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Colored-noise-driven bistable systems
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We consider the escape rate in a bistable potential driven by exponentially correlated noise. Our
focus is on the crossover between the small- and large-correlation time behavior. Precise numerical
results obtained by using a matrix-continued-fraction technique are compared against recent
theoretical predictions.

x =x —x +g(t),

(g(t)g(t') )=—expD 1
(2)

with x, D, and ~ normalized to dimensionless
quantities. '"' The potential V(x) has two wells located
at x =+1 which are separated by a barrier of height
b, V= V(0)—V(+1)=0.25 at x=O.

In the white-noise limit ~=0 the noise becomes 6
correlated and for small-noise intensity D «AV, the es-
cape rate rI, between the two attractors A, is well repro-
duced by the Kramers formula'

We consider the escape process in the archetype bi-
stable potential

V(x)= —
—,'x +—,'x

driven by an external Gaussian noise source with a Anite
correlation time ~, i.e., the Langevin equation with
Gaussian noise g(t) of vanishing mean

la D a'+ e+— W(x, e, t)
fdic

(5)

by means of the matrix continued fraction technique of
Ref. 11. In fact, the existence of a separatrix for any
finite noise correlation time which splits the (x —e)
space into two domains of attraction guarantees a clear-
cut time scale separation at small-noise intensity between
the hopping mechanism (with rate r =A.o/2) and the in-
trawell dynamics [described by the remaining eigenvalues
of Eq. (5)]. ' ' For 0.2 5 r ~ 1.5 and small D the resulting
eigenvalue ko is well described by the exponential law ' '

scale of the system. The rate problem associated with the
process in Eq. (2) has been studied numerically by com-
puting the smallest nonvanishing eigenvalue ko of the
equivalent two-dimensional Fokker-Planck equation

aW(x, ~, t) a x x +E
dt t)x

1 AV
rK = — eXp&z~

A.o(r) ~ exp —ct— (6)

In the last years several groups ' studied the problem
of determining the corrections to the Kramers rate (3)
due to small-correlation times. The difticulty of this
problem lies in the fact that there are two small parame-
ters D and ~, and the result crucially depends on how the
limits ~~0 and D~0 are taken. The answer reads

where a=—0.1 throughout the intermediate range
0.2 ~ w ~ 1.5.

In this paper we focus on the crossover between such
an intermediate-r regime, where Eq. (6) is valid, and the
asymptotically large-~ limit. In the latter regime the au-
thors of Refs. 5(a)—5(c), 8, and 10 all obtain for the ex-
ponential leading dependence the result

AVr ( )=rr ( 1 ——'r)expK 2D (4a) 86V
A.„(r)~exp — r as rico, D~O .27D

which for ~/D &&1 reduces to
r(r)=r~(1 —

—,'r) . (4b)

In many real systems, however, the system variables are
not much slower than the environmental dynamics
represented by the noise source. In these cases the
small-~ approximations are of limited use. ' The most
difBcult situation arises when the noise correlation time ~
is comparable to or larger than the characteristic time

Note that this law has again the same form as in (6), but
with a different value for a, i.e., a( ~ )
=86,V/27. This yields a slope for —ink(r) versus r of
a( ~ )/D = 86 V/(27D), which is by no means amenable
to the slope defined through Eq. (6), i.e., a/D =0.1/D, as
shown in the discussion following by comparison with
our numerical data.

A nonstationary Fokker-Planck approach has been
proposed by Tsironis and Grigolini' to bridge the large-~
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and small-~ behavior. In order to assess the validity of
this method let us start with the exact equation of motion
for the probability of x (Ref. 12),

a
}t,( x)=— (x —x )p, (x)BX

a
P, (x)=— (x —x )p, (x)

+—
2 2 -p((x) .D 8 exp[[1—3x —(1/-, )]t I

—1

BX 1 —3x —1/r
{12)

D 8 t 1+— exp — ( t ——s)
BX

Note that our derivation of Eq. (12) is only valid under
the explicit condition that the correlation time is small.
For ~(~o= 1 the time-dependent diffusion coefficient

X 5x t —x ds.&(x (t))
5 s

Here the functional derivative in the integral in (8) is
given in terms of the stochastic process x (t) by

=6(t —s)exp f [1—3x (t')]dt'
5x (s) s

1 —exp[ —[1—r(1—3x )]t/rI
1 —3~x

converges for t~~ to
1

1 —r(1 —3x )

(13)

(14)

where e(t) denotes the step function

1, t~0
0 0 (10)

a2 2

BX

Xdu p, (x) .

Changing the integration variable in (8), i.e.,
s~u =(t —s)/r, and expanding the argument of the ex-
ponential function in (9) up to the first order in r (note
that this expansion is not uniform in x) one finds

P, (x) = — (x —x )p, (x)a
r-0 BX

thus reproducing Fox's result. For r ~ ro, instead, D (t)
diverges to + ~ in the domain I, defined by
~x~ & &(r 1)/3, t—hereby leading to a vanishing station-
ary probability in I. In fact, the correct stationary proba-
bility p„(x) computed numerically (cf. Fig. 1) does not
support the existence of this divergence, i.e., p„(x) does
not vanish in Ifor r & ro.

The authors of Ref. 10 considered the decay of an ini-
tial population confined within one well by solving nu-
merically Eq. (12) for small as well as for large correlation
times. They found that the long time tail of this popula-
tion decays exponentially with decay time TT~, where
TCr represents Tsironis and Grigolini. For ~& ~0, TTG
coincides, see (13) and (14), with the reciprocal of the
smallest nonvanishing eigenvalue, AF„„, of the Fokker-
Planck equation derived in Ref. 9, i.e.,

Performing the integral in (9) without letting the upper
limit go to infinity we recover the time-inhomogeneous
Fokker-Planck equation (5) of Ref. 10, i.e.„

—AF„„qj(x)=— (x —x )%(x)

a2 1+D %(x),
Bx 1 r(1—3x )— (15)

0

with the boundary conditions +( ~ )=4(0)=0.
In Fig. 2 we compare TF,„(r)= 1/kF, „,which has been

calculated numerically by using a shooting method, with
the decay time TT&(r) of Ref. 10 and with the reciprocal

i00-

7 = 3.33

0. 2
F

0 y 1.0

FIG. 1. The stationary probability p„(x), obtained by numer-
ical integration of (5), is plotted at for several values of ~ and
D=0.1.

FIG. 2. The numerical values [Eq. (5)] of T„(r)=1/).„(r) for
D=0.1 (solid line) are compared against TF„„(~) (dashed line)
and TT~ (- ) (diamonds) for 0 & ~ & ~o= 1.
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FIG. 3. The relaxation times T„,(~) (dashed line) are com-
pared with the numerical results (solid line) for 0&~«,=1 at
D=0.05.

FIG. 5. The bridging formulas (16) (dashed line) and (17)
(dotted line) are compared against the exact results (solid line) at
small- to moderate- to large-~ values for D=0.1.

of the smallest eigenvalue To(~)—= I/A, o(r) (with error less
than 0.1%) of the two-dimensional Fokker-Planck equa-
tion in (5). '"' For a detailed description of the numerical
matrix continued fraction solution of (5), we refer the
reader to Ref. 6(a). The data for TTG(r) lie just on the
curve T„,„(r) in the region 0(r (ro, as predicted by the
above argument. The agreement with the exact values
To(r) holds for small qua-lues oniy. The discrepancies
between the exact result To(r) and TT&(r)=TF,„(r) do
not vanish with decreasing D (Fig. 3), either. In Fig. 3
the exponential behavior of To(w) is clearly observable.
The escape time T„,„(r), or TTG(~) respectively, also ex-
hibits for D=0.05 an exponential behavior, but with an
incorrect slope which happens to be Very close to the
asymptotic uaiue a( ~ )/D. This shows that the exponen-
tial behavior (7) of the rate A, (r) should not be mistaken
with the approximate exponential behavior for small to
moderate ~ values. We conclude that the validity of the
nonstationary Fokker-Planck equation (FPE) (12) must
be restricted, indeed, to the limit of short noise correla-
tion times, i.e., ~(& 1.

For r& ro (cf. Fig. 4) the disagreement between TTo(r)
and To(r) grows even further; the exact value To(r)
exceeds TTG(r) at r=4 by a factor of 3.6. Though the
absolute values of TT&(r) are off by such an amount, the
slope of the logarithmic plot of TT~(r) and To(r) seem-
ingly converge to the same value 86V/(27D) of Eq. (7)
when ~ becomes very large. It should be noticed that for

ro, T„,„(r) diverges. The solid line in Fig. 4 clearly
shows that the regime with an exponential ~/D depen-
dence of the rate A,(r), i.e., 0.2 (r(1.5, is followed by a
regime with a nonexponential dependence on ~/D. On
further increasing ~, within the domain of reliability of
our numerical algorithm [for 0(~(4 and D =0. 1 Ao(r)
is determined with an error of less than 1%], the slope of
1nT~(r) seems to converge slotuly to the asymptotic value
a /D.

Finally we discuss the bridging formulas'"

AVTTo(r) =exp

I j2
27Dmw

a&2 84V
86V~
27D (16)
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FIG. 4. The relaxation times TT&(~) (diamonds) are com-
pared with the exact results (solid line) for small- to moderate-
to large-~ values at D=0.1.

proposed to interpolate between the small-~ and large-~
regime. It should be remarked that (16) does not repro-
duce the correct short-r behavior (4), while the large-r
limit (7) turns out to be multiplied ad hoc by the (large)
factor exp(b, V/D). In Fig. 5 the two bridging formulas
are compared versus the precise numerical results for
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Ao(r) obtained by solving the Fokker-Planck equation in
(5). Both (16) and (17) have been derived within the
steepest descent approach and thus exhibit a difference of—10% from the exact result at &=0. ' ' While the bridg-

ing formula due to Luciani and Verga reproduces our nu-
merical data for Ao(r) at small r somewhat more closely,
both results in (16) and (17) are off' in the region of
intermediate-to-large ~ values by a considerable amount.
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