
                                        

Tunnelling in Reaction Theory: The Effect of Memory Friction
Peter Hanggi and Waldemar Hontscha

Lehrstuhl fur Theoretische Physik, Universitat Augsburg, Memminger StraBe 6, D-8900 Augsburg, F.R.G

                                                   

Abstract
The role of memory friction on dissipative quantum reaction rates is
emphasized. The domain of low temperatures, bearing a variety of important
tunnelling phenomena, is difficult to handle analytically. In order to fill this
gap, we present new scaling relations for the bounce length as a function
of the dissipation renormalized barrier frequency p.  In addition, we propose
a simple estimate for T ~ ,  which in turn yields directly the thermal low
temperature enhancement of the quantum decay rate for Ohmic friction, as
well as  for memory friction. Finally the range of validity of the theory is
discussed and pictorally represented in a rate phase diagram.

1. Introduction
Processes that are inhibited by the presence of a potential
barrier are ubiquitious in many areas of natural sciences,
ranging from nuclear physics over low-temperature solid-
state physics and chemical reactions up to biological pro-
cesses. It is well known and a matter of daily experience, that
reactive processes proceed easier by raising the temperature.
In addition, the system under consideration is usually not
isolated, but coupled to a huge number of environmental
degrees of freedom, which thereby act as a thermal reservoir.
Thus, not only the temperature will modify the reactive
process, but also the coupling to the environment is expected
to influence strongly the behaviour of the system. The last
decade has revealed increasing interest in such problems from
a theoretical [l-7, 11-20] as well as experimental [8, and
references therein] point of view. It was shown by Caldeira
and Leggett [l], that at zero temperature the tunnelling rate of
a metastable system coupled to a bath of harmonic oscillators
is diminished, as one would expect intuitively. The next step
has been the investigation of the effect of finite temperatures
on dissipative tunnelling [2]. It is found, that at very low
temperatures the decay rate of a system subject to Ohmic-like
friction is enhanced following a universal exponential T2-law,
irrespective of the detailed dissipative mechanism [2]. Finally
the next intriguing question was the behaviour at the linkage
between low temperatures and higher temperatures [3, 41,
where the activation rate obeys the Arrhenius Law.

2. Quantum reaction rate theory: A survey
First consider a particle in a one-dimensional metastable well.
At sufficiently high temperatures T the decay proceeds via
thermal activation and the rate of decay obeys the well known
Arrhenius Law

r = -exp(-$)0 0

2n
where V, is the barrier height and w0 is the (attempt-)frequency
of small oscillations in the well. Lowering the temperature
would therefore result in a decrease of the decay rate, reach-
ing r = 0 at T = 0. Obviously this is not the full truth, since

one knows from quantum mechanics that the particle may
leave its metastable state by tunnelling, leading to a small but
finite decay rate even at T = 0. Intuitively it is clear, that a
crossover temperature To must exist at which one decay
mechanism becomes predominant over the other in a smooth
manner. The magnitude of the crossover temperature To
may be deduced by using a harmonic approximation for
the barrier, and comparing the familiar WKB result for
tunnelling through an inverted parabola of effective height V,
with the Arrhenius factor

exp (- 3)c) exp (- 2)
Then the undamped crossover temperature is readily found
to be given by

(3)

where O b  > 0 is the angular frequency at the barrier. When
the particle is subject to friction, i.e. it is coupled to a heat
bath consisting of a set of harmonic oscillators, the relation
for To remains valid, provided ob is replaced by its dissipation
renormalized value p given as the largest positive solution of
PI
p 2  + p i ( p )  = o;. (4a)
Equation (4a) can be recast into the form

where the hat denotes the Laplace Transform of the classical
memory-friction ~ ( t ) ,  see (5) below. One may look upon
eq. (4a) as being the definition of the normal mode barrier
frequency induced by the coupling to the environmental bath
oscillators giving rise to the damping y ( t )  [6].

2.1. The decay rate f r o m  T = 0 up to Jinite temperatures
In the following we will be interested in the decay dynamics
of a system, that classically obeys the following equation of
motion

Here y ( t )  is a damping kernel describing memory friction
exerted by the environment on the particle and V ( q )  is a
metastable potential (see Fig. 1). It has been shown, that a
dynamics as described by eq. (5) can indeed be modelled by
coupling the system to an infinite set of harmonic oscillators

The complete macroscopic statistical information about
system plus environment in thermal equilibrium is contained
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Fig. 1. A metastable potential as considered in the text. qb locates the
maximum 5 of the potential barrier.

in the partition function Z.  In terms of functional integrals
the quantity Z may be written as

with the effective Euklidean action ( p  l / k T )

S = (^hB2 -hp 2 dt( ;q2+ V ( q )

(7 )

The integral runs over all periodic paths q(r)  with period
hfl. The trace over the environmental degrees of freedom has
already been carried out, resulting in the last term of S. The
kernel K ( t )  describes the influence of the environment on the
system and is related to the classical damping y ( f )  by [2, 31

where
2nn

v,  = -

and 7 again denotes the Laplace Transform of the memory
damping y(t) .  The functional integral (eq. (6)) is dominated
by such periodic paths which extremalize the effective action
S, and the partition function Z is consequently given by the
sum of the individual contributions Z = C, Z,.

The effective action S may be viewed as describing the
motion of a particle in the inverted potential - V(q)  (see
Fig. l), under the influence of the kernel K ( T ) .  Obviously
there are two trivial solutions, namely q ( t )  = 0 and q ( t )  =
q b ,  where the particle sits a t  the top, and in the well of the
potential - V ( q ) ,  respectively. The only non-trivial solution
is an oscillatory motion of the particle in the well of - V ( q )
around q b ,  the so called bounce q B ( t ) .  The bounce exists only
below the crossover temperature, as will become clear later,
whereas the trivial solutions are always present.

A detailed analysis shows however, that q ( t )  = qb and
q(r) = q B ( t )  are not minima but saddlepoints of the effective
action S. This means, that there are fluctuation modes in
function space around q b  and qB (7) respectively, associated
with a negative eigenvalue, which would lead to a divergent
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integral in the corresponding contribution to the partition
function.

As was explained by Langer [9], the partition function of
a metastable system is not defined as it stands, instead one
has to resort to an analytic continuation, which leads from
the stable to the unstable situation and thereby induces an
imaginary part for the partition function Z.  Finally it turns
out that the imaginary part of the free energy F is given by

Im Z,I m F  = - kT- zo (9)

where Z,  and Z, are the contributions to the partition func-
tion Z of q( t )  = 0 and q(r) = qB(r)  and/or q(r) = q b ,  respect-
ively. Just like in field theory, the imaginary part of F is
related to the decay rate of the metastable state via r cc Im F.

2.2, T > To: thermal activation
First one needs the explicit relation between the rate of decay
and the imaginary part of the Free Energy F. For tempera-
tures above To this is

L l o
h Tr = - - - 1 m F

as was shown first by Affleck [lo] for an undamped system,
i.e., y ( t )  = 0.

In the preceding section we have already found the sol-
utions which may contribute to the statistical sum Z .  The
bounce however cannot exist for T > To, since the required
period h p  = h/kT < h/kTo = 2x111 is shorter than the
period of small oscillations 2n/p in the dissipation renormal-
ized well around qb. Therefore the relevant paths are

Taking into account fluctuations one finds with the help
of eqs. (9) and (IO) and the relation for the crossover tem-
perature To (eq. (3)) [3-51

q( t )  = 0 and q( t )  = q b .

Here, Q denotes the quantum enhancement factor

n2v2 + W: + nv.j(nv)
n = ~  n v - wb + nv$(nv)Q = r I , , 2

with \' = 27C/hp and Vb = v(qb).
Before discussing this result, we observe that the denomi-

nator of the infinite product may eventually vanish, indi-
cating the breakdown of validity of formula (1 1). The most
probable candidate for this event is the factor with n = 1 and
the breakdown condition reads v2 - ut + v$(v)  = 0; but
this is precisely the definition of the crossover temperature To
[5] (see eq. (3)). The crossover is therefore characterized by
the appearance of a new classical solution, the bounce.

Let us now inspect eq. 11 more closely. The factor Q is a
quantum correction to the classical result found by Grote and
Hynes [ I  I], and by Hanggi and Mojtabai [12] using different
lines of reasoning. Q approaches unity for T 9 To, but can
be quite large even at temperatures of a few To,  thus yielding
important quantum corrections to the classical hopping rate.
A simple but useful approximation of the quantum enhance-
ment factor Q is given by [5]
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Note that the approximation of order T - 2  does not depend
on the detailed dissipation mechanism which affects only the
T - 4  correction. From eqs. (11) and (12) it is seen, that the
effect of the quantum correction factor is to lower the barrier
height &

2.3. T E To,  the crossover region
In the proximity of the crossover temperature To the evalu-
ation of the rate becomes rather difficult due to the appear-
ance of (quasi) zero modes, which must be treated by con-
sidering the variation of S up to third and fourth order

Slightly above To, the classical solution q(r) = q b  gives
rise to two quasi zero fluctuation modes. Just below To we
have apart from q(r) = q b  the bounce solution q(r)  = qB(7).
This means that every linear combination of these two sol-
utions, approaching q b  for T To,  is an almost stationary
point of the effective action S .  Here one has one exact zero
mode and one quasi zero mode.

Fortunately the crossover region is very narrow on the
scale of To,  provided the barrier is high and the potential is
rather smooth. So in general there will be no need to investi-
gate this region, except if one is interested in the detailed
behaviour of the rate around the crossover temperature.

2.4. T < To, quantum tunnelling
Below the crossover temperature we must take into account
all of the solutions extremalizing S: the two trivial solutions
q(r)  = 0, q ( 7 )  = q b  and the bounce. However it can be
shown, that the action of the bounce is smaller than the
action of q( t )  = q b ,  such that the contribution of the trivial
saddle point may be disregarded against the bounce contri-
bution. The rate of decay is then given by

[3,4,  131.

T < To (13)
with

Here sB(h/3, 9 )  is the bounce action S(qB(Z) ) ,  and the prime
indicates that the zero eigenvalue, which is accounted for by
the factor A ,  has been omitted in the determinant. At the
crossover temperature To the bounce action SB/h  matches
smoothly with the Arrhenius factor & / k T  [2]. An analytic
evaluation of eq. (13) is possible only for a cubic potential at
zero friction [l,  10, 131 and at very strong Ohmic damping
[ 1, 4, 131, and at one particular moderate friction value [ 131.
In practice one has to resort to a numerical evaluation (see
Ref. [I41 for T = 0 and Refs. [I51 and [I61 for 0 < T < To).

Just as in the case of T > To ,  where the prefactor Q
decreases with increasing temperature, one finds that the
prefactor of the decay rate for T < To (eq. (13)) becomes
smaller with increasing temperature [ 171. This very small
temperature dependence of the prefactor, however does
not offset the leading temperature enhancement given by
the exponential part. Grabert, Weiss and Hanggi [2] have

shown that this temperature enhancement at low tempera-
tures follows a universal power law

S ( T ,  9 )  = S ( T  = 0,  f) -

(14)Yoa, = -
2wb

where in terms of the undamped tunnelling distance Aq, with
V(0)  = V ( A q )  = 0 (see Fig. I), the bounce length zB is
defined as

The T 2  enhancement law holds for all systems with
?(CO = 0) = yo > 0, i.e., Ohmic like damping.

3. Quantum reaction theory: the effect of memory friction
In most cases the assumption of frequency-independent
damping is a very poor approximation, since barrier fre-
quencies o b  are often of the order 10ii-10i4s-1, and forces
exerted by the environment generally will be correlated on
this same time scale. A more realistic model for dissipative
mechanism is therefore memory damping, and in the sequel
we will focus on the archetype of memory dissipation, the
Drude form

The corresponding Laplace transform reads

70
= ~p t c  + 1 ’

Inserting eq. (17) into the definition for the dissipation renor-
malized barrier frequency p (eq. (4a)) yields a cubic equation

The largest real positive root of this equation immediately
yields the crossover temperature To via eq. (3). As one would
expect, p approaches o b  from below when 7, -+ CO (zero
friction case), and approaches p = (CO: + y;/4)”* - y0/2 for
z, --f 0 (Ohmic damping); see also eq. (4b).

3.1. Above the crossover temperature
For temperatures above To the decay rate has been found to
be given by eq. (1 1). For the Drude damping (eq. (16)), the
quantum correction factor Q (see eq. (1 1)) may be approxi-
mated as

where is the Riemann Zeta Function.
One notes that damping affects the quantum correction

                  



562                                   

factor only at the order O ( T 4 ) .  Thus, memory damping
influences the rate mainly via the dissipation renormalized
diffusive transmission K = p/oh.  Based on explicit calcu-
lations of the inclusion the fourth- and fifth-order correction
in eq. (19a) does not yield a better approximation to the exact
product (eq. (1 1)) over the simple estimate (eq. (12)), consist-
ing only of the first term in eq. (19a), i.e., the dissipation inde-
pendent contribution of order O(T-’). Therefore, for most
applications, the estimate

provides a simple working expression of sufficient accuracy to
describe the quantum rate enhancement at T > To.

3.2. Below To
As was already mentioned in Section 3.3, it is very difficult to
obtain the decay rate explicitly in the temperature range from
T = 0 up to To. On the other hand it is just this low tem-
perature domain, where important tunnelling phenomena,
particularly in solid state physics, occur. Therefore it would
be very desirable to have a simple, yet sufficiently accurate
estimate for the rate of decay in this very low-temperature
regime. Recently such a method, termed Sudden-Transition-
State-Theory, has been proposed [6] to attack this problem.
It does not resort to the difficult problem of finding the
bounce solution, but instead starts from the well known
WKB formula for an inverted parabola. The recipe at T = 0
is very simple 16, 181:

(1) Use the WKB formula for an inverted parabola (see
eq. (2)) with frequency p (p being the dissipation renor-
malized frequency of the barrier under consideration).

(2) To obtain the rate of decay of the metastable potential,
multiply the WKB exponent by the factor Aq2/Aqi ,  where Aqh
is the harmonic tunnelling length defined by

v, -.;(+)’M
2

i.e., the exponent of the decay rate scales with the square of
the undamped tunnelling distance.

At zero temperature the agreement between instanton
method and sudden-transition-state-theory is remarkably
good for Ohmic as well as for memory damping at weak
dissipation strength yo [18]. The T = 0 estimate reads

where, as before, Aq is the undamped tunnelling distance
under the metastable potential, see in Fig. 1 .

The decay rate at low temperatures is obtained by con-
sidering the rate from the ground bath state and the first
excited state, where one bath mode is excited, while the others
are in their ground state.

Starting from the Sudden-TST approach of Ref. [6] we
find for Ohmic damping the explicit temperature dependence
of the thermal enhancement factor, defined by

(22)
The T dependence of the thermal enhancement agrees with

                  

the general result of Ref. [2] (see eq. (14))

(23)

where tB is the zero temperature bounce length defined in
eq. (1 5). Clearly the dissipation mechanism affects tB, that
means tB = tB(y) ,  such that the effect of memory is entirely
contained in tB.

Next we define the harmonic bounce time T:,  to be the
time required for a particle to perform a periodic orbit in a
harmonic potential with curvature p, evidently this is

What we are looking for is a simple estimate for the bounce
length tB(lj) in terms of the harmonic bounce time T ; ,  that is
in terms of the dissipation renormalized barrier frequency p.
With respect to their definitions, we expect these quantities to
be proportional, i.e.,

T B ( f )  t s h g ;  T B f i ( w )  = Y O )  = tBP?O) .  ( 2 5 )

Put differently, we suppose eq. (22) to be valid approximately
also for memory damping, in spite of the fact that eq. (22) has
been derived for the Ohmic case only, i.e., ?(CO) = yo .  To
this end we observe that To is directly proportional to p (see
eqs. (3) and (4)), i.e., To is inversely proportional to the
harmonic bounce time ti.

From eqs. (24) and (25) we obtain the following scaling
relations, comparing Ohmic to memory friction

The ratio of the damped to the undamped (9 = 0) bounce
length is then given by

and approaches yO/wb for strong damping.
Substituting To in eq. (22), with p given by eq. (4), and

comparing to the general result eq. (23) we obtain an estimate
for rB(3), i.e.,

Using eq. (4b), this is recast as

For a cubic potential (i.e., wo = wb)  and Ohmic damping
(Q) = cyo) the bounce time ~ ~ ( 5 )  has been approximated in
Ref. 18 to read

In this case eq. (28b) overestimates the correct value by about
5%, inherent in the difference of factors 12/71 < 4.

4. The rate phase diagram

Finally let us review the range of validity of the treatment on
the decay problem given above.
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4 5. Conclusion

t l m - d e p .  - r i t e

k 1

Fig. 2. The rate phase diagram. The crossover cylinder (hatched vertically)
separates the classical thermal activation regime (including quantum cor-
rections) from the tunnelling dominated regime in which the role of the
Arrhenius factor is taken over by the dissipative bounce action S,(T; -7)
(eq. (13)). The volume (dotted) a t  the left side corner indicates the regime
as a function of damping, barrier height and temperature in which weak
damping induces nonequilibrium effects that are not accounted for by the
thermodynamic rate formula r cc Im F(imaginary free energy method). For
kT /V ,  > 1, the rate is generally time dependent, i.e., r = r(t).

The starting point was the equilibrium partition function.
The theory therefore clearly can neither account for time
dependent rates arising when E > kT,  nor for nonequilib-
rium effects, which occur for very weak damping f ( p )  < o b ,

since in this case the thermal equilibrization inside the well
would take a time much longer than the lifetime of the meta-
stable state. However for high barriers, i.e., k T / &  < l the
range of validity is enlarged to lower friction values, deter-
mined by ?(p) > kTo, / I / , ,  since a high barrier implies an
extreme long time scale for escape, allowing for the thermal-
ization in the well. For temperatures below crossover, i.e.,
T < To, the lifetime of the metastable state is long enough to
allow for thermalization at practically all damping values.

The physics of decay problems may be summarized in a
rate phase diagram (“Thomas diagram”) [20] shown in
Fig. 2. The dotted volume marks the region of nonequilib-
rium effects, and k T / &  = 1 defines the surface above which
the rate generally becomes time dependent. The vertically
hatched cylindric surface separates the tunnelling region
from the activation dominated domain and approaches
asymptotically for strong damping the dotted line defined by

, li(d-h o b  - O b  - -
ob

2nkT0(9) ‘?(li) “‘b

In this article on decay rates we particularly emphasized the
effect of memory friction. Especially in the analytically diffi-
cult and hardly accessible region below the crossover tem-
perature we found it desirable to give scaling relations
between the bounce time tB(9) and the dissipation renor-
malized barrier frequency p (see eqs. (26) and (27)). More-
over, we proposed an estimate for the bounce length tB(j) in
the presence of memory friction (see eqs. (28a) and (28b)) in
order to cover the thermal enhancement of the tunnelling rate
(see eq. (23)) not only at Ohmic damping, but also at memory
friction. We hope that the scaling relations and the estimate
for tB(9) will prove to be useful for future experiments.
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