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1. Introduction

Since the invention of the Simplex Method in 1947 by George B. Dantzig it had been an
open problem for mathematicians why this algorithm works so efficiently in practice.
This question became even more interesting when in the beginning of the seventies Klee,
Minty, Jeroslow and other authors recognized that the usual variants of the Simplex
Method are nonpolynomial in the sense of worst-case complexity theory. That means
that there is no polynomial in the dimension of linear programming problems which
acts as an upper bound for the respective numbers of pivot steps required for solving
all the possible problems.

Obviously it was a great advantage for the Simplex Method that people had not
known this negative and bad fact from the beginning. So the users got the impression
that this is a very reliable, fast and efficient tool for solving their problems. They
did not care very much about the reasons for that behaviour. On the other hand an
immediate nonpolynomiality proof would very likely have led to a very cautious and
detached judgement on the quality of the method as we have learned from many other
cases (especially in combinatorial optimization). The persuasive power of polynomial-
ity proofs can be observed very clearly at the example of the ellipsoid method (which
is not efficient in practice at all) and at the boom and the public attention for the
algorithm of Karmarkar.

Since the beginning of the seventies a great effort has been made to clarify the “nor-
mal” quality of the Simplex Method and in 1977 — ten years ago, the first breakthrough
was achieved by the author. In the following time several authors tried to improve the
results, find sharper bounds in different directions studying different stochastic models.
This paper is to give a brief survey of these approaches and explain the advantages
and drawbacks of the main results in this field of research.

Throughout the paper we will deal with linear programming problems of the
following type. (Note that different types can easily be transformed into that form.)

Maximize vTz (a linear objective)
where Bl g bt
aT
1
resp. Az < b with A = :
T
m

alz <b™

with v,z,a;,...,am € R*, b€ R™ and m > n.



We call this an (m, n)-problem to characterize the two dimensions of the problem.

The restrictions Az < b define a convex polyhedron. In the vertices (edges) of
that polyhedron at least n (n — 1) restrictions afz < b* are active. And we know
that if there are vertices and if there are optimal points, there is a vertex among the
optimal points. Finally, we know that every nonoptimal vertex is incident to an edge
which improves the objective. These facts are exploited in the Simplex Method which
works as follows.

Phase I: Find a vertex of X = {z € R" | Az < b}.
If this is impossible, STOP.

Phase II: Construct a sequence of vertices z¢, z,,..., z, starting with the vertex z,
(found in Phase I) such that successive vertices are adjacent and that vTz
is strictly increasing.

Stop as soon as an optimal vertex is reached or as soon as it becomes clear

that optimal points do not exist.

The procedure for Phase I is closely related to that for Phase IL. Only a slight
modification of the problem is necessary. So it makes sense to concentrate on Phase
IT for the moment. The number s characterizes the number of vertex exchanges which
have to be performed. Under nondegeneracy assumptions (which are valid in our
analysis) this number coincides with the number of pivot steps for solving the Phase
II-task.

Our definition of Phase II is not yet complete, because we should declare a rule
for determining the successor vertex if more than one improving adjacent vertices are
available. Such a rule characterizes the variant of the algorithm.

Throughout the paper we use the following nondegeneracy assumptions.

Every submatrix of (4,b) and of (%) is of full rank.

This guarantees that each vertex corresponds to a set of exactly n active restric-
tions, that an optimal point is unique (if existing) and that every pivot step leads to
a new vertex.

Carrying out a probabilistic analysis of the Simplex Method requires the fixation
of a variant and the decision for a certain stochastic model simulating the real-world-
distribution of linear programming problems.

It should be mentioned that the number of steps highly depends

— on the chosen stochastic model,
— on the variant which is used.

Studying the average behaviour means calculating the expected number of steps
under the given stochastic model. In the following we will demonstrate and explain
the two main stochastic models, the main ideas for evaluation of the expected values

and the main results, which showed the polynomiality of the average behaviour.



2. The Sign-Invariance-Model

We begin with the most simple stochastic model which could be a.gt}a.lyzed, the so-called
aj b!
Sign-Invariance-Model (MAY & SMITH (1982)). Let A = : landb=| :
al b
be given. To determine the direction of the inequalities (a¥z < b* or alz > b') we
perform m Bernoulli-experiments (we flip a coin m times) with probability %. So the
m directions are independent, > and < are equally likely.

Consequently, a given data set (A, b) induces 2™ different linear programming
problems. By multiplication with (—1) it is possible to transform the restrictions
into the standard form Az < b. Averaging over the probability space now means
to solve all these 2™ problems, to count the numbers of required pivot steps and to
divide the sum by 2™. The feasibility regions of the individual problems will be called
cells. Of course, some of the cells will be empty. Then the algorithm has the task to
recognize infeasibility. A first analysis for the average Phase II-complexity was done
by HAIMOVICH (1983) and ADLER. They investigated and used a parametric Simplex
variant which works as follows.

Let v be the objective of the problem and let u be an auxiliary objective such
A

that | v | has only full-rank submatrices. We call a point y € X (the feasible region)
u

(2, v)-cooptimal if uTz < uTy for all z € X with vTz = vTy.

Now we can find a Simplex-Path connecting all («, v) cooptimal points according to
the parametric algorithm of GASS & SAATY (1955). That means that we successively
calculate the solution-vertices of the problem

Maximize (u+ pv)Tz

subject to ze€ X

with p running from —oco to +o0.
We can assume that Phase I is already done and that a start vertex z, has been
found such that z( is a maximal vertex with respect to a given auxiliary objective u.
Constructing a vertex-sequence according to the algorithm described above touches
only (u,v)-cooptimal vertices. So the number of cooptimal vertices can be used as an
upper bound for the number of pivot steps.

Haimovich comes to the following conclusion.

Theorem (Haimovich 1983). The expectation value of the numbers of pivot steps
used on cooptimal paths in the sign invariance model and under the condition that a

cooptimal path exists, is not greater than nm—;_"ﬁ—z.

Proof. There are 2™ possible cells and (':) intersection points of n restriction hyper-

planes. We call the intersection sets of n — 1 restriction hyperplanes lines.



Every such line itself is intersected by m — n + 1 restriction-hyperplanes. So we
obtain m — n 4 2 segments on each line. Each segment belongs to a different cell

and every segment is cooptimal in exactly one cell. Now we know that nondegeneracy
guarantees that

1) Every cell has at most one vT z-maximal vertex and at most one (x, v)-cooptimal
path.

2) Each intersection point of n hyperplanes and every line segment is optimal in
exactly one cell.

3) We have (T') + (,,) cells with (u, v)-cooptimal paths.

3) There are (™ )(m — n + 2) line segments.

So he concludes E,, (number of line segments on a cooptimal path/cooptimal

+2
path exists) = n™=2r2,

Here an analysis of Phase I is not yet done. We have a fictive start vertex based
on the auxiliary objective u.

That necessary generalization was independently done in papers of TODD (1983),
ADLER & MEGIDDO (1983), ADLER, KARP & SHAMIR (1983). Their methods were
based on work of SMALE (1982) who had analyzed a similar model and algorithm but
had not achieved polynomiality. We refer to the paper of Adler, Karp and Shamir,
because its notation is closest to our geometrical concept. Again, we want to solve the
problem

Maximize Tz

subject to afz <b',...,al z < b™.
But now we use a Lexicographic Constraint-By-Constraint algorithm for doing the task
of Phase I and Phase II together. For this purpose we use relaxed feasibility regions
X®) ={zeR"|aTz <b!,...,alz < b*} for n < k < m. Note that X(™) = X. Our
algorithm runs through m — n + 1 stages.

Stage 0: Determine the unique vertex z € X(*) and choose u as u = e'a; +
€%ay + ... + e"a, with € > 0 sufficiently small.
Go to Stage 1.

Stage k: (1<k<m-—n)
Start at z, the maximal vertex for uTz on X(k—1+n) If 7
X(k+n) then go to Stage k + 1. Else use the parametric algorithm
to maximize (—a{, ) until af, z < b**" is achieved. The last
traversed edge contains a point z with af , .z = b*. All path-points
are (4, —ax)-cooptimal, hence z maximizes uTz on X(k+n) If it
is impossible to achieve aT, z < b¥*" then the original problem

k+n
is infeasible. STOP. Else set T = z and go to Stage k + 1.



Stage m —n + 1: Start at T which is uT z-maximal on X (™) — X. Apply the para-
metric algorithm and iind the optimal point or find out that there
is no solution.

Adler, Karp and Shamir sum up over all 22+* instances in Stage k+1 and over all
the basic cones. A fixed vertex is cooptimal in exactly n+ 1 of 2n+k instances, because
it is incident to 2n segments. Either it is optimal or two of its incident segments are
cooptimal. The authors come to an expected value of at most 2m+! (n+1) for arbitrary
choice of u. But the lexicographic choice of u in Stage 0 enables them to prove that

Em‘n(sCBC) < 2(71 4 1)2'

Theorem (ADLER, KARP & SHAMIR (1983); ADLER, MEGIDDO (1983); TODD
(1983)).  For solving the complete (m, n)-problem, the expected number of pivot

steps is not greater than 2(n + 1)2 under the sign invariance model,

3. Drawbacks of the Sign-Invariance-Model

We already mentioned that not every problem instance has a feasible cell. We know
that m restrictions (nondegenerate) partition the n-dimensional space into (') + (7)) +

oot ('::) cells. On the other hand the number of generated problems is 2™. So for
m > n the quotient

number of feasible problems
number of generated problems

tends to O very fast.

Only conditioning on feasible problems can avoid averaging over a lot of infeasible

(and much less difficult) problems. Also, the expected number of vertices is low. We
have

Ep n (vertices per feasible problem) =

which tends to 2™ for m — oo, n fixed and is similar to the vertex number of an
n-dimensional cube (a very simple polyhedron for linear programming).

The most important aspect is the average redundancy rate. If we introduce the
m-th restriction, the number of cells increases from

(3 (77 5) v ).

That means that some cells have been reproduced and some have been divided by the

last restriction. We can calculate the number of divided cells. It is



(3)-(" )+ (D)= C)-(727) = (75 ) (21
0 0 1 1 n n 0 n—1
Consequently the new restriction is relevant only in 2[("‘6'1) + .o+ (T2))] of 2m
generated and ("5’) +...4 (T) feasible cells. Hence both the pure and the conditional
redundancy rate tends to 1 very quickly.

Also the expected number of nonredundant constraints is low. It is calculated by
multiplication of m with the nonredundancy rate. Whereas the pure expected number

again tends to 0, the conditional expected number of nonredundant constraints behaves
like

m2{("g ") +.--+ (72}

(@) +---+ ()

This is again typical for a cube in R™. These results show that the Sign-Invariance-
Model hardly generates problems with more than 2n nonredundant constraints. So the
expected values for s and s®BC do not give reliable explanations for the behaviour of
the Simplex Method in the asymptotic case (m > n). Instead of proving the quality of
the Simplex Method, they reflect the special properties of the chosen stochastic model.

— 2n for m — oo and n fixed.

4. The Rotation-Symmetry-Model

The above mentioned danger can be avoided by using a different model, the rotation-
symmetry-model. The author analyzed that model in several papers (BORGWARDT
(1977, 1982a, 1982b etc.)). We deal with problems of the type

Maximize vTz
subject to afz < b!

ada s b

where b* >0 fori=1,...,m.

Here we have feasibility in any case because 0 € X. So we are sure to solve “hard”

problems. Our stochastic assumptions are as follows:

Let ay,...,am, v, b!,...,b™ be independent random variables, let a;,...,am, v
be distributed identically and symmetrically under rotations of R™ and let the
components of b be distributed identically over (0, c0).

Without loss of generality we can simplify these assumptions by “normalization”.
That means that we define X by a7z < 1,...,aT,z < 1 and that we demand ay,..., am,

v to be distributed independently, identically and symmetrically under rotations. It



should be noted that under this model the following nondegeneracy assumption is valid
with probability 1: Every submatrix of (/) and of (4 1) has full rank.

The variant is again a parametric algorithm, the so-called “shadow vertex algo-
rithm”. Here we start again at a vertex maximizing an auxiliary objective uTz and
construct a sequence of (u, v)-cooptimal vertices in order to reach the v z-maximum.
All these cooptimal vertices will be mapped into vertices of a two dimensional polyhe-
dron, if we project X orthogonally onto the plane spanned by u and v. That means
that they become vertices of “the shadow” of X, which explains the term “shadow
vertex”. Since every (u,v)-cooptimal vertex is also a shadow vertex, we know that S,
the number of shadow vertices, is an upper bound for s.

Now we observe the following one-to-one correspondence. Every vertex of X is
the intersection point of n restriction hyperplanes. Let us denote these restrictions
af.z=1,...,a% .2 = 1 and let z, be the intersection point. Hence we have a one-
to-one correspondence between the vertex z4 and an index set A = L Fa LI ¥
{1,...,m} with A! < A2 < ... < A™. On the other hand A corresponds uniquely to
the n-element set {aa1,...,aan}. For our analysis of the average number of shadow
vertices the following geometrical facts are extremely useful. Let us denote by ¥ the

convex hull of (0,ay,...,am,).

Lemma. 1.z, is a vertex of X if and only if the convex hull of {aar,...,aan} lies
completely on the boundary of Y.

2. Let zp be a vertex of X. Then it is even a shadow vertex if and only if the convex
hull of {ap1,...,aa~} is intersected by span(u,v).

The following integral expression results from that lemma.
Enn(8) = (%) [ ... [ P (CH(ay,...,a,) is a boundary simplex of ¥ and
R!l Rn

CH(ay,...,a,) is intersected by span(v,v)) dF(a,)...dF(a,).

Here F' denotes the distribution function under consideration. This integral ex-
pression can be simplified because of rotational symmetry. So the boundary event and
intersection event become independent for fixed a,,...,a,. The first depends only on
the distance of the hyperplane through ay,...,a, to 0 and the second is proportional
to the spherical measure of the convex cone spaned by a,,...,a,. Nevertheless it took
several years to evaluate this integral sufficiently well. In the following I want to list

some of the main results for our Phase I-analysis.

Asymptotic Results for m — oo and fixed n

Theorem (Borgwardt 1977-1984). There is a function e(m, n) asymptotically tend-
ing to 0 such that for



Gaussian distribution on R":

Emn(S) <

mn(5) 2

Uniform distribution on unit ball:

20
2% {1+ s(m, )

7]

e
ulfd

3
g(l — g(m,n)).

Epm n(8) < mast n? 2(1 + _\}—5)(1 + e(m, n))

B n(8) > matT n2 2%(1 — e(m,n)).
Uniform distribution on unit sphere:

Enn(S) < ma=T n2 2(1 $ %)(14— g(m,n))

"=T n? 2;1?(1 — g(m,n)).

Emn(S5) 2m
General distributions with bounded support:
Epn(S) < ma=t n? V2r (1 + ep(m, n))
(¢ depends on F here).

The difference in the order of growth for different distributions results from dif-
ferent redundancy rates. For instance uniform distribution on unit sphere leads to
redundancy rate 0, whereas Gaussian distribution induces a redundancy rate rather
close to 1. Note that:

The restriction afz < 1 is redundant if and only if a; € Int Y = Int CH(0,ay, ...,
@m)- This can never occur for a distribution on the unit sphere.
Now we could try to find the minimal possible asymptotic growth.

Theorem (Borgwardt 1979-1984). All results for m — oo and fixed n.

1) For all distributions where P(||a|| > r)~! is of polynomial order for r — oo we
know that E,, ,(S) is bounded by a constant C(n) not depending on m. (Example
C(n) = n% can be realized).

2) For all distributions with bounded support E,, ,(S) — oo.

3) For every § > O there is a distribution with bounded support such that E,, ,(S) =
0(m?®) as a function of m.

Note the similarity of 1) with the result for the Sign-Invariance-Model. It shows
that such a small growth can even be achieved by analyzing only feasible problems
when the redundancy rate is kept small.

This is a great advantage of our model. We can vary the redundancy rate from
almost 1 to 0 and observe the behaviour, whereas the Sign-Invariance-Model has a

fixed redundancy rate very close to 1. In 1981 we achieved a polynomial upper bound.



Theorem (Borgwardt 1981). For all distributions satisfying our conditions indepen-
dence, identity, rotational symmetry we have Epn(S) < em(Z + L)ndme=t.

5. The Inclusion of Phase I

As in the analysis of Phase II under the Sign-Invariance-Model we had some trouble
with the auxiliary objective function uTz. These complications disappear completely
by our construction of a probabilistically analyzable method for inclusion of Phase I.

For demonstrating that algorithm we introduce the following problems with addi-
tional restrictions

Problem Iy (k=2,...,n)

Maximize Tz

subject to Az <b and zF+t! = . . =3z" =0.
That means we fix components k+1, ..., n for a while to 0. Note that I,, is our original
problem.
Initialization:

Set k = 2. Find a vertex of I,. Solve I, by means of the parametric algorithm.
If this is impossible STOP.

Else store the solution vertex (z!,22,0,...,0)T.
Typical Step:
(K = Blsunsdi).
Use the solution point (z!,...,2¥=1,0,...,0)T for I)_,. It is located on an edge

of the Ix-polyhedron.
1) Find an adjacent vertex (z',...,%*,0,...,0)T of the Jx-polyhedron to that
edge.
2) Solve I by means of the parametric algorithm by setting v = (0,...,0,1,0,
.++,0)T (1 in kth-component).
If the problem has unbounded objective STOP.
Else store the maximal vertex.

3) If k= n STOP. Else set k = k + 1. Go to 1).

Here there is no doubt about the choice of u. The algorithm is by far not the
most efficient one but it has the tremendous advantage that we can do a probabilistic
analysis by n — 1-times application of the shadow-vertex algorithm.

So we get our main result.

Theorem (Borgwardt 1981). For every distribution satisfying our three conditions

our complete method does not require more than m==int . ( steps on the average.



Based on that method we could also prove that problems with sign constraints,

Todsy

Maximize vTz

subject to Az <b z>0andb>0

can be solved in mm=tn( steps on the average.

But still our analysis had one drawback. For our algorithm it is necessary to know
a feasible point (to start with), here we have the origin. If we knew a different feasible
point, it would work too, we only had to transform the coordinate system. But how
should we handle problems of the form

Maximize Tz

subject to  afz < ¥!,...,aT z < b™ (general form)
with arbitrary b%?
We call that problem P,.

If there is a negative b* we do not know a feasible point.

Now we reformulate our restrictions as
af 2 <b <= aTz <1-—b with b =1 — b,

We embed our polyhedron in R"*! by postulating

Il

(af,0f,al,..,af,b) |~ | <1 = afz+ban <1,
x
zn+l

In level z"*! = 0 we have a polyhedron and a problem which satisfies our requirements
about the distribution of the restrictions, because the a; are distributed independently,
identically and symmetrically under rotations. That means our analysis would hold
for the solution of those problems P,. But we must be aware of the fact that we
have to find the v" z-optimum in level z"+! = 1, where aTz + b;z"+! < 1 means that
alz + bi <1 <= alz<l— b;. Hence we rediscover our problem in level zn+! = 1,

Now we proceed as follows.

1) Solve the problem P, (by means of our complete method)

Maximize 9Tz + Qgnt!

subject to  aTz + b;z"+! < 1 and z"+! = 0 (= Lywasymm),

If this problem has no solution STOP (unboundedness of the objective is guaran-
teed also in P,).

Else store the solution vertex and go to 2).



2) Apply the shadow vertex algorithm in order to

Maximize zn+t1
subject to  aTz + b;zn+! < 1 (1=1,...,m).

Every point on the path is (v, en.; )-optimal. If the maximal value of z"+! is less
than 1 then our problem is infeasible — STOP.

Else: As soon as level z"+! > 1 is reached, find a point of level z**+! = 1 on the
last edge. Now (z!,...,2")7T is the optimal point for Fuw STOP:

We ask for the average complexity of that method. It is clear that the solution of

. - .
P, requires not more than m==1n4C on the average.

We need to know the effort for Step 2. And we can prove the following

Theorem (Borgwardt 1987). Problems of the kind

Maximize vTz

subject to aTz <b',...,aTz < p™

wherev,ay,...,a,, are distributed independen tly, identically and symmetrically under
rotations, where the b*’s are independent real variables, also independent of the a;’s
and uniformly distributed over an interval [—q, +g| C R, then the method described

" . ;
above does not require more than m==1 n4(, pivot steps on the average.

So we have an algorithm — by far not the most efficient one — which admits a
probabilistic analysis, which solves all LP-problems and which is polynomial in the av-
erage number of steps. And the analysis is done under the “hard” rotational symmetry
model.
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