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MAXIMUM PRINCIPLE FOR HYPERSURFACES 

J.-H. Eschenburg 

We give an intrinsic proof and a generalization of the interior 
and boundary maximum principle for hypersurfaces in Riemannian 
and Lorentzian manifolds. Moreover, we show some new applications 
to manifolds with lower Ricci curvature bounds. E.g. we prove a 
local and a Lorentzian version of Cheng's maximal diameter 
theorem and a non-existence result for closed minimal hyper- 
surfaces. 
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0. ~ntroductioD. 

The maximum principle of E. Hopf is a simple and powerful 

analytic tool which is often used in the theory of minimal or 

constant mean curvature hypersurfaces. E.g. it implies that two 

different minimal hypersurfaces in a Riemannian manifold M 

cannot touch each other from one side. However, it is difficult to 

find a written proof for this fact (for M = ~ see e.g [Sc]). 

Using special coordinates, one can reduce the statement to the 

maximum principle for functions (of. [PW], [GT]). 

The present paper has a triple purpose. First we want to 

give a short proof of the interior and boundary maximum principle 

for smooth hypersurfaces with suitable mean curvature bounds, 

which is also valid for spacelike hypersurfaces in a Lorentzian 

manifold and which uses intrinsic geometry in place of coordinates 

(Ch.2). Second we give an extension to the case where one of the 

hypersurfaces satisfies the mean curvature inequality only in a 

generalized sense, following Calabi [C] (Ch.4). Third we give some 

new applications to Riemannian and Lorentzian manifolds with lower 

Ricci curvature bounds (Ch. 3 and 4). 

I. Preliminaries 

Let (M, 

dimension n+l 

< , >) be a Riemannian or Lorentzian manifold of 

For any v E TM we put 

tivlf = l<v.v>l ~z= 
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Let S c M be a spacelike C=-hypersurface ("spacelike", 

 9 timelike" are void conditions in the Riemannian case) with unit 

normal vector field N . For any p E S , there exists an open 

neighborhood M' of p in M and a diffeomorphism 

e: (S N M') x (-6,6) -> M' , e(q,t) = exp(tNq) . 

We call f = pr= o e -~ : M' -> (-6,6) the signed distance 

function of S . 

Let V = Vf be the gradient vector field of f on M' 

Then a. Vl(f=t} is the unit normal field of the parallel 

hypersurface S~ = {f=t} where 

1 in the Riemannian case, 
~= 

-i in the Lorentzian case. 

From <V,V> = ~ we get DvV = 0 , so the integral curves of V 

are unit speed timelike geodesics. Let A = DV be the hessean 

tensor of f . Then A(V) = 0 , and AIV ~ is the second fundamen- 

tal tensor of the parallel hypersurfaces S~ . Moreover, 

(i) DvA + AoA + R V = 0 , 

where Rv(X) = R(X,V)V . Since trace A = div Vf = ~f , we get by 

taking the trace of (I) 

(2) ~v(~f) + (Af)=/n + ric(V) + llAoll = = 0 , 

where tic(V) = trace R V is the Ricci curvature and Ao is the 

trace free part of AIV ~ , i.e. Ao = A - (trace A).I/n (cf. [E2] 

for details). 

To fix signs, let us call A ITS the 2 -~ fundamental tensor 

(shape operator) of S , its eigenvalues the principle curvatures 

and 
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H = trace AITS = ~flS 

the mean curvature of S . If H ~ b for some constant b , and 

if rio(V) 2 -k for some positive constant k , then by (2) 

~v(Af) ~ k , ~fl{f=0} ~ b 

and therefore by integration along the integral curves of V , 

(3) Af s b + k.f 

on {f~0} 

If S is the boundary of some domain W , we choose N 

always to be the exterior normal vector field. Hence, H ~ 0 

means that the domain is concave "in the mean". 

2. The maximum principle 

THEOREM i. Let W§ and W- be disjoint open domains with 

spacelike connected C=-boundaries having a point in common. If the 

mean curvatures H§ of 0W§ and H- of ~W- satisfy 

H- ~ -a , H§ <_ a 

for some real number a , then OW- = OW§ , and H~ = -H- = a . 

PROOF. Let S = ~W- and let f be the signed distance function 

of ~W§ . Then f ~ 0 on S and {f=0} ~ S is non-empty. It 

suffices to show that S c {f=0} Suppose not. Then {f>0} N S 

is a non-empty open subset of S . Let p' E {f=0} N S and choose 

an open coordinate ball U r around p' in S with some radius 

r Then Ur/2 A {f>0} contains a coordinate ball B . Making B 

larger and larger inside U , its boundary will finally hit the r 
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boundary of S N (f>0} , i.e. we still have B c {f>0} but there 

exists a point p E OB with f(p) = 0 Now we construct a 

smooth function h on a neighborhood S' of p in S with 

(a) h(p) = 0 , 

(b) h > 0 outside B U {p} , 

(c) 11V'hl[ ~ 1 , 

(d) A'h ~ -k < 0 

for some positive constant k , where V' and A' denote 

gradient and Laplacian on S with its induced metric. This is 

done as follows: Let B' c B be a coordinate ball with p E ~B' 

and ~B' \ (p} c B and let s be the signed distance function 

of ~B' in S . Then 

h = ~(I - e -8"s) 

has the desired properties if ~ is small and 8 large enough. 

For small ~ > 0 let B(6) ~ S' be the metric ball of 

radius ~ centered at p . The function 

g = f + s : S' -> ~ 

is positive on ~B(6) and 0 at p , since fIS ~ 0 and 

OB(6) = {f>0} U (h>0} , 

for sufficiently small s > 0 (depending on 6 ). So it takes a 

nonpositive minimum at some point q in the interior of B(6) 

In particular, ~'g(q) ~ 0 . We will obtain a contradiction by 

showing that in fact A'g(q) < 0 if 6 and s are small enough. 

Recall that along S we have 

(4) ~'f = ~f - H-.df(N) + o. Ddf(N,N)) , 

where N is the normal vector field and H- the mean curvature 
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of S = ~W- . In fact, if ~ is the mean curvature vector, i.e. 

the normal part of z De e~ for any orthonormal frame e~, .... e~ 

of TS , then 

~f = ~'f - df(n) + a.Ddf(N,N) 

On the other hand, if f- denotes the signed distance function of 

S , then N = ~.Vf- along S and n = <n,Vf->.N = -~f-.N which 

shows (4). 

Note that Vf is a timelike unit vector whose tangent part 

V'f (with respect to S ) is c-small at q since V'g(q) = 0 

and therefore 

llV'f(q)ll = c.llV'h(q)ll ~ G 

Thus its normal part (Vf) ~ = ~.<Vf,N>.N = c.df(N).N has a norm 

which is c=-close to 1 But df(N)(p) = -I and dr(N) has no 

zero near p , therefore df(N)(q) is c=-close to -i . 

Moreover, since Vf is in the kernel of the hessean form 

Ddf and Vf ~ = Vf - V'f , we have 

Ddf(N,N) = df(N)-=.Ddf(Vf~,Vf ~) 

= df(N)-=.Ddf(V,f,V,f) 

which is c=-close to 0 at q . 

Finally, by (3) we have 

df ~ a + k.f 

on {f~0} if -k is a lower bound of ric(Vf) near p 

f(q) ~ 0 and (f+Gh)(q) ~ 0 , we get 

0 ~ f(q) ~ c. lh(q)I ~ c.6 

by property (c) since dist(p,q) ~ 6 . Therefore, 

~f(q) ~ a + k.c.6 . 

Since 
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Plugging in all these estimates, we get from (4) 

&'g(q) = (~f - H-.df(N) - o. Ddf(N,N)) + s 

a + k.~.6 - a + k'.s =~ - c.k 

where 

Cq) 

= s + k'.s - k) 

k' is another constant. If ~ and s are sufficiently 

small, this is negative and the proof is finished. 

We may easily extend this argument to get a maxlmum principle 

in a manifold with boundary: 

THEOREM la. Let M be a manifold with boundary ~M and W .... and 

W .... disjoint open domains with spacelike connected C:~-boundaries 

intersecting OM transversally. Suppose that there exists a point 

in ~W+ A ~W- N ~M where ~)W+ and OW ..... have common tangent 

hyperplanes. If the mean curvatures H+ of ~W ..... and H ..... of OW .... 

satisfy 

H..., <- - a  . H+  _< a 

for some real number a , then OW .... ~W..,- , and H§ = -H ..... a . 

PROOF. We continue the proof of Theorem I. Note that now S = ~W-- 

is a manifold with boundary ~S = S N ~M . Let S ~ = S \ ~S . If 

{f=O} N S'::;' # ~ , we find a coordinate ball B with closure in S ~' 

such that f > 0 on B but f(p) = 0 for some p E ~B , and we 

can proceed as before. Hence we may assume that f > 0 on S .... . 

By assumption, there exists p E 0S with f(p) = 0 and Vf(p) = 

0 Let B be a coordinate ball in S .... which touches ~S at 
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p . Now we may proceed as before. However, B(d) now is the metric 

half ball in S with radius 6 and center p . By the choice of 

h , the funotion g = f + ~h is positive on ~B(6) ~ S ~ and on 

(B(~) ~ ~S) \ (p} , and Vg(p) is a nonzero vector pointing into 

the interior, since Vf(p) = 0 Thus g takes a minimum on 

B(6)\~S and we get the same contradiction as before. 

REMARK. To illustrate the last theorem, we recall the argument of 

Alexandrov [A]: Let W c ~ a relatively compact open subset 

with connected boundary of constant mean curvature H = a in 

euclidean n-space. Fix any unit vector v E ~ . The corresponding 

hight function hv(x) = <x,v> takes a minimum to on ~W Let 

M~ be the half space [hv Z t} and e~ be the reflection at the 

hyperplane {hv = t} . For t ~ to put W~§ = M~ \ Clos(W) , W~- 

= M~ N ~(W) Then W~- ~ W~§ N ~M~ =  9 for all t , and for t 

close to to we have W~- N W~§ = ~ while W~- c W~§ for large 

t . Let u be the supremum of all t such that W~- A W~§ = 

Then ~W~- touches ~W~ from the interior. If this contact 

takes place inside M~, , we get OW~,- = OW~+ from Theorem I. If 

the contact point lies on ~M~ , then ~M~ intersects ~W~§ and 

~W~- orthogonally at this point and we may apply Theorem la to 

get the same conclusion. Hence ~W is invariant under ~u ". The 

isometries of R- which leave the compact subset ~W invariant 

form a compact subgroup G which has a common fixed point, say 

0 . We have shown that any linear hyperplane reflection occurs as 

the linear part of such an isometry, so G = O(n) and ~W is a 

sphere centered at 0 . (The same argument also works if ~W is a 

compact constant mean curvature hypersurface in hyperbolic space 
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or in an open half sphere.) 

3. Application to spaces of positive Ricci curvature 

In this chapter, we examine a Riemannian or Lorentzian 

manifold M = M ~§ with 

(R) tic(v) ~ n 

for any timelike unit vector v ~ TM . The standard spaces with 

this condition are 

O~ = {x e 2 ~+2 ; <x.x> = ~} 

where we use the scalar product 

<x,y> = z xjyj + ~(xn~y~1 + x~zy~=) 
4--I 

on R~= For a = +i (riemannian case), this is the unit 

(n+l)-sphere. For c = -I we get the Lorentzian analogue called 

anti-de Sitter space time (of. [HE]) which is diffeomorphic to 

S ~ x ~ . Its curvature tensor satisfies R = I on v ~ for any v 
timelike unit vector v , and v ~ is a tangent space of a totally 

geodesic spacelike hypersurface which is isometric to hyperbolic 

n-space of curvature -i . 

A timelike geodesic ~ : I -> M is called locally extremal 

if there exists a neighborhood M' of ~(I) such that ~ is the 

shortest (in the Riemannian case) or the longest (in the Lorentz- 

Jan case) among all timelike curves in M' connecting any two 

points of ~ . Due to (R), no geodesic of length > ~ can be 

locally extremal since there are conjugate points at distance ~ 
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(cf. [E], Prop. 2.4). If M is Lorentzian and globally hyperbolic 

(cf [HE]), then there exists a longest timelike geodesic between 

any two points which are timelike seperated, and so we get the 

OBSERVATION. If M is Lorentzian and globally hyperbolic and 

satisfies (R), then no timelike curve in M can have length 

> ~ . 

Next we discuss the equality case. 

THEOREM 2. Let M be any Riemannian or Lorentzian manifold 

satisfying (R) If there exists a timelike unit speed geodesic 

of length ~ which is locally extremal, then a neighborhood of 

~((0,~)) is isometric to an open subset of Q~ . 

PROOF. Let p- = ~(0) , p~ = ~(~) , and put 

v- = ((~12)+s).~'(0) , v+ = -((~/2)-s).~'C~) 

for any s ~ (-~/2, ~/2) Since p := ~((~/2)+s) is not 

conjugate to p- nor to p~ , there exist neighborhoods V• of 

v• in Tp• where e• := expp• are diffeomorphisms. Let 

B• = (v E V• ; ~.llvll < c.((~/2);s)] 

Since ~ is locally extremai, there exists an open neighborhood 

U of p such that 

W• = U A e•177 

are disjoint open subsets of M with connected boundaries having 

the point p in common. The comparison theorem for the mean 

curvature of distance spheres (cf. [E2], 4.2) shows 

H• ~ • tan(s) 
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where H• are the mean curvatures of OW• . Thus by Theorem I, 

W- and W§ have common boundary with H§ = -H- = a.tan(s) So 

the geodesics from p- and p§ to any point q 60W§ = ~W- join 

up to an unbroken geodesic of length ~ . Hence there is an open 

neighborhood V of ~'(0) in the unit tangent space S M such p- 
that ~.V lies in the domain of e- and is mapped to p~ 

Moreover, if we consider Equation (2) for S = OW- with s = 0 , 

we have Af = -tan(f) and therefore rio(V) = n and llAoll = 0 

Hence by (I), R V = I on V ~ . This finishes the proof. 

In a completely analogous way we may prove: 

THEOREM 2a Let M be any Riemannian or Lorentzian manifold 

satisfying (R) and S c M a hypersurface with H = 0 If there 

exists a timelike unit speed geodesic ~ of length ~/2 from 

p E M to po E S which has extremal length among all timelike 

curves from p to S close to ~ , then there exists a 

neighborhood S' of po in S which is totally geodesic and a 

neighborhood M' of ~((0,~/2)) being isometric to an open 

subset of Q~ with S' = OM' 

COROLLARY I. (Cheng [Ch, Sh]) Let M be a complete connected 

Riemannian manifold with diameter ~ which satisfies (~). Then M 

is isometric to the unit sphere Q~ . 

PROOF. Let p-, p§ ~ M be points of distance ~ . The subset 

V = (v 6 Sp M ; eXpp_(~.v) = p§ . 
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of S M is closed and non-empty by assumption and open by p- 
Theorem 2, thus V = S M In particular, the geodesics with p- 
initial vector v E V are minimal from p- to p§ , and hence 

eXpp_ is a diffeomorphism on the open disk of radius ~ By 

Theorem 2 again, M is locally isometric and hence isometric to 

COROLLARY 2. Let M be a time oriented Lorentzian manifold which 

satisfies (I~). Let p-, p§ E M be connected by a future directed 

timelike geodesic ~ o f  length ~ which has maximal length in 

i.ts homotopy class. Suppose that the domain of eXpp_ contains 

all timelike future directed vectors of length ~ ~ Then all 

future directed timelike geodesics of length ~ starting from p.- 

join at p~ and cover a domain which is isometric to 

Q-' = {x E Q- ; -I < x~= < 1 , x~§ > 0} . 

PROOF. Let S ~ M be the set of future directed timelike unit p- 
vectors and consider the closed nonempty subset 

V = {v E S§ ; eXpp_(~.v) = p~} . 

By Theorem 2, V is also open and hence V = S~ M . All geo- 

desics with initial vector v E V join p- to p. with maximal 

length in the homotopy class of ~I[0,~] So they have no 

conjugate points and cannot meat each other within the parameter 

interval (0,~) Hence expp_ is a diffeomorphism on the open 

set B = {r.v ; v E S'p M , 0 < r < ~} , and eXpp_(B) is locally 

and therefore globally isometric to Q-' , by Theorem 2 again. 
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Last we give an example showing that similar arguments are 

applicable also in the case where 

(Ro) ric(v) ~ 0 

for all timelike v E TM . Two spacelike hypersurfaces S, S' in 

M are called strongly parallel if they bound a domain W 

diffeomorphic to S x [0,L] with metric g = gs + ~.dt = where 

gs is the induced metric on S . In particular, S and S' are 

totally geodesic. The following theorem is well known in the 

Riemannian case (cf. [I],[K],[GR]). 

THEOREM 3. Let M satisfy (Ro) and let S, S' be disjoint 

spacelike C~-hypersurfaces with zero mean curvature. If there 

exists a timelike geodesic ~ : [0,L] -> M which realizes the 

distance between these two hypersurfaces, then S and S' are 

strongly parallel near ~ 

PROOF. Let f, f' be the signed distance functions of S, S' 

for the normals ~'(0), -~'(L) . Since ~ realizes distance, f 

and f' are defined in a neighborhood Mo of ~([0,L]) For t E 

(0,L) put 

W ..... [f < t} , W .... {f' > L-t} 

~W+ and ~W ..... are smooth on Mo and touch each other at ~(t) 

from outside. By (2), they have both mean curvature ~ 0 . So by 

Theorem 1 they must agree on Mo , and from (2) and (I) we get 

A = 0 , Rv = 0 between S and S' where V = ?f . This shows 

the statement. 
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4. Generalized mean curvature inequalities 

As in the case of convexity, a mean curvature inequality can 

be generalized to non-smooth boundaries. To avoid technical 

complications, we assume from now on that M is a Riemannian 

manifold. However, most of the discussion can be transferred to 

the Lorentzian case (of. [E3],[G]). Let W ~ M be an arbitrary 

open domain with topological boundary ~W . Let b E ~ . 

DEFINITION. 0W has generalized mean curvature ~ b if for any 

p E ~W there are open domains Wp,j , j = 1,2 ..... called support 

domains, whose boundaries are Cm-hypersurfaces near p with shape 

operator Ap,j and mean curvature Hp,j at the point p , with 

the following properties: 

(a) Wp.~ = Wp,= ~ ...c W , 

(b )  p E ~W~,j , 

(c) there is a locally uniform upper bound for Am,: , 

(d) Hp.j ~ b + s for some sequence ej -> 0 . 

Note that (a) yields Ap,~ ~ Ap,= ~ ... so that (c) also gives an 

upper bound for Ap,j . If ~W is itself a Cm-hypersurface, then 

clearly Ap.j ~ Ap from (a) , and OW has mean curvature H ~ b 

by (d). 

Let f : M \ W -> ~§ be the exterior distance of @W , i.e. 

f(q) = d(q,~W) = d(q,Clos(W)) . 

On the other hand, for any p E ~W let fp,j be the signed 

distance functions of ~Wp,j , defined on an open neighborhood 
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Mp,4 of p . Then 

fp.j(q) = d(q, Clos(Wp,j)) 

on Mp.~ \ Wp..~ , and since Wp.j c W , we have fp.~ ~ f on 

Mp.~ \ Wp.~ . On the other hand, there is a neighborhood M' of 

Clos(W) such that for any q E M'kW there is a closest point p 

on ~W So f(q) = d(p,q) ~ fp.j(q) , and hence f~,j is a 

smooth upper support function of f at q , which means f = f~..j 

at q and f 5 fp.j near p . If we assume RiG ~ -k on M'\W , 

by (3) we get for this upper support function 

(3') ~fp.~(q) ~ b + r + k.f(q) . 

EXAMPLE I. Let M be complete, connected and C c M a closed 

subset. For fixed r > 0 let 

W = B (C) = {x E M ; d(x,C) < r} r 
For any p E 0W there exists a shortest geodesic ~ with ~(0) = 

p and ~(r) = q 6 C . Let rj -> r , 0 < r~ < r , and put 

W~,,j = B (~(r~)) r4 
Then ~Wp..~ is smooth near p since p = ~(0) is outside the 

cut locus of ~(rj) , and (a),(b),(c) are satisfied; note that 

for small r~ , an upper curvature bound near p yields (c) 

Moreover, if Ric ~ -k on W for some k ~ ~ , then it is well 

known (e.g. cf [E2]) that 

Hp,j ~ ct~(rj) 

where ctk = c~/s~ and (Sk,Ck) iS the solution of 

sk' = ck , ck' = k.s~ , s~(0) = 0 , ok(0) = 1 

Thus OW has generalized mean curvature ~ ctk(r) 
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EXAMPLE 2. Let M be complete, connected and non-compact. Then 

there exists a ray ~ : ~§ -> M (i.e. ~ is shortest on any 

finite segment). For any r,t 6 R with r+t > 0 let 

B~,~ = Br(~(r+t)) 

By triangle inequality, we have B~,r. c B~,~ if r' < r . Then 

B~ = u B~,~ 

is called a horo-ball of ~ , for any t E R . In other words, 

B~ = [b ~ t} 

where b is the Busemann function of ~ , i.e. 

b (p) = ~->-lim (r - d(p,~(r))) 

The exterior distance f~ of B~ on M \ B~ satisfies 

f~ = t - b , 

in particular f~§ = f~ + u on M \ B ~  for u > 0 

Put W = B~ . For any p E ~W let ~p be the asymptotic ray 

for ~ , i.e. there exists a sequence sj -> | and shortest 

geodesics ~p,~ from p to ~(s.~) which converge to ~p For 

any sequence r 4 -> ~ put 

W~,j = B C~p(r~))  9 rj 
Then Wp,j c W by triangle inequality (e.g. cf. [El]) and 

(a),(b),(c) are satisfied as above. If moreover Ric ~ -k on W 

for some k ~ 0 , then 

Hp,~ ~ ctk(rj) -> k I~= , 

and so @W has generalized mean curvature ~ k ~/= 
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THEOREM lb. Let W, and W- be disjoint open domains with 

connected boundaries having a point in common. Suppose that S := 

~W- is a C=-hypersurface with mean curvature H- ~ -a and that 

~W~ has generalized mean curvature ~ a . Then ~W- = ~W§ and 

H- = -a 

PROOF. We modify the proof of Theorem i, keeping the notation, 

where now f is the exterior distance of OW~ . Note however that 

the functions f and g = f + Ch on S' are only continuous. 

Therefore, we pass to the support functions: Let p' be a point 

of OW+ which is closest to the point q 6 S' where g attains 

its minimum, and let fj = f~.,~ be the corresponding upper 

support functions of f at q . Then also g4 := fj + s takes a 

minimum at q . Using (c) and a lower curvature bound near p , 

we get an upper bound for the Hessean Ddfj(q) for all j , 

independent of q On the other hand, since q is a minimum of 

go , we have 

(*) D'd(fjIS)(q) ~ -c.D'dh(q) 

where D' denotes the induced connection on T:~S . Since 

DdfjITS = D'd(fjIS) - <~,N><N,Vf~> 

where ~ is the second fundamental form and N the unit normal 

field of S , (*) gives a uniform lower bound for Ddf~(q)ITqS 

Replacing f and g with fj and g4 , we get as in the proof 

of Theorem 1 

~'gj(q) ~ s + k'E - k) + Cj 

If we choose 6 and c small enough, the first term is negative. 

Then we may choose j large enough to make the right hand side 

negative which is a contradiction since q was a minimum of g~ 
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REMARK. The proof remains correct if the assumption for W+ is 

slightly weaker, namely W~ = U W~ for open domains W~ c J 
W= c W~ c ... where Wj has generalized mean curvature ~ a+s 

for some ~ -> 0 This was essentially shown by Galloway 

[G, 2.4] in the Lorentzian case. Further, a similar theorem is 

true if both ~W~ and ~W- have only generalized mean curvature 

• , cf. [E3] . However, the proof is different since we can no 

longer restrict everything to 0W- . 

Theorem Ib has several applications for open manifolds of 

nonnegative Ricci curvature. The next theorem generalizes the fact 

that complements of horo-balls are totally convex in manifolds of 

nonnegative sectional curvature [CG2]: 

THEOREM 4. Let M be a complete non-compact manifold with 

Ric ~ 0 and W : M a horo-ball. Then M\W has the following 

convexity property: Any compact minimal hypersurface S with 

boundary ~S = M\W is contained in M\W . 

PROOF. Otherwise, the Busemann function b of the corresponding 

ray takes a maximum t on S ~ = S ~ W , say at p E S ~ Thus 

S ~ bounds an open domain W- c W where b ~ t . Put W~ = B~ = 

{b > t} c W Then W~ and W- satisfy the assumptions of 

Theorem ib with a = 0 and M replaced with W . Thus S ~ = ~W+ 

which is impossible since ~W~ is closed in M and S ~ is not. 

72 



ESCHENBURG 

REMARK. The preceding theorem was proved in JAR, $2] in the case 

that S is absolutely minimizing. A corresponding statement for 

Lorentzian manifolds was proved by Galloway [G, Lemma 2.4]; our 

proof is an adaptation of his ideas to the Riemannian case. Our 

last theorem was proved by Anderson [An] for minimal hypersurfaces 

which are area minimizing in their homology class. 

THEOREM 5. Let M be a complete connected non-compact manifold 

with Ric ~ 0 which contains a compact connected two-sided 

minimal hypersurfaGe S (without boundary). Then S is totally 

geodesic and bounds a domain W isometric to S x (0,~) , and 

M\W is compact unless M is isometric to S x ~ . 

PROOF. Since M is non-compact, it contains a ray 5 . Let b 

be the corresponding Busemann function. There is a point p E S 

where b[S takes a maximum, say t . Thus bIS ~ t . Put W = 

(b > t} . Choose open p-neighborhoods S' c S and M' c M such 

that M'\S' has two connected components M'§ M' .... At least one 

of these, say M'+, contains a connected component W .... of 

W D M' . Put W .... M' ..... Now Theorem ib shows ~W ..... ~W- = S' . It 

follows that S N ~W is open (and closed) in S . Hence S is a 

connected component of OW , and in particular, S is embedded. 

Let N be a unit normal field on S which points into W . Put 

e : S x (0,~) -> M , e(p,t) = exp(tNp) 

Since for any p s S c ~W the asymptotic ray 5;:~ realizes the 

distance to ~W (cf. Example 2), it must agree to the normal 

geodesic t -> e(p,t) . So e is an embedding and its range is 

contained in W . Since S is compact, the range of e is open 
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and closed in W and therefore, e is a diffeomorphism onto W . 

By an argument of [EH], e is an isometry. Namely, if f = 

pr~ o e -~. and ~ = Af o ~ for fixed p E S , we get from (2) 

the inequality #' + #~'~/n <_ 0 Put ~(t) = } #(s)ds . Then e # 
o 

is a concave positive function on [0,~) with initial derivative 

0 , hence e # _= 1 and # = 0 . Now from (2), A = Ddf = 0 , hence 

e : S x (0,~) -> W is an isometry. 

Suppose that M\W is not compact. Then it contains at least 

one end. Since also W has an end, we can construct a line 8 

(i.e. a complete shortest geodesic) connecting these ends. Then 

8 .... 8 (~ W is a ray in W , hence S ..... e({q} x (0,~)) for some 

q ~ S Now using the Cheeger-Gromoll splitting theorem ([CGI], 

[EH]), we see that M = S x ~ . 9 

Acknowledgements. We like to thank G. Galloway for several hints. 
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