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Novel colored-noise theories for optical instabilities are presented and compared with conventional approaches. In
contrast to the conventional approaches, valid for small noise correlation times only, these new theories allow for a
description of moderate-to-strong noise color and are of relevance particularly for the dye-laser instability and
noise-dithered ring-laser gyroscopes. The theories are applied to the dye-laser instability and optical bistability.
For the dye laser we evaluate the stationary probability and the integral of the stationary intensity correlation
function (relaxation time), which both compare favorably with exact numerical results. For optical bistability we

present the stationary probability and the switching rates.

1. INTRODUCTION

The study of dynamic systems in the optical sciences is
attracting rapidly growing interest. Particularly, the fields
of optical bistability and optical chaos have become the main
focus of interest for many researchers. Here we restrict
ourselves to the influence of noise in nonlinear-optical sys-
tems. Recent applications and experiments for dye-laser
systems and optical ring-laser gyroscopes strongly empha-
size the role played by noise sources of finite correlation time
(colored noise). For the dye-laser instability!-® and the op-
tical gyroscope,®7 strongly correlated noise occurs in reality,
and it crucially impacts the physics.

The conventional small-correlation-time colored-noise
theories®? cannot describe this new regime of moderate-to-
strong noise color. These theories are restricted to noise
color close to the white-noise limit, i.e., the typical noise
correlation time 7 has to be of the order of 7 < 0(1071) in
dimensionless units (ratio of the noise time scale to the
system time scale). For the dye-laser problem, however,
correlation times range up to r = O(1071), while for the ring-
laser gyroscope the noise dither possesses noise correlation
times 7 of the order of 7 = 0.1 up to 7 = 102, Thus thereisa
definite need for new theories covering small-to-moderate-
to-strong noise color.

We recently developed such novel colored-noise theories
that a priori do not restrict the value of 7. In particular we
developed two new roads to describe colored-noise dynam-
ics; we have termed these decoupling theory!® and unified
colored-noise theory.!! In this paper we discuss these theo-
ries and their application to two different nonlinear-optical
systems in which noise color of moderate-to-strong correla-
tion strength plays an important role.

2. THEORIES FOR COLORED-NOISE-DRIVEN
DYNAMICS

Let us consider the stochastic dynamics driven by colored
noise given in terms of the Langevin equation:

x = h(x) +g(x)(t)

(L)) = Bexp(— Ly - y|). )
T T

where h(x) and g{x) are arbitrary (continuous) nonlinear
functions. This fundamental form matches many particu-
lar stochastic models, such as simple laser equations, locking
equations, and equations for optical bistability. In Subsec-
tion 2.A we give a summary of the two novel theories.

A. Decoupling Theory
For Gaussian colored noise an exact equation of motion for
the single-event probability p,(x) can be derived!>13:
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where the functional derivative $x(¢)/3(s) is given by!2-15

= 6(t — s)g[x(t)]exp j

s

(3)

Equation (2) is not a closed equation for p,(x) and can only
be treated approximately. In contrast to the conventional
small-correlation-time approximation,®® which is derived by
a Taylor expansion of the functional derivative around s =
the decoupling theory (often called Hinggi ansatz) proceeds
in factoring the mean value under the integral of Eq. (2).
This method is valid for highly concentrated distributions
that are mostly related to small noise strength:

<6[x(t) - x] gzg» =~ p,(x0)0(t — s)g(x)
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When we neglect transients (thus ¢ — «), the mean value on
the right-hand side of expression (4) is approximated by a
stationary mean value (quasi-stationary approximation).
Consistent with the factorization in Eq. (2), we can factor
mean values of functions with different time arguments to
finally obtain the decoupling result!?
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Equation (5) has the same form as the white-noise Fokker-
Planck equation (FPE) but with the effective noise strength

D
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which has to be determined self-consistently. Note that no
further restriction is made on 7 besides the small noise-
strength condition. The condition for small noise strength,
however, is often fulfilled in real physical systems, and the
decoupling result of Eq. (5) provides an accurate approxima-
tion for the stationary behavior even for strongly correlated
noise.

X

(5)
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B. Unified Colored-Noise Theory
In Subsection 2.A we presented the decoupling theory and
emphasized its validity for strongly correlated noise. Here
we give a summary of a theory that is also valid for strongly
colored noise. The condition to be fulfilled is!!

‘7(2, T) = T—I/Z - TI/Zf/(Z) > D1/2 f? , (7)

where f(z) is the flow of the stochastic equations (1) trans-
formed to additive noise x — z [see Egs. (9) and (10)]. The
overbar means that f and f” are taken to be the mean value
over the typical length scale | = 571(z, 7)yD.}¢ First we note
that Egs. (1) are stochastically equivalent to

& = h{x) + glx)e(t), (T(T(t)) = 25(t — 1),
e=—lf+%\f5r(t) (T(0)) =0
T
T'(t):Gaussian, (8)

describing a two-dimensional Markovian process. The mul-
tiplicative structure g(x)e(¢) can be transformed into an ad-
ditive form

f(a) = @I ©
glx(2)]’

by changing the state variable from x to z by

2=f(2)+e¢

1

x—*z=j —dx’. (10)
g(x")

Elimination of ¢ and introduction of the new time scale s =

{772 ]eads to the second-order stochastic differential equa-

tion

1/

£+ 30, 1) - ) = 91--,; I(s),

(T(s)I'(s7)) = 26(s — &), (11a)

where the z-dependent damping has the form
¥(z,7) =772 + 72— (2). (11b)

The overdots in Egs. (11a) indicate differentiation with re-
spect tos. Expressed in the original variable x, the damping
reads

7(x,7)=T—1/2+71/2[—h'(x)+ (()) (x)]- (11¢)

If the expression in the square brackets in Eq. (11b) [and

(11c)] is positive, the damping 4 (and v) will be large for both

small and large correlation times 7. Therefore an adiabatic

elimination of v = 2 in Egs. (11a) is justified for small and

large correlation times, leading to the Markovian process
f(Z) Dl/2

2= 2. 1) + (o) T(s). (12)

When we transform to the state variable x and the original
time scale ¢, we obtain the result [keeping the condition in
Eq. (7) in mind]

i = h(x)
[h (x) - g((")) h(x)]
+ D2 gx) I(t),
1- T[h'(x) £y )]
g(x)
(TET@)) = 28(¢t — t), (13)

where I'(t) is Gaussian white noise.

We have termed this approximation the unified color-
noise approximation (UCNA) because it is valid for both
small and large correlation times 7 and in the whole state
space with positive damping vy(x, 7). We must emphasize
that Egs. (13) are a truly approximative Markovian descrip-
tion for the non-Markovian process x(t). This feature is a
striking advantage over the recent small-7 theory of Fox, 415
which supersedes the conventional small-7 theory.8® Be-
cause of the Markovian character of Egs. (13), the condition-
al probability obeys the very same FPE, corresponding to
Eqgs. (13). This fact permits the calculation of dynamic
properties, such as correlation functions and mean first pas-
sage times, by using standard techniques developed for
white-noise processes.!7-22

When dealing with approximations to non-Markovian
processes, the role of initial preparation is equally as impor-
tant as the dynamic law.172324 The exact result in Eq. (2)
implicitly assumes a correlation-free preparation, i.e., the
statistics of the system (x) and the environment [noise €(t)]
factors at initial time t of preparation, yielding

= pu(€)py(x). (14)

This preparation is implicit within the theories of Fox!415
and the conventional small-correlation-time theories,8°
which all constitute approximations to the exact expression
in Eq. (2). In particular, for a non-Markovian process the
initial preparation po(x) = py(x) is not invariant under time
evolution; p,(x) generally deviates from py(x) = p,(x) and
approaches the true stationary dynamics only asymptotical-
ly. Ontheother hand, the adiabatic scheme of eliminating v
= % in Egs. (11a), as performed in the UCNA, assumes an
initial preparation of the form

Pi=olx, €



Po(z, 2) = pu(2)py(2), (15)

which is correlation-free between z(0) and 2(0). This prepa-
ration is quite close to the so-called stationary preparation
scheme,23-24 with

psL(z' Z)
pst(z)

If z and 2 exactly decouple in the stationary state (which is
not quite true in general), the UCNA in Egs. (13) yields the
exact stationary x probability (see footnote 15 in Ref. 11).

With the assumption in Eq. (15) one obtains, consequent-
ly,

Polz, 2) = Wy (2l2)py(2), Wy(zlz) =

0 = (22), (16a)

(2€)00 = —(2f(2)) =9 # O, (16h)
which compares with the exact result
(ze) g = —(2f(2)) g (a7

Thus the UCNA is close to the stationary preparation, yield-
ing valid results on the time scale ¢/71/2 = s > v~ !(x, 7), i.e.,

T

1-— T[h'(x) iy AC) h(x)]
g(x)

As mentioned previously, the UCNA holds with v(x, r) > 1
on the time scale in inequality (18) for both small and large
noise correlation time, not withstanding unproven claims to
the contrary.?> This fact will be demonstrated in Section 3
when we consider colored pump fluctuations in a dye laser.

Finally, we give a generalization to a situation with vastly
differing time scales for the noise. The latter situation oc-
curs often in quantum-optical systems with internal and
external noise sources present. A phenomenological ap-
proach consists of a stochastic equation with two Gaussian
noise sources:

t> (18)

% = h(x) + g(x)e + g4(x)VQT(8),
(e(D)e(t)) = D exp(— 1 ¢ = t’|>,
T 7

(T(OT(L))y = 28(t — t'). (19a)

The concept of the UCNA is also applicable to this system.
Until now, Eqgs. (19) were solved only numerically {Monte
Carlo simulation!-* by matrix-continued fractions
(MCF’s)].2627 A prototype approach is the approximative
description in terms of an effective Markovian Langevin
equation. Performing a variable transform x — y, Egs.
(19a) are transformed into a stochastic process, which is
additive in the noise €(t),

¥ =H(y) + ¢ + GNWRT(®),

[ 1 ,
y—] &(x") de’,
hlx(»)]
H = s
O = e
gg[X(y)]
Gly) = .
O = el
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When we introduce the stochastic variable v = H(y) + ¢, the
equivalent system of Langevin equations with white-noise
sources reads

y=v+Gy)Rr(®),

b= U[H’(y) - }] + l H(y) + VRG()H (y)T'(t)

+ Y2 1(0), (19b)

with
(T (O (D)) = 26(¢ — ¢,
(T(t)) =LT' (&) =0,
(T(e)T (")) = 0.

Using time-scale arguments similar to those in Ref. 11, the
variable v is eliminated adiabatically, and we get the one-
dimensional stochastic process with two white-noise forces,
which reads in the original variable x as

h(x)

1- r[h’(x) _g®) h(x)]
g(x)

+ 82(%) JQr()

1- T[h'(x) Iy 452) h(x)]
g(x)

+ g(x)

1- r[h’(:c) - gk h(x)]
g(x)

This equation is stochastically equivalent (i.e., corresponds
to the same FPE) to the Langevin equation with one white-
noise term,

x =

V/El'l(t).

h(x)

- T[h'(x) _ &) h(x)]
g(x)

[Dg%(x) + Qg,2(x)]"?

1-—- r[h’(x) - L(xl h(x)]
glx)

being valid for small white-noise strength §. (Further de-
tails and a discussion of the range of validity will be given in
a future publication.)

x =

I'(¢), (20)

3. INTENSITY STATISTICS OF A DYE LASER

Correlated pump fluctuations are of great importance to the
statistical properties of the intensity of a dye laser.?8:29
When we assume a fast decay for the atomic polarization and
the population inversion, the equation for the intensity then
reads

I'=2(a—-DI+2¢, (21)

where £(t) denotes exponentially correlated pump noise.
The fluctuations due to spontaneous emission are neglected.
These fluctuations are more important to the transient dy-
namics of the laser.3 The stationary behavior, however, is
dominated by the pump fluctuations. In Eq. (21) we have
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used another normalization found in Ref. 11. The prefactor
of the noise term in Ref. 11 was {2 instead of 2. To compare
the results of Ref. 11 with the results [found in Egs. (25)] of
this paper, 2D has to be replaced by D in Egs. (25). When
the concepts of the UCNA are applied, we obtain for the
damping [see Eq. (11¢)]

N, 1) = 7712 4 o7102], ' (22)

There is obviously no restriction on I (or 7); thus the UCNA
is valid in the whole state space I = 0. The corresponding
Langevin dynamics and FPE read

y_2-DI 2IyD
I=2%od T1+20 W (23)
D) = =2 DD+ Dyp D (243)
t aI 1 t 812 2 t ’

with drift coefficient D;(J) and diffusion coefficient Ds([)
given by

2(a—I)I+ 4DI

D.(I) = ’
(D 1+27 (14203
2.
DI
Dy = 2. (24b)
(1 + 271)

The stationary probability is evaluated readily to give
1 T
pua) = 7 1+ 271)exp[§5 (2a — I)I]psto(l), (25a)

where p°(I) denotes the stationary white-noise probability

pst()(]) = I(G/ZD)'] exp<_ .._{_). (25b)

2D
In Figs. 1(a)-1(c) the UCNA results of Eqs. (25) are com-
pared with the exact numerical result obtained by using a
MCF technique.?23? In the three different regimes D < a/2,
D =D, =0a/2, D> a/2 we find remarkably good agreement
for all 7 values.

Animportant quantity characterizing the coherence prop-
erties of the light is the stationary intensity correlation func-
tion, which is defined by
_r
(I*) —(I)?

as well as the relaxation time, which is a measure for the
decay time of fluctuations,

¢,(t) = (H@ — (D) — (D],  (26a)

T = [ " e(tydt.

0

(26b)

In earlier work%2% the calculation of the correlation function
and relaxation time was discussed by using the MCF tech-
nique. Here we restrict ourselves to calculating the relax-
ation time 7 with UCNA. Using the exact Markovian for-
mula’™19 for the statistical quantity in Eq. (26b), we obtain,
in terms of the stationary distribution P (J) and the diffu-
sion coefficient D2(7) [see Eqs. (24)],

fix)

T(r, D) = _
D) X Do)

L
e 27
(1 - <1>2L (272)

with

ﬂn=—fmuwwnm¢ﬂ. (27b)
0

The integrals in Egs. (27a) and (27b) can be evaluated nu-
merically. In Fig. 2 the results are compared with those
obtained by using MCF’s,22 and we find remarkably good
agreement. For larger values of 7, there are small deviations
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Fig. 1. The stationary distribution py(I) of Eq. (25a) is P"‘“"(:
(solid line) for a = 1 and (a) D = 0.25, (b) D = D, = 0.5,and () !} : 4
for various values of the correlation time 7 of the noise. Thf M .
results, indicated by the dotted lines in (b) coincide within lin
thickness for D= 0.25and D=1,
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Fig. 2. Therelaxation time is shown as a function of the correlation
time r. The UCNA result {Eq. (27a)] for D = 0.3 is indicated by full
circles that are close to the exact MCF result (solid line). The same
holds true for D = 0.2 and D = 0.1. The result using the theory of
Fox is indicated by open circles.

from the exact values, which occur because of the invalidity
of the correlation function for small times, as given by the
restriction (18). The slope of the exact correlation function
at ¢t = 0 vanishes?1:3! as a consequence of the non-Markovian
character of Eq. (21). This property cannot be described
within the effective Markovian UCNA.

Now we can compare our results with the theory of
Fox.1516  Within the theory of Fox, the drift and diffusion
coefficients for the dye-laser model [Eq. (21)] read!516

I
1+ 271

D,\f=2a~DI-4D
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£_>o (28)

D.f =4D .
2 1+ 21

Indeed the stationary distribution obtained from Fox's the-
ory coincides with that of the UCNA [Egs. (25)]. Interpret-
ing Fox’s theory as a Markovian Fokker-Planck approach of
a non-Markovian process (which is possible in this case of a
strictly positive diffusion coefficient), we can calculate the
correlation functions and the relaxation time in Eqs. (27).
The result for the relaxation time is indicated by open circles
in Fig. 2. As expected for any small-correlation-time theory
{such as the Fox theory) we find agreement at small r. For
larger r values, however, the theory of Fox breaks down.
The difference between the exact result and that using Fox’s
theory is due to the (nonstationary) correlation-free prepa-
ration {x¢).=o = 0, as already mentioned in Section 3. Con-
trary to statements of Faetti and Grigolini,?® we find good
agreement between the UNCA and the exact results for large
 as well as small r.

4. OPTICAL BISTABILITY WITH COLORED
NOISE

Optical bistability arises in many different situations (ab-
sorptive optical bistability, dispersive optical bistability, op-
tical bistability in lasers with saturable absorber) governed
by different equations (for an overview, see Ref. 32). Here
the bistable character is modeled by a bistable flow of the
Ginzburg-Landau type. The noise £(¢) models external col-
ored noise on the control parameter that is the injected laser
signal y = (y) + £(¢)%; internal noise is neglected. The
Langevin equation then reads!'0.3435-
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Fig.3. The numerical exact distribution, a, of Eqs. (29) is compared with the UCNA result, b, in Eq. (34), the decoupling result, ¢, in Eq. (33)
and the conventional small-r theory, d, in Eq. (35) for D =0.1and r =04 (a=b = 1).
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% = ax — bx3 + £(¢), a>o,

EOreyy =2 exp(— Iy- t’l>,
T T

b>o,
(29)

with the deterministic stable points x15 = +(a/b)!/2 and an
intervening potential barrier located at x = 0. For a numeri-

caltreatment (MCF; Ref. 18) the equivalent two-dimension-
al FPE has the form?°

10, D5
€D, T? 3¢? Py

(30)

The Fokker-Planck approximation of the decoupling theory
[Eq. (5)] reads

. d
Pilx, 6 =~ o @x - bx3 +-¢)p, + _—y

. 9 82 D
px)==—(ax-bp,+ ——— = p (31
¢ Ox Pt 0x?1—1(a - 3b(12))p’ 6D
whereas the UCNA provides the FPE:
. o [ ax—bsd 6Dbrx
px) = - — - (x)
‘ ox {1 —7(@—-3bx%) [1-+(a- 3b12)]3}pt
& D
LD W, 32
ax?[1—7(a - 3b12)]2p‘(x) %2
with the restriction
Ve 2q - 3bx?) » D2 g’_—:}pi_i .
ax — bx®

A. Stationary Probability
The stationary probability is obtained numerically {exact)
by solving Eq. (30) in terms of MCF.2® This exact distribu-

tion (Fig. 3a) is compared with the stationary probability of
the decoupling theory (Fig. 3¢),

pglx) = %exp{% [1—7(a — 3b(a?))] (—;— x? - %x“)},

(33)
and with the UCNA (Fig. 3b),
Pulx) = 1 |1 — 7(a — 3bx?)]
Z,
dfa 2 b A\ T b2l
Xexp{D(2x 4a-) 2D(ax bx)}
(34)

where a = b = 1,7 = 04, and D = 0.1 (Z, and Z, are
normalization constants). The stationary solution, ob-
tained with the conventional small-7 approximation®?

1 oil-2an) /08607 1) o f X
=—|1 + r(a — 3bx?)| expl ——

Py(x) Z, 6D

(35)

is plotted in Fig. 3d. We find nearly perfect agreement
between the UCNA and the exact solution. The decoupling
theory shows some small deviations. The conventional
small-7 approximation provides a rather poor result in this
case because the small-7 approximation is valid only in the
region of positive diffusion coefficients, i.e.,

1+ ar\1”2
< .
hd ( 3br )

(36)

The small —7 approximation loses its bistable character if
the sites of the maxima,
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x=¢(%+ﬁn’) ' (37)

are outside the region given in expression (36). Thus there
is a restriction on 7 of the form

a 18DA 2
7 < Iﬁb[(l + 025 - ]]- (38)

When the parametersarea = b =1 and D = 0.1 (Fig. 3), we
find that 1 < 0.374 (< 0.4). Therefore the small-7 approxi-
mation has already lost its bistable character at 7 = 0.4.

B. Shift of the Maxima

Asseen in Fig. 3 the maxima of the stationary probability are
shifted from the white-noise values £(b/a)!/* toward values
with a larger amount of x. For larger correlation times 7,
however, this shift becomes smaller and finally vanishes for
infinite r because the noise itself vanishes in the limit 7 — o.
Within the UCNA, the equation for the site xy of the maxima
is evaluated as

2@ t : .
=% 4eDr|— V. 39
oY 7[1 —r(a- Bb.\‘oj)] @9

The positive root x¢is plotted in Fig. 4 as a function of 7 for D
= 0.1. The dots indicate the exact values obtained by the
MCF method. The agreement between the UCNA [Eq.
(32)] and the exact result is indeed very satisfactory.

C. Transition Rates

An important quantity in a bistable system is the transition
rate between the stable positions. For white noise (r = 0)

~this problem was first solved by Kramers, leading to the
famous Kramers rate,*

a (12
re= —exp(--% ) (40)
N ( 4b1>>

The conventional small-7 approximation modifies this re-
sult to yield only a 7-dependent prefactor.*> NCF calcula-
tions,?0 however, show exponential decay of the form

re exp(—a %) (41)

Recently this exponential decay was demonstrated for a
periodic double-well potential. 3

The decoupling theory was the first theory to predict this
exponential 7 dependence. This dependence is easily seen
by substituting D by the effective noise strength D,
D

D(‘f[

S ————— (42)
1 - 7(a — 3b(x?))
The corrected Kramers rate then reads'?
r a? » ‘
r(r) =ry exp[B b (a — Bb(,\w))}. (43)

This correction becomes the leading contribution for small
D (which must be in the first place for the rate deseription to
be valid) and not too small 7. Recently Marchesoni™ devel-
oped an approach that bridges between the small-7 answer
(prefactor correction) and the decoupling result (exponen-
tial correction). His approach is based on ideas for the
derivation of the rate from the Kraners equation.’

RARY

5. CONCLUSIONS

We have presented Fokker-Planck approximations to col-
ored-noise-driven instabilities that work for weak-to-muod-
erate-to-strong noise color. In particular, we model the
stationary dynamics of the colored-noise-driven dye-laser
instabilities in Eq. (21). The stationary probability and the
relaxation time (integrated intensity correlation function)
are described by the UCNA [see Eq. (24a)] with excellent
accuracy.
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