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1. IN T R O D U C T IO N
This paper considers bilinear control systems (S) having the following form

i(t)  = I Ao +  Ui(t)Ai I x(i), t > 0 

x(0) = io € R d

u = (ui) E U  := {u : R+ —* Q, integrable }

(1-1)

(1-2)
(1-3)

where Ai G R d x d , t =  0 ,1 ,..., m, Q C R m  is compact and convex with inti) 0.
We analyze the minimal and maximal exponential growth rates of individual 

solutions and of fundamental solutions associated with specific control functions u. 
Furthermore, we give a complete characterization of those initial states xg, from 
which the maximal and the minimal exponential growth rate can be realized. The 
proofs rely on methods from geometric control theory.

2. G RO W TH  C O N C EPTS
A solution of the linear time-varying differential equation (1.1) corresponding to 
the initial state xg and the control function u is denoted by x(t, xQ, u), t > 0. The 
exponential growth rate of x(-, xg, u) is given by

A(io,u) =  limsup -log |x(t, xg, u)| (2.1)
t--OO t
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where | • | is any norm on R A  The minimal and maximal exponential growth rates 
of (S) are given, resp., by

K* :=  *ine fu inf A(x0 , u), n — sup sup A(x0 ,u).
X o * o  u e u x o ^ o

In general, one cannot expect that K’  can be realized from all initial states XQ; 
furthermore, the control function u here depends on the initial state. Different 
concepts are obtained by requiring uniformity with respect to the initial states:

Define
k* :=  inf sup k := sup inf A(x0 ,u).

veu xo*o

Instead of looking at individual solutions x(-,x 0 ,u) also the exponential growth 
rates of fundamental solutions may be considered. Let

2V : = {A o + Sm Ai : (u,) G 0}

and consider the semigroup corresponding to piecewise constant control functions 
u

S t := {exp(B n tn  H------ 1- B itt) : B i G N, ti > 0, Stj =  t}.

The growth of g E St may be measured by the minimal (or maximal) absolute value 
of the eigenvalues or by the minimal (or maximal) absolute value that g attains on 
the unit sphere in R /.

Define the spectral radius and coradius, the norm and the conorm of g by

r(g) := max{|A| : A G a(^)}, cor(g) := min{|A| : A G <r(g)}

IHI :=  max{|5(x)| : |a:| =  1}, m(g) := min{|<7(z)| : |x| =  1}.

One obtains the following concepts for extremal exponential growth rates:

[3* := lim sup -  inf log cor^g), ¡3 : =  limsup -  sup logr(ip)
t—*00 g€St i—oo * gG S t

/3* := l im s u p -  inf logr(<y), := limsup -  sup lo gcor(g).
t—-oo i  gG S ' t~ o o  i  3 e s t

6 *  := lim sup — inf logm(ÿ), 
t—»oo t  g€$t

6* := lim su p  -  inf log ||̂ ||, 
t—oo t gest

6  := Em sup — sup log ||̂ || 
t—oo t gÇ.St

6 := limsup -  sup logm(^). 
t—OO t  g £ S t

Our results, in particular, clarify the relations between these concepts.
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3. ANALYSIS
First, we project the system (S) onto the unit sphere S^- 1 . Define 

q(u,s) := ST A(U)S , where A(u) :=  Ao +  Su,A j 

h(u,s) := (A(u) — ST A (U)S • Id]s

and let
s(t) := i ( t ,x o ,u ) / \x ( t , xo,u)|, -so :=  x o /k o | •

Then, (cp. [1])

s(t) =  h(u(t), t >  0, (3-1)

s(0) =  s0 (3.2)

1 ( l
A(x0 , «) — limsup -  / q(u(r), s (r))  dr. (3.3)

i—oo t Jo

Thus, determination of K*, K is reduced to an optimal control problem on the sphere 
with the somewhat unorthodox “average cost” functional (3.3).

In order to  make use of geometric control theory, we assume tha t the Lie-Algebra 
generated by the vectorfields u E Cl, satisfies at each point s G S d ~ l

dimLA{/i(-, u), u E Cl} = d — 1. (H)

The system (3.1)-(3.3) may be considered on the projective space P  obtained by 
identifying opposite points of S d - 1 .

Hypothesis (H) implies local accessibility (cp. e.g., [4]):
Let for t >  0, so € P ,

O t M  := {y € p  : there exist 0 <  r  < t and u G U w ith S (T , SQ, U) = y}, 

where s(t, so,u), t >  0, is the trajectory of (3.1) corresponding to the initial state 
so and the control u. Then, (H) implies intO < t (so) 0 for all so G P , t  >  0.

Let G > + (so )-U o o O ti^ o ).
Definition: A subset C  C P  is called an invariant control set if clC  =  cl(?+ (so) 
for all s0 G C.

The following result is proved in [2].

T heorem  1. Assume (H). Then there exists a unique invariant control set C in P.
Furthermore, in tC  0, C =  clin t C, and C =  n a o e p c iO + (s0 ).

In [3], we have shown

T heorem  2. Assume (H). Then

K =  sup{A(so,u) : so G C, (u(-), s (-,s0 ,u )) periodic }.

The following theorem presents a characterization of maximal exponential growth 
rates.
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Theorem  3. Assume (H). Then

K = (3 = 8 and k = ^  = 8.

Proof: The first half of the assertion is proved on [3, Theorem 4.1]. The second 
half follows similarly using reduction to the periodic case and Floquet theory.

Using time reversal, one can deduce from Theorems 2 and 3, results on minimal 
exponential growth rates. Consider the time reversed system

m
x(t) = — plo +  u ,A ,jr(t), x(0) =  XQ, U  6 U. (E*)

1=1

Trajectories of (S*) are denoted by x*(t, x0 ,u), trajectories for the projected system 
by s*(t, so, a).

Lemma. Assume (H). Then, the maximal exponential growth rate o f (E*) satisfies

sup sup lim sup -  log |r*(t, XQ. u)| =  — inf{A(so, u), so G C*, 
uEV ro#0 t—*oo t  (3.4)

(u(-), s(-,so ,u)) periodic with s(t,SQ,u) E intC* for all t > 0}

where C* is the unique invariant control set o f (S*) projected onto P.
Proof: Let (u(-), s(-,so ,u)) be r-periodic. Extend s(t) and u(t) r-periodically for 
t < 0 and define cr(t) :=  s(—t), t > 0. Then,

a(t) = - s ( - t )  = [—A (u(—t)) -  a T ( t ) ( - A ( u ( - t ) ) ^ ^

and

A(s(0), u) = -  I s ( t f  A (u(t))s(t) dt = -  /  s(t)T  A (u(t))s(t) dt 
T Jo T  J —r

=  -  /  s(—t) r A (u(~ t))s(— t)d t = -  /  v (t)T A (u (-t)a (t) dt
T Jo T  Jo

1 f*=  — lim -  I a (t)T (—A(u(—t)))a(t)dt.
t—00 t Jo

The last expression is minus the exponential growth rate of the trajectory of (E*) 
corresponding to the initial value s(0) and the (periodic) control u(—t).

Hence, using Theorem 2, we find that the left hand side of (3.4) equals

sup < lim su p - I (s*)T A(ti)s* dr, (u(-), s*(-)) periodic, 
t—-oo t Jo

s*(tj = s*(t,so,u) E in tC *, t > o |

=  — inf |  A(so,u), S(-),SQ, U)) periodic, s(-,so,u) C iniC *}.

This lemma and use of Floquet theory yields the following characterization of 
minimal exponential growth rates.
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Theorem 5. Assume (H). Then,

K* =¡3* = 8* and k* = 3* =

Furthermore,

K* =  inf{A(so,u) : (u(-), s(-,s0 ,u)) periodic with s(-,so,u) C intC*}

where C* is the unique invariant control set in P of the time reversed system (S*).

Remark. In general, the minimal exponential growth rate K * can only be realized 
from So E int C*
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