
                                                                    

The influence of dissipation on the quantal transition
state tunnelling rate

Evgenii Freidkint, Peter S Riseborought and Peter HanggiJ:
+ Physics Department, Polytechnic University, 333 Jay Street, Brooklyn, New York
11201. USA
$ Physics Department, University of Augsburg, Memminger Strasse 6,8900 Augsburg,
Federal Republic of Germany

                                                   

Abstract. We calculate the rate of quantum mechanical tunnelling through a potential
barrier. The tunnelling rate is calculated with the WKB approximation. The influence of the
dissipation appears both in the leading term of the WKB approximation and in the next leading
term. We calculate these corrections exactly and discuss the regionsof validity of the results.

1. Introduction

The problem of decay of a metastable state by quantum mechanical tunnelling appears
in many different contexts and has been the subject of continuous investigation, since
the advent of quantum mechanics. It has long been recognised that the coupling of the
system to the degrees of freedom of its environment does have significant influence on
these quantum decay rates [l-31. However, it is only recently that the influence of the
environment on quantum dynamics has been formulated in a completely general manner
[4-6). Caldiera and Leggett [4] have evaluated the quantum tunnelling rate in the weak-
damping limit, on the assumption that the WKB approximation is valid. In many systems
that exhibit tunnelling, the ratio of the barrier height Vo to the separation of the
approximate levels ho, of the metastable well is not very large [7, 81. Under these
circumstances, it is necessary to take into account corrections to the WKB approximation
of the next-order by considering the Gaussian fluctuations about the extrema1 tra-
jectories [9-121.

In this work, we shall examine the effects that a weak dissipative interaction has on
these next-order WKB corrections. We shall show that this leads to a multiplicative
damping correction to the pre-factor of the tunnelling rate.

2. The general formulation

The system under consideration consists of a particle of mass M ,  which is moving in the
influence of a one-dimensional potential V(q)  and is coupled to the environment [4]. The
total system, particle and environment system, particle and environment, is described by
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the Lagrangian

In this, the first two terms represent the motion of the particle in the presence of an
effective potential V(q).  The second pair of terms corresponds to the normal modes of
the thermal reservoir. The last set of terms correspond to a coupling of the particle to
the thermal reservoir, and a counter term needed to ensure that the coupling does not
change the role of V(q)  as the effective potential.

On performing the trace over the normal modes of the thermal reservoir, one finds
that the particle motion is governed by the effective action

e/2
S[q(r)]  = / @ I 2  d r ( f q ( r ) 2  + V(q))  +I/ d r l a  d t ’ K ( t  - t ’ ) [ q ( t )  - q(r’)I2

- e12 -812 --cf

(2.2)
where 8 = h/kBTandq(t) is apathwithperiod 8. In thisexpression, we have analytically
continued from real to imaginary times. This continuation is appropriate for discussion
of motion in the classically forbidden region. The kernel K(t) is given by

dw
K ( t )  = / ,,J(4 exP( -44>

0

whereJ(o) is the spectral density of the coupling to the environment:

The decay rate can be shown to be given by the expression [ l ]

r = ( ~ ~ / 2 n h ) ’ / ~ ( ~ , / ~ ~ ) l / ~  exp[(So - sB)/h] (2.4)
in which So and SB are, respectively, the minimum and the saddle-point values of the
action. The trajectories which extremalise the action are to be calculated from

(W~q) lq , , ,  = 0.

6 2 S / S q 2
The factors of D represents the product of the eigenvalues of

evaluated about the extrema1 trajectories. The prime in the contribution from the saddle
point or bounce trajectory indicates that the zero eigenvalue should be omitted. This
zero eigenvalue is replaced by the zero-mode normalisation factor, proportional to Sk.
The factor Sk is given by

@I2

S k  = / -e ,2  d t  d B ( r ) 2  (2.5)

which is evaluated over the saddle-point trajectory.
In the following, we shall specialise to the case of weak damping and zero tempera-

ture. However, we shall retain a finite 8 in most of our expressions and imply that the
limit 8 + x should be taken.
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3. The bounce trajectory and the fluctuations

The trajectories that extremalise the action, SS/Sq = 0, satisfy the Euler-Lagrange
equation

av
d t '  K ( t  - t ' ) [ q ( t )  - q(t')] = 0

where q ( t )  is subject to periodic boundary conditions q ( t  + 6 )  = q ( t )
We consider the case in which the potential is given by

V(q)  = ( M 4 / 2 ) q 2  - (Mu/3)q3

J ( 0 )  = Mqo.
and the coupling to the environment is characterised by the spectral density

In the limit of zero damping and low temperatures ( q  = 0 and 6- m), the non-trivial
solution of (3.1) can be found as

@(t) = $(w: /u )  sech2(wot/2). (3.2)
The first-order correction, in q ,  due to the dissipation [8,9] is given by q t ) ( t ) ,  where

where

y c ( t )  = sech2(oot/2) tanh(oot/2)
and

VD(z> = w O q C ( t ) 1' d t '  VC(z')-2

(3.3b)

(3.3c)

are two independent solutions of the homogeneous equation, and the inhomogeneous
termf(t)  is given by

f ( t ) = 3 4 ( & ) 1 $ ~ o s ( k y ) k (  nk/2 )
U sinh(nk/2) (3.3d)

It can be shown, by successive integration by parts, that the change in the zero-mode
normalisation

r 01'2
2 J ' d t  cj',)(t)cj;)(t)= 0

-812

is identically zero. This is in agreement with the evaluation of Ovchinnikov and Barone
[9]. In our previous work [8], we approximated the integral by a method similar to
steepest descents. This approximation is responsible for the non-zero results for the
normalisation foundin [8], as well as the different resultsfor the bound-state eigenvalues.

The eigenfunctions and eigenvalues of the second functional derivative
(62S/6q2)l,,oofthe actionevaluatedaround the trivialsolution are given by the solutions
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of the equation

A;@’
= - Q , ; o ’ ( t )M (3.4)

subject to the periodic boundary conditions

r p , O ’ ( t  + 8 )  = Q,,IP’(z).

This equation has solutions for = 0 which are given by

c p L ’ ) ( t )  = (l/O)’’* exp(ik,, o O t / 2 )

where k, = 4nn/w08 for n = 0, k l ,  +-2, 2 3 ,  . . . and the corresponding eigenvalues
are given by

AL@)/M = o ; ( l  + k2,/4). (3.5)
The dissipative term changes the eigenvalues to the exact expression

ALo)/M = 0;[1 + (17/200) (k,] + k?/4].

Thus the change in the eigenvalues due to the dissipation [&lo] is given by

A A ~ ~ ) / M  = o ;(V/2Oo) lknl. (3.6)
In addition to these eigenvalues, we require the eigenvalues of the second functional
derivative ( S S 2 / S q 2 ) ) , ,  of the action, evaluated about the bounce trajectory.

In the undamped case, q = 0, these eigenvalues and eigenfunctions satisfy the
equation

{-a /a t2  + W ~ [ I  - 3 ~ e c h ~ ( w , t / 2 ) ] } ~ , ( , ~ ’ ( t )  = ( A L ~ ) / M ) Q , L ~ ) ( ~ )  (3.7)
and are subjected to periodic boundary conditions. The solutions of this equation consist
of three discrete localised solutions and a continuum. The three bound states are given
by
rp f’ ( z) = [ (300,) 1/2 /8] sech3 ( w o  t/2) A‘B’/M 0 = -%a;
Q, LB/ (z) = [(~OO,) ‘12/4] sech’ (w0t/2) tanh(oo t/2)

Q,?) (T )  = [ ( 6 ~ ~ ) ’ ~ ’ / 2 ]  sech(oot/2) [l - 3 sech2(wot/2)]

A!~,)/M = o (3.8)
A ,  (B) / M = $ o i .

The continuum of scattering states Q,e(t) are given by

qT’(t)  = N i l  exp(ikwot/2j{ik[k2 - 11 + 15 sech2(wot/2)]
- [6k2 - 6 + 15 sech2(o,,t/2)] tanh(wot/2)}

where N, is the normalisation, and k, are given by the solutions of the equation

k,8wo/2 = (2m + 1)n + 26(k,)

where m = 0, 2 1, 2 2 ,  .t3, . . . and S(k) is given by
S(k) = tan-’(k/3) + tan-’(k/2) + tan-’(k/l). (3.9)
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The continuum eigenvalues are given by

= wi( l  + k1/4).
To lowest order in q ,  the correction to these eigenvalues AAiB), can be calculated from
perturbation theory [ 101. The leading-order corrections are given byt

1 +t - t ‘ + i s  t - t ’ - i h
A A ; ~ )  a

a t
- ‘ [e’2 d t  [ ^  d t ‘  qiB)( t )* -qiB)(t’)

M 2n -912 --2

e12
- 2u [ d t  q ‘ , B ) ( t ) * 4 ~ ’ ( t ) q ; B ) ( t ) .

- 812

(3.10)

From this expression and the lowest-order eigenfunctions (3.8), we find that the bound-
state eigenvalues are given by

AAr’/M = +3wi(q/2w0)[(1/n) In 2 - 39 5(3)/n3 + 465 5(5)/n5]
and
AAy)/M = & w i ( q / 2 0 0 ) ( ( 3 / n )  In 2 - 189 g(3)/n3 + (3875/2)[Q5)/n5]}

where the g(n) are the Riemann zeta functions.
We note that there is a small discrepancy in the coefficient of 5(3) in AAP) between

our work and the corresponding work of Ovchinnikov and Barone [9]. Our value of this
coefficient is 39, whereas they obtained a value of 37. This difference is insignificant
when compared with the discrepancies in the total coefficient expressed in equation
(3.17).

The changes in the continuum eigenvalues AAf)/M are also evaluated from equation
(3.10).

We find, after a few integrations by parts, that the last term in (3.10) is evaluated as
- o ~ ( ‘ / 2 w o ) ( 2 n / w 0 8 ) [ ( 2 1 6 / ~ ) / ( k 2  + l ) (k2  + 4)(k2 + 9)]

x { ( k 2  + 4)[(k2 + 4)* - 15]5(3)/~c~ + 1255(5)/n5} (3.11)

where we have neglected terms of order fT2. The first term in (3.10) can be evaluated
by performing the t’ integration by Cauchy’s method. There are two contributions to
the integration over t l ;  one term comes from the poles at t’ = t k i6, and the other
contribution arises from the poles of sech2“(wot’/2) which are located at

t1 = (in/wo)(2m + 1)

where m = 0, k 1, t 2 ,  5 3 ,  . . . . The contributions from the poles at t’ = t yields a term
which is found to have a value that is equal to

(3.12)

to order K2.  In obtaining this expression, it is necessary to retain terms of order 8’ in
Nk. Since Ovchinnikov and Barone do not break down the specific contributions to
equation (30), we are unable to locate definitely the origin of the main discrepancy
between our calculations. However, as we shall see, it is possible that the origin of the

w20(q/2010) lkl{l + (2n/wo 0 )  (2/n) [ W 4 / W }

t Although the eigenfunctions corresponding to the continuum portion of the spectrum are doubly degener-
ate, since we are only interested in the sum of the eigenvalues, only the diagonal matrix elements enter into
the final result.
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discrepancy is in the contribution described by (3.12). The remaining contribution is
evaluated as

+w$- 21d 9/1d
2w0 w o e  (k2 + 1)(k2 + 4)(k2 + 9)

(3.13)((k2 + 4)2 - 60(k2 + 4)
nm

The terms (3.11) and (3.13) can be identified with identical terms in equation (30) of
the work of Ovchinnikov and Barone [ 9 ] .  However, the terms of odd order in lkl disagree
with the corresponding terms in the work of Ovchinnikov and Barone. In our calculation
these terms originate solely from equation (3.12). We find that this discrepancy provides
the largest difference between this work and that in [9].

To leading order q ,  the correction to the pre-factor arising from the non-zero
eigenvalues is given by a multiplicative factor

This can be rewritten as

(3.14)

(3.15)

There are two cancellations that occur within equation (3.15), which involve the t' =
t k i s  pole of the non-local contributions to the eigenvalues. First the plane-wave
contributions to AA:' exactly cancels with the plane term in AAy).  This first cancellation
is also apparent in the work of Ovchinnikov and Barone [9]. Secondly, the change in the
density of states due to the bounce partly cancels the second term of (3.12). This
cancellation eliminates terms of order 8-' in the products in the last term of equation
(3.15). This second cancellation is absent in the work of Ovchinnikov and Barone.

On integrating over k,  we obtain the final factor

exp[(q/2wo){3[-(2/n) In 2 + 342 E(3)/1d3 - 1445 E(5)/n5] + 61/n2}] (3.16)

where I = -0.182 is the contribution from the poles of sech2"(wot'/2). The value of I
agrees with the value found by Ovchinnikov and Barone, as are the coefficients of E(5 ) .
Because of the discrepancy in equation (3.12) discussed above, the coefficient of E(3)
has an error of less than 1%. The total expression has the numerical form

exP[2.8wd2wo)l  (3.17)

which is in close agreement with the value inferred from the numerical calculations of
Grabert et a1 [ 111.

We note that, because of the two cancellations that occur in the non-local con-
tributions of the eigenvalues to (3.15), the change in the pre-factor is completely domi-
nated by the contributions from the local parts of



                                         1549

4. Discussion

It has been shown that, at low temperatures and weak damping, the rate of decay of a
metastable state by quantum tunnelling is effected by the damping. We have calculated
this decay rate using a WKB approximation. We find that, in addition to the leading term
of the decay rate, the next-order term in the WKB approximation is also affected by the
damping. The tunnelling rate r is given by

r = 12wo(3Vo/23&00)~/* exp([-(36Vo/5hwo){l + [45g(3)/n3] ( q / 2 ~ 0 ) } ]

x exp[2.860(q/2wo)]

where Vo is the maximum height of the potential (4.2) barrier. This result is expected to
be valid when Vo/hwo > 1 and q/2w0 1. However, a lower limit of q/2w0 must also
be imposed in order that the quantal transition state theory can be applied.

This limitation stems from the assumption of thermal equilibrium within the meta-
stable potential well. Clearly, if equilibrium is to be maintained throughout the duration
of the tunnelling process, the rate of transitions between the approximate metastable
levels must be larger than the tunnelling rate. For V, = $hwo, this yields the limit of

q/2UO 3 10-4.

This lower limit will decrease for larger values of Vo/hwo, and hence this lower limit will
usually be exceeded in most practical situations.
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