(y)b

∑
e∈Mp+1

m

Ie

[
Ĉ3

e

]
(t, u)

=
∑

e∈Mp+1
m

Ie

 p∑
i=0

∑
b∈Mi

m

∑
c∈Mp+1

m

(y)b Ĉ3
e

 (t, u)

=
∑

e∈Mp+1
m

Ie

[
C3

e

]
(t, u),

with C3
e =

p∑
i=0

∑
b∈Mi

m

∑
c∈Mp+1

m

(y)b Ĉ3
e

= (m + 1)(p+1)
p∑

i=0

∑
b∈Mi

m

(y)b Ĉ3
e .

The functions C3
e [τ, T ]× Um −→ Rn are causal. Next we analyse R4:

R4(t, u) :=
∑

b∈Mp+1
m

∑
c∈Mp+1

m

Ib [yb] (t, u) Ic [zc] (t, u).

From theorem 2.31 follows the existence of causal functions Ĉ4
e ∈ [τ, T ] ×

Um −→ Rn with

=
∑

b∈Mp+1
m

∑
c∈Mp+1

m

∑
e∈Mp+1

m

Ie

[
Ĉ4

e

]
(t, u)
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=
∑

e∈Mp+1
m

Ie

 ∑
b∈Mp+1

m

∑
c∈Mp+1

m

Ĉ4
e

 (t, u)

=
∑

e∈Mp+1
m

Ie

[
C4

e

]
(t, u),

with C4
e = (m + 1)2(p+1)Ĉ4

e .

The functions C4
e [τ, T ] × Um −→ Rn are causal. Now we sum up the four

remainder terms and get with Ce :=
∑4

i=0 Ci
e, for all e ∈Mp+1

m ,

R1(t, u) + R2(t, u) + R3(t, u) + R4(t, u) =
∑

e∈Mp+1
m

Ie [Ce] (t, u),

with Ce ∈ [τ, T ]× Um −→ Rn are causal functions. So the product yz can
be represented as a Fliess-expansion of order p (cp. definition 2.16). �

2.6.4 Taylor-expansions of Fliess-expansions

The ability to multiply Fliess-expansions gives us the possibility to insert a
Fliess-expansion into a Taylor-expansion. For simplicity we will only show
the one-dimensional case.

Consider a function g : R → R, whose Taylor-expansion we assume to
be known.

g(y) =
p∑

i=0

(g)i (y − y0)i + Rp+1
g (y) (2.13)

with Rp+1
g (y) :=

∫ y

y0

∫ y1

y0

· · ·
∫ yp

y0

g(p+1)(yp+1) dyp+1 · · · dy2 dy1.

Let y = y(t, u) be the Fliess-expansion of order p, which we insert into g.
Therefore we choose y0 = y(τ, u). We will show that the result g(y) can be
represented as Fliess-expansion of order p. We know from the multiplication
(cp. theorem 2.33) that (y − y0)i, for i = 0, . . . , p, are Fliess-expansions of
order p. We compute the coefficients of the result by using the multiplication
and addition formulas. The part that is left to prove is the representation
of Rp+1

g (y) as a Fliess-remainder. Therefore we first formulate a technical
lemma.

Lemma 2.34 Let f be a causal function of order i, that is there exist for
all b ∈Mi

m causal functions ηb, such that

f(t, u) =
∑

b∈Mi
m

Ib [ηb] (t, u),
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and y is a Fliess-expansion of order p. Then there exist for all c ∈ Mi+1
m

causal functions ξc : [τ, T ]× Um → R with∫ t

τ
f(s, u)ẏ(t, u) ds =

∑
c∈Mi+1

m

Ic [ξc] (t, u).

Proof: The time-derivative of the Fliess-expansion y is

ẏ(t, u) =
p−1∑
j=0

∑
d∈Mj

m

m∑
γ=0

(y)(d , γ) Id(t, u)uγ(t)

+
∑

d∈Mp
m

m∑
γ=0

Id

[
y(d , γ)

]
(t, u)uγ(t).

We multiply the expansion for ẏ with the sum-representation of f . Thereby
meet the iterated integrals Ib [ηb] and Id in the first summand, where |b| = i

and |d| = j ≥ 0. We multiply them using lemma 2.32. Then there exist
causal functions ζe for e ∈Mi

m, such that

Ib [ηb] (t, u) Id(t, u) =
∑

e∈Mi
m

Ie [ζe] (t, u).

The ζe depend on b, d and γ. The second summand multiplies the integrals
Ib [ηb] and Id

[
y(d , γ)

]
, with |b| = i ≤ p and |d| = p. Then lemma 2.31

guarantees us the existence of causal functions ϑe for e ∈Mi
m, such that

Ib [ηb] (t, u) Id

[
y(d , γ)

]
(t, u) =

∑
e∈Mi

m

Ie [ϑe] (t, u).

The functions ϑe again depend on the indices b, d and γ. We execute the
summation over j (only in the first summand), b and d. Then there exist
causal functions γζe and γϑe, such that the integral can be represented as∫ t

τ
f(s, u)ẏ(t, u) ds =

m∑
γ=0

∑
e∈Mi

m

∫ t

τ
Ie

[
γζe

]
(s, u)uγ(s, u) ds

+
m∑

γ=0

∑
e∈Mi

m

∫ t

τ
Ie

[
γϑe

]
(s, u)uγ(s, u) ds

=
∑

e∈Mi
m

m∑
γ=0

∫ t

τ
Ie

[
γζe + γϑe

]
(s, u)uγ(s, u) ds

=
∑

e∈Mi
m

m∑
γ=0

I(e , γ)

[
γζe + γϑe

]
(t, u)

=
∑

e∈Mi+1
m

Ie [ζe + ϑe] (t, u),
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with the causal integral kernel ζe + ϑe. �

The next lemma asserts, that the remainder of the Taylor-expansion
results in the remainder of a Fliess-expansion with the same order.

Lemma 2.35 For the remainder term Rp+1
g exist causal functions ξb, b ∈

Mp+1
m , such that

Rp+1
g (y(t, u)) =

∑
b∈Mp+1

m

Ib [ξb] (t, u).

Proof: We deduce from the definition of the remainder term (equation 2.13):

Rp+1
g (y(t, u)) =

=
∫ y(t,u)

y0

∫ y1

y0

· · ·
∫ yp

y0

g(p+1)(yp+1) dyp+1 · · · dy2 dy1

=
∫ t

τ

∫ y(s1,u)

y0

· · ·
∫ yp

y0

g(p+1)(yp+1) dyp+1 · · · dy2 ẏ(s1, u) ds1

...

=
∫ t

τ

∫ s1

τ
· · ·
∫ sp

τ
g(p+1)(y(sp+1, u)) ẏ(sp+1, u) dsp+1 . . .

. . . ẏ(s2, u) ds2 ẏ(s1, u) ds1.

Thus it is a (p+1)-times integral of the causal function g(p+1)(y) multiplied
in every integration with the derivative of the Fliess-expansion of y of order
p. The assertion follows from the multiple application of lemma 2.34. �

The n-dimensional Taylor-expansion has the same structure. It consists
of powers of the components of (y − (y)�) and its remainder can be shown
to be a Fliess-remainder like in the one-dimensional case. Its proof is very
voluminous and gives no new ideas, hence we do not perform it here.

2.6.5 Division

For the component-wise division of Fliess-expansion we first verify the ex-
istence of the quotient. Then we develop a recursion formula out of the
product rule (theorem. 2.33)

We consider two functions y, z ∈ [τ, T ]× Um −→ Rn, where z(t, u) 6= 0
for all t ∈ [τ, T ] and all u ∈ Um. We assume the existence of their Fliess-
expansions of order p.

y(t) =
p∑

i=0

∑
b∈Mi

m

(y)b Ib(t, u) + Rp+1
y (t, u)
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z(t) =
p∑

i=0

∑
b∈Mi

m

(z)b Ib(t, u) + Rp+1
z (t, u).

For the function 1
z we know from analysis the Taylor expansion of order

p at the point z0 := (z)�:

1
z

=
p∑

i=0

(−1)i

zi+1
0

(z − z0)i + Rp+1
1
z

(z).

We insert the Fliess-expansion of z into the Taylor expansion and get, as sec-
tion 2.6.4 explains, again a Fliess-expansion for 1

z . The remainder Rp+1
1
z

(z)

turns together with the remainders from the powers into a Fliess remainder
(cp. lemma 2.35). So the coefficients of the product

y

z
(t) =

y(t)
z(t)

=
p∑

i=0

∑
b∈Mi

m

(y

z

)
b
Ib(t) + Rp+1

y
z

(t, u)

can be computed with the product rule for the powers (z− z0)i, i = 0, . . . , p

and the multiplication y ∗ 1
z , which leads again to Fliess-expansion. After

we have proved the existence of the Fliess-expansion of order p for y
z we now

give a recursion formula for its coefficients.

Theorem 2.36 (division of Fliess expansions) The coefficients of
the quotient of two Fliess-expansions y and z can be computed with the
recursion formula:

(y

z

)
b
=

1
(z)�

(y)b −
|b|−1∑
k=0

C(|b|,k)∑
i=1

(y

z

)
K(b,k,i)

(z)bK(b,k,i)



Proof: We formulate the product rule (theorem 2.33) for y = y
z ∗ z and

solve it for
(y

z

)
b
.

(y)b =
|b|∑

k=0

C(|b|,k)∑
i=1

(y

z

)
K(b,k,i)

(z)bK(b,k,i)

=
(y

z

)
K(b,|b|,l)

(z)bK(b,|b|,l) +
|b|−1∑
k=0

C(|b|,k)∑
i=1

(y

z

)
K(b,k,i)

(z)bK(b,k,i)
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=
(y

z

)
b
(z)� +

|b|−1∑
k=0

C(|b|,k)∑
i=1

(y

z

)
K(b,k,i)

(z)bK(b,k,i)

We solve for
(y

z

)
b

and get the assertion. �



Chapter 3

Numerical Algorithm

In this chapter we formulate the numerical algorithm to enclose all solutions
of the initial value problem and the initial interval problem on a given time
interval. The arithmetic operations we defined for Fliess-expansions in the
last chapter enable us to construct another Fliess-expansion for the solution
out of the systems right hand side. The uniqueness allows us to compare
their coefficients and we get conditional equations for them. This gives a
concept of automatic differentiating for Lie-derivatives.

Next we will develop the algorithm to find an enclosure for the remain-
der term. This is the first time we take into account the control functions.
As a natural condition we need to restrict their ranges. For the remainder
computation we need an a priori enclosure for all solution in the time inter-
val. We will give a criterion to identify an interval as an enclosure for all
solutions.

Then we interprete the initial interval as an uncertainty in the initial
condition and linearise the algorithm for computing the coefficients of the
soultion to get the error propagation. The remainder’s enclosure can be
easily extended to all initial values. At the end of this section we formulate
the algorithm and give a one dimensional example to illustrate all intervals,
which add up to the enclosure of all solutions for all control functions in the
given range.

3.1 Coefficients for the Solution

We know now that the solution λ(·, τ, x0, u) can be represented as a Fliess-
expansion of arbitrary order. As well the Fliess-expansion of the right hand
side vector fields fα (·, λ(·, τ, x0, u)) can be computed out of λ. With the
integral equation we can construct another Fliess-expansion for the solution.

69
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With the uniqueness of Fliess-expansions we can compare the coefficients
and get recursion formulas for the solution.

Theorem 3.1 (differential conditions for Fliess-expansions)
The coefficients of the Fliess-expansions of the solution λ and the
right hand sides fα(·, λ), α ∈ {1, . . . , m} fulfil the following recursion
formulas:

(λ)� = x(τ),

(λ)(b , β) =

{
0, for β = 0(
fβ
)
b
, for β ∈ {1, . . . , m},

for all b ∈Mm, with |b| ≤ p− 1 and β ∈ {0, . . . , m}.

Proof: We prove theorem 3.1 first for a Fliess-expansion for the solution
of order 0. It coincides with the integral representation of the control sys-
tem 1.1.

λ = (λ)� +
m∑

α=0

Iα [λα], (3.1)

where from theorem 2.12 and equation (2.8) follows for p = 0:

(λ)� = λ(τ, u) = x0

λ(t, u)α =

{
0, for α = 0,

fα (t, λ(t, u)) , for α ∈ {1, . . . , m}.

Next we insert this coefficients and the Fliess-expansion of order p for the
vector fields fα, α ∈ {1, . . . , m}, into equation (3.1). They exist by the-
orem 2.13. We define f0 ≡ 0 and all coefficients

(
f0
)
b

= 0, for b ∈ Mm,
|b| ≤ p, and f0

b ≡ 0 for b ∈ Mp+1
m . For simpler notation we skip the ar-

gument (t, u) of λ and of the iterated integrals. We remember the relation
Ib [Ic] = I(c , b) for all multi-indices b, c ∈Mm (cp. lemma 2.11).

λ = x0 +
m∑

α=0

Iα [fα]

= x0 +
p∑

i=0

∑
b∈Mi

m

m∑
α=0

(fα)b I(b , α) +
∑

b∈Mp+1
m

m∑
α=0

I(b , α) [fα
b ]



3.1. COEFFICIENTS FOR THE SOLUTION 71

= x0 +
p∑

i=1

∑
b∈Mi−1

m

m∑
α=0

(fα)b I(b , α) +
∑

b∈Mp
m

m∑
α=0

(fα)b I(b , α)

+
m∑

β=0

∑
b′∈Mp

m

m∑
α=0

I(β , b′ , α)

[
fα
(β , b′)

]

= x0 +
p∑

i=1

∑
b∈Mi

m

(
fR1(b)

)
Li−1(b)

Ib +
∑

b∈Mp+1
m

(
fR1(b)

)
Li−1(b)

Ib

+
∑

b∈Mp+1
m

Ib

 m∑
β=0

Iβ

[
f

R1(b)
(β , Li−1(b))

]
= x0 +

p∑
i=1

∑
b∈Mi

m

(
fR1(b)

)
Li−1(b)

Ib

+
∑

b∈Mp+1
m

Ib

(fR1(b)
)

Li−1(b)
+

m∑
β=0

Iβ

[
f

R1(b)
(β , Li−1(b))

]
Consequently we constructed a Fliess expansion of order p for the solution
λ. By uniqueness of the coefficients (theorem 2.28) follows for all b ∈ Mm

with 1 ≤ |b| ≤ p

(λ)b =

0, for R1 (b) = (0),(
fR1(b)

)
Li−1(b)

, otherwise,

and thereby the assertion. �

With this theorem we can now formulate the recursive algorithm to
compute the coefficients of the solution’s Fliess-expansion. We formulate
the algorithm for both the initial value and the initial interval problem.

Algorithm 3.2 (coefficients of the solution)

Step 0: We start with an initial value x0 or an initial interval [x0 ] as
the coefficient with empty index (λ)�.

Step i, for i = 1, . . . , p: We compute recursively for all b ∈ Mi
m

the coefficients (λ(τ, x0))b or (λ(τ, [x0 ]))b of the solution’s Fliess-
expansion with theorem 3.1.
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In the next example we make ourselves familiar with the recursion algo-
rithm 3.2. We use the same control system as in section 2.14.

Example 3.3 (coefficients of the solution) We perform algo-
rithm 3.2 for the system equation of example 2.14:

ẋ = u− x2, x(0) = 0. (3.2)

The data in names of definition 1.1 are: m = 2, f1 = −x2 and f2 = 1.

For the computation of the coefficients (fα)b out of the coefficients (λ)c,
|c| ≤ |b|, of the solution λ := λ(·, 0, 0, u) we write down the coefficient
formulas for the basic operations, which compose the right hand sides. The
function f1 is essentially the multiplication formula (2.12):(

f1(λ)
)
� = − (λ)2� ,(

f1(λ)
)
(α)

= − 2 (λ)(α) (λ)� ,(
f1(λ)

)
(α , β)

= − 2 (λ)(α , β) (λ)� − 2 (λ)(α) (λ)(β) ,(
f1(λ)

)
(α , β , γ)

= − 2 (λ)(α , β , γ) (λ)� − 2 (λ)(α , γ) (λ)(β)

− 2 (λ)(α , β) (λ)(γ) − 2 (λ)(α) (λ)(β , γ) ,(
f1(λ)

)
(α , β , γ , δ)

= − 2 (λ)(α , β , γ , δ) (λ)� − 2 (λ)(α , γ , δ) (λ)(β)

− 2 (λ)(α , β , δ) (λ)(γ) − 2 (λ)(α , δ) (λ)(β , γ)

− 2 (λ)(α , β , γ) (λ)(δ) − 2 (λ)(α , γ) (λ)(β , δ)

− 2 (λ)(α , β) (λ)(γ , δ) − 2 (λ)(α) (λ)(β , γ , δ) .

The function f2 is a constant function (cp. section 2.6.1):

(
f2(λ)

)
b
=

{
1, b = �,

0, otherwise.

Now we can compute the coefficients for λ with algorithm 3.2. We start
with (λ)� = x0 = 0 and compute then recursively (λ)b, for |b| = 1, . . . , 5.
We list only the coefficients, which are non-zero:

(λ)(2) =
(
f2(λ)

)
� = 1,

(λ)(2 , 2 , 1) =
(
f1(λ)

)
(2 , 2)
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= − 2((λ)(2 , 2))((λ)�)− 2 (λ)(2) (λ)(2) = −2,

(λ)(2 , 2 , 2 , 1 , 1) =
(
f1(λ)

)
(2 , 2 , 2 , 1)

= − 2 (λ)(2 , 2 , 2 , 1) (λ)� − 2 (λ)(2 , 2 , 1) (λ)(2)

− 2 (λ)(2 , 2 , 1) (λ)(2) − 2 (λ)(2 , 1) (λ)(2 , 2)

− 2 (λ)(2 , 2 , 2) (λ)(1) − 2 (λ)(2 , 2) (λ)(2 , 1)

− 2 (λ)(2 , 2) (λ)(2 , 1) − 2 (λ)(2) (λ)(2 , 2 , 1) = 12,

(λ)(2 , 2 , 1 , 2 , 1) =
(
f1(λ)

)
(2 , 2 , 1 , 2)

= − 2 (λ)(2 , 2 , 1 , 2) (λ)� − 2 (λ)(2 , 1 , 2) (λ)(2)
− 2 (λ)(2 , 2 , 2) (λ)(1) − 2 (λ)(2 , 2) (λ)(2 , 1)

− 2 (λ)(2 , 2 , 1) (λ)(2) − 2 (λ)(2 , 1) (λ)(2 , 2)

− 2 (λ)(2 , 2) (λ)(1 , 2) − 2 (λ)(2) (λ)(2 , 1 , 2) = 4.

We get the same coefficients as in example 2.14, but this time we did not
differentiate the vector fields manually for their computation.

3.2 Enclosure for the Remainder

After we have computed the coefficients of the solution’s Fliess expansion
up to the order p, we are now interested in the remainder term.

Rp+1
λ(τ,x0)(t, u) =

∑
b∈Mp+1

m

Ib

[
Lbx

]
(t, u).

The analogue to Lohner’s strategy [26] is to evaluate the Lie-derivatives
in the remainder terms with the Mean Value Theorem from analysis at
some intermediate values ξb ∈ [τ, t ], b ∈ Mp+1

m , and get iterated integrals
with constants as integrand. But in general the iterated integrals include
non-continuous control functions. So the Mean Value Theorem cannot be
applied. To get out of this difficulty we restrict the control functions to
bounded functions.

Definition 3.4 (control range) The vector ∆ =
(
∆1, . . . ,∆m

)
∈ Im

gives the possible range for each control function, that is for all α ∈
{1, . . . , m} and t ∈ [τ, T ] we have uα(t) ∈ ∆α. For a multi-index b =
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(
β|b| , . . . , β1

)
∈Mm we define the product using interval arithmetics

∆b =
|b|∏

k=1

∆βk ,

where ∆0 := [1, 1] = [1] = 1. For the empty index we define ∆� := 1.

For the rest of this thesis we assume the control functions to be bounded
and the control range to be known.

This restriction is not very serious as the following simple example shows.
We consider a one-dimensional linear control system ẋ = u, where u is an
unbounded control function, with the initial condition x(0) = 0. Then we
can reach any point y ∈ R for an arbitrary small time t > 0 with the
constant control function u ≡ y

t , thus it makes no sense to compute an
enclosure for the unbounded set {λ(t, 0, 0, u)|u ∈ U} numerically. Hence we
need to confine the control functions with known control ranges.

Assuming bounded control functions we can formulate at least the fol-
lowing theorem.

Theorem 3.5 (enclosure for the remainder) Let G : [τ, T ] ×
Um −→ Rn be a measureable function and b ∈Mm a multi-index. Then
the iterated integral can be enclosed by

Ib [G] (t, u) ∈ G ([τ, t ], u) ∆b (t− τ)|b|

|b|!
.

The remainder term of the solution’s Fliess-expansion of order p can be
enclosed with

Rp+1
x (t, u) ∈ (t− τ)p+1

(p + 1)!

∑
b∈Mp+1

m

Lbx ([τ, t ])∆b.

We remember Lbx(s) = Lbx(s, λ(s, τ, x0, u)) is the evaluation of the b-th
Lie derivative of F (t, x) = x at (s, λ(s, τ, x0, u)).

Proof: For j = 1, . . . , |b| there exist numbers βj ∈ {1, . . . , m} with b =(
β|b| , . . . , β1

)
. We construct the enclosure for the iterated integral starting
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from the inner integral. With sj ∈ [τ, t ] follows:

G(sj , u) ∈ G([τ, t ], u)

G(sj , u)
|b|∏

j=1

uβj (sj) ∈ G([τ, t ], u) ∆b for all sj ∈ [τ, t ]

∫ sj−1

τ
G(sj , u)

|b|∏
j=1

uβj (sj) dsj ∈ G([τ, t ], u) ∆b(sj−1 − τ)

Ib [G] (t, u) ∈ G([τ, t ], u) ∆b (t− τ)|b|

|b|!
.

Then for the remainder of a solution x follows:

Rp+1
x (t, u) =

∑
b∈Mp+1

m

Ib

[
Lbx

]
(t, u)

∈
∑

b∈Mp+1
m

Lbx ([τ, t ])∆b (t− τ)|b|

|b|!

∈ (t− τ)p+1

(p + 1)!

∑
b∈Mp+1

m

Lbx ([τ, t ])∆b.

�

Clearly we cannot compute the integral kernels of the remainder term
Lbx ([τ, t ]), b ∈ Mp+1

m , explicitly. But we can compute a superset with
the same recursion formula as for the coefficients of the solution’s Fliess-
expansion (see algorithm 3.2). Therefore we formulate a lemma to compute
the Lie derivative Lbx(s, xs) at a given time s ∈ [τ, T ] and state space vector
xs ∈ Rn. First of all s and xs are independent.

Lemma 3.6 (Lie-derivatives at arbitrary times) Let s ∈ [τ, T ] be an
arbitrary time and xs ∈ Rn. We define recursively for all b ∈ Mm, with
|b| ≤ p, and β ∈ {0, . . . , m} the coefficients:

(λ(s, xs))� := xs,

(λ(s, xs))(b , β) :=

{
0, for β = 0(
fβ(·, λ(s, xs))

)
b
, for β ∈ {1, . . . , m}.

Then the Lie-derivative at (s, xs) coincides with the appropriate coefficient.

Lbx(s, xs) = (λ(s, xs))b , for all b ∈Mm, |b| ≤ p + 1.
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Proof: The idea of the proof is to develop a Fliess-expansion for λ(·, s, xs, u)
at the time s. Therefore we need a more general definition for the it-
erated integrals than in definition 2.4. For a causal function G, indices
α ∈ {0, . . . , m} and b ∈Mm we define:

sI� [G] (t, u) := G(t, u)

sI(α , b) [G] (t, u) := sIb

[∫ .

τ
G(s, u)uα(s) ds

]
(t, u).

So we can define the Fliess-expansion at the initial condition (s, xs) of order
p + 1 similar to definition 2.16:

λ(t, s, xs, u) =
p+1∑
i=0

∑
b∈Mm

(λ(s, xs))b sIb [G] (t, u) + sR
p+2
λ(s,xs)

(t, u).

With sR
p+2
λ(s,xs)

we denote the corresponding remainder term. Because we
use the same recursion as in theorem 3.1 we get a Fliess-expansion for the
solution. On the other hand we reformulate theorem 2.12 and its proof
with s instead of τ and with the uniqueness of the coefficients of Fliess-
expansions (see theorem 2.28 for s but τ) we compare the coefficients and
get the assertion:

Lbx(s, xs) = (λ(s, xs))b , for all b ∈Mm, |b| ≤ p + 1.

�

We are interested at the value of the Lie-derivative at the whole time
interval Lbx ([τ, T ]). For the present we assume to know a “rough” enclosure
of the solution evaluated at all times x([τ, T ]) = λ ([τ, T ], τ, x0, u). Then
lemma 3.6 gives recursion formulas to compute the Lie-derivatives evaluated
at all times [τ, T ] and we are ready to formulate the algorithm.

Algorithm 3.7 (enclosures for the remainder terms)

Step 0: We start with an interval R� ⊇ x ([τ, t ]), which includes all
solutions.

Step i, for i = 1, . . . , p + 1: We compute recursively for all b ∈ Mi−1
m

and all α ∈ {1, . . . , m} the coefficients R(b , α) ⊇ (fα(·, R))b from
Rc, |c| ≤ i, where R is the Fliess-expansion composed by the coef-
ficients Rc.
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Then we get enclosures Rb ⊃ Lbx ([τ, t ]), for b ∈ Mp+1
m . With theo-

rem 3.5 we enclose the entire remainder.

Rp+1
x (t, u) ∈ (t− τ)p+1

(p + 1)!

∑
b∈Mp+1

m

Rb∆b.

In general the superset for x ([τ, t ]) is not known. We will discuss in
section 3.3 a strategy how to get an initial enclosure for all solutions of
an initial interval problem with bounded controls. At least we will give a
criterion to identify an interval as enclosure for all solutions.

3.3 Initial Enclosure

To compute an enclosure for the remainder term Rp+1
λ(τ,[x0 ])(t, u) we need a

rough initial enclosure for all solutions λ([τ, T ], [x0 ]). We will not develop
a strategy which finds an initial enclosure in any case, but we will give a
sufficient condition for identifying a given interval as an initial enclosure.

Theorem 3.8 (initial enclosure) Consider an interval [ x̂ ] ∈ Rn,
which fulfils the inclusion:

x0 + [0, T − τ ]
m∑

α=1

fα ([τ, T ], [ x̂ ])∆α ⊆ [ x̂ ].

Then the set of continuous functions C ([τ, T ], [ x̂ ]) with range [ x̂ ] con-
tains the unique solution λ (·, τ, x0, u).

Proof: The set C ([τ, T ], [ x̂ ]) is a closed subset of C ([τ, T ], Rn). We show
that the operator W from theorem 1.3 maps C ([τ, T ], [ x̂ ]) on itself. Then
from Banach fixed point theorem follows the existence of the fixed point and
therewith the existence of the solution in [ x̂ ].
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W [C ([τ, T ], [ x̂ ])] (t) ⊆ x0 +
∫ t

τ

m∑
α=1

fα(s, [ x̂ ])uα(s) ds

⊆ x0 +
∫ t

τ
ds

m∑
α=1

fα ([τ, T ], [ x̂ ])∆α

⊆ x0 + [0, T − τ ]
m∑

α=1

fα ([τ, T ], [ x̂ ])∆α

⊆ [ x̂ ]

So W is a contraction on C ([τ, T ], [ x̂ ]). �

To verify an initial enclosure for λ (·, τ, x0, u), with an initial interval
instead of an initial value, we extend theorem 3.8 to its union over all initial
values x0 ∈ [x0 ]:

[x0 ] + [0, T − τ ]
m∑

α=1

fα ([τ, T ], [ x̂ ])∆α ⊆ [ x̂ ]. (3.3)

As a strategy Lohner [26] put forward to start with the initial interval
[ x̂ ] := [x0 ] and inflate it by a small ε > 0 (see definition 1.9) recursively until
equation 3.3 is satisfied. If the time T is small enough, an initial enclosure
can be found in any case. Thereby lemma 1.10 assures [x0 ] ⊂ [ x̂ ].

In numerical examples it turned out it is good to start with an interval,
which is computed by the recursion of theorem 3.1 but with initial value
([ x̂ ])� := [x0 ]. The Fliess-expansion defined by this interval coefficients
can be evaluated for the whole time interval [τ, T ] and control range:

[ x̂ ] :=
p∑

i=0

∑
b∈Mi

m

([ x̂ ])b Ib([τ, T ],∆b). (3.4)

Note that this is not a rigorous enclosure for λ ([τ, T ], τ, [x0 ], u), because
the remainder term was neglected. But due the hope of small remainders
we can inflate [ x̂ ] by ε > 0 like in the paragraph above, until we can verify
the enclosure.

3.4 Error Propagation

In this section we interprete the initial interval [x0 ] as an error bound for
the initial value x0 + z, with z ∈ [x0 ] − x0 and linearise the coefficients
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of the solution’s Fliess-expansion at x0. For each b ∈ Mm there exists a
ξb ∈ [x0, z ], such that

(λ(τ, x0 + z))b = (λ(τ, x0))b +
∂

∂x0
(λ(τ, ξb))b ∗ z.

The solution λ depends on the nonsmooth control functions uα, for α ∈
{1, . . . , m}, so we cannot expect λ to be differentiable in the initial value
x0. But we assumed the vector fields fα, α ∈ {1, . . . , m}, to be smooth
enough. The coefficients (λ(τ, x0))b = Lbx(τ, x0), |b| ≤ p, only depend on
the right hand side vector fields but not on the control functions. So the
existence of ∂

∂x0
(λ(τ, x0))b is part of our basic assumption.

Definition 3.9 (error propagation matrix) We call the matrix valued
Fliess-expansion,

A(t, u) :=
p∑

i=0

∑
b∈Mi

m

∂

∂x0
(λ(τ, x0))b Ib(t, u),

the error propagation matrix for the solution λ(τ, x0), where the coefficients
(A(τ, x0))b := ∂

∂x0
(λ(τ, x0))b depend on the initial conditions.

We can give a recursion formula for the computation of the coefficients
of the error propagation matrix.

Lemma 3.10 (recursion for the error propagation) The coeffi-
cients of the Fliess-expansion of the error propagation matrix satisfy
the following recursion formula:

(A(τ, x0))� = I,

(A(τ, x0))(b , α) =

{
0, α = 0,(

∂
∂xfα(·, λ(τ, x0)) A(τ, x0)

)
b
, otherwise,

where I is the identity matrix of dimension n.

Proof: Because λ(τ, x0) is not differentiable in x0 generally, we define the
corresponding function λ̄(τ, x0), which is its Fliess-expansion without re-
mainder,

λ̄(τ, x0) :=
p∑

i=0

∑
b∈Mi

m

(λ(τ, x0))b ,
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which is differentiable in x0. Then for each index α ∈ {1, . . . , m} the
function fα

(
λ̄(τ, x0)

)
is differentiable in x0, because fα is assumed to be

smooth enough. For this proof we skip the first argument of fα:

∂

∂x0
fα
(
λ̄(τ, x0)

)
=

∂

∂x
fα
(
λ̄(τ, x0)

) ∂

∂x0
λ̄(τ, x0).

Integration and differentiation in different variables can be exchanged. So
the differentiation can be executed inside of every iterated integral in the
remainder term, which leads to

∂

∂x0
Rp+1

fα(λ̄(τ,x0))(t, u) = Rp+1
∂

∂x0
fα(λ̄(τ,x0))(t, u),

and then with the uniqueness of the coefficients of Fliess-expansions to

∂

∂x0

(
fα
(
λ̄(τ, x0)

))
b
=
(

∂

∂x0
fα
(
λ̄(τ, x0)

))
b

.

Then we get for α ∈ {1, . . . , m} and b ∈Mm, |b| < p with theorem 3.1

(A)� =
∂

∂x0
(λ(τ, x0))� = I

(A)(b , 0) =
∂

∂x0
(λ(τ, x0))(b , 0) = 0

(A)(b , α) =
∂

∂x0
(λ(τ, x0))(b , α) =

∂

∂x0
(fαλ(τ, x0))b

=
∂

∂x0

(
fαλ̄(τ, x0)

)
b
=
(

∂

∂x0
fα
(
λ̄(τ, x0)

))
b

=
(

∂

∂x
fα
(
λ̄(τ, x0)

) ∂

∂x0
λ̄(τ, x0)

)
b

=
(

∂

∂x
fα (λ(τ, x0))

∂

∂x0
λ(τ, x0)

)
b

=
(

∂

∂x
fα
(
λ̄(τ, x0)

)
A

)
b

�

Remark 3.11 The linearisation of the error ∂
∂x0

λ(τ, x0) acts like the Fliess-
expansion computed by algorithm 3.2 for the solution of the matrix-valued
variational equation,

Ȧ(t) =
m∑

α=1

gα (t, A(t))uα(t), A(τ) = I,

with gα (t, A(t)) :=
∂

∂x
fα(t, λ(τ, x0)) A(t),

without remainder term.
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Algorithm 3.12 (error propagation matrix)

Step 0: Provide a Fliess-expansion with interval valued coefficients for
all solutions with initial condition x(τ) = [x0 ] and insert it into
the right hand side derivatives ∂

∂xfα(·, x), for α ∈ {1, . . . , m}.
We start the computation with the identity matrix as initial value
(A)� = I.

Step i, for i = 1, . . . , p: We compute recursively for all b ∈ Mi
m the

coefficients (z)b of the Fliess-expansion with lemma 3.10.

As result of algorithm 3.12 we get the coefficients of the error propagation
matrix A, which include the derivative of the coefficients of the solution
evaluated at the arbitrary (and unknown) intermediate value ξb ∈ [x0 ]:

∂

∂x0
(λ(τ, ξb))b ∈ (A)b ,

for all b ∈Mm, |b| ≤ p.

3.5 The Algorithm

Now we have developed all necessary tools to enclose all solutions of the
control affine system (1.1) with the initial interval condition

ẋ(t) =
m∑

α=1

fα(t, x)uα(t), x(τ) ∈ [x0 ].

The control functions are assumed to be bounded, that is for every t ∈ [τ, T ]
and α ∈ {1, . . . , m} we have uα(t) ∈ ∆α. The right hand side vector fields
are continuously differentiable. This assures the Lipschitz-condition in x

and the existence and uniqueness of the solution for every choice of initial
value and control function. Furthermore the right hand side vector fields
are required to be composed by operations, which are defined for Fliess-
expansions.

Algorithm 3.13 (enclosure for all solutions) We compute an en-
closure of order p ∈ N for all solutions at time T with the following
steps.
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Step 1: Choose first an initial value from the initial interval x0 ∈
[x0 ], for example the centre of [x0 ], and compute the coefficients
(λ(τ, x0))b, for all |b| ≤ p, with algorithm 3.2 recursively.

Step 2: Compute with algorithm 3.2 a “rough” initial enclosure for
the coefficients of the initial interval problem (λ(τ, [x0 ]))b , for all
|b| ≤ p, starting with (λ(τ, [x0 ]))� = [x0 ].

Step 3: Evaluate the Fliess-expansion for λ(τ, [x0 ]) at the whole time
interval [τ, T ] and for the control ranges ∆α, α ∈ {1, . . . , m}
(use theorem 3.5). Neglect the remainder and check if for the re-
sulting interval the initial enclosure condition 3.3 holds true. If
not, inflate the interval by a small ε > 0 componentwise (cp. defi-
nition 1.9) and check again till the enclosure condition is satisfied.

Step 4: Compute an enclosure for the remainder term Rp+1
λ(τ,[x0 ])(t, ∆)

with algorithm 3.7. Use the interval computed in step 3 as an
enclosure for the initial set R� ⊇ λ ([τ, T ], τ, [x0 ],∆).

Step 5: Compute the Fliess expansion of the error propagation matrix
A with algorithm 3.12. Insert thereby the “rough” enclosure of the
solution’s Fliess-expansion from step 2 into ∂

∂xfα(·, λ(τ, x0)).

Step 6: Evaluate the Fliess-expansion of λ(τ, x0) and the Fliess-
expansion of the error propagation matrix A multiplied with the
error vector [x0 ] − x0 at time T . Add them up together with the
enclosure for the remainder from step 4 at time T .

The evaluations in step 6 can be done for any time t ∈ [τ, T ], if dense
output is part of the task.

In figure 3.1 the different steps of algorithm 3.13 are illustrated for the
control system we used already in the examples 2.14 and 3.3,

ẋ = u− x2, (3.5)

with the initial interval condition x(0) ∈ [x0 ] := [0.4, 0.6] and the control
range ∆ := [−0.1, 0.1]. The order was chosen with p = 1. The Fliess-
expansion for λ(τ, x0) from step 1 is drawn with the centred red line for
u ≡ 0. For the whole control range ∆ it swells to the blue area. In the
yellow area the propagation of the initial interval by the error propagation
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Figure 3.1: Enclosure for all solutions of ẋ = u − x2, x(0) ∈ [0.4, 0.6] and ∆ :=
[−0.1, 0.1] computed for order p = 1.

matrix is added (step 5). The enclosure of the remainder term (step 4) is
represented by the red area. So the enclosure for all solutions is given by
the union of the blue, yellow and red region.

The grey area in the background shows the evaluation of the solution’s
Fliess-expansion with interval coefficients from step 1 and the grey lines
show its lower and upper bounds. They are inflated in step 2 to the rough
initial enclosures (outer blue lines).

Figure 3.2 illustrates the same sets for the orders p = 2, 3, 4, 5. We
can see the remainder enclosure shrinking with the order, but the resulting
enclosures seem to be the same in every picture.

For a better ability to compare table 3.1 gives the enclosures for all
solutions at time T for the orders p = 1, . . . , 6. We remember our algorithm
gives guaranteed bounds, that is we know for sure that all solutions are
contained in each of the resulting intervals. So we can take the intersection
of all computed intervals and get again an enclosure for all solutions (see
the line denoted with “1 − 6”). This enclosure is obviously better than all
the others, because they are bigger but do not contain more information.
Thus they overestimate. In addition we can see that the results do not get
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p = 2

p = 4

p = 3

p = 5

Figure 3.2: Enclosure for all solutions of ẋ = u − x2, x(0) ∈ [0.4, 0.6] and ∆ :=
[−0.1, 0.1] computed for order p = 2, 3, 4, 5.

smaller with higher order.
In the one-dimensional case there is another way to find an enclosure

for all solutions. We can compute the solution for the maximal initial value
together with the maximal control function with our algorithm. Because
we have chosen a concrete initial value and control function we compute an
enclosure for the unique solution. The same we do for the minimal initial
value together with the minimal control function:

λ(0.5, 0.0, 0.6, u ≡ 0.1) ∈ [0.499850, 0.501708],

λ(0.5, 0.0, 0.4, u ≡ −0.1) ∈ [0.290815, 0.291121].

From control theory we know that every other solution of the initial in-
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p result of algorithm 3.13 at T = 0.5

1 [0.249358, 0.568260]
2 [0.212309, 0.567217]
3 [0.239688, 0.565434]
4 [0.233871, 0.563961]
5 [0.236318, 0.564492]
6 [0.235529, 0.564177]

1-6 [0.249358, 0.563961]
extremal controls [0.290815, 0.501708]

Table 3.1: Enclosure for all solutions of ẋ = u − x2, x(0) ∈ [0.4, 0.6] and ∆ :=
[−0.1, 0.1] computed for different orders p at time T = 0.5, their intersection and
a verified result for extremal controls.

terval problem with our previously used control range is in between this
two solutions. The convex hull of the extremal enclosures gives a much
better rigorous result than we got with our algorithm. In table 3.1 it is
denoted with “extremal controls”. For more details of this strategy for the
one-dimensional systems see [4, 5].

Obviously our algorithm overestimates the resulting interval. Respons-
able is the enclosure of the control functions by the control range. To find
narrow enclosures is still an open problem.

The implementation of algorithm 3.13 was done in C++ . An object
oriented programming language, like C++ , lend itself to define type classes
for Fliess-expansions and formulas composed from basic arithmetic opera-
tions. Then the Fliess-expansion can be, roughly speaking, inserted into
the formula class and gives as result again a Fliess-expansion, if all used
arithmetic operations are defined for it. The multi-indices are represented
as serial numbers, so the coefficients are linear sequences and can be handled
like vectors. The library C-XSC was used for interval arithmetic.

The numerical effort especially for the product formula (cp. theorem 2.33)
is very high. For the order 5 and 6 the computation on a Linux PC with a
Pentium 4, 2.80 GHz, processor took already several minutes.





Chapter 4

Application

In this chapter we will show how our new algorithm can be used to compute
practical problems. We take the 2-dimensional system from Aulbach [2],
equation (2.19), where the unit circle is an attractive periodic solution and
the origin is an unstable fixed point:

ẋ = f1(x), with f1(x) :=

(
x2

−x1

)
+

(
x1

x2

)(
1− (x1)2 − (x2)2

)
. (4.1)

The state variable x ∈ R2 has the components x1 and x2. The phase
portrait is given in figure 4.1(left). We define the constant vector field

f2 =

(
1
1

)
. With the control functions u1 ≡ 1 and u2 : R → ∆2 we

get a control affine system in the notation of definition 1.1. We choose
∆1 := [1] and ∆2 := [−0.1, 0.1] as the control ranges. The parameters are
the dimension of the state space n = 2 and the dimension of the control
m = 2. The control system is defined for all times in R:

ẋ =

(
x2

−x1

)
+

(
x1

x2

)(
1− (x1)2 − (x2)2

)
+

(
1
1

)
u2. (4.2)

This system was analysed by Kowalski and Stender in [23]. Amongst
others they computed an invariant ring-shaped set including the unit circle
(cp. figure 4.1, the red set on the right hand side picture). Depending on
the point of view there are different names denoting this set. For instance
it is the reachability set of the unit circle. With definitions of Colonius and

87
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ẋ = f1(x) ẋ = f1(x) + f2(x)u2

Figure 4.1: The phase portrait of the attractive unit circle system (left). All
trajectories are heading clockwise to the unit circle. On the right hand side we see
the variant control set (blue) around the origin and the invariant control set (red)
including the unit circle for u2(s) ∈ ∆2 =

[
− 1

10 , 1
10

]
.

Kliemann [5] it is an invariant control set, which is a subset of the state
space where total controllability holds, i.e. every point can be reached from
every other point at least approximately. In viability theory this set is the
viability kernel of any of its supersets excluding the origin. We use the so
called subdivision algorithm from Szolnoki [32, 33] to compute the viability
kernel of the domain D. We define D as the union of all grey boxes in
figure 4.1(right hand side picture). The set of all trajectories which stay in
D for all times is

Viab (D) := {x0 ∈ D| ∃u ∈ Um with λ(t, x0, u) ∈ D,∀t ∈ R}.

Therefore the system has to be discretised in time. For any h ≥ 0 we can
compute a discrete viability kernel Viabh (D) for time discrete system:

xi+1 = λ (h, xi, u) , i ∈ N.

Szolnoki proved in [32, prop. 3.5] that the discrete and the continuous via-
bility kernels coincide if they are “deep inside” the domain. More precisely
follows from dist(Viabh (D) , Rn \ D) ≤ 1

2Kh, that Viab (D) = Viabh (D).
Thereby K is an upper bound for the control system’s right hand side, i.e.
||
∑m

α=1 fα(x)uα(t)|| ≤ K. We use the numerical software INTLAB [31] to
compute a superset for the right hand side’s length.∣∣∣∣f1 (D)) + f2 (D) ∆2

∣∣∣∣ ⊂ [0.3454, 1.8090]
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This interval enclosure is guaranteed. We choose the upper bound K := 1.81
and the time step h := 0.1. With these values we get a distance of at least
0.0905 we need after the computation between the discrete viability kernel
and the boundary of the domain D to get the continuous viability kernel.
One can see easily that it is fulfilled for the approximation in the picture.
(The diagonal length of one grey box is approximately 0.1.)

The subdivision algorithm consists of the iteration of two steps. It starts
with a collection of intervals in the state space and alternates a subdivision
step with a selection step. The subdivision step bisects every interval into
two parts, where the bisection axis, which is parallel, changes periodically. It
creates a “finer” collection, that is the maximum diameter of the interval gets
smaller. In the selection step a selection criterion decides which intervals are
kept and which ones are removed. On the remaining collection of intervals
again the subdivison step is applied, and so on. In this way one obtains a
sequence of successively finer collections (Ck)k∈N0

.
For finding the viability kernel we use the following selection step. We

compute for every interval B in the given collection Ci the image of the map
for the time discrete system

Φ(B) := {λ(h,B, u)|u ∈ Um, u([0, h ]) ∈ ∆}.

We delete every interval which does not intersect with the image of the col-
lection Φ(Ci) :=

⋃
B∈Ci

Φ(B). The remaining collection {B ∈ Ci|B ∩ Φ(Ci)}
we call again Ci and repeat the selection step until it converges to the solu-
tion of the set valued equation:

Ci = {B ∈ Ci|B ∩ Φ(Ci) 6= ∅}.

The convergence is assured by the finite number of intervals in collection Ci.
The sequence of collections (Ci)i∈N0

converges from outside to the via-
bility kernel of the time discrete system

Viabh (UC0) =
∞⋂
i=0

UCi.

We denote with UCk the union of all intervals in the collection:
⋃
B∈Ck

B.
The subdivision algorithm was implemented by Dellnitz and Junge in GAIO
[6] for differential equations. The extension to control systems was done by
Szolnoki [32]. For both the computation of the images Φ(B) is the crucial
part of the algorithm. In praxis it turned out that it is sufficient to choose
some test points in the interval B and simulate for different control values
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B2

B5

B6B1

B7

B3

B4

Figure 4.2: left: The grey boxes represent the initial collection C0 and the blue
boxes illustrate their images Φ(B),B ∈ C0. right: The black box (left) is zoomed
for a detailed view of the reachability relations. The images coming from intervals
below are not drawn.

with standard Runge-Kutta algorithms. The number and distribution of test
points and control values depends on the experience and the inventiveness of
the user. For ODEs Junge [19] gave already a strategy to get out of the test
point simulation from above a rigorous enclosure of Φ(B) by the knowledge
of a Lipschitz constant.

Algorithm 3.13 computes an enclosure for Φ(B). Thereby B is the initial
interval. The set Φ(UC0) is shown in figure 4.2 as the union of the overlapping
blue intervals. Each of them represents the image of one grey box. For each
box the initial interval problem was solved with the order p = 2.

The right picture in figure 4.2 shows a detailed part of the left picture.
The grey boxes are the initial intervals and the blue boxes are the enclo-
sures for the time-h maps. The red lines connect the centre points of the
preimages with the centres of the corresponding image enclosures. We apply
the selection step and need to delete the intervals B1, . . . ,B4, because their
intersection with the blue ranges are empty. By deleting B1 and B2 the
intervals B5 and B6 get free, which means they have no intersection with
the ranges of the remaining selection. Actually B7 intersects the image of
another interval outside of the shown section. This is the reason why it and
its succeeding intervals are not deleted.

Figure 4.3 shows the covering of the viability kernel after 1, 3, 5 and 10
iterations. In the final picture we can see the distance to the boundary of
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the initial set is big enough (> 0.0905) to conclude from the discrete to the
continuous viability kernel. The difference between the rigorously computed
viability kernel (blue) and the one from test point simulation is based on
the overestimating at adding up the control ranges. The wrapping effect
has here no longer any effect, because the patching strategy (cp. section 1.2)
works through the subdivision technique.

The picture for 10 iterations additionally shows the thinner set, which
was computed with test point approximation (red). Like in example 3.5 the
results were overestimated. But nevertheless this enclosure is verified. We
proved numerically the existence of the continuous viability kernel inside the
blue set. All computations were done with INTLAB , GAIO and C-XSC
2.0.
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Figure 4.3: The cover for the viability kernel of the grey initial set after 1, 3, 5
and 10 iterations. The blue sets are computed with rigorous numerics, the red sets
with test point approximation.
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[34] W. Walter, Gewöhnliche Differentialgleichungen, Springer-Verlag,
Berlin, Heidelberg, New York, Tokyo, 6 ed., 1996.

http://scicomp.math.uni-augsburg.de/~marquard/marquardt_diploma.pdf

	Contents
	Introduction
	Problem Formulation and the Toolbox
	Control Affine Systems
	Interval Arithmetics
	Multi-Index Theory
	Definition
	Shuffle-Product
	Combinatorial Selection
	Insertion Operator
	Serial Number Representation


	Fliess-Expansions
	Lie derivatives
	Iterated Integrals
	Integral representations
	Fliess-expansions
	Uniqueness of Fliess-expansions
	Operations on Fliess-expansions
	Special Fliess-expansions
	Addition
	Multiplication
	Taylor-expansions of Fliess-expansions
	Division


	Numerical Algorithm
	Coefficients for the Solution
	Enclosure for the Remainder
	Initial Enclosure
	Error Propagation
	The Algorithm

	Application
	Bibliography

