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Phenomenological shortcut to dissipative tunneling
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A phenotnenological approach to dissipative tunneling, originally put forth by Pollak [Phys. Rev.
A 33, 4244 (1986)], is discussed and contrasted with the bounce formalism. This phenomenological
approach is based on the WKB theory for parabolic barrier tunneling. It is quite simple and readily
evaluated. We study the results for the leading exponential dissipative decay rate in metastable po-
tentials and contrast them with previous instanton-type (bounce-technique) calculations. In doing so,
we compare the zero-temperature decay rate in various metastable potentials, different dissipation
mechanisms, and also consider the rate enhancement at very low temperatures. One finds between
the two methods unexpected good agreement at weak to moderate dissipation strength; the accuracy
decreases with increasing dissipation strength and increasing deviation from a harmonic barrier
shape.

I. INTRODUCTION

Tunneling in the presence of dissipation has attracted a
great deal of attention in recent years both from a theoret-
ical' and experimental viewpoint, " ignited by a
flurry of experimental activity for tunneling in Josephson
junctions, tunneling microscopy, or resonant tunneling in
semiconductors. On the theory side the field did undergo
a renaissance, with the work on macroscopic tunneling
mainly inspired by the ideas of Caldeira and Leggett. '

With the present contribution we continue our previous
work ' on the quantum decay of a metastable state in the
presence of interactions with a thermal reservoir. We
shall focus on the dominant exponential dependence of
the tunneling rate. Usually the exponential dependence is
evaluated by using the bounce solution, i.e., the periodic
orbit in complex time describing tunneling under the bar-
rier, which obeys a nonlinear, nonlocal integro-differential
equation. ' A somewhat simpler although not as accu-
rate technique relies on a variational approximation.
These methods require an appreciable amount of numeri-
cal work and thus generally will be invoked only in
specific situations where an accurate answer is of interest.
Often it becomes necessary to consider a whole series of
different barrier forms. In this latter case it would be
helpful to have a quick method yielding a qualitatively
correct answer. Recently Pollak' has proposed such an
original method which he termed "sudden-transition-state
theory" (sudden TST). Apart from giving a certain
amount of direct physical insight into dissipative tunnel-
ing, this approach involves a minimum of numerical
analysis. In the following we shall compare Pollak's
method with results obtained by the bounce method or
the variational bounce technique, respectively. In doing
so, we shall consider different forms of metastable poten-
tials, finite temperatures, and dissipative mechanisms that
exhibit a frequency dependence.

II. POLLAK'S SUDDEN- TST APPROACH
VERSUS BOUNCE METHOD

In his approach to dissipative tunneling Pollak' was
guided by the semiclassical limit of quantum-mechanical

transition state theory put forth by Miller. ' ' In addi-
tion, he made use of the harmonic approximation at the
barrier top and at the well, respectively. The exponential
leading part of the decay rate at temperature T=O is then
given by

I ~exp
—2m.EO

(2.1)

Hereby ~z denotes the coupling-induced dissipation- and
memory-renormalized barrier frequency. It is given by
the largest positive root of the relation'

2
COg

COg =
cog + (1/M)g(cos )

(2.2)

with co& &0, denoting the (bare) barrier frequency and
g(cos) being the Laplace transform of the memory dissi-
pation g(t —s) for a damped particle of mass M moving
in the metastable potential V(x), i.e.,

dVMx = — — rl(t —s)x(s)ds .
GX 0

(2.3)

The effective barrier height is denoted by Eo. For tunnel-
ing from the ground state it is given by the (bare) barrier
height Vo and the differences in zero-point energies of all
normal modes at the barrier top (A, ,*) and at the well (A, ; ),
respectively, i.e.,

Eo ——Vo —,' AA, o+ ,' fi g ( A, ,
*——A, ; ) . — (2.4)

Next we compare (2.1) with the exponential leading
part as obtained within the bounce technique. ' At tem-
perature T=0, the tunneling path (bounce) enters the
metastable well at energy E=O, i.e., it does not start from
the true quantum-mechanical ground state E = g, triA, ;/2,
with (A, ;) being the coupling-induced normal-mode fre-
quencies at the well. As demonstrated by Miller in Ref.
14, this difference between WKB theory and bounce tech-
nique induces within the bounce method a logarithmic
correction which is transferred to a prefactor correction
proportional to A ' . Thus the result within the bounce
method
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I ~exp (2.5)

with Sz denoting the bounce action, should be compared
to Eq. (2.1) only after having substituted Eo [see Eq. (2.4)]
by Vo. Next we define the dimensionless, relative bounce
action Ab

where m; and cu; are the mass and frequency, respectively,
of the ith oscillator, and C; is its coupling strength to the
system. It has been shown, ' that Ohmic dissipation cor-
responds to a spectral density of the form

Sg (g) —Sg (g =0)Ab=
Meso(b, q)

(2.6) Ohmic damping, n-1

with Aq being the undamped tunneling distance
V(qo)= V(qp+hq)=0. We shall compare in the follow-
ing the quantity Ab with the corresponding quantity Ab
obtained from the Pollak method, i.e. ,

12

10 (a)

2n Vogg PA

Mtoo(Aqua ) cog
(2.7)

Here the harmonic tunneling length Aq& is defined by
'2

Vo —=—,
' Mug

2
(2.8)

For the metastable potentials under investigation, i.e.,
n

V(q) = —,'Mcooq 1—
Aq

(n = 1,3,5, . . . ), one finds

co~ &n ceo=,

(2.&)
0. 1 1 10

Vo ——,'Mn too( b,q )— 2
n+2

(n +2)/n

'
(,n +2)/2nn+2Aq= v'2 2

(2.10) 14

12

10

Ohmic damping, n-5
---- PA

VA
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We shall see that the dimensionless quantity b,b in (2.6)
compares favorably with Ab, as defined in (2.7). This
allows for a fast method to yield accurate estimates for
the relative bounce action Sz(ri) —S~(q=O). The whole
procedure may be summarized as follows:

(i) First evaluate via (2.2) the classical dissipation renor-
malized frequency cuz.

(ii) Ab is then readily given by (2.7). This is then
multiplied by Meso(b, q) to give a useful and quick expres-
sion for the actual di6'erence Sz(rt) —Ss(g=O).

4

2

A. Ohmic damping 0. 1 1 10

Ohmic damping is modeled by a memory-free disspa-
tion g(t) of the form [see Eq. (2.3)]

g(t —s)=2g5(t —s) . (2.11)

2

J(co)= —g 5(co —co;),2, m;co;
(2.12}

On the other hand, the properties of the oscillator bath
leading to a certain type of dissipation are contained in
the spectral density J(~) defined as

FICx. 1. The exponential part Ab = [Sz(q) S~(g =0)]/—
[Meso(hq) ] of the quantum decay rate I ~ exp( —S~ /fi) at zero
temperature and Ohmic dissipation [see Eq. (2.11)] for a cubic
potential [n= 1, Fig. 1(a)] and a metastable potential of higher
degree [n =5, Fig. 1(b), see Eq. (2.9)], plotted vs the dimension-
less damping constant a—:q/(2Mcoo), [g is the Laplace trans-
form of the classical damping function rt(ti]. The solid line cor-
responds to results of the variational approach (VA, Ref. 8) and
the dashed line represents the findings according to Pollak's ap-
proach [PA, see Eq. (2.7)].
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J(~)=ticoe(co), (2.13)

where e(co) denotes the unit step function. Using the dis-
sipation given by (2.11) one finds with t) =t) from (2.2)

where a=t)/(2Mcoo) is the dimensionless damping con-
stant. Replacing Vo in Eq. (2.7) by Eq. (2.8) we obtain
with co& in Eq. (2.14)

c

cos =coo[(n +a )'/ —a], (2.14) gg PA n
4 ( + 2)1/2

&—n (2.15)
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FIG. 2. The exponential part Ab =[Sss(g)—Sas(r)=0))/
[Meso(b.q)'] of the quantum decay rate I ~ exP( —Sss /sri) at zero
temperature and memory damping [see Eq. (2.16)] with a corre-
lation time cooro 1[Fig. 2(a)] and coor——o=5 [Fig. 2(b)] for a cubic
potential [n = 1, see Eq. (2.9)], plotted vs the dimensionless
damping constant a=g/(2M', ), [rl is the Laplace transform of
the classical damping function r)(t)]. The solid line corresponds
to results of the variational approach (VA, Ref. 8) and the
dashed line represents the findings according to Pollak's ap-
proach [PA, see Eq. (2.19)].

TWp
FIG. 3. The thermal enhancement AB = [S(T)—S(T=0)]/

[Mcoo(hq) ] of the dissipative quantum decay rate
I cc exp(S/fi) in the case of Ohmic friction [see Eq. (2.11)]with
damping strength [a—:q/(2Mcoo)] a= 1 [Fig. 3(a)] and a=10
[Fig. 3(b)] vs the dimensionless temperature T/To for a cubic
potential (n =1}and a metastable potential with n=5 [see Eq.
(2.9)). The solid line shows the results of the variational ap-
proach (VA, Ref. 8) and the dashed line exhibits the findings
according to Eq. (2.27) (PA).
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In Figs. 1(a) and 1(b) we compare b,b as given by
(2.15) with results found by using the variational ap-
proach of Ref. 8. For the cubic potential [see Fig. 1(a)]
the agreement between the two different approaches is ex-
cellent. Pollak's approach also agrees quite well with the
results of the variational approach for a metastable poten-
tial (2.9) with n =5 [see Fig. 1(b)]. However, at moderate
to strong damping (1 & a & 10) Pollak's results deviate
from the variational approach more strongly as compared
to the case of the cubic potential. We attribute this be-
havior to the poorness of approximating the barrier by an
inverted parabola. Nevertheless, the overall accuracy in
both cases (n = 1 and 5) is remarkably good.

which may be solved numerically. Finally Eq. (2.7) yields

nMp
bb =— t—/n

4
(2.19)

Figures 2(a) and 2(b) exhibit Pollak's results for a cubic
potential (n= 1), i.e. , b,b given by (2. 19), together with
the corresponding quantity found via the variational ap-
proach. Figure 2(a) refers to the dimensionless correla-
tion time thoro= 1, whereas Fig. 2(b) displays the results
for ~p7p ——5. As in the case of Ohmic damPing, we find
good agreement between the two different approaches.

B. Memory damping C. Tunneling at low temperature

If the bath does not lose its memory instantaneously
(Ohmic damping), but has a finite correlation time ro (this
means that an action of the system causes a reaction of
the bath with an effective duration ro), the resulting effect
on the coupled system is termed memory friction. A typi-
cal representative of such a memory dissipation is the
Drude form

To obtain the thermal rate at low temperatures, Pol-
lak' did consider the rate from the ground bath state and
the first excited state, in which one bath state is excited
while the others remain in the ground state. Up to first
order in the squared coupling constants O(C ), he finds
(Il= 1/kz T) for Ohmic damping [see (2.13)]

q(t)= —exp( —t/ro) .
Tp

(2.16) I (T)= I (T =0)exp hS(T) (2.20)

The corresponding spectral density of the bath reads with

(2.17)

COp
(2a —ncooro) —n =0

COp
Qp7p +

COp COp

(2.18)

Letting so~0 in Eq. (2.16) we recover the Ohmic damp-
ing case. Calculating co~ according to Eq. (2.2) with ri(t)
given by (2.16), one finds that co~ is given by the largest,
real positive root of the cubic equation

COg COg

—2W ~e —~"
p 2+ 2

4&p n +2 e —~'"
+

n o co

27TCOcosh
Mg

(2.21)

and co~ is given by Eq. (2.14). For T & To Eq. (2.21) can
be integrated to give I AB =hS ( T) /[Meso( b, qq ) ] ]

AB = —o. n +2 T Scop n TO 277n

2~ T,'- 2Vo (n +a')'" —o. T (n +a')'" —a (2.22)

where g (x) is the auxiliary sine-cosine integral function'
and To ficoo[(n +a )' —a]——/(27rkz ) is the crossover
temperature to activated thermal hopping. ' ' The
second contribution is proportional to %cop/(2 Vp ) and
thus quite small if compared with the leading first contri-
bution. The [Sicko/(2Vo)] contribution yields within the
bounce formulation a very small negative temperature
correction to the prefactor and should, just as before, be
neglected if compared with the temperature dependence of
the bounce action. Upon expanding the logarithm in
(2.22), we find a thermal enhancement proportional to T,
i.e.,

pA n+2 T (2.23)

which is in accordance with the findings in Ref. 3.
It is interesting to compare the proportionality factors

of the T law of Eq. (2.23) with the universal T law
found in Ref. 3 given by

2

AB = ~C &a T7a
3

(2.24)

where 7z is the bounce length. For the cubic potential
(n = 1), rq was deduced in Ref. 18,
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+B
1

~coo [a +(3/~) ]' —a
(2.25) still reproduced correctly, although the overall accuracy

decreases with increasing n.

Inserting ~B one finds for AB

68 =a
27r To rr I [a +(3/tr) ]'i —aI

(2.26)

Assuming that 3/rr —1, we note that (2.26) underestimates
(2.23) by the factor of 8/tr =0.81 which shows that (2.23)
is a fairly good approximation to the T law found by in-
stanton methods.

In Figs. 3(a) and 3(b) we compare the logarithmic (Pol-
lak) approximation

2
PA n +21 1 —T

2- " T. (2.27)

(valid for T ( To) with the variational results obtained in
Ref. 8 both for a= 1 [Fig. 3(a)] and large damping a=10
[Fig. 3(b)]. First let us consider the cubic potential
(n = 1). At low to moderate damping a —1, one finds
surprisingly good agreement with the variational results
up to T/To (0.5 which in turn coincides with the numer-
ical results of Ref. 19 within (4%. For larger dissipa-
tion strength the agreement becomes less satisfactory, al-
though the qualitative trends are still retained. For the
metastable potential with n=5, the qualitative trends are

III. CONCLUSIONS

In this paper we have exploited Pollak's ideas' in order
to generate a direct and simple estimate for the leading
part of the dissipative decay rate from a metastable state.
For low to moderate damping, a(1, the agreement be-
tween the simple estimate controlled by the dissipation-
renormalized barrier frequency co+ in Eqs. (2.14), (2.15),
and (2.19) and the variational results is surprisingly good.
Admittedly, the estimate decreases in accuracy with in-
creasing n (i.e. , increasing deviation from a harmonic bar-
rier shape) and increasing dissipation strength. Most
surprising was the qualitative agreement of the tempera-
ture dependence at weak to moderate dissipation strength
with the simple logarithmic estimate

bB = —(a/2tr)(n +2)ln(1 —T /To) .

Having made a comparison for different potentials and
damping mechanisms, the simple estimates in (2.15) and
(2.19), and (2.27) should prove to be quite useful in ob-
taining qualitative results and descriptions for various ex-
perimental situations or realistic complex memory fric-
tions. " We hope that these simple estimates find their
way into the planning stage of new experiments and
effects.
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