UNIVERSITAT AUGSBURG

Semi-Skylines and Skyline Snippets

Markus Endres and Werner Kiellling

Report 2010-01 March 2010

10 oy
1 —
/ ' _—
institut ;
informatik

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

Copyright © Markus Endres and Werner Kielling
Institut fiir Informatik
Universitdat Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg. DE
— all rights reserved —

Semi-Skylines and Skyline Snippets

Markus Endres
Institute for Computer Science
University of Augsburg
86135 Augsburg, Germany

endres@informatik.uni-augsburg.de

ABSTRACT

Skyline evaluation techniques (also known as Pareto pref-
erence queries) follow a common paradigm that eliminates
data elements by finding other elements in the data set that
dominate them. To date already a variety of sophisticated
skyline evaluation techniques are known, hence skylines are
considered a well researched area. Nevertheless, in this pa-
per we come up with interesting new aspects. Our first con-
tribution proposes so-called semi-skylines as a novel build-
ing stone towards efficient algorithms. Semi-skylines can be
computed very fast by a new Staircase algorithm. Semi-
skylines have a number of interesting and diverse applica-
tions, so they can be used for constructing a very fast 2-
dimensional skyline algorithm. We also show how they can
be used effectively for algebraic optimization of preference
queries having a mixture of hard constraints and soft prefer-
ence conditions. Our second contribution concerns so-called
skyline snippets, representing some fraction of a full skyline.
For very large skylines, in particular for higher dimensions,
knowing only a snippet is often considered as sufficient. We
propose a novel approach for efficient skyline snippet com-
putation without using any index structure, by employing
our above 2-d skyline algorithm. All our efficiency claims
are supported by a series of performance benchmarks. In
summary, semi-skylines and skyline snippets can yield sig-
nificant performance advantages over existing techniques.

1. INTRODUCTION

The skyline operator has emerged as an important and
very popular summarization technique for multi-dimensional
data sets. For a data set D consisting of data points p1, ..., pn
the skyline S is the set of all p; such that there is no p; that
dominates p;. p; is said to dominate p; if p; is better than p;
in at least one dimension and not worse than p; in all other
dimensions, for a defined comparison function. The sky-
line introduced in [3] is related to several other problems,
including maximal vectors [17], convex hulls [2] and Pareto
sets [11]. As Pareto preference queries form a superset of the

Permission to copy without fee all or part of this materigranted provided
that the copies are not made or distributed for direct corimleadvantage,
the VLDB copyright notice and the title of the publicatiortdts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciahpgsion from the
publisher, ACM.

VLDB ‘10, September 13-17, 2010, Singapore

Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0am/

Werner Kiel3ling
Institute for Computer Science
University of Augsburg
86135 Augsburg, Germany

kiessling@informatik.uni-augsburg.de

skyline, we refer to this general approach of skyline queries.
An example of a preference query is shown in Figure 1, using
the Preference SQL language from [13].

SELECT *

FROM Soup S, Meat M, Beverage B
WHERE S.Cal + M.Cal + B.Cal < 1100
AND S.Vc + M.Vc + B.Vc > 38
AND S.Fat + M.fat + B.Fat <9

PREFERRING
S.Name IN (’Chicken’, ’Noodle’) AND
M.Name IN (’Beef’) AND

B.Vc HIGHEST 5
Figure 1: Sample Preference SQL query

In this example a user expresses its preferences after the
keyword PREFERRING. It is a Pareto preference (AND in the
PREFERRING-clause) consisting of preferences on soups, meat,
and beverages, i.e. all preferences are equally important.
The keyword IN denotes a preference for members of a given
set, a POS-preference. Hence, the user preferes Chicken and
Noodle soups over all others. Furthermore, the user wants
Beef and a drink with a maximum of vitamin C, but a de-
viation of 5 does not matter (HIGHEST 5). The result of a
preference query consists of best matches only (BMO-set,
[11]). Skyline queries are a special case of this BMO ap-
proach: Basically, they only allow HIGHEST and LOWEST
base preference constructors to participate in a Pareto pref-
erence ([11]). Therefore all results of this paper apply to
skyline queries as well. A lot of algorithms have been devel-
oped in the context of skyline and Pareto queries. Generally,
there are two types of algorithms: those depending on index
structures ([15, 20]) and generic ones ([3, 7, 19, 22]).

Index based algorithms tend to be faster, but are less flex-
ible. They are designed for flat query structures and have
a high maintenance overhead associated with database up-
dates. On the other hand, the generic algorithms show lin-
ear average-case and quadratic worst-case running times w.
r.t. the size of the input relation. Recently, algorithms with
linear worst-case complexity have been developed, cp. [22,
19]. Both use the structure of the lattice imposed by the
Pareto operator on the data space to identify the skyline,
but they keep this lattice structure in main memory and
are only applicable on low-cardinality domains. For high-
cardinality domains LESS from [7] is currently considered
to be the most efficient skyline algorithm that does not re-
quire indexing or preprocessing.

We will introduce the semi-skyline operator as one key
contribution of this paper. Based on this operator we will
develop a very fast 2d-skyline algorithm called Staircase-
Intersection with logarithmic worst-case running time. The
second key contribution are skyline snippets for a rapid com-
putation of a subset of the skyline (or the skyline under some
circumstances). The third application shows the benefit of
our semi-skyline operator in relational preference query op-
timization. It can be used as a prefilter preference to elimi-
nate tuples from the underlying relation which are definitely
no candidates for the skyline. Particularly, this is a crucial
step in queries involving joins. We conduct an extensive
performance evaluation using both real and synthetic data
sets. Our evaluation shows the enormous benefit of the semi-
skyline operator in all three applications.

The remainder of this paper is organized as follows: In
Section 2 we discuss the formal background used in this
paper. In Section 3 we introduce our semi-skylines and the
Staircase algorithm for its evaluation. Section 4 presents
the Staircase-Intersection algorithm for very fast 2d-skyline
computation. In Section 5 we present skyline snippets for
skyline pieces and in Section 6 we show the benefit for multi-
criteria query optimization. In Section 7 we discuss related
work and Section 8 contains our concluding remarks.

2. FORMAL BACKGROUND

Preferences and their integration into databases have been
in focus for some time, leading to diverse approaches, e.g.
[11, 4]. We depict the preference model from [11] and look
at a preference P = (A, <p), where A is a set of attributes
and <p is a strict partial order on the domain of A. The
term = <p y is interpreted as “I like y more than x”. The
skyline of a preference P = (A, <p) on an input relation R
are all tuples that are not dominated w.r.t. the preference.
It is computed by the preference selection operator o[P](R)
(called winnow in [4], BMO-set in [11]):

glP[(R):={tcR|-I cR:t<pt}

It finds all best matching tuples t for the preference P with
A C attr(R), where attr(R) denotes all attributes of a rela-
tion R. If none exists, it delivers best-matching alternatives,
but nothing worse.

An important subclass of preferences are weak order pref-
erences (WOP, [12]), i.e. strict partial orders for which
negative transitivity holds. For WOPs P = (A,<p) the
dominance test can be efficiently done by a numerical level-
function which depends on the type of preference, [22]:

level : dom(A) — RY
z <py <= levelp(x) > levelp(y)

For WOPs two domain values x and y having the same level
are either equal or indifferent, i.e. =(z <p y) AN =(y <p z).
All domain values mapping to the same level value are con-
sidered as substitutable and are treated as one equivalence
class (EC, regular SV-semantics, cp. [12]).

Preferences on single attributes are called base prefer-
ences. There are base preference constructors for conti-
nous and for discrete domains. The discrete POS-preference
POS(A, POS-set) for example states that the user has a set
of preferred values, the POS-set, in the domain of A. The
level function reflects the preference of elements of the POS-

set over other values.

0 iff z € POS-set
levelpos(x) := 1 iff z ¢ POS-set

The sample query in Figure 1 shows two POS preferences
with POS-sets for Soup and Meat. The generalization of
the POS preference is LAYERED, introduced in [12]. It
enables users to specify any number of different sets. Each
set is preferred more or less than another set (thus has a
unique integer level value). For all discrete base preferences,
the maximum level value is settled by the definition of the
preference constructor. For POS preferences, this value is 1.

Continuous numerical domains need a different type of
preferences. We will use the advanced version of [12], al-
lowing the partitioning of the range of domain values. For
this purpose the so-called d-value (d > 0) was introduced.
All numerical preference constructors are defined in [12],
e.g. LOWEST, HIGHEST, AROUND, BETWEEN and the
SCORE preference. To determine the level function for nu-
merical preference constructors, we use the function dist,
which has to be defined individually for every type of nu-
merical base preference and is interpreted as the numerical
distance from a perfect value:

. dist(x) iffd=0
levelp(x) := { [dist(z)/d] iffd>0

The extremal preferences HIGHEST and LOWEST allow
users to express easily their desire for values as high or as
low as possible.

> HIGHEST ;(A): The distance function has to map higher
inputs to lower function values. The best possible is the
maximum value of the domain of A, max.

distgreaesr(r) == mar — x

> LOWEST4(A): LOWEST, is the dual preference of HIGH-
EST. The best possible value is the minimum value of the
domain of A, min.

distrowest(z) =z — min

The query in Figure 1 shows a HIGHEST preference for the
amount of Vc in the Beverage products. It should be as high
as possible; differences of up to d = 5 do not matter.

There is the need to combine several base preferences into
more complex preferences. One way is to list a number of
preferences that are all equally important to the user. This
is the concept of Pareto preferences.

DEFINITION 1. Pareto preference
For WOPs P; = (Ai, <p;), i = 1,...,m, a Pareto preference

P := ®(P1,...,Pm) = (A1 X ... X Am,<p)
is defined as:

(1’1, ...,:Em) <p (yh ~~~7ym) <~
i e {1,2,...,m} : levelp, (i) > levelp, (yi) A
Vie{l,2,...,m}, j#i:levelp;(zj) > levelp, (y;)

We restrict our attention to WOPs as input preferences
for a Pareto preference P and consider tuples having the
same level value as substitutable. In this sense, Pareto pref-
erence queries model the semantics of the traditional skyline
queries.

3. SEMI-SKYLINES

In this section we introduce the Semi-Pareto preference to
compute semi-skylines, focusing on the 2-dimensional case
(m = 2 in Definition 1). At first sight the reader might find
this not very exciting, but it will become clear later on and
will surprisingly have very interesting applications.

3.1 Formal Background

Comparing the definition of Semi-Pareto to Pareto, it is
evident that Semi-Pareto is the half of a Pareto preference
for two preferences and therefore computes a ’semi-skyline’.

DEFINITION 2. Semi-Pareto preference
Let P, = (A1,<p1) and P = (A2,<P2) be WOPs.

e Left-Semi-Pareto: Pi <® P» = (A1 X A2, <pwpr,)

(71, 22) <Py (Y1,92) <
levelp, (x1) > levelp, (y1) A levelp, (x2) > levelp, (y2)

e Right-Semi-Pareto: Py @ P> = (A1 X A2, <p,@-P;)

(71, 22) <Pi>Py (Y1,42) <
levelp, (x1) > levelp, (y1) A levelp, (z2) > levelp, (y2)

The proof that Semi-Pareto is a preference, i.e. it is ir-
reflexive and transitive, can be done straightforward.

PrOOF. We present it for Left-Semi-Pareto, since Right-
Semi-Pareto can be done analogously.

e irreflexive:
(1, 22) <Prwp, (T1,72)
< levelp, (1) > levelp, (z1) A
levelp, (z2) > levelp, (x2)
<= false

e transitive:

T <pwP, Y N Y <PwP; ?

< [levelp, (z1) > levelp, (y1)

)]
)

)
)
y2) > levelp, (z2)]
)
)

(
(

Y2

—~

levelp, (x2) > levelp,

> > >

[levelp,

—~~

y1) > levelp, (z1

levelp,

~—~

(22)
= levelp, (z1) > levelp, (z1) A
(22)

levelp, (x2) > levelp, (22

— T <pP, 2

O

Similar to a Pareto preference, the Semi-Pareto construc-
tor is not a WOP even if it consists of WOPs.

LEMMA 1. Semi-Pareto is not a WOP

PrOOF. We give a counterexample. Consider the sample
data set from Table 1 holding a relation on beverages.

Given two preferences P, = LOWEST (Cal) and P, =
LOWEST(Fat) and P = P1 <® P>. Then 'B1’ is indifferent
to 'B5’, since they are not comparable due to P. Further-
more, 'B5’ is not comparable to 'B3’. It has more calories,
but is better in the amount of fat. But 'B1’ is better than
’B3’, because 'B1’ has less calories and less fat than 'B3’.
Hence, negative transitivity does not hold in general. [

Table 1: A sample data set for beverages.

[Beverages | ID | Name | Cal [Vc | Fat]

B1 | Red Wine | 85 1
B2 | Red Wine | 181 | 14
B3 | Coke 220 | 21
B4 | Lemonade | 281 | 17
B5 | Red Wine | 400 | 4

O | O ©

Therefore, a level-based domination between tuples is not
possible [22].

So far, the apprehension arises that no better algorithm
exists for evaluation than the well known block-nested-loop
algorithm (BNL) from [3]. But Staircase comes to the res-
cue.

3.2 The Staircase Algorithm

We now introduce the Staircase (SC) algorithm for the
evaluation of Semi-Pareto with guaranteed worst case com-
plexity of O(nlogn). SC is a variant of the BNL algorithm,
but the candidate window will be a SkipList ([23]).

Have a look at the definition of the Left-Semi-Pareto op-
erator from Definition 2 (analogously Right-Semi-Pareto),
where P1 and P> are arbitrary WOPs:

($17x2) <P<®P; (yhy?) —
levelp, (x1) > levelp, (y1) A levelp, (x2) > levelp, (y2)

A tuple z := (z1,22) is worse than a tuple y := (y1,y2), iff
the level value is worse or equal in the first component, i.e.
levelp, (z1) > levelp, (y1) and worse in the second one, i.e.
levelp, (x2) > levelp,(y2). Since we map tuples (z1,z2) to
equivalence classes represented by (levelpi(z1), level p, (z2)),
we can state directly dominance using these equivalence
classes. For a graphical interpretation have a look at Figure
2a. All equivalence classes in the pruning region PR, i.e. be-
low and right of the equivalence class [y] = (2,2) are worse
than itself, because their levelp, value is greater or equal to
2 and worse than 2 in the second preference P». Note that
the equivalence classes on the dashed line are not dominated.
Therefore, a tuple belonging to the equivalence class (2,2)
dominates all tuples belonging to an equivalence class lying
in PR. This dominance test is only possible if the underlying
preferences are WOPs. Comparing a new tuple x = (z1, z2)
with equivalence class [z] = (levelpi(x1), levelp, (z2)) leads
to the following possibilities:

a) If [z] falls into the pruning region PR (Figure 2a) we di-
rectly can state dominance using the equivalence classes.
For example consider [z] = (3,3). Since 3 > 2 and 3 > 2
the equivalence class [z] is worse then [y], thus the tuple
x is dominated. If an equivalence class falls directly on
the dashed line it is not dominated, since tuples in such
a class are not worse concerning the second preference.

b) If an equivalence class is left below of [y] it is not domi-
nated, but extends our staircase, cp. Figure 2b. Equally
if an equivalence class is right above [y] (or on the dashed
line) our staircase will be extended. For example, [y'] =
(1,3) and [y”] = (3,0) extends our staircase and there-
fore the pruning region PR. Inserting these equivalence
classes all tuples lying in an equivalence class of the gray
area are dominated, i.e. dominance can now be decided
by the dichotomy of the staircase.

[\

0 1 2 3 levelp, 0 1
0 $ t t 0 t
1 4 1 4 .
[v]
2 4 . —— e 2 4 .
[=] [v']
3 1+ . ° . 3 4+ —
PR
level p, o . . . level p,
Figure 2a: Adding a worse Figure 2b:
equivalence class. staircase.

¢) Only an equivalence class [z] left above [y] is better than
[y] and therefore dominates it, Figure 2c. In this case, we
have to update our staircase, since it is possible that [z]
dominates other equivalence classes (and their contain-
ing tuples), too. But updating is an easy step, because
[2] only can dominate equivalence classes right below of
itself. All equivalence classes right below of [z] (without
the dashed line) in the order of our staircase points have
to be deleted. For example, consider [z] = (1, 1) in Figure
2c. [z] dominates [y] and [y'] and therefore we have to
delete these equivalence classes and change the staircase
to its new form consisting of {[z] = (1,1), [¢"] = (3,0)}.

In the worst-case of BNL ([3]) all tuples in the candidate
window have to be compared to the new tuple to decide
dominance. In contrast, using the staircase we only have to
decide if a tuple is left of the staircase, i.e. it dominates,
or a tuple is right of the staircase, i.e. it is dominated.
This dominance criterion is only applicable if the equivalence
classes on the staircase are comparable and ordered. Well,
our staircase, i.e. the points on it, build a total order using
the Manhattan distance [16].

DEFINITION 8. Manhattan distance, L1 norm
The Manhattan distance d; for an equivalence class [z] =
(z1,22) in our 2-dimensional staircase space is the distance
from the fized point (0, maz(levelp,)) to the point [z]. We
denote mazx(levelp,) as the maximum level value for Ps.
Formally:

di([z]) = z1 — w2 + max(levelp,)

The Manhattan distance from Definition 3 can be also
defined using (maz(levelp,),0) as origin. This would lead
to a contrary staircase, but does not change anything in our
algorithm.

LEMMA 2. Total Order of Staircase Points
The points on the staircase build a total order concerning
the Manhattan distance from Definition 3.

PRrROOF. We give the proof using a Left-Semi-Pareto pref-
erence P := P; <® P» with weak order preferences Pi
(A1,<p,) and Py = (A2,<p,). The proof for Right-Semi-
Pareto can be done analogously.

Extending the

3 levelp, 0 1 2 3 levelp,
Y | |
1 0 ! ! 1
[v"] [v"]
[2]
. 1 ¢+ ¢ — — —— — — > .
[v]
—_—— —_—— 2 4 —_—— g — e
[v']
. . 3 4 be = — . .
PR PR
. . levelp, - . . .

Figure 2c: Updating the stair-
case.

Consider an equivalence class [y] = (y1,y2) with Manhat-
tan distance d1([y]) = y1 — y2 + maz(levelp,) already on the
staircase. We want to insert a newly tuple z with equiv-
alence class [z] = (z1,22) and the same distance di([z]).
Since mazx(levelp,) is fixed, they only have the same Man-
hattan distance if y1 — y2 x1 — x2. This leads to the
following possibilities:

e if x; = y;, ¢ € {1,2}, then both fall in the same equiv-
alence class, i.e. tuple z will be added to [y].

e if 21 > y1 and x> > yo2, then [z] is dominated by [y].
Therefore tuple x is dominated, too.

e if 11 < y1 and z2 < y2, then [y] is dominated and
replaced by [z].

Since these are all possibilities for di([y]) = d1([z]) the stair-
case points build a total order concerning the Manhattan
distance. [

As an example consider the equivalence classes [z] = (1,1
and [y"] = (3,0) from Figure 2c. We get a distance d1([z]) =
maz(levelp,) and di([y"]) = 3 + max(levelp,).

Using the Manhattan distance the dominance decision in
the staircase is easy. Search di([z]) of a tuple z. If di([z])
exists, just compare the level values with the existing equiv-
alence class and find out dominance (or add the tuple to the
equivalence class if it has the same level values). If di([z])
does not exists, compare the equivalence class of [z] to the
one with next lower distance. If [x] is not dominated insert
it into the staircase and update the staircase, i.e. delete all
equivalence classes dominated by [z].

Our first idea to use balanced search trees to store the
staircase failed on finding the dominated equivalence classes
after an update action, i.e. in a binary tree it is not easy to
find all points which are worse than the newly inserted point.
SkipLists are an alternative to binary trees and provied in-
sert, delete and search in O(logn) ([23]). They also provide
easy access to all equivalence classes for the update action.
Begin at the inserted point and run through the list until
dominance fails.

A SkipList (]23]) is a collection of sorted linked lists, each
at a given “level”, that mimics the behavior of a search tree.
The list at each level, other than the bottom level, is a sub-
list of the list at the level beneath it. Each node is assigned a
random level, up to some maximum, and participates in the

lists up to that level. Figure 3 shows a SkipList with equiv-
alence classes as keys ordered by the Manhattan distance
(number below the classes, maz(levelp,) = 10). Among
other points it contains the classes from Figure 2b.

—00 (07 4) (17 3) (27 2) (37 O) (57 O) (87 O) (147 0) +00
6 8 10 13 15 18 14

Figure 3: A SkipList with maximum level 4. The
keys are equivalence classes ordered by the Man-
hattan distance (number at the bottom).

The number of nodes in each list decreases with the level,
implying that we can find a key quickly by searching first at
higher levels, skipping over large numbers of shorter nodes,
and progressively working downward until a node with the
desired key is found, or the bottom level is reached. Thus,
the expected time complexity of a SkipList operations is
logarithmic in the length of the list, cp. [23].

It is convenient to have left sentinel and right sentinel
nodes, at the beginning and end of the lists respectively.
These nodes have the maximum allowed level, and initially,
when the SkipList is empty, the right sentinel is the successor
of the left sentinel at every level. The left sentinels key is
smaller, and the right sentinels key is greater, than any key
that may be added to the set. Searching the skiplist thus
always begins at the left sentinel.

For the complexity of a Semi-Pareto evaluation using the
SC algorithm we can conclude the following theorem:

THEOREM 1. SC Complexity
For n input tuples we get:

e worst-case runtime: O(nlogn)

o best-case runtime: O(n)

PrROOF. For each input tuple we either have to insert or
remove it from the staircase. These operations can be done
in logarithmic time, i.e. we get a worst-case complexity of
n - O(logn). Since our SC algorithm is a specialized BNL
algorithm, we can guarantee a best-case runtime of O(n),
cp. [7, 8. O

We now show 3 interesting applications of Semi-Pareto.

4. VERY FAST 2-D-SKYLINES

In this section we introduce a novel method called Stair-
case Intersection (SCI) to evaluate 2-dimensional skylines.
SCI significantly shows better performance than all known
algorithms up to now.

4.1 Formal Background

The key to our very fast 2-d skyline computation is a
theorem stated below. The proof of this theorem requires
additional formal background. First, we want to define the
ungon of preferences, which assembles a preference P from
separate pieces P, ..., P, all acting on the same set of at-
tributes.

DEFINITION 4. Union preference: P; + P
We assume preferences P1 = (A, <p,) and P> = (A, <p,).
Then P = (A, <p,+p,) is called union preference, iff:

T<p+pP, Y < <p Yy V rx<py
Using the union preference the following theorem holds:

THEOREM 2. Pareto decomposition
Given preferences Py = (A1,<p,) and P> = (A2, <p,) then:

PiRP,=(PL<®P)+ (PL&> P)

PROOF. The proof follows directly from Defintion 1. [

Note, in general the union of preferences does not lead
to a strict partial order. But if the preferences are disjoint
a strict partial order is guaranteed ([11]). In our case, the
union of the Semi-Paretos forms Pareto and therefore is a
preference, even if the Semi-Pareto preferences are not dis-
joint. Furthermore, preference union can be evaluated by
the intersection of the single preference selections.

THEOREM 3. 0[P, + P2J(R) = o[P1)(R) N o[P2](R)
Given preferences Py = (A1,<p,) and P> = (A2, <p,) with
A C attr(R) on a relation R. Then

o[P1+ P2|(R) = o[P](R) N o[P2](R)

PROOF. In [11] this has been shown already for disjoint
preferences. It turns out that this also holds for non-disjoint
preferences.

We define the set of non-mazimal values for a database
relation R and a preference P(A,<p) as

Nmaz(P) := R[A] — max(P)
For w € R[A] we get:

x € Nmaz(P, + P»)

<= Jy € R[A]:z <pi+pP, ¥

< JyeRAl:z<pyV z<py

<= (AyeRAl:z<p y) V ByeRA:w<p,y)
<= z € Nmaz(P1) V = € Nmaz(P2)

Thus: Nmaz(P1 + P2) = Nmaz(P1) U Nmaz(P,)
Then:

O'[P1 + PQ](R)

= {t € R| t[A] € maz(P1 + P»)}

= {t € R| t[A] € R[A] — Nmaz(P1 + P»)}

={t € R| t[A] € R[A] — (Nmaxz(P1) U Nmaxz(P2))}

={t € R| t[A4] € (R[A] — Nmaz(P)) N (R[A] — Nmaz(P2))}

= {t € R| t[A] € maz(P1) N max(P2)}
= o[Pi](R) No[P2](R)

[l
Now we present the key to our very fast 2-d skylines.

THEOREM 4. Skyline by Semi-Pareto Intersection
Given preferences Py = (A1,<p,) and P> = (A2, <p,) with
A1, Az C attr(R) on a relation R. Then

U[Pl ®P2](R) = O’[Pl @PQ](R) N O’[P1 ®>P2](R)

ProoF. Using Pareto decomposition and theorem 3 we
get:

o[Pr® PJ(R) = of(Pr<®P)+ (P& P)|(R)
o[P1 ® P:J(R) No[P1 &> P](R)

O

This means, a 2-dimensional Pareto preference can be
computed by the intersection of both Semi-Pareto prefer-
ences. Therefore, we call this method Staircase-Intersection
(SCI). Since all equivalence classes in the staircase of a Semi-
Pareto preference evaluation are ordered, the intersection of
both Semi-Paretos can be done by sorted-based intersection
in linear time ([1]). In particular, the parallel computation of
the Left-Semi-Pareto and the Right-Semi-Pareto preferences
enormously speeds up the Pareto evaluation and obviously
can be applied on multi-core processor architectures.

EXAMPLE 1. Consider two preferences on Table 1:
P, = POS(B.Name, 'RedWine'), P = HIGHEST (Vc).
We want to compute 0[Py @ P2)(B). Then

e 0[P <® P»](B) = {B2, B3, B4}
e 0[P & P»](B) = {B1, B2, B3, B4, B5}
Using Theorem 4 we get

o[PL®P)(R) = oPr<®wP|(R) N o[> P](R)
= {B2, B3, B4}

4.2 Performance Benchmarks

We now present results from an experimental study de-
signed to compare the performance of the SCI algorithm
with the best existing methods. The results of our extensive
performance tests show the benefit of our SCI, in particular
for high cardinality domains.

> Algorithms and Data Sets

We have implemented the following algorithms: our SCI,
the Hezagon algorithm from [22] (also known as Lattice sky-
line in [19]) using the structure of the lattice imposed by the
Pareto operator on the data space to identify the skyline.
We also implemented LESS described in [7] which average-
case running time is linear in the number of data points for
fixed dimensionality. For 2-d skylines an algorithm using
sorted data was proposed in [3] (BNL2d). If the data is
sorted according to the two attributes of the Pareto clause,
the test of whether a tuple is part of the skyline is very
cheap: one simply needs to compare a tuple with its prede-
cessor. More precisely, one needs to compare a tuple with
the last previous tuple which is part of the skyline.

The reason for choosing these algorithms is as follows:
The SCI algorithm is a Pareto evaluation technique that
does not require an index for evaluation. All evaluated al-
gorithms do not require preprocessing or an index to be pre
constructed on the data, which makes them very appealing
when the skyline operation is part of a complex query (for
example computing a Pareto preference over a subset of the
base relation or over a join condition). Of course, Hezagon
works best for low-cardinality domains. Nevertheless, we
compare it to our SCI to show the high performance even in
low-cardinality domains. LESS is currently the best known
general skyline algorithm for high-cardinalty domains.

All algorithms are implemented in our Preference SQL
system ([9]), a Java SE 6 framework for preference queries
on real database systems using a JDBC-connection. All ex-
periments are performed on a 2.53GHz Core 2 Duo machine
running Max OS X with 4 GB RAM used for the JVM. We
used an Oracle 11g database to store all generated data. We
used a buffer pool large enough for all operations to fit into
main-memory for all tests. The input sets and the skyline
points are kept in main-memory, too. Performing all opera-
tions in main-memory is the best case for all used algorithms
since no external operation is necessary.

We use synthetic data sets, since these are commonly used
for skyline evaluation. These data sets allow us to carefully
explore the effect of various data characteristics. We gener-
ate the synthetic data sets with correlated (COR), indepen-
dent (IND) and anti-correlated (ANTI) distributions using
an implementation of the popular data set generator of [3].
We have modified the generator to generate data sets with
attributes from high-cardinality domains with domain size
c. We generate a number of synthetic data sets by vary-
ing three parameters: the data cardinality n, the number of
distinct values for each high-cardinality attribute domain ¢
and the d-value, which controls the number of values con-
sidered as substitutable. The data dimensionality is fixed
to two. In all synthetic experiments, the tuple size is 100
bytes (also used in [7] in their experiments). A tuple has
two attributes of type Integer and one bulk attribute with
“garbage” characters to ensure that each tuple is 100 byte
long.

> Results

We run four tests, each using correlated, independent and
anti-correlated data, but different data cardinality n and
domain cardinality ¢ to represent the power of our SCI al-
gorithm.

Test 1: Figures 7a through and 7c show runtimes for dif-
ferent distributions, containing n = 10 to 10° tuples. We
fixed ¢ = 100K, i.e. the domain contains 100.000 differ-
ent values, and d = 0 to represent the conventional skyline
queries. Obviously, SCI performs better than the competi-
tors. Note that the axes are logarithmical scaled. The differ-
ence to the other algorithms using correlated or independent
data is small. For example, consider 500K correlated tuples
(Figure 7a). This leads to a runtime of 5 seconds for our
SCI algorithm, whereas LESS takes about 8 seconds (nearly
twice as SCI), and BNL2d exceeds 20 seconds to evaluate
the query. Similar runtimes are presented in Figure 7b for an
independent data distribution. For anti-correlated data we
can achieve a very fast skyline retrieval. For example, SCI
takes about 20 seconds to retrieve the skyline for a relation
containing 10° tuples. The Bnl2d algorithm using sorted
data takes about 50 seconds, whereas LESS needs about
3 minutes. The performance of generic skyline algorithms
varies greatly depending on the underlying data distribu-
tion; specifically, the performance of these algorithms de-
grades if the distribution tends towards an anti-correlated
distribution. Note that many skyline applications involve
data sets that tend to be anti-correlated, see e.g. [19].

Test 2: In our second test series we increase the domain
size to ¢ = 500, fix d = 0, and have a look at different data
cardinality n to see how our algorithm will scale for larger

domain sizes. The results can be found in the Figures 8a
to 8c. Obviously our SCI algorithm is not affected at all
by changing the domain size. As already seen in our first
test, SCI is only a little bit faster than LESS or BNL2d for
correlated and independent data, but for an anti-correlated
data distribution it computes the skyline much more faster
than its competitors.

Test 3: The third test series compares the runtimes for dif-
ferent domain cardinality n, but using d = 10K to represent
the influence of the d-value in preference queries to our SCI
algorithm. Using this d-value the Hexagon algorithm from
[22] can be applied, since we ’achive’ low-cardinality. The
d-parameter allows the partitioning of the range of domain
values into equivalence classes, i.e. it controls the number
of substitutable values. Figure 9a and Figure 9b show the
runtimes of all presented algorithms for correlated and in-
dependent data sets. As one can see, even if Hexagon has a
linear runtime, our SCI algorithm performs only a little bit
worse. Using anti-correlated data (cp. Figure 9c), it is evi-
dent that SCI becomes worse with higher domain cardinality
n, and Hexagon can use its advantage from the lattice struc-
ture imposed by the Pareto operator to identify the skyline.

Test 4: In this test we evaluated the influence of the d-
value on the different algorithms. We fixed n = 500K (this
value is also used in [7]) and set ¢ = 500K for all type of data
sets. We varied the d-value for our preference queries to con-
trol the number of substitutable values. This is similar to
vary the domain cardinality. The result are shown in Figure
10a through 10c. For all data distributions our SCI algo-
rithm shows its excellent performance until a d-parameter
of d = 500, since lower d-values represent high-cardinality
domains. From d > 1000 on, the Hexagon algorithm turns
out to be better since we achieve ’low-cardinalty’ for ex-
ploiting the lattice structure of a Pareto preference ([22]).
Hexagon was not able to compute the results for d < 50,
because the lattice structure did not fit into main memory
for high-cardinality domains.

5. SKYLINE SNIPPETS

In many applications knowing only a piece of the skyline
is sufficient. This problem has been addressed before by so
called progressive skyline algorithms ([20]). However, all of
them have to use predefined index structures. In this section
we introduce the novel approach of skyline snippets for very
fast retrieval of a skyline subset.

Since Pareto is associative and commutative ([11]), each
m-dimensional Pareto preference can be k-partitioned. For
example, consider P = ®(Py, P2, P3,Py), m =4 and k = 2.
Then a few 2-partitions of P = Pl ® PP are:

.P[1]:P1®P2andP[2]=P3®P4
.P[1]:P1®P3andP[2]=P2®P4
e Pl=p @Pand PP =P, @ P,

P and P are called partition preferences, forming special
subspace preferences ([21]). The number of k-partitions of
an m-dimensional Pareto preference is given by the Stirling
numbers of second kind {7'} ([14]). For the example above
we get {;l} = 7 partitions; 3 of them are shown above.

5.1 Formal Background

We give the formal background to our skyline snippets.

THEOREM 5. k-Snippets of a Skyline
Consider a Pareto preference P = Q(Pi, ..., Pm), its k-parti-
tion @(PWY, ..., P¥) and the skyline S = o[P](R) on some
relation R = (A1, ..., Am).
a) Let Sy =U;_, o[PY(R), then
o o[P](Sk) #0
e o[P](Sk) C S
o[P](Sk) is called a k-snippet of the skyline S.
b) Let Ly = (\;_, o[PYI)(R). If L # 0, then Ly, = S.
Ly, is called a lucky k-snippet of skyline S.

PRrROOF.

a) o[P](Sk) # 0 is obvious since preference selection never
will be empty. We proove o[P](Sk) C S.

Let t = (ai, ..., Gm, ...) € o[P](Sk), i.e.
-3t = (a},...,an,,...) € Sk :
(@1, ey Gy oen) <P (@1, ey Aoy oen)

Furthermore, t € Sk, i.e.
-3t = (af,...,am,..) ER:

(BPY 1< <k:(at,.tm,...) <pp (al,..,alh,..))
It follows
-3t = (a},...,an,,...) € R:

(@1, ey Gy) <p (@), .y, ..) &t €S = o[P](R)
b) Let t = (a1, ..., @m,...) € Lx. Then

-3t = (al, ..., am,...) ER:
(al, ceey Qi) <pljl (a;mm,a;n,)7 Vi<j<k
< te S=0[P](R)

O

We give a short example for a better understanding.

EXAMPLE 2. Given preferences P = AROUND(A1,0)
and P, = AROUND(A2,0) and a relation R as in Table 2.

Table 2: Sample data for relation R.

(R0 [A [4]

O OV W[WOl D —

' |
OMMHOM
| o | o] OY N

The skyline S of the preference P = Py ® P» is
$ = min([PI(R)) = {1,3,4,6}

There is one 2-partition with Pl = P and Pl = Ps:
T1o(o[PY)(R)) = {2,6} and m1p(o[PP(R)) = {1,4)
Thus, our 2-snippet has the following tuples:
mip(o[P]({2,6} U{1,4})) ={1,4,6} C S

Now, assume that luckily a new tuple t = (7,0,2) is inserted
into R. Then we get S := mp(c[P](R)) = {7} and

WID(U[P[I]](R)) = {27677} and WID(U[P[Q]](R)) = {1747 7}

Thus Ly = {2,6,7} N {1,4,7} = {7} # 0. Therefore we
can conclude: S = Lo = {7}. Sometimes tuples like this are
called “killer tuples” in the literature.

5.2 Equal-sizedz-Snippets

Since for the purpose of this paper we want to promote the
power of the Semi-Pareto preference and our SCI algorithm,
we now present a case study using %-snippets such that
every partition is of dimension 2, hence can be evaluated
using our novel semi-skyline algorithm. Assume m is even.
We want to partition m into 3 = n pieces, however each
piece is supposed to have cardinality 2. Due to this extra

constraint we can not use {m"/IQ} as the number of partitions,

since {m";Q} also accounts for unequal cardinalities amongst
the partitions.

LEMMA 3. The number N of different equal-sized -
snippets of a Pareto preference ®(Px, ..., Pm) is given by

o N(1) = N(0) =1

e Nm)=(m—-1)-N(m—2), m>1

PrOOF. We proof it by induction on m.

e Induction start:

N(1) =1 is clear, N(0) = 0 by definition.

e Induction step:

Assume we know N(m — 2), m > 2. Proceeding to
the next even number, let us consider m — 2 4+ 2 =
m The newly added attributes A,,—1 and A,, can be
combined with the N(m — 2) possibilities as follows:

a) (Am—1,Am) form a new 2-partition, which can
be combined with N(m — 2) possibilities yielding
N(m — 2) possibilities.

b) Assume A,,—1 is combined with Ay, ..., Am—2, re-
spectively, to form a 2-partition. Each one can be
combined with N(m — 2) possibilities, where A,

replaces A, ..., Am—2, respectively. In total this
leads to (m — 2) - N(m — 2) possibilities.

Since no other cases can occur, we get

N(m) = N(m—2)+(m—2)-N(m—-2) = (m—1)-N(m—2)

In our introductory example we have N(4) = 3 possible
2-snippets, exactly those mentioned in this example. For 6
preferences combined by Pareto we get N(6) = 15 and for 8
preferences we reach N(8) = 105 possible snippets.

Note, in the case of m = 2n + 1,n € N, we generate n
partitions for a very fast evaluation using our SCI algorithm
and compute the results of the remaining preference using
a level-based algorithm in linear time.

5.3 Performance Benchmarks

For the performance benchmarks of our skyline snippets
we use the same set-up as described in Section 4.2. We var-
ied the number of dimensions dim from 2 to 10. The data
cardinality is fixed to n = 500K as in [7] and the domain
cardinality is fixed to ¢ = 100K. We run several tests and
present two of them with different d-values. We run tests
for independent, correlated and anti-correlated data. We
choose BNL, LESS and Hexagon (if applicable) for compar-
ison, because these algorithms are the best competitors.

Test 1: For the first test series we set the d-value to d =0
to represent the conventional skyline queries. The results
are shown in the Figures 11a, 11b and 11c. Since d = 0 rep-
resents a high-cardinality domain, the algorithm Hexagon
can not be applied (the lattice structure does not fit into
main memory). As one can see, the computation of some
skyline points can be done extremely fast with our skyline-
snippets method, profiting from parallel computations of the
2-partitions. Although, our skyline snippets method does
not compute the complete skyline, it returns enough skyline
points for a user in real-world applications as can be seen in
the case of anti-correlated data, cp. Figure 11c. For dim = 6
LESS needs more than 2 minutes to compute the whole sky-
line (14024 points), whereas our snippets method gets 342
points in about 10 seconds. Considering 10 dimensions, we
have a runtime for LESS of 20 minutes (about 33.000 skyline
points). Our snippets method computes 719 skyline points
in less than 20 seconds. Table 3 shows the number of sky-
line points found by LESS (the complete skyline) and our
snippets algorithm.

Table 3: #Points in the skyline and the partitions.

[dim | LESS | o[P](Sy) [P | PRI [PBI | PHI] pBI [ps
2] 619 619 || 619 - - - - -
3 1174 278 || 291 - - B - | %4
4| 2808 311 || 266 | 278 - - - -
5 | 5495 327 || 312 | 319 - - - 78
6 | 14024 342 || 378 | 311 | 299 - - -
7 | 18112 456 || 489 | 412 | 401 B - [112
8 | 20333 586 || 411 | 419 | 458 | 403 - -
9 | 26851 658 || 379 | 441 | 390 | 471 - 98
10 | 32973 719 || 480 | 429 | 369 | 391 | 451 B

For comparison, we also show the number of skyline points
found by each partition pl] ,j7 = 1,.. k, of dimension 2.
For each dimension we generated new test data. In the case
of an odd number of preferences we also present the result
size of the single preference selection P°. As in Theorem 5
we write o[P](Sk) for the result of our snippets algorithm,
where Sy, = Ule o[PY(R). For dimension d = 2 our snip-
pets algorithm always finds all skyline points because the
union of the both Semi-Pareto selections also contains the

intersection of them (cp. Theorem 4). Therefore the com-
plete skyline will be computed. Furthermore, we observe
that the result sizes of the different partitions are nearly the
same for each dimension.

Test 2: Our second test series demonstrates the influence
of the d-parameter to our snippets algorithm. As above,
we fixed the data cardinality to n = 500K and the domain
size to ¢ = 100K. Furthermore, we varied the number of
dimensions from 2 to 10 and fixed the d-value to d = 10K.
The results are represented in the Figures 12a, 12b and 12c.
Interestingly, for correlated data (Figure 12a) the Hexagon
algorithm from [22] nearly performs as good as our snip-
pets algorithm. The reason is the worse reduction from the
equal-sized % snippets, this means the union of all snip-
pets nearly contains as much tuples as the complete data
set. The second reason is the high d-value. The Hexagon
algorithm gains its speed from the lattice structure induced
by a Pareto preference using a high d-value. Using inde-
pendent or anti-correlated data sets, the snippets algorithm
shows particularly its high performance in higher dimen-
sions. LESS and Hexagon show nearly the same runtime as
our skyline snippets.

The reader might ask why we do not compute each single
preference separately, i.e. use a m-partition and compute
o[PI(US, o[PYU](R)). Our experiments outline that the
runtime is nearly the same, but the number of skyline points
is much less than using 3 -partitions. For example, comput-
ing each preference separately for 4 dimensions we get 84
skyline points (anti-correlated data set). Using 2-partitions
we have 311 skyline points [6]. On the other hand, using
less partitions leads to more skyline points, but to longer
computation times, too.

In many applications it is sufficient to know only a piece of
the skyline. If all points are necessary the complete skyline
has to be computed requiring much more time.

6. MULTI-CRITERIA OPTIMIZATION

The optimization of queries with multiple preferences and
hard constraints is essential to support fast result computa-
tion ([4, 9]). The query in Figure 1 is a query containing
hard constraints and user preferences on some attributes.
Conventional approaches implement such queries by a set of
binary join operators and evaluate the hard constraints. Af-
terwards the user preferences as soft selection combined with
the Pareto operator are evaluated by a skyline algorithm to
retrieve the best matching objects. As in Figure 1 the hard
constraints refer to attributes from more than two relations,
pair-wise join operators cannot test the satisfiability of an
intermediate tuple until all variables have been determined.
The query evaluation process must evaluate the cartesian
product of all tuples of all join relations, which leads to high
memory and computation costs, particularly for large rela-
tions.

Firstly introduced as Cutoff preference constructor ([5]),
our Semi-Pareto preference provides an optimization tech-
nique for preference queries in combination with hard con-
straints over several relations. It allows us to eliminate tu-
ples from relations which definitely can never be in the result
set before building the costly join. This reduces the relation
sizes and therefore the computation costs and needed mem-
ory for the join. Since the workshop paper [5] was a first ap-

proach and only covers the fundamentals of the Semi-Pareto
preference, we now complete the theoretical background for
the developed optimization techniques.

6.1 Formal Background

The basis of our preference optimization technique is the
following theorem published in [9, 4]:

THEOREM 6. Push Preference over Hard Selection
For a preference P = (A, <p) with A C attr(R) and a hard
constraint H the following holds:

olPl(on(R)) = on(o[P](R)) <=
Vwe R: Hw) AN Fve R:wlA] <pv[A] — H(v)

If a tuple w is dominated by a tuple v, a tuple v’ € ou(R)
must exists which dominates w. This guarantees the re-
duction of a tuple w only if it is dominated transitive by a
tuple from oy (R). Hence, a commutation due to Theorem
6 is possible, if for each dominating tuple v[A] the condition
H(v) is fulfilled. We now define the prefilter preference:

DEFINITION 5. Prefilter Preference
A preference Q = (Q,<q@) is a prefilter preference for a
preference P = (P, <p) w.r.t. a relation R iff

o[P|(R) = o[P)(o[Q](R))

For the rest of this section we look at database relations
R = (A4,..., Ay, B1, ..., By) where the B;’s are numerical at-
tributes. We consider a hard constraint H on R as follows:

H = h(by,....br) ©c, ©c{<,<,> > =%#}

where h : dom(B1) X ... X dom(By) — R is a monotone
function and ¢ € R a constant. An example of such a query is
given in the introduction, see Figure 1. For our optimization
techniques we need the idea of an induced preference.

DEFINITION 6. Induced Preference
Given a database relation R and a hard constraint H as
above: H = h(b1,....,bx) © ¢, ce RO € {<,<,>,>,=,#}.

a) If © € {<, <} and h is monotone in b;, then:
H; .= LOWEST (b;) is called induced preference.

b) If © € {>,>} and h is monotone in b;, then:
H; .= HIGHEST (b;) is called induced preference.

¢) If © € {=,#} and h is monotone, then:
H; := ANTICHAIN(b;) is called induced preference.
The ANTICHAIN preference on the attribute b; returns
all elements of the input relation ([11]).

Using Definition 6 we get:

THEOREM 7. Push Semi-Pareto over Hard Sel.
Given a preference query with hard constraints H on a rela-
tion R, P = (A,<p) a preference. Then

a) o[P <® Hil(on(R)) = on(o[P < Hi](R))
b) o[P &> Hi)(on(R)) = ou(o[P @ Hi|(R))

where H; is an induced preference from Definition 6.

PROOF. We only prove a) since b) can be done analog.
Consider a relation R = (Au,..., Ak, B1, ..., By), B; numer-
ical attributes and tuples t = (a1, ..., aj, ..., bi,...) and t =
(ai,...,a},...,b},...). For all ¢,t' € R assume

t <pam, t AN Ht) % <y ' A t<pt A H()

Since t fulfills the hard constraint H and is worse than
t' concerning the induced preference, it follows that also ¢’
fulfills the hard constraint, i.e. H(t') is valid. Therefore we
can apply Theorem 6 and push the preference over the hard
constraint.

O

If P is an induced preference, i.e. LOWEST, HIGHEST
or ANTICHAIN we can simplify Theorem 7 as follows:

COROLLARY 1. Special Cases
Consider a preference query where H; is an induced prefer-
ence, then:

olHi|(on(R)) = ou(o[Hi](R))

Proor. H; = H;<® H; O

THEOREM 8. Prefilter Preference for P, + P»
Let P, = (A,<P1), P, = (A,<P2) and P = Py + P> be
preferences. Then P1 and P» are prefilter preferences of P.

o[P|(R) = o[Pl(e[P1|(R)) = o[P)(c[P2](R))

PrOOF. The first step of the following equation follows
from [12, 4].

o[P1+ P2J(o[P1](R))

o[P](a[P](R)) N o[P](o[P1](R))
= o[P](R)Na[P:)(c[P1](R))
= o[P)(e[P](R))

Thus, a result tuple t has to be Pi-maximal w.r.t. R and
P>-maximal w.r.t. o[P1](R). On the other hand, consider

olPi)(R) No[P)(R)

A result tuple t has to be Pi-maximal w.r.t. R and Pe-
maximal w.r.t. R as well. A result tuple t that is Pe-
maximal in R is Pr-maximal w.r.t. o[P1](R), too. For the
opposite, by contradiction let’s assume that t is Po-maximal
in o[P1](R), but not in R:

—-3v € U[Pl](R) 1t <p, v
but
EIv'ER:t<p2 v

Since v’ is not in o[P1](R), it is Pi-dominated by t. How-
ever, for P = P; + P» this would contradict irreflexivity.
Consequently:

o[P2](o[Pi](R)) = o[Pi)(R) No[P](R) = o[P1 + P2)(R)
(|

We now formulate a prefilter preference for Pareto.

THEOREM 9. Pareto Prefilter Preference
Constider a Pareto preference query o[P](om(R)) with a hard
constraint H on a relation R, P := ®(P1,...,Pn). Then
P, &> H;, i € {1,...,m} is a prefilter preference for P with
H; an induced preference as in Definition 6 and it follows

o[Pl(on(R)) = o[Pl(on(c[P; @ Hi](R)))

PROOF. Lett := (a1,...,ai,...,am) and t’ := (a}, ..., a}, ..., am)
two tuples in R := (A1, ..., A;») which only differ in a and o’
and

levelp, (t) > levelp,(t') A levely,(t) > leveln, ('t)
Then, it is evident that:

1) if the hard constraint H fails for ¢/, also the hard con-
straint fails for ¢, since levelp,(t) > levelp,('t) (H is
monotone). Therefore ¢ is not an element of the solu-
tion.

2) if ¢ fulfills the hard constraint, then

a) if ¢ fails the hard constraint, then ¢ is not an element
of the solution.

b) if ¢ also fulfills the hard constraint, then we know
levelp, (t) > levelp, ('), i.e. tuple t' is preferred to ¢. It
follows from the Pareto preference P := Q(Pi, ..., Pm)
that ¢’ is preferred over ¢ since t’ is preferred w.r.t P;
and all others are equal.

O

This theorem allows us to push the induced prefilter pref-
erence “down to the relation”, e.g. over an cartesian product
applying the rule “push preference” from [9].

EXAMPLE 3. Rewvisit the preference query from Figure
1 with preference P1 = POS(S.Name, {'Chicken',’ Noodle'}),
P> = POS(M.Name,' Beef') and Ps = HIGHESTs(B.Vc)
combined to a Pareto preference P = Py @ Po ® P3. Further-
more, consider the sum of calories (Cal) that must be less
or equal to 1100 kcal as hard constraint H. Since © is “<”
our induced preference are

e Hs = LOWEST(S.Cal) for Soup
o Hy = LOWEST(M.Cal) for Meat
e Hgp = LOWEST(B.Cal) for Beverage

Using Theorem 9 we can insert the induced preferences and
push them over the hard constraint. Since the prefilter pref-
erences Hs, Hy and Hp only have preferences on attributes
of Soup Meat and Beverage, respectively, we can push these
prefilter preferences over the cartesian product as introduced
by [9] and get the optimized operator tree in Figure 4.

The insertion of induced prefilter preferences leads to an
elimination of tuples from the relations before building the
join and hence reduces memory and computation costs for
the cartesian product. For fast evaluation semi-skylines and
our staircase algorithm can be used.

|*
o[P1 ® P> ® Ps]
////// \\\\\\\
X U[Pg <> HB]
TN |
o[P1 ® Hg] [Py @ Hy B

S M

Figure 4: Operator tree with induced preference.

6.2 Performance Benchmarks

In order to evaluate the Pareto prefilter preference, we
performed several experiments. For this we integrated the
optimization rule from Theorem 9 into the preference query
optimizer of Preference SQL ([9]). We used a real-world
food database published by the United States Department of
Agriculture (USDA, http://www.nal.usda.gov/fnic/), and
synthetic data sets to explore the effect of various data char-
acteristics.

For the evaluation of the Semi-Pareto preferences induced
by the prefilter preference described in theorem 9 we used
our SC algorithm from Section 4. The evaluation of the
remaining Pareto preference was done by LESS. We evalu-
ated the efficiency of our Pareto prefilter preference (abbr.
pref-prefilter) by comparing the response times of several
preference queries with hard constraints to an unoptimized
evaluation (abbr. no-opt).

Test 1: The first test is based on the query in Figure 1 and
contains three constraints. We used the real-world-database
from the USDA. This database contains nutritional facts
for more than 7000 types of food. From this database we
created several relations, e.g. Soup, Meat, and Beverage
containing information about their eponymous types of food.
The sizes of these relations are as follows: There are 500
soups, 680 meats, and 350 beverages available, i.e. about 120
Mio. possible combinations. For representation we varied
the amount of calories Cal, which must be less than or equal
to a value called maz_cal. The amount of vitamin C (Vc)
and the fat value (fat) are fixed values. Notice, varying
the parameter max_cal varies the selectivity of the query,
while varying the size of the relations changes the size of the
problem to be solved.

We varied the maz_cal value in a range from 500 to 1600
calories, see Figure 13. Since the Pareto prefilter prefer-
ence only depends on the preferences and not on the hard
constraints, the response time for the preference query with
different maz_cal is nearly constant for each approach. In
contrast, the approach without optimizer takes much more
time to evaluate the whole query, since it must build the
full cartesian product to evaluate the join conditions and
the Pareto preference. In all our tests with different Cal, Ve
and Fat it performed out, that our Pareto prefilter prefer-
ence performs best for all, since it eliminates tuples before
building the cartesian product and the join, respectively.

Test 2: In our second test we run the query from Figure 1
with different relation sizes (but fixed max_cal = 1100) on

our USDA database and demonstrate the performance re-
sults in Figure 14. Again, the prefilter preference eliminates
tuples before building the cartesian product and therefore
speeds up the evaluation of the join and the overall Pareto
preference, respectively. Since the join up to 1 Mio. tuples
can be done very fast, the runtimes for the standard ap-
proach without optimizer and the prefilter evaluation are
almost the same. With the beginning of larger relations
sizes, the prefilter preference reduces the number of tuples
for each relation and therefore speeds up the computation
of the cartesian product and the join, respectively.

Test 3: The third tests demonstrates our induced prefilter
preference on one relation with one single hard constraint
and a base preference (P=HIGHEST4—(B)) on it. We con-
sider the following query on a relation R(A, B), where A, B
are numerical attributes.

SELECT *
FROM R
WHERE A < 150

PREFERRING B HIGHEST

Figure 5: Preference SQL query on one relation

The query expresses the wish for B as high as possible, but
A must be less than 150. Without the induced preference
the HIGHEST 4—o(B) preference will be computed after the
evaluation of the hard selection. Since A < 150 filters the
relation R, the assumption arise that the insertion of the
prefilter preference and pushing it over the hard selection
will not speed up the computation, since the prefilter pref-
erence is not such a strong criteria as the hard selection.
This assumption is verified in Figure 15. In this test we
use an anti-correlated data distribution and vary the do-
main cardinality n from 10 to 10° tuples. We set the do-
main size to ¢ = 500K as in [7]. Furthermore, we fixed
the constant for the hard selection to const = 150 as in the
query above. The computation runtimes without the pre-
filter preference are much better, because using the prefilter
preferences implies the evaluation of it self, the evaluation
of the hard selection and the computation of the original
preference HIGHEST 3—o(B). In contrast, without using the
prefilter preference only the hard selection and the original
preference HIGHEST 3—o(B) must be evaluated, whereas the
hard selection is a much better filter than the prefilter pref-
erence.

Test 4: In our last tests series we evaluated the influence
of various data distributions to our prefilter preference. We
generated synthetic data sets with correlated (COR), inde-
pendent (IND) and anti-correlated (ANTI) distributions.
We used three relations R;(As, Bi), ¢ = 1,2,3, A;, B; nu-
merical attributes, each with 500 tuples, i.e. a total of 125
Mio. possible combinations for the join. The join condition
is set to the sum of the different attributes, each belonging
to another relation, i.e. we select A1 + A2+ A3 < const. We
varied the const value to present the behavior of the prefilter
preference depending on the data distribution. Since we gen-
erated the numerical data for the attributes A;, B; with a
maximum value of 100, the sum can not exceed const = 300
as it is represented in the results. We use a Pareto prefer-
ence expressing the wish for lowest B; values leading to the

following query:

SELECT x*
FROM Rj, R2, Rj3
WHERE R;.A + Rg.A + R3.A < const
PREFERRING
R1.B LOWEST AND
Ro.B LOWEST AND
R3.B LOWEST

Figure 6: Preference SQL query for different data
distributions

The results are shown in the Figures 16a, 16b and 16c. In
all tests it performance out, that the induced prefilter pref-
erence enormously speeds up the evaluation of the query in
contrast to the non optimized one. For correlated (Figure
16a) and independent (Figure 16b) data the pref-prefilter
method takes less than 1 sec to evaluate the query, since
the prefilter preference reduces the single relations to less
than 10 tuples each, i.e. only 1000 possible combinations
for the join, instead of 125 Mio. combinations. For the anti-
correlated case (Figure 16¢) the prefilter preference reduces
the relations to about 80 tuples each, this means about 500K
combinations, much less than the original cartesian product.

From our experimental results we observe that the pro-
posed prefilter preference improves the query evaluation con-
sistently for different types of multi-criteria queries, also
known as constrained skyline queries ([24]).

7. RELATED WORK

The evaluation of Pareto preference queries and finding
the skyline is a generalization of finding the best elements
of a set of multi-dimensional values. This was brought in a
database context with the skyline operator in [3].

Nested-loop algorithms are the generic way of computing a
skyline [17]. Despite lower performance compared to index
algorithms, they are capable of processing arbitrary data
without any preparations necessary.

One well-known generic algorithm is LESS ([7, 8]). It
uses combined sorting and discarding in linear time, but is
bound to specific features of the input tuples, in particular
un-correlated and uniformly distributed data with mostly
distinct values. Nevertheless, it shows quadratic worst case
performance. Recently, Hexagon [22] and Lattice skyline
[19] have been developed independently, both with linear
worst case complexity for any data distribution, but only
for low cardinality domains. They gain its speed from the
construction and analysis of the underlying lattice struc-
ture. A 2-d skyline can be computed by sorting the data
([3])- If the data is sorted according to the two attributes
a simple comparison of a tuple with its predecessor states
dominance. However, sorting is combined with high costs
and this method only works for numerical data, i.e. is not
applicable for categorical preference queries. Techniques to
evaluate skylines in subspaces have been analyzed in [21].
Some methods compute skylines for every subspace, and in-
terestingly, the studies suggest that a top-down depth-first
search framework may favor efficient computation.

Multi-criteria query optimization with preferences has not
been intensively researched in the last years. In [10] algo-
rithms have been developed for top-k queries that can be ex-

tended to implement queries with a constraint on the value
of a monotone function, but this is only valid for one con-
straint. [18] integrated constraint-programming techniques
with traditional database techniques to solve sum constraint
queries by modifiying existing nested loop-join operators,
but not in combination with preferences.

The paradigm of our algorithms is the decomposition of
the skyline into separate semi-skylines for parallel computa-
tion. To the best of our knowledge, semi-skylines and skyline
snippets have not been studied until now.

8. SUMMARY AND OUTLOOK

In this paper we have proposed the novel concepts of semi-
skylines and skyline snippets. Semi-skylines enable a new
view on well researched research areas. For semi-skylines
we have provided the highly efficient Staircase algorithm,
employing SkipLists for on-the-fly dominance testing with a
worst-case complexity of O(nlogn). Then we showed how
2-d skylines can be computed very fast by the intersection
of semi-skylines, beating other competing algorithms signif-
icantly. As a completely different setting we have demon-
strated how semi-skylines can be used effectively in alge-
braic preference query optimization. Semi-skylines can also
be used effectively for the computation of skyline snippets,
which are the second novel contribution in this paper. Our
approach relies on partitioning a m-dimensional skyline into
k subspaces. Initial benchmarks demonstrate the enormous
benefit of skyline snippets, which compute skyline points on
multi-core architectures without any index support.

At this point there are several interesting open research
questions. Naturally one might ask whether the Staircase-
Intersection algorithm for 2-d semi-skylines can be gener-
alized for higher dimensions. Our current opinion is that
this attempt will probably not be successful. We also want
an external algorithm that can handle input sets that are
too large for main-memory. Certainly, skyline snippets de-
serve additional investigations. Instead of partitioning an
m-dimensional skyline into very fast 2-d subspaces, explor-
ing other ways of partitioning might be interesting as well.
In addition, studying the relationships between existing pro-
gressive skyline algorithms using indexes with our skyline
snippets approach sounds challenging.

9.
1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

REFERENCES

R. A. Baeza-Yates. A Fast Set Intersection Algorithm
for Sorted Sequences. In CPM ’04: Proceedings of
Combinatorial Pattern Matching, volume 3109 of
Lecture Notes in Computer Science, pages 400-408.
Springer, 2004.

C. Béhm and H.-P. Kriegel. Determining the Convex
Hull in Large Multidimensional Databases. In DaWaK
’01: Proceedings of the Third International Conference
on Data Warehousing and Knowledge Discovery,
volume 2114/2001, pages 294-306, London, UK, 2001.
Springer.

S. Borzsonyi, D. Kossmann, and K. Stocker. The
Skyline Operator. In ICDE ’01: Proceedings of the
17th International Conference on Data Engineering,
pages 421-430, Washington, DC, USA, 2001. IEEE
Computer Society.

J. Chomicki. Preference Formulas in Relational
Queries. In TODS °03: ACM Transactions on
Database Systems, volume 28, pages 427-466, New
York, NY, USA, 2003. ACM Press.

M. Endres and W. Kieflling. Optimization of
Preference Queries with Multiple Constraints. In
PersDB ’08: Proceedings of the 2nd International
Workshop on Personalized Access, Profile
Management, and Context Awareness: Databases (in
conjunction with VLDB ’08), pages 25-32, 2008.

M. Endres and W. Kieflling. Semi-Skylines and
Skyline Snippets. Technical Report 2010-1, Institute
of Computer Science, University of Augsburg, 2010.
P. Godfrey, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. In VLDB ’05:
Proceedings of the 31st international conference on
Very large data bases, pages 229-240. VLDB
Endowment, 2005.

P. Godfrey, R. Shipley, and J. Gryz. Algorithms and
Analyses for Maximal Vector Computation. The
VLDB Journal, 16(1):5-28, 2007.

B. Hafenrichter and W. Kieflling. Optimization of
Relational Preference Queries. In ADC "05:
Proceedings of the 16th Australasian database
conference, pages 175-184, Darlinghurst, Australia,
2005. Australian Computer Society, Inc.

I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid.
Supporting Top-k Join Queries in Relational
Databases. In VLDB ’2003: Proceedings of the 29th
international conference on Very large data bases,
pages 754—765. VLDB Endowment, 2003.

W. Kieflling. Foundations of Preferences in Database
Systems. In VLDB ’02: Proceedings of the 28th
international conference on Very Large Data Bases,
pages 311-322, Hong Kong, China, 2002. VLDB
Endowment.

W. Kieflling. Preference Queries with SV-Semantics.
In J. R. Haritsa and T. M. Vijayaraman, editors,
COMAD ’05: Advances in Data Management 2005,
Proceedings of the 11th International Conference on
Management of Data, pages 15-26, Goa, India, 2005.
Computer Society of India.

W. Kieflling and G. Kostler. Preference SQL - Design,
Implementation, Experiences. In VLDB ’02:
Proceedings of the 28th international conference on

(16]

(17]

Very Large Data Bases, pages 990-1001, Hong Kong,
China, 2002. VLDB Endowment.

D. E. Knuth. The art of computer programming, Vol.
I-IT1. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars
in the Sky: An Online Algorithm for Skyline Queries.
In VLDB ’02: Proceedings of the 28th international
conference on Very Large Data Bases, pages 275-286.
VLDB Endowment, 2002.

E. F. Krause. Tazicab Geometry: An Adventure in
Non-Euclidean Geometry. Courier Dover Publications,
1987.

H. T. Kung, F. Luccio, and F. P. Preparata. On
Finding the Maxima of a Set of Vectors. Journal of
the ACM, 22(4):469-476, 1975.

C. Liu, L. Yang, and I. Foster. Efficient Relational
Joins with Arithmetic Constraints on Multiple
Attributes. In IDEAS ’05: Proceedings of the 9th
International Database Engineering € Application
Symposium, pages 210-220, Washington, DC, USA,
2005. IEEE Computer Society.

M. Morse, J. M. Patel, and H. V. Jagadish. Efficient
Skyline Computation over Low-Cardinality Domains.
In VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 267-278.
VLDB Endowment, 2007.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. An
Optimal and Progressive Algorithm for Skyline
Queries. In SIGMOD °03: Proceedings of the 2003
ACM SIGMOD international conference on
Management of data, pages 467-478, New York, NY,
USA, 2003. ACM.

J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, and Q. Liu.
Towards multidimensional subspace skyline analysis.
ACM Trans. Database Syst., 31(4):1335-5915, 2006.
T. Preisinger and W. Kieflling. The Hexagon
Algorithm for Evaluating Pareto Preference Queries.
In MPref ’07: Proceedings of the 3rd Multidisciplinary
Workshop on Advances in Preference Handling (in
conjunction with VLDB ’07), 2007.

W. Pugh. Skip Lists: A Probabilistic Alternative to
Balanced Trees. Commun. ACM, 33(6):668-676, June
1990.

M. Zhang and R. Alhajj. Skyline queries with
constraints: Integrating skyline and traditional query
operators. Data Knowl. Eng., 69(1):153-168, 2010.

Runtime in sec

Runtime in sec

Runtime in sec

correlated, c = 100K, d = 0

100

10

o
-

0.01

Bnl2d ——

0.001
10

100

Figure 7Ta:

100

1K 10K 100K 500K 1M
#tuples

Semi-Skylines: Test 1, COR

independent, ¢ = 100K, d =0

10

o
-

0.01

Bnl2d ———

0.001
10

100

Figure 7b:

1000

1K 10K 100K 500K 1M
#tuples

Semi-Skylines: Test 1, IND

anti-correlated, ¢ = 100K, d =0

100 ¢

=
o

o
i

0.01

‘ ‘ Bnl2d ——
LESS --o--
SCl —— -

o
o

0.001
10

Figure

100

1K 10K 100K
#tuples

500K 1M

7c: Semi-Skylines: Test 1, ANTI

correlated, ¢ = 500K, d = 0

100 T T
Bnl2d ——
10
(s}
Q
0
£
Q
E !
1S
>
x
0.1
0.01
10 100 1K 10K 100K 500K 1M
#tuples
Figure 8a: Semi-Skylines: Test 2, COR
independent, ¢ = 500K, d =0
100 T T T . :
Bnl2d ——
10
is]
Q
n
=
Q
E
1S
=)
[v4
0.1
0.01 ¥ : :
10 100 1K 10K 100K 500K 1M
#tuples
Figure 8b: Semi-Skylines: Test 2, IND
anti-correlated, ¢ = 500K, d =0
1000 T T T . :
Bnl2d ——
LESS --o--
SCl —+— .-
100 | e
’O"
is]
Q
® 10
=
Q
£
S 1
[v4
0.1
0.01
10 100 1K 10K 100K 500K 1M
#tuples

Figure 8c: Semi-Skylines: Test 2, ANTI

Runtime in sec

Runtime in sec

Runtime in sec

correlated, ¢ = 500K, d = 10K

100 T T
Bnl2d ——

LESS -

SCI

Hexagon -7

0.01 I I I I I
10 100 1K 10K 100K 500K 1M

#tuples

Figure 9a: Semi-Skylines: Test 3, COR

independent, ¢ = 500K, d = 10K

100 T T : ; :
Bnl2d ——
0.001 : : : : :
10 100 1K 10K 100K 500K 1M
#tuples
Figure 9b: Semi-Skylines: Test 3, IND
anti-correlated, ¢ = 500K, d = 10K
1000 T T : : :
Bnl2d ——
LESS --o--
SClI ——
100 Hexagon --x--/7

0.01
10 100 1K 10K 100K 500K 1M

#tuples

Figure 9c: Semi-Skylines: Test 3, ANTI

correlated, n = 500K, ¢ = 500K

25 R

Runtime in sec

20 + i

10 P . . . P .
1 2 5 10 25 50 100 250 500 1K 25K 5K 10K 25K
d-Value
Figure 10a: Semi-Skylines: Test 4, COR

independent, n = 500K, ¢ = 500K
35 T T T . — . :

Bnl2d ——
LESS --o--

\/\o‘\/*/\/\ﬁﬂj/ﬁ;
30 " Hexagon - -

Runtime in sec

20 1

102 5 10 25 50 100
d-Value

250 500 1K 25K 5K 10K 25K

Figure 10b: Semi-Skylines: Test 4, IND

anti-correlated, n = 500K, ¢ = 500K

80 T T T T T T . . . ; T .
Bnl2d ——
LESS --o--
,,,,,,,,,,,,,, . R
70 ¢---e © o o o VQSQ!
O el Héxagon ke
60 © o]
2
050 R
£
[} . 4
g 40
IS
S E * 4
EEY
o
1 2 5 10 25 50 100 250 500 1K 25K 5K 10K 25K
d-Value

Figure 10c: Semi-Skylines: Test 4, ANTI

Runtime in sec

Runtime in sec

Runtime in sec

920

correlated, n = 500K, ¢ = 100K, d =0

80

BNL ——
LESS --o-=
Snippets

o -0 o -t
10F R o]
SR .- L 1
oo , | .) ‘ ‘ '
2 8 4 5 6 7 8 9 10
#dimension

Figure 11a: Skyline-Snippets: Test 1, COR

500

independent, n = 500K, ¢ = 100K, d =0

450 -

400

350 -

200

150

100

BNL ——
LESS --o--
Snippets —-=--

Figure 11b: Skyline-Snippets: Test 1, IND

2500

2000

1500

1000

500

3 4 5 6 7 8 9
#dimension

anti-correlated, n = 500K, ¢ = 100K, d = 0

10

"BNL ——
LESS --o--
Snippets —-=--

#dimension

10

Figure 11c: Skyline-Snippets: Test 1, ANTI

correlated, n = 500K, ¢ = 100K, d = 10K

Runtime in sec

BNL ——
LESS --o--
Snippets ——=-—-

Hexagon @&

o B
I

0 L L L L L L
2 4 5 6 7 8 9 10

#dimension

Figure 12a: Skyline-Snippets: Test 2, COR

120

100

80

60

Runtime in sec

40

20

independent, n = 500K, ¢ = 100K, d = 10K

BNL ——
LESS --o--
Snippets —-=--

Hexagon 2

#dimension

Figure 12b: Skyline-Snippets: Test 2, IND

400

350

300

250

200

150

Runtime in sec

100

50

anti-correlated, n = 500K, ¢ = 100K, d = 10K

BNL ——
LESS --o--
Snippets —-=-

Hexagon a

#dimension

Figure 12c: Skyline-Snippets: Test 2, ANTI

Runtime in sec

Runtime in sec

Runtime in sec

800 T T T
no-opt ——
700 b pref-prefilter -~]
300 R
200 F R
100 o o o -o- © @i OO -o- o -
0
5 6 7 8 9 10 11 12 13 14 15 16
max_cal x100
Figure 13: Pref-Filter: Test 1, max_cal
3 relations, Cal, Vc and Fat fixed
700 T T . .
no-opt —+—
pref-prefilter o~
600
500
400
300
200
100 |
0
M 8M 27™M 64M 120M
#combinations
Figure 14: Pref-Filter: Test 2, relations
anti-correlated, 1 relation, const=150, c=500K
0.35 T T . T .
no-opt —+—
pref-prefilter o~
03 F 3
0.25 F R
02 1
0.15 [
01 F
0.05
o o
o ; o
10 100 1K 10K 100K 500K 1M
#tuples

3 relations, n = 120M, Vc and Fat fixed

Figure 15: Pref-Filter: Test 3, 1 relation

Runtime in sec

Runtime in sec

Runtime in sec

180

160

140

120

100

80

60

40

20

200

40

20

400

correlated, 3 relations, n = 125M

-opt ——
pref-prefilter ---o-- |

& & &

100

150 200 250
const

300

Figure 16a: Pref-Filter: Test 4, COR

independent, 3 relations, n = 125M

50 100 150 200 250 300
const
Figure 16b: Pref-Filter: Test 4, IND
anti-correlated, 3 relations, n = 125M
‘ ‘ ‘ no-bpt —
pref-prefilter -
,,,,, g

250 300

const

Figure 16c: Pref-Filter: Test 4, ANTI

