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R E D U C T I O N  O F  C O D I M E N S I O N  O F  S U R F A C E S

Let M be a 2-dimensional smooth manifold, Q an n-dimensional space form of
constant sectional curvature and x: M ---, Q an immersion. We say that we can
reduce the codimension to k < n - 2 if there is a (k + 2)-dimensional totally
geodesic submanifold Q' c Q such that x(M) c Q'. We always equip M with
the induced metric. Let N be the normal bundle with its induced connection
D and H the mean curvature vector of the immersion. Our first theorem
generalizes a result of [1] and [6]:

T H E O R E M  1. L e t  x: M 2 --* Q~ be an analytic immersion such that its mean
curvature vector H lies in a parallel subbundle E of N. Then either we can reduce
the codimension to dim(L) + 1, or x(M) is minimal in an (n-dim(L))-dimensional
totally umbilic submanifold.

T H E O R E M  2. Let M be homeomorphic to a 2-sphere and x: M --* Q~ a smooth
immersion such that H lies in a parallel subbundle E of  N. Then either the
codimension can be reduced to dim(L) or x(M) is minimal in an (n-dim(L))-
dimensional totally umbilic submanifold of Qn.

Proof of Theorem 1. Let F be the orthogonal complement of E in N; this is
also a parallel subbundle. Let ~t: T M  ® T M  -~ N be the second flmdamental
form of x and ~e, ~r its components in E and F. For  any ~ ~s Np define
A¢: TpM ~ TpM by

<A~(v), w> = - <~(v, w), ¢>.

The Ricci equation gives for ¢, q ~ Np

(R) (RS(v, w)~, ~/> = ([A~, A,]v, w>.

By analyticity we have the following two cases:
(a) F is a flat subbundle, i.e. the curvature tensor of the normal connection

D vanishes on F.
(b) The normal curvature tensor on F does not vanish on an open dense

subset of M.

CAS~ (a). This is proved by the following more general lemma:

LEMMA 1. Let M be any manifold of  dimension m and x: M ~  Qn an
immersion. Suppose that H lies in a parallel subbundle E of N whose orthogonal
complement F is flat with respect to the normal connection. Then we may reduce
the codimension to dim(E) + m - 1.
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Proof of  Lemma 1. By (R), the endomorphisms A¢ and A m commute for any
two vectors ~, t/E Fp since F is fiat. Thus the linear maps A¢ are simultaneously
diagonalizable for all ~ e Fp. Hence there is an orthonormal basis e l , . . . ,  e, of
T/V/such that

(*) ~r(ej, ek) = 0 for j # k.

Let N 1 denote the first normal space, i.e. the linear span of the values of ~.
We claim that E + N1 is a parallel subbundle of N. In fact, if ~ ~ F n (N1) ±,
then

Auk ,= <De,~, ~(ej, ek)>
= < D e f ,  ~v(ej, ek)> = -- <~, D¢,~(ej, ek)>

is symmetric in all three indices, by Codazzi's equation, and by (*) it vanishes if
at least two indices are different. But since H lies in E, we have trace % = 0 and
SO

A~kk = -- ~ (,De~v, O~F(ej, e~)> = O.
j #k

Thus D~,v ~ F n (Nt)" , which shows that F n (N1)" and therefore also E + N1
are parallel. Since N 1 is spanned by a(ej, ej) for j  = 1 . . . .  , n and ZT= lo~(ej, ej)
E, we have dim(E + Nt) ~< dim(E) + n - 1 and the result follows by Erbacher's
theorem (of. [3]).

CASa (b). Let p e M be a point where the normal curvature tensor R N does not
vanish. So there exist a, z ~ Fp such that <RS(v, w)a, ~> # O. On the other hand,
RN(v, w)~ ~ Ep for any ¢ e Ep since E is parallel in N. Hence by (R),

[A,, a , ]  # 0, [ a , ,  A~] = [a , ,  A¢] = 0.

It follows that A~ = 2(~). Id for all ¢ ~ Ep, i.e. ~ is an umbilic normal vector.
Next we claim that DH has values in R. H ('DH c R.  H' for short). In fact, if

is a section of E with ~ l H, then ~ is normal to N 1, the span of the values of 0t.
Moreover, since each t/e Ep is umbilic,

<t/, ~t(el, et)> = <t/, a(ee, e2) > ----- <r/, H>, <t/, ~(el, e2)> = 0

for an orthonormal base e 1, e 2 of Tt, M. We apply this to t / =  D~,~ and using
Codazzi's equations, we get

<D~f, H> = <Oet~,  a(ej, ej)> = - <~, De,or(e j, e j)>
= - <?~, D,¢ot(ej, ei) > = <D,j~, ~(e~, ei)> = 0

for i ~ j ,  similar to Case (a). Thus E t3 (H) ± and hence ~ . H  are parallel
subbundles of N.

Now by the following lemma, H itself is parallel in N. Thus a has values in
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the parallel subbundle F + R. H of N, by umbilicity of E. If H = 0, we may
reduce the codimension to dim(F). If H # 0, then x(M) has codimension
dim(F) + 1 in a totally geodesic submanifold Q' c Q, and since H is parallel, it
follows from a theorem of Yau 1-7] that x(M) is minimal in an umbilic
hypersurface of Q'. This finishes the proof of Theorem 1.

L E M M A  2. (Chen [1]). Let M be any manifold and x: M ~ Q" an immersion
with umbilic mean curvature vector H and parallel mean curvature direction (i.e.
DH c •" H). Then the mean curvature vector is parallel, i.e. DH = O.

Proof of Lemma 2. Choose an orthonormal tangent frame el . . . . .  e,, (where
m = dim(M)) which is parallel at the point p E M which we consider. Put
aij = ct(ei, e j). By umbilicity, we have

(aij, H )  = (H,  H ) .  6 o,

and in particular, (H,  H )  = (akk, H )  for any k. Moreover,

De~H = 2j 'H

for some function 2j. Thus e j ( n ,  H )  = 22 j (H .H) .  On the other hand,

e j ( n ,  H )  = ej(akk, H )  = (Dejakk, H )  + 2j(H, n ) .

Thus at the point p we get for k ~ j, using Codazzi equations

½ej(n,  H)  = (D~sakk, H)  = (D~k ajk, H)
= ek(~ jk ,n)  -- 2k (~k ,H)  = 0

which finishes the proof.

REMARK. The umbilicity of H need not be assumed but can be concluded
from DH ~ R. H.

Proof of Theorem 2. We use the same notation as above. The metric induces
a conformal, hence complex, structure on M. Let z = x + iy be a holomorphic
chart and put d z = ½(dx- i0y). After complex-linear extension we have in
general (cf. I-5, 4.11)

Oe(a(d,, 0~)) = ¼22D,n,

where D is the normal connection and De = ½(Dx + iDr). Since F is a parallel
subbundle of N normal to H, we get

(**) Dz-(aF(d z, Oz) ) = O.

This implies that <aF(0z, 0z), ar(0z, 0,)> is a holomorphic function, where the
metric ( ,  > has been complex linearly extended. Hence the quartic form

A = (ap(az, 0,), a~(a,, 0,)) dz 4
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(which is the (4, 0) part of the quartic form (~r, a~)) is holomorphic. If M is
homeomorphic to the 2-sphere, such a global holomorphic differential must be
zero (cf. [4] for a simple proof), so ~r(Oz, 0z) is an isotropic vector (i.e. zero
scalar product). In geometric terms this means that the projection to F of the
ellipse of curvature {~(v, v); v ~ TI, M, Ilvll = 1) is a circle centered at 0. By
a lemma of Chern (cf. [2], [4]), (**) implies that either ~r(0z, 0z) = 0 (Case (a)),
or the zeros of ~F(0~, 0z) are isolated (Case (b)). Since H is normal to F, we have
~r(0x, 0~,) = - ~9(0y, Or), and so ~r(0~, 0,) = 0 if and only if ~f = 0. Hence in
Case (a), ~ takes values in the parallel subbundle E of N, and so the
codimension can be reduced to dim(E), by Erbacher's theorem.

Now assume that the zeros of ~(0z, 0z) are isolated (Case (b)). In general, if el,
e 2 is an orthonormal tangent frame, e.g. e 1 = 0~/2, e 2 = 0r/J., and if we put

@ = Ctlt - H = H - ct22, ~b = cq2,

where ~ij = ~(ei, e~), then for any normal vectors ~, ~/we have

([Ae, A,]e 1, e2)  --- (tp A ~, ~ A q) .

In our case, since ~t(0,, 0~) is isotropic, the F-components ~0 e, fir of q~, ¢ are
linearly independent. So it follows from the Ricci equation (R) that F has
vanishing normal curvature tensor only at isolated points, and we may apply
Case (b) of the proof of Theorem 1. This finishes the proof of Theorem 2.

REMARK. One may try to extend these theorems to more general target
spaces Q, e.g. Q = CP m. However, if we wish E to behave nicely with respect to
the complex structure, then only the minimal case (H = 0) is possible:

THEOREM 3. Let (Q, J) be a Kiihler manifold and x: M 2 ~ Q an immersion
whose mean curvature vector H lies in a parallel J-invariant subbundle E of the
normal bundle N. Then H = O.

Proof Let ~ be a section of E and X a tangent vector field on M. Let
V denote the connection in x* TQ and D = V ± the induced connection on N.
Then

V x J  ~ = J V x ~  = JDx~ + JAeX,

and JDx~ is a section of E while JA¢X lies in E" which is the orthogonal
complement of E in x* TQ (containing TM and hence JTM), On the other
hand,

VxJ ~ = DxJ~ + AjaX

which is again a decomposition with respect to E and E x. Therefore we get in
particular

JAeX = AseX,
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and J A g X  is tangent.  Consequent ly,  at  any  point  either the tangent  space is
J - invar ian t  which implies H = 0, or  A e X  = 0 for all ~ and  X and, in part icular ,
A n = 0 which also implies H = 0.
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