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ADAPTIVE HYBRIDIZED INTERIOR PENALTY DISCONTINUOUS
GALERKIN METHODS FOR H(CURL)-ELLIPTIC PROBLEMS

C. CARSTENSEN∗† , R. H. W. HOPPE‡§ , N. SHARMA‡ , AND T. WARBURTON¶‖

Abstract. We develop and analyze an adaptive hybridized Interior Penalty Discontinuous
Galerkin (IPDG-H) method for H(curl)- elliptic boundary value problems in 2D or 3D arising from a
semi-discretization of the eddy currents equations. The method can be derived from a mixed formula-
tion of the given boundary value problem and involves a Lagrange multiplier that is an approximation
of the tangential traces of the primal variable on the interfaces of the underlying triangulation of
the computational domain. It is shown that the IPDG-H technique can be equivalently formulated
and thus implemented as a mortar method. The mesh adaptation is based on a residual-type a
posteriori error estimator consisting of element and face residuals. Within a unified framework for
adaptive finite element methods, we prove the reliability of the estimator up to a consistency error.
The performance of the adaptive symmetric IPDG-H method is documented by numerical results for
representative test examples in 2D.

Key words. adaptive hybridized Interior Penalty Discontinuous Galerkin method, a posteriori
error analysis, H(curl)-elliptic boundary value problems, semi-discrete eddy currents equations

AMS subject classifications. 65F10, 65N30

1. Introduction. Discontinuous Galerkin (DG) methods are widely used algo-
rithmic schemes for the numerical solution of partial differential equations (PDE).
For a comprehensive description, we refer to the survey article [24] and the refer-
ences therein. As far as elliptic boundary value problems are concerned, DG methods
can be derived from a primal-dual mixed formulation using local approximations of
the primal and dual variables by polynomial scalar and vector-valued functions and
appropriately designed numerical fluxes. Among the most popular schemes are Inte-
rior Penalty DG (IPDG) and Local DG (LDG) methods which have been analyzed
by means of a priori estimates of the global discretization, e.g., in [3, 5, 23, 39].
For H(curl)-elliptic boundary value problems arising from a semi-discretization of the
eddy currents equations, symmetric IPDG methods have been studied in [36]. The
time-harmonic Maxwell equations have been addressed in [46].
On the other hand, the a posteriori error analysis and application of adaptive finite
element methods (FEM) for the efficient numerical solution of boundary and initial-
boundary value problems for PDE has reached some state of maturity as documented
by a series of monographs. There exist several concepts including residual and hi-
erarchical type estimators, error estimators that are based on local averaging, the
so-called goal oriented dual weighted approach, and functional type error majorants
(cf. [2, 6, 7, 30, 44, 49] and the references therein). A posteriori error estimators for
DG methods applied to second order elliptic boundary value problems have been de-
veloped and analyzed in [1, 11, 18, 38, 40, 47]. In particular, a convergence analysis of
adaptive symmetric IPDG methods has been provided in [12, 34] and [41]. Residual-
and hierarchical-type a posteriori error estimator for H(curl)-elliptic problems have
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been studied in [8, 9, 10, 20, 37]. A convergence analysis for residual estimators has
been developed in [19] for 2D and in [35] for 3D problems.
From a computational point of view, DG methods suffer from a relatively huge
amount of globally coupled degrees of freedom (DOF) compared to standard FEM.
Hybridization is a technique that gives rise to a significant reduction of the globally
coupled DOF. It has been introduced for mixed FEM in [31] and further studied in
[4, 13, 15, 25, 26]. Adaptive mixed hybrid methods on the basis of reliable a posteriori
error estimators have been considered in [14, 45] and [50]. For DG methods, a survey
of hybridized DG (DG-H) methods has been provided in [26], whereas a unified anal-
ysis has been developed in [28]. However, adaptive DG-H methods have not yet been
investigated.

In this paper, we will derive and analyze a residual-type a posteriori error esti-
mator for hybridized symmetric IPDG (IPDG-H) methods applied to H(curl)-elliptic
boundary value problems in 3D. The analysis will be carried out within a unified
framework provided for adaptive finite element approximations in [17, 18, 20, 21, 22].
The paper is organized as follows: In Section 2, we introduce some basic notation
and present the class of H(curl)-elliptic boundary value problems to be approximated
by symmetric IPDG-H methods. Section 3 deals with the development of symmetric
IPDG-H methods based on a mixed formulation of the elliptic boundary value prob-
lems. We establish its relationship with mortar techniques which allows the imple-
mentation as a mortar method. In section 4, we present the residual-type a posteriori
error estimator and prove its reliability. Finally, in section 5, we provide a detailed
documentation of numerical results to illustrate the performance of the symmetric
IPDG-H methods.

2. Basic Notations. Let Ω ⊂ R3 be a simply connected polyhedral domain
with boundary Γ = ∂Ω such that Γ = ΓD ∪ ΓN ,ΓD ∩ ΓN = ∅. We denote by
D(Ω) the space of all infinitely often differentiable functions with compact support
in Ω and by D′(Ω) its dual space referring to < ·, · > as the dual pairing between
D′(Ω) and D(Ω). We further adopt standard notation from Lebesgue and Sobolev
space theory. In particular, for a subset D ⊂ Ω, we refer to L2(D) and L2(D) as
the Hilbert spaces of scalar and vector-valued square integrable functions with inner
products (·, ·)0,D and associated norms ‖ · ‖0,D, respectively. Further, we denote by
H1(D) the Sobolev space of square integrable functions with square integrable weak
derivatives equipped with the inner product (·, ·)1,D and norm ‖ · ‖1,D. For Σ ⊆ ∂D,
we refer to H1/2(Σ) as the space of traces v|Σ of functions v ∈ H1(D) on Σ. We set
H1

0,Σ(D) := {v ∈ H1(Ω)|v|Σ = 0} and refer to H−1
Σ (D) as the associated dual space.

For a simply connected polyhedral domain Ω with boundary Γ = ∂Ω which can be
split into J relatively open faces Γ1, . . . , ΓJ with Γ = ∪J

j=1Γj , we refer to H(curl; Ω)
as the Hilbert space H(curl; Ω) := {u ∈ L2(Ω) | curl u ∈ L2(Ω)}, equipped with
the inner product (u,v)curl,Ω := (u,v)0,Ω + (curl u, curl v)0,Ω and the associated
norm ‖ · ‖curl,Ω. We further refer to H(curl0; Ω) as the subspace of irrotational
vector fields. The space H(div; Ω) is defined by H(div; Ω) := { q ∈ L2(Ω) | div q ∈
L2(Ω)} which is a Hilbert space with respect to the inner product (u,v)div,Ω :=
(u,v)0,Ω + (div u, div v)0,Ω and the associated norm ‖ · ‖div,Ω. For vector fields
u ∈ C∞(Ω̄)3 := {u|Ω | u ∈ C∞(R3)}, the normal component trace reads ηn(u)|Γj :=
nΓj · u|Γj , j = 1, . . . , J with the exterior unit normal vector nΓj on Γj . The normal
component trace mapping can be extended by continuity to a surjective, continuous
linear mapping ηn : H(div; Ω) → H−1/2(Γ) (cf. [32]; Thm. 2.2). We define
H0(div; Ω) as the subspace of vector fields with vanishing normal components on
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Γ. In order to study the traces of vector fields q ∈ H(curl; Ω), following [16], we
introduce the spaces

L2
t(Γ) := {u ∈ L2(Ω) | ηn(u) = 0},

H1/2
− (Γ) := {u ∈ L2

t(Γ) | u|Γj ∈ H1/2(Γj) for all j = 1, . . . , J}.
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Fig. 2.1. Two adjacent faces Γj , Γk with common edge Ejk

For Γj , Γk ⊂ Γ with j 6= k and Ejk := Γ̄j ∩ Γ̄k ∈ Eh, the set of edges, we denote
by tj and tk the tangential unit vectors along Γj and Γk and by tjk the unit vector
parallel to Ejk such that Γj is spanned by tj , tjk and Γk by tk, tjk (cf. Figure 2.1).
Let J := {(j, k) ∈ {1, ..., J}2 | ∂Γj ∩ ∂Γk = Ejk ∈ Eh} and define

H1/2
|| (Γ) := {u ∈ H1/2

− (Γ)|(tjk · uj)|Ejk
= (tjk · uk)|Ejk

for (j, k) ∈ J },
H1/2
⊥ (Γ) := {u ∈ H1/2

− (Γ)|(tj · uj)|Ejk
= (tk · uk)Ejk

for (j, k) ∈ J }.

We refer to H−1/2
|| (Γ) and H−1/2

⊥ (Γ) as the dual spaces of H1/2
|| (Γ) and H1/2

⊥ (Γ) with
L2

t(Γ) as the pivot space. For u ∈ D(Ω̄)3 we further define the tangential trace
mapping γt|Γj := u ∧ nΓj |Γj , j = 1, . . . , J, and the tangential components trace
πt|Γj := nΓj ∧ (u∧nΓj )|Γj , j = 1, . . . , J . Moreover, for a smooth function u ∈ D(Ω̄)
we define the tangential gradient operator ∇Γ = grad|Γ as the tangential components
trace of the gradient operator ∇, i.e., ∇Γu|Γj := ∇Γj u = πt,j(∇u) = nΓj ∧ (∇u ∧
nΓj ), j = 1, . . . , J , which leads to a continuous linear mapping ∇Γ : H3/2(Γ) →
H1/2
|| (Γ) (cf. [16]). The tangential divergence operator divΓ : H−1/2

|| (Γ) → H−3/2(Γ)
is defined, with the respective dual pairings 〈·, ·〉, as the adjoint operator of −∇Γ,
i.e., 〈divΓu, v〉 = −〈u,∇Γv〉 , v ∈ H3/2(Γ),u ∈ H−1/2

|| (Γ). Finally, for u ∈ C∞(Ω)
we define the tangential curl operator curl|τ as the tangential trace of the gradient
operator

curlτu|Γj = curl|Γj u = γt,j(∇u) = ∇u ∧ nj for j = 1, . . . , J. (2.1)

The vectorial tangential curl operator is a linear continuous mapping

curlτ : H3/2(Γ) → H1/2
⊥ (Γ) .

The scalar tangential curl operator

curlτ : H−1/2
⊥ (Γ) → H−3/2(Γ)

is defined as the adjoint of the vectorial tangential curl operator via curl|τ , i.e.,

< curl|τu, v > = < u, curl|Γv > for all v ∈ H3/2(Γ) and u ∈ H−1/2
⊥ (Γ) .
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The range spaces of the tangential trace mapping γt and the tangential components
trace mapping πt on H(curl; Ω) can be characterized by means of the spaces

H−1/2(div|Γ, Γ) := { λ ∈ H−1/2
|| (Γ) | div|Γλ ∈ H−1/2(Γ) } ,

H−1/2(curl|Γ, Γ) := { λ ∈ H−1/2
⊥ (Γ) | curl|Γλ ∈ H−1/2(Γ) } ,

which are dual to each other with respect to the pivot space L2
t(Γ). We refer to

‖ · ‖−1/2,divΓ,Γ and ‖ · ‖−1/2,curlΓ,Γ as the respective norms and denote by 〈·, ·〉−1/2,Γ

the dual pairing (see, e.g., [16] for details).
It can be shown that the tangential trace mapping is a continuous linear mapping

γt : H(curl; Ω) → H−1/2(div|Γ, Γ) ,

whereas the tangential components trace mapping is a continuous linear mapping

πt : H(curl; Ω) → H−1/2(curl|Γ, Γ) .

The previous results imply that the tangential divergence of the tangential trace
and the scalar tangential curl of the tangential components trace coincide: For u ∈
H(curl; Ω) it holds divΓ (u ∧ n) = curl|Γ (n ∧ (u ∧ n)) = n · curl u. We define
H0(curl; Ω) as the subspace of H(curl; Ω) with vanishing tangential traces on Γ.

Given a polyhedral domain Ω ⊂ R3 with boundary Γ = ∂Ω such that Γ =
ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, we denote by TH(Ω) a shape-regular simplicial triangulation
of Ω that aligns with ΓD and ΓN . We refer to FH(Ω) as the set of interior faces
F = T+ ∩ T−, T± ∈ TH(Ω), and to FH(Σ) as the set of faces located on the boundary
Σ ⊆ Γ, while FH(Ω) := FH(Ω)∪FH(Γ) is the set of all faces. Further, EH(Σ) stands
for the set of edges on Σ. We denote by hT and hF the diameter of an element
T ∈ TH(Ω) and a face F ∈ FH(Ω), respectively. For two quantities A,B ∈ R+, we
use the notation A . B, if there exists a constant C ∈ R+, independent of the mesh
size of the triangulation TH(Ω), such that A ≤ CB.
We refer to

Nd1(Ω; TH(Ω)) := {vH ∈ H(curl; Ω) | vH |T ∈ ND1(T ) , T ∈ TH(Ω)}
as the curl-conforming edge element space, where ND1(T ) stands for the lowest order
edge element of Nédélec’s first family [43], and to

Nd1
0,ΓD

(Ω; TH(Ω)) := {vH ∈ Nd1(Ω; TH(Ω)) | γt(vH) = 0 on ΓD}
as its subspace of vanishing tangential trace components on ΓD.
For vector fields vH ∈ ∏

T∈TH(Ω) H(curl; T ), we denote by ‖ · ‖curl,H,Ω the mesh-
dependent norm

‖vH‖curl,H,Ω :=
( ∑

T∈TH(Ω)

(
‖vH‖20,T + ‖curl vH‖20,T

))1/2

.

Moreover, for such vector fields we set v±H |F := (vH |T±)|F along F = T+∩T− ∈ FH(Ω)
and define

{vH} :=
{

(v+
H + v−H)/2 , F ∈ FH(Ω)

vH , F ∈ FH(Γ) ,

[vH ] :=
{

v+
H − v−H , F ∈ FH(Ω)

0 , F ∈ FH(Γ)
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as the averages and jumps of vH across the interior faces F of the triangulation.
For scalar functions vH ∈ L2(Ω), the averages {vH} and jumps [vH ] are defined
analogously.

The class of H(curl)-elliptic boundary value problems to be approximated by
IPDG-H methods is of the form

curl µ−1 curl u + σ u = f in Ω, (2.2a)
γt(u) = g1 on ΓD, (2.2b)

πt(µ−1curl u) = g2 on ΓN . (2.2c)

We assume that f ∈ L2(Ω),g1 ∈ L2(ΓD), and g2 ∈ H(curl0ΓN
; ΓN ). We further

suppose that µ is a symmetric, uniformly positive definite matrix-valued function
µ = µ(x), x ∈ Ω, and that σ is a scalar nonnegative function σ = σ(x), x ∈ Ω, that
are elementwise constant with respect to a given coarse simplicial triangulation TH(Ω)
of the computational domain.
We note that the subsequent analysis also applies to H(curl)-elliptic problems in 2D
as given by

curl µ−1 curl u + σ u = f in Ω , (2.3a)
tΓD

· u = g1 on ΓD, (2.3b)

µ−1 curl u = g2 on ΓN , (2.3c)

where curl u = ∂u2/∂x1 − ∂u1/∂x2 for u = (u1, u2)T , whereas curl u = (∂u/∂x2,
−∂u/∂x1)T for a scalar function u. Moreover, tΓD

stands for the tangential unit
vector on the Dirichlet part ΓD of the boundary. The data f , g1 and g2 have to be
chosen accordingly.
We will develop the IPDG-H method and perform the a posteriori error analysis only
in the 3D case. The necessary modifications for 2D problems are straightforward.

3. Hybridized IPDG Methods. A mixed formulation of (2.2a)-(2.2c) can be
derived by introducing p := µ−1curl u as an additional variable. Setting

V := {v ∈ H(curl; Ω) | γt(u) = g1 on ΓD} , Q := L2(Ω), (3.1)
V0 := {v ∈ H(curl; Ω) | γt(u) = 0 on ΓD},

it amounts to the computation of (u,p) ∈ V ×Q with

a(p,q) − b(u,q) = `(1)(q) for all q ∈ Q, (3.2a)

b(v,p) + c(u,v) = `(2)(v) for all v ∈ V0. (3.2b)
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The bilinear forms a, b and c and the functionals `(1) ∈ Q∗, `(2) ∈ V∗
0 are given by

a(p,q) :=
∫

Ω

µ p · q dx , (3.3a)

b(u,q) :=
∫

Ω

curl u · q dx , (3.3b)

c(u,v) :=
∫

Ω

σ u · v dx , (3.3c)

`(1)(q) := 0 , (3.3d)

`(2)(v) :=
∫

Ω

f · v dx +
∫

ΓN

g2 · γt(v) dτ. (3.3e)

The operator-theoretic framework involves the operator A : (V ×Q) → (V0 ×Q)∗

defined, for all (u,p) ∈ V ×Q and all (v,q) ∈ V0 ×Q by

(A(u,p))(v,q) := a(p,q)− b(u,q) + b(v,p) + c(u,v). (3.4)

Then, the system (3.2a)-(3.2b) can be written in compact form as

A(u,p) = `, (3.5)

where `(v,q) := `(1)(q) + `(2)(v) for all (v,q) ∈ V0 ×Q.

Theorem 3.1. Under the assumptions on the data of (2.2a)-(2.2c), A is a
continuous, bijective linear operator. Hence, for any (`(1), `(2)) ∈ Q∗×V∗

0, the system
(3.2a)-(3.2b) admits a unique solution (u,p) ∈ V×Q which continuously depends on
the data, namely

‖(u,p)‖V×Q . ‖`(1)‖Q∗ + ‖`(2)‖V ∗0 . (3.6)

Proof. The mapping properties are straightforward. If g1 6= 0, there exists a
unique ug1 ∈ V such that for all v ∈ V0 (cf., e.g., [42])

(A(ug1 ,0))(v,−µ−1curl v) =
∫

Ω

(
µ−1curl ug1 · curl v + σug1 · v

)
dx = 0,

and hence, we may restrict ourselves to the case of A : V0 ×Q → (V0 ×Q)∗. Now,
for any (u,p) ∈ V0 ×Q we have

(A(u,p))(3u, 2p− µ−1curl u) = (A(3u, 2p + µ−1curl u))(u,p)

= 2µ‖p‖2L2(Ω) + 3σ‖u‖2L2(Ω) + µ−1‖curl u‖2L2(Ω).

This implies the inf-sup condition and the remaining degeneracy condition which
implies bijectivity.

Given a simplicial triangulation TH(Ω), DG methods are based on the approxi-
mation of the vector field u and p by elementwise polynomials, thus giving rise to the
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finite dimensional function spaces

VH := {vH ∈ L2(Ω) | vH |T ∈ (Πk(T )) , T ∈ TH(Ω), (3.7a)
γt(vH) = gH,1 on F ∈ FH(ΓD)},

QH := {qH ∈ L2(Ω) | qH |T ∈ Πk(T ) , T ∈ TH(Ω)}. (3.7b)

Here and in the sequel, gH,1 ∈ Πk(F ), F ∈ FH(ΓD) is some approximation of g1 and
Πk(T ), T ∈ TH(Ω), as well as Πk(F ), F ∈ FH(Ω̄), stand for the sets of vector-valued
functions whose components are polynomials of degree at most k ∈ N.
DG methods amount to the computation of (pH ,uH) ∈ QH ×VH with

aH(pH ,qH) − bH(uH ,qH) + dH(ûH ,qH) = `
(1)
H (qH) for all qH ∈ QH , (3.8a)

bH(vH ,pH) − dH(vH , p̂H) + cH(uH ,vH) = `
(2)
H (vH) for all vH ∈ VH . (3.8b)

Here and throughout, ûH , p̂H are appropriate numerical flux functions and the mesh-
dependent bilinear forms aH , bH , cH , and dH are defined by means of

aH(pH ,qH) :=
∑

T∈TH(Ω)

∫

T

µpH · qH dx, (3.9a)

bH(uH ,qH) :=
∑

T∈TH(Ω)

∫

T

curl uH · qH dx, (3.9b)

cH(uH ,vH) :=
∑

T∈TH(Ω)

∫

T

σuH · vH dx, (3.9c)

dH(uH ,qH) :=
∑

F∈FH(Ω)

〈γt(uH), πt(qH)〉. (3.9d)

The functionals `
(1)
H and `

(2)
H are given by

`
(1)
H (qH) := 0, (3.10a)

`
(2)
H (vH) :=

∑

T∈TH(Ω)

∫

T

f · vH dx +
∑

F∈FH(ΓN )

∫

F

g2 · γt(vH) dτ. (3.10b)

In case of symmetric Interior Penalty Discontinuous Galerkin (IPDG) methods, the
numerical fluxes read

γt(ûH) :=
{ {γt(uH)} , F ∈ FH(Ω)

0 , F ∈ FH(Γ) (3.11a)

πt(p̂H) :=
{ {πt(µ−1curl uH)} − α h−1

F [γt(uH)] , F ∈ FH(Ω)
0 , F ∈ FH(Γ) (3.11b)

with a suitable penalty parameter α > 0. The choice qH := µ−1curl vH in (3.8a)
and (3.11a),(3.11b) allow the elimination of pH from (3.8a),(3.8b). This results in the
following standard form of the symmetric IPDG method: Find uH ∈ VH such that

aIP (uH ,vH) = `IP (vH) for all vH ∈ VH . (3.12)
7



Here and in the sequel, the bilinear form aIP and the functional `IP read

aIP (uH ,vH) :=
∑

T∈TH(Ω)

∫

T

(
µ−1curl uH · curl vH + σuH · vH

)
dx (3.13a)

−
∑

F∈FH(Ω)

∫

F

(
{πt(µ−1curl uH)} · [γt(vH)] + {γt(uH)} · [πt(µ−1curl vH)]

)
dτ

+ α
∑

F∈FH(Ω)

h−1
F

∫

F

[γt(uH)] · [γt(vH)]dτ,

`IP (vH) :=
∑

T∈TH(Ω)

∫

T

f · vH dx +
∑

F∈FH(ΓN )

∫

F

g2 · γt(vH) dτ. (3.13b)

The idea of hybridization is to enforce the continuity of the tangential component
traces of pH across the interior edges of the triangulation by a piecewise polynomial
Lagrange multiplier which is an approximation of the tangential traces of u. For this
purpose, we introduce the multiplier space

MH := {µH ∈ L2(FH(Ω)) | µH |F ∈ Πk(F ) , F ∈ FH(Ω)}. (3.14)

Choosing a numerical flux function p̂H , not necessarily the same as in (3.11b), the
IPDG-H method is to find (pH ,uH , λH) ∈ QH ×VH ×MH with

aH(pH ,qh) − bH(uH ,qH) + dH(λH ,qH) = `
(1)
H (qH) for all qH ∈ QH , (3.15a)

bH(vH ,pH) − dH(vH , p̂H) + cH(uH ,vH) = `
(2)
H (vH) for all vH ∈ VH , (3.15b)

dH(µH , p̂H) = 0 for all µH ∈ MH . (3.15c)

In IPDG-H methods, the penalty parameter α is typically chosen elementwise, i.e.,
α|T = αT , T ∈ TH(Ω), so that on F ∈ FH(Ω) with F = T+ ∩ T−, T± ∈ TH(Ω), we
have to distinguish between α+ := αT+ and α− := αT− .
The advantage of hybridized methods is that the primal and dual variables uH and pH

can be eliminated from (3.15a)-(3.15c) which results in a global variational problem
for the Lagrange multiplier λH ∈ MH of the form

a
(S)
H (λH , µH) = `

(S)
H (µH) for all µH ∈ MH . (3.16)

Once λH ∈ MH has been computed, the primal and dual variables can be computed
by the solution of low-dimensional, local problems. To this end, following the unified
framework from [28], we set

λH =
{

uH on ∂T \ ΓD

0 on ∂T ∩ ΓD
, ḡH,1 =

{
0 on ∂T \ ΓD

gH,1 on ∂T ∩ ΓD
,

ḡH,2 =
{

0 on ∂T \ ΓN

gH,2 on ∂T ∩ ΓN

with an approximation gH,2 ∈ Πk(F ), F ∈ FH(ΓN ), of g2. We define

(Spf ,Suf) ∈ Πk(T )2 , (SpλH ,SuλH) ∈ Πk(T )2,

(SpgH,1,SugH,1) ∈ Πk(T )2 , (SpgH,2,SugH,2) ∈ Πk(T )2
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as the solutions of the local problems

µ Spf − curl Suf = 0 in T, (3.17a)
curl Spf + σ Suf = f in T,

γt(Suf) = 0 on ∂T,

µ SpλH − curl SuλH = 0 in T, (3.17b)
curl SpλH + σ SuλH = 0 in T,

γt(SuλH) = λH on ∂T,

µ SpḡH,1 − curl SuḡH,1 = 0 in T, (3.17c)
curl SpḡH,1 + σ SuḡH,1 = 0 in T,

γt(SuḡH,1) = ḡH,1 on ∂T,

µ SpḡH,2 − curl SuḡH,2 = 0 in T, (3.17d)
curl SpḡH,2 + σ SuḡH,2 = 0 in T,

πt(SuḡH,2) = ḡH,2 on ∂T.

The numerical flux πt(p̂H) is given by means of local numerical fluxes

πt(p̂H) = Ŝpf + ŜpλH + ŜpḡH,1 + ŜpḡH,2. (3.18)

In particular, for the IPDG-H method (3.15a)-(3.15c) we choose

Ŝpf =
{

πt(µ−1curl Suf)− αT h−1
F γt(Suf) on F ∈ FH(Ω ∪ ΓD),

πt(µ−1curl Suf)− αT h−1
F πt(µ−1curl Suf) on F ∈ FH(ΓN ),

(3.19a)

ŜpλH =





πt(µ−1curl SuλH)
−αT h−1

F (γt(SuλH)− λH) on F ∈ FH(Ω ∪ ΓD),
πt(µ−1curl SuλH)
−αT h−1

F (πt(µ−1curl SuλH)− λH) on F ∈ FH(ΓN ),

(3.19b)

ŜpḡH,i =





πt(µ−1curl SuḡH,i)
−αT h−1

F (γt(SuḡH,i)− ḡH,i) on F ∈ FH(Ω ∪ ΓD),
πt(µ−1curl SuḡH,i)
−αT h−1

F (πt(µ−1curl SuḡH,i)− ḡH,i) on F ∈ FH(ΓN ).

(3.19c)

For sufficiently large αT , T ∈ TH(Ω̄), both the local problems (3.17a)-(3.17d) and the
global variational problem (3.16) have unique solutions which can be shown along
the same lines of proof as in [28] for standard second order elliptic boundary value
problems. If λH ∈ MH solves (3.16), then

pH = Spf + SpλH + SpḡH,1 + SpḡH,2, (3.20)
uH = Suf + SuλH + SuḡH,1 + SuḡH,2

defines the solution of (3.15a)-(3.15c).

Theorem 3.2. Assume that the numerical flux p̂H is given by (3.18) and that
(pH ,uH , λH) is the solution of (3.15a)-(3.15c). Then, the numerical flux p̂H and the
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multiplier λH satisfy

πt(p̂H) :=





ᾱ−1
(
α−πt(µ−1

+ curl u+
H) + α+πt(µ−1

− curl u−H)

− α+α−h−1
F [γt(uH)]

)
on F ∈ FH(Ω),

0 on F ∈ FH(ΓD),
0 on F ∈ FH(ΓN ),

(3.21a)

λH =





ᾱ−1
(
α+γt(u

+
H) + α− γt(u

−
H)

− hF [πt(µ−1curl uH)]
)

on F ∈ FH(Ω),

−α−1
T hF πt(µ−1curl uH) on F ∈ FH(ΓD),

−α−1
T hF πt(µ−1curl uH) on F ∈ FH(ΓN ),

(3.21b)

where ᾱ := α+ + α− on F = ∂T+ ∩ ∂T− for T± ∈ TH(Ω).
Proof. Let F ∈ FH(Ω). If we use (3.19a)-(3.19c) and (3.20) in (3.18), we obtain

πt(p̂H) = πt(µ−1curl uH) − αT h−1
F

(
γt(uH)− γt(SuλH)

)
on F.

Hence, observing (3.17b), it follows that

[πt(p̂H)] = [πt(µ−1 curl uH)] −
(
α+ h−1

F γt(u
+
H) (3.22)

+ α− h−1
F γt(u

−
H)

)
+ (α+ + α−) h−1

F λH .

The specification (3.14) of the multiplier space MH and equation (3.15c) imply
[πt(p̂H)] = 0. This results in (3.21b) due to (3.22). On the other hand,

πt(p̂±H) = πt(p±H) − α±h−1
F

(
γt(u

±
H)− λH

)
. (3.23)

We deduce (3.21a) by inserting (3.21b) into (3.23). The proof of (3.21a),(3.21b) for
F ∈ FH(ΓD) and F ∈ FH(ΓN ) follows from similar arguments.

The representation (3.21b) of the Lagrange multiplier λH shows that it provides an
approximation of the tangential trace on the interfaces F ∈ FH(Ω) which reminds of
mortar methods for H(curl)-elliptic problems (cf., e.g., [20, 51]). Indeed, the IPDG-
H method (3.15a)-(3.15c) can be equivalently formulated as a mortar method. To
see this, choose qH = µ−1curl uH in (3.15a) and the numerical flux p̂H in (3.15a)
according to (3.21b). Then, by elimination of pH ,

λ̃H := λH − ᾱ−1(α+γt(u
+
H) + α−γt(u

−
H))

satisfies

ãH(uH ,vH) + b̃H(λ̃H ,vH) = `
(2)
H (vH) for all vH ∈ VH , (3.24)

b̃H(µH ,uH)− d̃H(λ̃H , µH) = 0 for all µH ∈ MH .
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Here and throughout the following, the bilinear forms ãH , b̃H and d̃H read

ãH(uH ,vH) :=
∑

T∈TH(Ω)

∫

T

(
µ−1curl uH · curl vH + σuH · vH

)
dx

−
∑

T∈TH(Ω)

∫

∂T∩Ω

ᾱ−1αT πt(µ−1curl uH) · γt(vH) dτ

+
∑

T∈TH(Ω)

∫

∂T∩Ω

ᾱ−1 αT αT ′ h−1
F γt(uH) · γt(vH) dτ

−
∑

T∈TH(Ω)

∫

∂T∩Ω

ᾱ−1αT γt(u
+
H) · πt(µ−1curl vH) dτ

+
∑

T∈TH(Ω)

∫

∂T∩Γ

α−1
T hF πt(µ−1curl uH) · πt(µ−1curl vH) dτ,

b̃H(λ̃H ,vH) := −
∑

F∈FH(Ω)

∫

F

λ̃H · [πt(µ−1curl vH)] dτ,

d̃H(λ̃H ,µH) :=
∑

F∈FH(Ω)

∫

F

ᾱ h−1
F λ̃H · µH dτ.

The variational system (3.24) represents a symmetric saddle point problem which can
be solved as in the standard mortar approach. Denoting by ÃH , B̃H , D̃H the matrices
and by bH the vector associated with the bilinear forms and the right-hand side in
the first equation of (3.24), the algebraic form of the saddle point problem is

(
ÃH B̃H

B̃T
H −D̃H

)(
uH

λ̃H

)
=

(
bH

0

)
. (3.25)

Static condensation of uH results in the equivalent Schur complement system

(
D̃H + B̃T

HÃ−1
H B̃H

)
λ̃H = B̃T

HÃ−1
H bH . (3.26)

4. A posteriori error analysis. The residual a posteriori error estimator for
the symmetric IPDG-H method (3.15a)-(3.15c) is given by

η :=
( ∑

T∈TH(Ω)

(
η2

T,1 + η2
T,2 + η2

T,3

)
+

∑

F∈FH(Ω)

(
η2

F,1 + η2
F,2

)
(4.1)

+
∑

F∈FH(ΓN )

(
η2

F,3 + η2
F,4

))1/2

.

They consist of the element residuals

ηT,1 := ‖µpH − curl uH‖0,T for all T ∈ TH(Ω), (4.2a)
ηT,2 := hT ‖f − curl pH − σuH‖0,T for all T ∈ TH(Ω), (4.2b)
ηT,3 := hT ‖∇ · (f − σuH)‖0,T for all T ∈ TH(Ω), (4.2c)
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and the face residuals

ηF,1 := h
1/2
F ‖[πt(pH)]‖0,F for all F ∈ FH(Ω), (4.3a)

ηF,2 := h
1/2
F ‖nF · [f − σuH ]‖0,F for all F ∈ FH(Ω), (4.3b)

ηF,3 := h
1/2
F ‖g2 − πt(pH)‖0,F for all F ∈ FH(ΓN ), (4.3c)

ηF,4 := h
1/2
F ‖nF · (f − σuH)‖0,F for all F ∈ FH(ΓN ). (4.3d)

The nonconformity of the symmetric IPDG-H method results in some consistency
error

ξ := min
ṽH∈V

( ∑

T∈TH(Ω)

(‖uH − ṽH‖20,T + ‖curl (uH − ṽH)‖20,T )
)1/2

(4.4)

with the unique minimizer ũH ∈ V of (4.4) and ξ2 = ‖uH − ũH‖20,Ω + ‖curl(uH −
ũH)‖20,Ω.

Theorem 4.1. Let (p,u) ∈ Q×V and (pH ,uH ,λH) ∈ QH ×VH ×MH be the
solutions of (3.5) and (3.15a)-(3.15c), let η and ξ be the residual error estimator and
the consistency error of (4.1) and (4.4). Then,

‖(u,p)− (uH ,pH)‖ :=
(
‖p− pH‖2Q + ‖u− uH‖2curl,H,Ω

)1/2

. η + ξ. (4.5)

We will provide the proof of Theorem 4.1 by a series of lemmas. We assume
(p̃H , ũH) ∈ Q ×V to be some approximation of the solution (p,u) ∈ Q ×V of the
mixed problem (3.5) obtained by means of the solution (pH ,uH , λH) of the symmetric
IPDG-H method (3.15a)-(3.15c). It is an immediate consequence of Theorem 3.1 that
the error (p− p̃H ,u− ũH) satisfies

‖(p− p̃H ,u− ũH)‖Q×V . ‖Res1‖Q∗ + ‖Res2‖V∗0 (4.6)

with residuals Res1 ∈ Q∗ and Res2 ∈ V∗
0,

Res1(q) := `(1)(q) − a(p̃H ,q) + b(ũH ,q) for q ∈ Q, (4.7a)

Res2(v) := `(2)(v) − b(v, p̃H) − c(ũH ,v) for v ∈ V0. (4.7b)

Lemma 4.1. Let (pH ,uH ,λH) ∈ QH × VH ×MH be the solution of (3.15a)-
(3.15c) with the numerical flux p̂H from (3.18). The choice of p̃H = pH and of
ũH ∈ V as the unique minimizer of (4.4) imply

‖Res1‖Q∗ .
( ∑

T∈TH(Ω)

η2
T,1

)1/2

+ ξ. (4.8)

Proof. With the L2-projection qH = PQH q of q ∈ Q onto QH , we have
‖qH‖0,Ω ≤ ‖q‖0,Ω and

Res1(q) = Res1(q−PQH
q) + Res1(PQH

q). (4.9)
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In view of (4.7a) and (3.3a),(3.3b),(3.3d), it follows that

Res1(q−PQH
q) =

∑

T∈TH(Ω)

∫

T

(curl uH − µ pH) · (q−PQH
q) dx

+
∑

T∈TH(Ω)

∫

T

curl (ũH − uH) · (q−PQH
q) dx .

Straightforward estimation and ‖q−PQH
q‖0,Ω ≤ ‖q‖Q yield

|Res1(q−PQH
q)| ≤

(( ∑

T∈TH(Ω)

‖curl uH − µ pH‖20,T

)1/2

(4.10)

+
( ∑

T∈TH(Ω)

‖curl (ũH − uH)‖20,T

)1/2) ( ∑

T∈TH(Ω)

‖q−PQq‖20,T

)1/2

≤
(( ∑

T∈TH(Ω)

η2
T,1

)1/2

+ ξ
)
‖q‖Q.

Similar arguments for the last term in (4.9) and ‖PQH q‖0,Ω ≤ ‖q‖0,Ω reveal

|Res1(PQHq)| ≤
( ∑

T∈TH(Ω)

‖curl uH − µ pH‖20,T

)1/2

‖PQH q‖0,Ω (4.11)

+
( ∑

T∈TH(Ω)

‖curl(ûH − uH)‖20,T

)1/2

‖PQH q‖0,Ω

≤
(( ∑

T∈TH(Ω)

η2
T,1

)1/2

+ ξ
)
‖q‖Q.

The combination of (4.10) and (4.11) concludes the proof.

Lemma 4.2. For p̃H = pH and some approximation ũH ∈ VH let the residual
Res2 of (4.7b) satisfy

Nd1
0;ΓD

(Ω; TH(Ω)) ⊂ Ker Res2. (4.12)

Then, it holds

‖Res2‖V ∗0 .
( ∑

T∈TH(Ω)

(
η2

T,2 + η2
T,3

)
+

∑

F∈FH(Ω)

(
η2

F,1 + η2
F,2

)
(4.13)

+
∑

F∈FH(ΓN )

(
η2

F,3 + η2
F,4

))1/2

+ ξ.

Proof. Given any v ∈ V, Theorem 1 in [48] shows that there exist vH ∈
Nd1

0;ΓD
(Ω; TH(Ω)), ϕ ∈ H1

0,ΓD
(Ω), and z ∈ (H1

0,ΓD
(Ω))3 such that

v − vH = ∇ϕ + z (4.14)
13



and with appropriate patches ωT and ωF

‖ϕ‖0,T . hT ‖v‖curl;ωT
for T ∈ TH(Ω), (4.15a)

‖∇ϕ‖0,T . ‖v‖curl;ωT
for T ∈ TH(Ω), (4.15b)

h
−1/2
F ‖ϕ‖0,F . ‖v‖curl;ωF for F ∈ FH(Ω ∪ ΓN ), (4.15c)

‖z‖0,T . hT ‖v‖curl;Ω for T ∈ TH(Ω), (4.15d)

h
−1/2
F ‖γt(z)‖0,F . ‖v‖0,ωF for F ∈ FH(Ω ∪ ΓN ). (4.15e)

It is a consequence of (4.12) and (4.14) that

Res2(v) = Res2(v − vh) = Res2(∇ϕ) + Res2(z). (4.16)

The first term on the right-hand side in (4.16) reads

Res2(∇ϕ) =
∑

T∈TH(Ω)

∫

T

f · ∇ϕ dx +
∑

F∈FH(ΓN )

∫

F

g2 · γt(∇ϕ) dτ (4.17)

−
∑

T∈TH(Ω)

∫

T

σuH · ∇ϕ dx −
∑

T∈TH(Ω)

∫

T

σ(ũH − uH) · ∇ϕ dx.

An application of Green’s formula gives

∑

T∈TH(Ω)

∫

T

(f − σuH) · ∇ϕ dx = −
∑

T∈TH(Ω)

∫

T

∇ · (f − σuH) ϕ dx (4.18)

+
∑

F∈FH(Ω)

∫

F

nF · [f − σuH ] ϕ dτ +
∑

F∈FH(ΓN )

∫

F

nF · (f − σuH) ϕ dτ.

Since γt(∇ϕ)|F = curlF ϕ on F ∈ FH(ΓN ), a further application of Stokes’ formula
yields

∑

F∈FH(ΓN )

∫

F

g2 · γt(∇ϕ) dτ =
∑

F∈FH(ΓN )

∫

F

g2 · curlF ϕ dτ (4.19)

=
∑

F∈FH(ΓN )

∫

F

curlF g2 ϕ dτ −
∑

E∈EH(ΓN )

∫

E

(
tE · {g2} [ϕ] + tE · [g2]{ϕ}

)
ds

−
∑

E∈EH(∂ΓN )

∫

E

tE · g2 ϕ ds.

Since g2 ∈ H(curl0ΓN
; ΓN ), we have curlF g2 = 0, F ∈ FH(ΓN ). Since ϕ ∈ H1

0,ΓD
(Ω),

we have ϕ = 0 on E ∈ EH(Γ̄N ). Consequently, (4.19) yields

∑

F∈FH(ΓN )

∫

F

g2 · γt(∇ϕ) dτ = 0. (4.20)
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With (4.18) and (4.20), (4.17) leads to

|Res2(∇ϕ)| .
( ∑

T∈TH(Ω)

h2
T ‖∇ · (f − σuH‖20,T

)1/2( ∑

T∈TH(Ω)

h−2
T ‖ϕ‖20,T

)1/2

+
( ∑

F∈FH(Ω)

hF ‖nF · [f − σuH ]‖20,F

)1/2( ∑

F∈FH(Ω)

h−1
F ‖ϕ‖20,F

)1/2

+
( ∑

F∈FH(ΓN )

hF ‖nF · (f − σuH)‖20,F

)1/2( ∑

F∈FH(ΓN )

h−1
F ‖ϕ‖20,F

)1/2

+
( ∑

T∈TH(Ω)

‖ũH − uH‖20,T

)1/2( ∑

T∈TH(Ω)

‖∇ϕ‖20,T

)1/2

.

This and (4.15a)-(4.15c) imply

|Res2(∇ϕ)| .
(( ∑

T∈TH(Ω)

η2
T,3

)1/2

+
( ∑

F∈FH(Ω)

η2
F,2

)1/2

(4.21)

+
( ∑

F∈FH(ΓN )

η2
F,4

)1/2

+ ξ
)
‖v‖curl;Ω.

On the other hand, the second term on the right-hand side of (4.16) reads

Res2(z) =
∑

T∈TH(Ω)

∫

T

f · z dx +
∑

F∈FH(ΓN )

∫

F

g2 · γt(z) dτ (4.22)

−
∑

T∈TH(Ω)

∫

T

pH · curl z dx −
∑

T∈TH(Ω)

∫

T

σuH · z dx

−
∑

T∈TH(Ω)

∫

T

σ(ũH − uH) · z dx.

Since [γt(z)] = 0 on F ∈ FH(Ω), an application of Stokes’ theorem gives

∑

T∈TH(Ω)

∫

T

pH · curl z dx =
∑

T∈TH(Ω)

∫

T

curl pH · z dx

+
∑

F∈FH(Ω)

∫

F

[πt(pH)] · γt(z) dτ +
∑

F∈FH(ΓN )

∫

F

πt(pH) · γt(z) dτ.

This and (4.22) lead to

Res2(z) =
∑

T∈TH(Ω)

∫

T

(f − curl pH − σuH) · z dx

−
∑

F∈FH(Ω)

∫

F

[πt(pH)] · γt(z) dτ +
∑

F∈FH(ΓN )

∫

F

(g2 − πt(pH)) · γt(z) dτ

−
∑

T∈TH(Ω)

∫

T

σ(ũH − uH) · z dx.
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Hence, Res2(z) is bounded from above by

|Res2(z)| .

.
( ∑

T∈TH(Ω)

h2
T ‖f − curl pH − σuH‖20,T

)1/2( ∑

T∈TH(Ω)

h−2
T ‖z‖20,T

)1/2

+
( ∑

F∈FH(Ω)

hF ‖[πt(pH)]‖20,F

)1/2( ∑

F∈FH(Ω)

h−1
F ‖γt(z)‖20,F

)1/2

+
( ∑

F∈FH(ΓN )

hF ‖g2 − πt(pH)‖20,F

)1/2( ∑

F∈FH(ΓN )

hF ‖γt(z)‖20,F

)1/2

+
( ∑

T∈TH(Ω)

h2
T ‖ũH − uH‖20,T

)1/2( ∑

T∈TH(Ω)

h−2
T ‖z‖20,T

)1/2

.

This and (4.15d),(4.15e) result in

|Res2(z)| .
(( ∑

T∈TH(Ω)

η2
T,2

)1/2

+
( ∑

F∈FH(Ω)

η2
F,1

)1/2

(4.23)

+
( ∑

F∈FH(ΓN )

η2
F,3

)1/2

+ ξ
)
‖v‖curl;Ω.

The combination of (4.21) and (4.23) plus (4.16) concludes the proof.

Lemma 4.3. For vH ∈ Ndp
0,ΓD

(Ω; TH(Ω)) it holds

Res2(vH) = cH(uH − ũH ,vH). (4.24)

Proof. We have

Res2(vH) = `
(2)
H (vH) − bH(vH ,pH) − cH(ũH ,vH) (4.25)

= `
(2)
H (vH) −

(
bH(vH ,pH) + cH(uH ,vH)

)
+ cH(uH − ũH ,vH).

Since vH ∈ Nd1
0,ΓD

(Ω; TH(Ω)) ⊂ VH is an admissible test function in (3.15b), it
follows that

bH(vH ,pH) + cH(uH ,vH) = `
(2)
H (vH) + dH(vH , p̂H). (4.26)

Since (3.21a), the last term vanishes

dH(vH , p̂H) = 0. (4.27)

The combination of (4.25)-(4.27) concludes the proof.

Proof of Theorem 4.1. In view of Lemma 4.2 we define

R̃es2(·) := Res2(·) − cH(uH − ũH , ·) . (4.28)

It follows that

‖Res2‖V ∗0 . ‖R̃es2‖V ∗0 + ξ. (4.29)
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In view of (4.24), we have Nd1
0,ΓD

(Ω; TH(Ω)) ⊂ Ker R̃es2. Hence, Lemma 4.3 with
Res2 replaced by R̃es2 yields

‖R̃es2‖V ∗0 .
( ∑

T∈TH(Ω)

(η2
T,2 + η2

T,3) +
∑

F∈FH(Ω)

(
η2

F,1 + η2
F,2

)
(4.30)

+
∑

F∈FH(ΓN )

(η2
F,3 + η2

F,4)
)1/2

.

As in the case of the symmetric IPDG method (cf., e.g., [20, 37]), the consistency
error admits the upper bound

ξ .
( ∑

F∈FH(Ω)

η2
F,5

)1/2

, ηF,5 := h
−1/2
F ‖[γt(uH)]‖0,F . (4.31)

The combination of (4.8),(4.29)-(4.31) and the triangle inequality

‖(u,p)− (uH ,pH)‖ ≤ ‖(u,p)− (ũH ,pH)‖+ ‖uH − ũH‖curl,H,Ω

conclude the proof. ¤
5. Numerical Results.

5.1. The Adaptive Cycle. The adaptive IPDG-H method is realized within an
adaptive cycle with the basic steps ’SOLVE’, ’ESTIMATE’, ’MARK’, and ’REFINE’.
’SOLVE’ stands for the numerical solution of the hybridized IPDG scheme with the
mortar approach of section 3 implemented in the ’nudg’ code from [33] for the solu-
tion of (3.24). The step ’ESTIMATE’ is devoted to the computation of the element
residuals ηT,i, 1 ≤ i ≤ 3, and the face residuals ηF,i, 1 ≤ i ≤ 4 (cf. (4.2a)-(4.2c) and
(4.3a)-(4.3c)) as the basic constituents of the residual error estimator η (cf. (4.1)).
Moreover, the consistency error ξ (cf. (4.4)) is estimated by the additional face resid-
uals ηF,5 according to (4.27). The following step ’MARK’ deals with the marking of
elements and faces for refinement by a bulk criterion, also known as Dörfler marking
[29]. In particular, given a universal constant 0 < θ < 1, sets MT ⊂ TH(Ω)×{1, 2, 3}
and MF ⊂ FH(Ω̄)× {1, 2, 3, 4, 5} of almost minimal cardinality are determined such
that

θ η2 ≤
∑

(T,i)∈MT

η2
T,i +

∑

(F,i)∈MF

η2
F,i. (5.1)

The bulk criterion (5.1) is implemented by a greedy algorithm. For sufficiently small
θ, it is expected that the bulk criterion may yield asymptotic optimal complexity (cf.,
e.g., [12] in case of adaptive IPDG methods for standard second order elliptic boundary
value problems). The final step ’REFINE’ takes care of the practical realization of
the adaptive refinement. Elements T ∈ TH(Ω) and faces F ∈ FH(Ω̄) such that
(T, i) ∈ MT for some 1 ≤ i ≤ 3 and (F, i) ∈ MF for some 1 ≤ i ≤ 5 are refined by
bisection.

5.2. Numerical Examples. For the illustration of the performance of the resid-
ual a posteriori error estimator we consider two examples of H(curl)-elliptic bound-
ary value problems in 2D from (2.3a)-(2.3c). Both examples feature solutions in
H(curl; Ω) with components in Hs(Ω) for some 0 < s < 1. The first one has an an
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irrotational solution on an L-shaped domain with a singularity at the reentrant corner
and the second one exhibits a solenoidal solution on a circle with a cut out wedge
having a singularity at the origin. For both problems, the penalty parameters in the
IPDG-H method have been chosen according to α± := κ(k + 1)2/2 with κ = 100.

Example 1: We consider the L-shaped domain Ω := (−1, +1)2 \ [0,+1]× [−1, 0] with
Dirichlet boundary ΓD := (0× (0, 1) ∪ (0, 1)× 0), Neumann boundary ΓN := Γ \ ΓD

and data µ = σ = 1. The right-hand sides f , g1, g2 in (2.3a)-(2.3c) are chosen such
that

u = grad(r2/3 sin(
2
3
ϕ))

is the exact solution (in polar coordinates). The solution is in H(curl; Ω)∩H2/3−ε(Ω)
for any ε > 0 and exhibits a singularity at the reentrant corner.
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Fig. 5.1. Ex. 1: The initial mesh (left) and the meshes after 8 (middle) and 18 (right) adaptive
refinement steps (k = 4 and Θ = 0.1).
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Fig. 5.2. Ex. 1: The error ‖(u,p)− (uH ,pH)‖ versus the number of degrees of freedom on a
logarithmic scale for various θ, k = 1 (left) and k = 4 (right).

Figure 5.1 shows the initial mesh (left) and the meshes obtained after 8 (middle)
and 18 (right) refinement steps of the adaptive algorithm in case k = 4 and θ = 0.1.
We observe a pronounced refinement in a vicinity of the reentrant corner. Figure 5.2
displays the global discretization error ‖(u,p) − (uH ,pH)‖ (cf. (4.5)) as a function
of the number of degrees of freedom (DOF) on a logarithmic scale for both uniform
refinement and adaptive refinement in case k = 1 (left) and k = 4 (right). The

18



results of the adaptive refinement are shown for various values of the constant θ in
the bulk criterion (5.1). Both for k = 1 and k = 4 the benefits of adaptive versus
uniform refinement can be clearly seen. In case k = 1, we observe a dependence of
the convergence rate on the parameter θ which is much less pronounced in case k = 4.
According to the theory for IPDG methods applied to standard second order elliptic
boundary value problems (cf. [12] and the numerical results in [34]), we see that
optimality is asymptotically achieved for small θ.

Example 2: The domain Ω is the unit circle with a cut out wedge (see Figure 5.3).
We assume µ = σ = 1 and Neumann boundary conditions on Γ = ∂Ω. The data f
and g2 are chosen such that u = curl(r4/7 sin( 4

7ϕ)) is the exact solution (in polar
coordinates). The solution is in H(curl; Ω) ∩H4/7−ε(Ω) for any ε > 0 and exhibits
a singularity at the origin. We use isoparametric elements for a proper resolution of
the curved part of the boundary.
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Fig. 5.3. Ex. 2: The initial mesh (left) and the meshes after 6 (middle) and 14 (right) adaptive
refinement steps (k = 4 and Θ = 0.1).
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Fig. 5.4. Ex. 2: The error ‖(u,p)− (uH ,pH)‖ versus the number of degrees of freedom on a
logarithmic scale for various θ, k = 1 (left) and k = 4 (right).

As for the previous example, Figures 5.3 and 5.4 display the history of the refine-
ment process. We basically observe a similar behavior with asymptotically optimal
convergence for small θ. However, in the pre-asymptotic regime, the decrease of the
discretization error is less pronounced. The reason is that there are two main sources
for the error: the singularity at the origin and the resolution of the curved boundary.
Since the error is dominated by the singularity, the greedy algorithm realizing the
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bulk criterion (5.1) picks the corresponding residuals first until those associated with
the boundary resolution are taken into account.
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[44] P. Neittaanmäki and S. Repin, Reliable methods for mathematical modelling. Error control

and a posteriori estimates. Elsevier, New York, 2004.
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