
                                                       

Escape Driven by Strongly Correlated Noise
Peter H~inggi, 1 Peter Jung, 1 and Fabio Marchesoni 1':

We consider the c01ored-noise-driven archetypal bistability dynamics of the
Ginzburg-Landau type. The focus is on the stationary behavior and the
problem of escape from metastable states. The deterministic flow of the
underlying two-variable Fokker-Planck process is studied as a function of the
noise correlation time z. As a main result we find that the separatrix exhibits a
cusp at asymptotically large noise color. The stationary probability is evaluated
approximately (unified colored noise approximation) and compared with
numerical exact results. The stationary probability forms the key input in the
evaluation of the rate of escape. At very strong noise color, the escape path
closely follows a nodal line, passing through the corresponding stable node. The
asymptotic result for the escape rate at large r is compared with exact
calculations for the lowest, nonvanishing eigenvalue.

1. I N T R O D U C T I O N

The inclusion of realistic noise sources with a finite correlation time in
modeling dynamical systems is attracting rapidly growing interest. (1'2) In
particular, it has been recognized that the finite correlation time of the
environmental noise can impact both the stationary and the dynamic
features of a nonlinear system. (1 3) For example, taking the large class of
metastable thermal equilibrium systems, it has been demonstrated that
memory friction or, via the fluctuation dissipation theorem, colored
thermal noise can substantially modify the classical, diffusive harrier
transmission (see ref. 4 for a survey of the state of the art). (5)
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The situation is even more difficult in stationary nonequilibrium
systems that generally do not obey the condition of manifest detailed
balance36'7) The archetypal situation is a nonequilibrium Ginzburg-
Landau-type bistable dynamics pioneered in ref. 7. Let us consider the
symmetric bistable flow

2 = a x - b x 3 + e ( t ) ,  a > 0 ,  b > 0  (1.1)

driven by exponentially correlated Gaussian noise

( ~ ( t ) ~ ( s ) )  =--Dexp(~ - -~ l , t - s , )  (1.2)

Here, ~ is the noise correlation time and D denotes the noise intensity.
Throughout the following sections we shall use dimensionless variables
'only, i.e., x ~ (b/a) 1/2 x, ~ -~ (b/a3) 1/2 ~, t --* at, which obey (1.1) with
a = b = 1 and dimensionless noise intensity D ~ Db/a 2 and correlation time
z --+ at.

The non-Markovian flow in (1.1) can be embedded into a two-dimen-
sional Markovian process, i.e. ~7~

2 ~ = x - x 3 + e  (1.3a)

1 D 1/2
~= - - e +  {(t) (1.3b)"c "c

with r being a white Gaussian noise; i.e., ( ~ ( t ) ) = 0 ,  ( ~ ( t ) r
2 3 ( t -  s). In showing the equivalence with (1.1) we prepare e(t) according to
the stationary Gaussian probability

t~(g) = \ ~ - ~ j  exp ( -  2 D /

2. D E T E R M I N I S T I C  FLOW

In the absence of noise, the deterministic dynamics is given by

2 = X - X 3  +~, 4= - e / r  (2.1)

Equation (2.1) is symmetric under reflection, i.e., x-~ - x ,  e--* -e ,  and has
three fixed points, two locally stable fixed points at x =  _+1, e = 0  (stable
nodes) and an unstable fixed point at x = 0, e = 0 (saddle point). In Fig. 1
we depict the deterministic flow for various correlation times: (a) ~ = 0.2,
(b) r = t0, (c) ~=  30. The separatrix es(x; z) dividing the two basins of
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Fig. 1. Trajectories of the deterministic system (2.1) with the separatrix es(X) (dotted line)
and the nodal curve er(x ) (2.4) (dashed line); (a) ~ =0.2,  (b) z = 10, and (c) z = 30. In (c) the
asymptotic curve es(x, z ~ ~ ) ,  (2.7), is also drawn (dashed dotted).
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attraction is indicated by a dotted line. The flow lines exhibit turning
points, characterized by

&/dx = oo (2.2)

In view of the identities

d x &  1 dx
. . . .  e (2.3)x -  x3 + e= de dt z de

the sequence of turning points {dx /&=O}  forms a nodal curve er(X)
given by

eT-(x) = x 3 - x (2.4)

er  approaches a local maximum at

(Xo ~c)= x/~, + (2.5)

with a corresponding local minimum at ( - x  c, -ec)-  With z being
extremely large, we note that a particle moves rapidly toward the curve
gr(x) and then relaxes to the corresponding stable fixed point. The
separatrix es(x, z) itself cannot be simply expressed in closed analytical
form. Near the saddle point (x = 0, e = 0), a linearization scheme yields for
the slope &~(x, z)/dx - S(x; z) at x = 0 the result

S(0; z ) =  - ( 1  + l /z) (2.6)

The separatrix es(X; z) thus approaches the axis x = 0 for z -~ 0 with a slope
S(0; ,r) -~ -1 / z ,  whereas S(0; z) ~ - 1  as z --* oe. In the limit z ~ o% es(x; z)
exhibits a cusp at x = +x  c (see Fig. lc), i.e.,

lim ~ ( x ;  z)  =
- r ~ o o

2 1 '~
3v /~ ;  x~< x/~

1 1
x 3 - x ;  - 7  < x  < 7

2 1
3 ,,//~; x~< x/~

(2.7)

3. S T A T I O N A R Y  P R O B A B I L I T Y

For Markovian flows of dimension d ~> 2 without detailed balance the
solution for the stationary probability p(x, e) is nontrivial; moreover, the
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Fig. 2. Stationary distribution for the double-well potential with D=0.1  and ~=0.99:
(a) numerical results (error magnitude within line thickness), (b) UCNA prediction (3.5),
(c) decoupling theory (2~ prediction.

corresponding two-dimensional Fokker-Planck operator is not symmetric.
Generally, there does not even exist a globally differentiable weak noise
potential. (8-1~ In practice, the stationary x probability /~(x; 3) =
~ #(x, e; 3)de must be either evaluated numerically or within a suitable
approximation. The stationary probability b(x;~) for the process (1.3)
has been evaluated numerically by use of an improved matrix continued
fraction method. (11 In Figs. 2 and 3 we display our results for /5(x;z)
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Fig. 3. Logarithmic plot of curves (a)-(c) in Fig. 2.
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at D = 0.1 and r =0.99. It has been shown that the choice of a suitable
form function po(x)=exp( -cx  2) considerably improves the rate of the
convergence of the conventional matrix-continued fraction algorithm
pioneered by Risken and Vollmer (~2) and applied to various colored noise
phenomena by Jung and Risken. (1334)

A useful approximation scheme for the dynamics in (1.3) is the unified
colored noise approximation (UCNA). (15'16) Upon elimination of e(t) in
(1.3a) with the help of (1.3b) one obtains for (1.1) the flow of a nonlinear
oscillator, i.e.,

2 + 2  - ( 1 - 3 x  2) - ( x - x 3 ) =  ~ ~(t)

By use of the new time scale t = z ,  1/2t, w e  can recast (3.1) in the form

JC + ~(X, Z') 37 - -  (X - -  X 3) ----= D I / 2 ~ ( @ / 2 t )

with

(3.1)

(3.2)

7(x, z) = r 1/2 + zl/2( _ 1 + 3x 2) (3.3)

of x space for which 7(x, z ) > 0 ,  the nonlinear dampingIn regions
approaches infinity both for v -~ 0 and r ---, oo. Neglecting for large ~ the
velocity variations (i.e., 2 = 0 ) ,  we find that the non-Markovian flow in
(1.1) is approximated by a truly one-dimensional Markovian process
obeying the (Stratonovich) stochastic differential equation (15J

-~ = 7 - 1 (  x ,  Z ) ( X  - -  X 3) + Z - 1/4D1/2 7 - l (x ,  z') ~ ( t )  (3.4)

with (~(i) ~(i ' ))  = 26(3-  i').
The corresponding approximate stationary probability/SUCNA(x; Z) is

readily obtained as (15)

/sUCNA(X; V) = Z-1  l1 -- ~(1 -- 3x2)1 exp - ~ -~  ( x  - x 3 )  2

1
x exp I -  ~ ( - ~ - ~ )  1 (3.5)

This result precisely coincides with the stationary probability obtained with
the small-~ theory by F o x .  (17) However, the relevant Fokker-Planck
equation corresponding to (3.4) distinctly differs from the effective
Fokker-Planck approximation in ref. 17. For T< 1, /SUCNA(X;T) has a
support extending over the whole real axis. For ~> 1, however, the
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approximation fails to describe the exact probability/5(x, ~) in the region of
exponentially small but finite weight characterized by

z -  1) 1/2
Ixl < IXsl =- \ 3"c ] ' z > 1 (3.6)

Note that xc [see (2.5)] always lies inside the support of/5(x; z), i.e.,
]xc[ > [xs[ for any value of ~. Apart from this region of no support, the
UCNA provides a very accurate approximation to the exact probability,
even for noise correlation times ~ of order one (see Fig. 3) where 7(x, z) is
not extremely large. The result in (3.5) forms the key input for the
calculation of the escape time T at large noise color z ~ ~ .

Before we proceed in discussing the escape path for strongly correlated
noise, we take a look at the two-dimensional stationary probability
/5(X, 8) (2,14,18) The two-dimensional landscape provides further insight for
the escape mechanism from one domain of attraction to the other. For
small values of ~ the point (x = 0, e = 0) is a saddle point of the two-dimen-
sional probability and the most probable escape path crosses through this
point. A recent discovery by Moss (19) by means of analog simulation has
demonstrated the possibility of the existence of a critical correlation time
value to, at which the topology of the two-dimensional stationary
probability changes qualitatively. For values of r larger than the critical
value z0 the point (x = 0, e = 0) is no longer a saddle point, but rather
becomes a local minimum of the probability distribution. Thus, the escape
paths mostly avoid the region around (x = 0, e = 0), i.e., escape takes place
at larger values of e.

In the following we derive an expression for the critical value Zo above
which the point ( x = 0 ,  e = 0 )  is a minimum of the two-dimensional
probability. All symmetric potentials U(x) that admit at x = 0 a maximum
with nonvanishing curvature can be represented by studying the archetypal
form V(x) = - (a /2 )  x 2 + (b/4) x 4. The two-dimensional stationary
probability/5 obeys the Fokker-Planck equation

63;3 6 3 163 0 0 2
o x ( a x - b x 3 ) f i  - ~ x  e f i  + z -~e e f i  + - ~  -~e 2 /5 = O (3.7)

The statistical potential ~b(x, e) defined by

p(x, e ) -  exp(-~b(x, e))

obeys

63~ 1 ( a _ 3 b x 2 ) _ !  63r2 = -( a x - b x 3 + e ) ~ x + z -  z o~ Oe2 ~L63~J

(3.8)

= 0  (3.9)
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Unfortunately, an expansion of ~b(x, e) into powers of x and e does not lead
to a closed system of equations for the corresponding expansion coef-
ficients. An exception is the linear case (b = 0). Nevertheless, it is possible
to show the transition from a saddle point to a minimum. Inserting the
expansion

~(x, e) = , x  2 +/~2 + 7xe (3.10)

into (3.9) and comparing powers of x ~ and x% one obtains

1
fl = ~-~ z(1 - az) (3.11a)

D 7 2 =  2 a ~ + 3 b + ~  0 (3.11b)

The condition for (x = 0, e = 0) to be a saddle point (local minimum) is a
positive (negative) discriminant of (3.10), A(T)= 7 2 -  4~fl. Using (3.11), one
finds

T
d(z) = - ~  (2~ + 3bz) (3.12)

The critical value Zo follows from the identity A(ro)= 0, i.e.,

lc~l 1 , D 1
"Co = 2 ~-~ =a  + ~ 72(%) >~ a (3.13)

This relation shows the existence of a noise color-induced "saddle
minimum" transition of/~(x, e). The quantity 72 can be calculated explicitly
only in the linear approximation (b = 0), yielding 71i, = a(z/D)(1 -az). Sub-
stituting 72 with 7~. in (3.13), we obtain for small D an approximate
expression for to, i.e.,

1 3Db
Zo =-4a a 3 (3.14)

4. ESCAPE T I ME  FOR STRONG NOISE COLOR

Recalling the flow dynamics depicted in Figs. la- lc ,  we note that for z
large the particle moves rapidly into the neighborhood of the nodal curve
eT(x), (2.4), and then relaxes toward the corresponding stable node at
x =  _1. Conversely, for a particle starting at x = - 1 ,  its escape route
closely follows for z~> 1 the line er(x) up to the maximum at (xc, ec).
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Moreover, the region of (x, e) values bounded by the line e = 0 and the
nodal curve er(x) is visited only very rarely. The crossing of the separatrix
es(X; ~) thus occurs as z --* oo most likely within the immediate neighborhood
of (xc, e,.). Clearly, with z assuming small to moderate values, there exist
other escape paths which cross the separatrix at values of x much closer to
the saddle point. At finite ~, the distance of (xc, ec) from the separatrix
es(x; z) is finite {e.g., [es(Xc, r = 30) -ecJ /ec~0 .17} .  Therefore, with z
large but finite, the time T ( -  1; z) to reach the point (xc, e~) starting from
x = - 1  always underestimates the exact escape time (i.e., its reciprocal
overestimates the exact escape rate).

For very large z, the asymptotic behavior of the exact escape time is
estimated with the mean first passage time (MFPT)  for the spatial variable
x(t) in (3.4), to reach the critical value xc=  - l / x / 3 ,  when it started at
x =  -1 .  With x ~  - o o  being a natural reflecting boundary, the MFPT,
TUCNA(-- 1, Z), for the Fokker-Planck process in (3.4) is given by (7)

-11/./5 dx f x TUCNA(--1, Z)= f D(x) pUCNA(x) _ pOCNA(y) dy (4.1)

where [see Eq. (3.4)]

D(x)=D(1 +z(3x  2 -  1)) -2 (4.2)

Hereby, we already have expressed the escape time in the original, unscaled
time variable, i.e., T ( - 1 ,  z ) = r m i ? ( - 1 ,  r). For weak noise D ~  1, the
second integration in (4.1) can be evaluated within a steepest descent
approximation

TUCNA(__I,.C)~ [gn(l+2T)]U2exPC4___j~)f~l/./~ dxn(x) pUC~(x) (4.3)

The integral in (4.3) is dominated by values at the upper boundary
x ~ xc = -l /v/-3.  The diffusion is slowly varying compared to the inverse of
pucNa(x). Setting D(x) -~ D(xc) = D, we obtain

" ~  ~ ~/-H dxTUCNA(--1, r),,~[--~(I+2z)]'/2exp(~----~)f--I fiUCNA(x) (4.4)

With an exponential first-order approximation to the integral in (4.4) at
x = xc we find for the large-z asymptotics at weak noise

1 4 TUCNA(--1, Z--*oO)~I~-~rcD('r+I)]I/2exp[-~(-~+-~Z)] (4.5a)
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In terms of the unscaled variables [see (1.1)] this result reads

TUCNA(--1,,~oO)~L8Voa2 aT+ e x p L ~ - ~ + 8 a r  (4.5b)

where V0 = a2/4b denotes the barrier height.
This asymptotic result can now be compared with the exact numerical

calculations for the smallest nonvanishing eigenvalue ,~(~) of the nonsym-
metric Fokker-Planck operator corresponding to the two-dimensional
Markovian dynamics in (1.3). Such an eigenvalue is (at weak noise) related
to the rate of escape F(~) by F(~)= 1 / [2T(-1 ;~) ]  =21(~)/2. Jung and
H/inggi (n) have recently performed these detailed calculations using an
improved matrix continued fraction method. 21(~) turns out to be real for
all values of r considered. The precise numerical results for 2](z) are

D=0.2
-II

-4 D=0.1

4

-7 D=O.05

-1o i ~ D0 lID 50
-11

=0.03
-12

0 .2  .4 .fl , a  l .O  1 ,2

"C

Fig. 4. Eigenvalues (numerical error <0.1%) of the two-dimensional Fokker-Planck
operator corresponding to (1.3). The arrows indicate the eigenvalues for z =0, calculated
approximately with the steepest descent method. The inset shows the D dependence of ~ [see
Eq. (4.7)].
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plotted in Fig. 4 at various weak noise intensities for small to moderate
noise color, being the physically relevant regime of correlated noise. For
very small noise color we observe a behavior of the form tH)

2 1 ( r ) = 2 ( 0 ) [ 1 - / ~ ( D ) r  ], ~ 0 ,  r /D~I  (4.6)

with a weakly D-dependent fl value (/~ = 1.33 at D = 0.05;/~ = 1.44 + 0.02 at
D = 0.03). We note that the domain of validity of the smaU-z behavior (4.6)
gets smaller with decreasing D; this is in contrast to the familiar argumen-
tation given for the small-z theories that Dr alone is a small quantity. Out-
side this small-~ domain, there occurs an interesting but complex crossover
to a behavior for moderate z ~ O ( 1 )  that is well represented by an
exponential law of the form ~1~)

21(z) ~: exp( -~z /D) ,  T>0.2  (4.7)

The weakly D-dependent coefficient ~ is shown in the inset of Fig. 4. The
behavior in (4.7) is in qualitative agreement with the decoupling
theory. ~16'2~221 For  small D, and ~ O ( 1 ) ,  we find ~ 0 . 1 ,  whereas the
result in (4.5a) predicts a value ~a~=l im~l imD~oDd[lnT(z)] /&,
which reads 3

~as = 2/27 = 0.074, a = b = 1 (4.8)

It must be emphasized, however, that for weak noise a small error in the
coefficient ~ affects significantly the value of the slope of - d  In 21(z)/dz; i.e.,
a minor error in ~ strongly enhances the error for the escape rate
F(~) = ,~1(~)/2.

The asymptotic result in (4.5) with 2ucNA(T)- [TUCNA( - 1, ~)]-1 is
compared in Fig. 5 with the numerical results (D=0.05)  at small to
moderate noise color ~ ~< 1.3. As is evident, the result in (4.5) is indeed an
asymptotic one: Although the slopes of the two curves are quite close, the
value of 21(z ) itself slowly approaches the exact result (4.5), valid at large z.

3 This asymptotic result has also been derived by Luciani and Verga. (23,24) These authors
employ path integral techniques for a bistable system with a pieceweise linear flow. If their
results are adapted to our Ginzburg-Landau  flow in (1.3a), one finds from their Eq. (66) in
ref. 24 that

T ( z ) = n  r exp z + 7 ~ + ~  z 1 as ~--*oo

i.e., ~a~ = 2/27. This same asymptotic value for ~as has been found later by Tsironis and
Grigolini (25) using an adiabatic potential argument.  If we set T(z) oc exp[(1/4D)(4%sz + ~)],
as z ~ ~ ,  we find in this work K =4 /9  ..~ 0.44; Luciani and Verga obtain K = 601/729 and
Tsironis and Grigolini have ~: = 0.
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Fig. 5.
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Comparison of the numerical result for the smallest eigenvalue 21(~) (error < 0.1%)
(solid line) with the asymptotic prediction (dashed line) (4.5) for D = 0.05.

Accurate calculations of the smallest eigenvalue ~I('E) for r >> 1 and at weak
noise, however, are beyond our computational possibilities.

5. C O N C L U S I O N S

In the preceding sections we have focused our investigation on the
influence of strong noise color in the bistable dynamics in (1.1). The main
results have been the form of the separatrix as z ~ ~ ,  (2.7), the noise-
color-induced "saddle ~ minimum transition" of/~ at a critical value T0
[see Eq. (3.14)], and the asymptotic expression for the escape time in (4.5).
Evidence for the saddle-minimum transition has been recently produced by
analog simulations/19) Although the limiting behaviors for r ~ 0, (4.6), and

~ ~ ,  (4.5), are interesting for themselves, the practice of colored noise
phenomena (1~) generally dictates a parameter regime different from such
asymptotic regimes. Typically, the noise intensity is rather weak
[D,-~O(10-2-10-1)]  and the physical noise color amounts to dimen-
sionless values of O(10-1-10). Thus, with D,-~10 -2, the small-r
asymptotics in (4.6) limits the noise color to very small ~ values, r ,~ 10 -2.
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Likewise, the large-3 asymptotics in (4.5) sets in only for ~ >f 10 2 (see also
Figs. 4 and 5). Although the decoupling theory (2~ provides qualitatively
correct insight in the intermediate regime, i.e., v~O(1) ,  we still lack a
quantitative theory describing the numerical results.

A theory describing this very intermediate regime will be rather com-
plex: With the noise color approaching finite values of order O(1 ), the most
likely escape paths shall deviate with decreasing 3 J, O(I) more and more
from the nodal line given by (2.4). The most probable crossing point of the
separatrix will be shifted toward smaller x values around x ~ 0. Put dif-
ferently, the actual escape time becomes dressed by large-amplitude (path)
fluctuations describing the deviation from the asymptotic escape path at
3 ~> 1. Thus, a more detailed quantitative theory (e.g., see refs. 23 and 24)
modeling moderate noise color 3 must account for these path fluctuations
which modify the exponential part in (4.5), i.e., the coefficient ~s ,  as well
as the prefactor.

The numerically established laws (4.6) and (4.7) have a limited range
of validity in 3; with (4.6) for 3 ~ 0 ,  (4.7) at moderate 3, and (4.5) as

--. ~ ,  there must exist at least two nontrivial crossover regimes. A first
one describes a smooth crossover between 3 ~  O(10 -2) toward moderate
values 3~O(1) ,  while a second one must describe a slowly varying
crossover from the behavior in (4.7) with ~ 0 . 1  toward the asymptotic
regime with a = a~ ~ 0.074 as 3 ~ ~ .  For weak noise, this second crossover
regime is characterized by a slow convergence to the limiting asymptotic
law in (4.5); it implies a very small positive curvature in the plot of
In 21(3), v ~> 1, which in fact can be detected already in Fig. 4 with D ~> 0.1.
This very same small positive curvature in In 21(3) is also present in the
numerical analysis of the colored-noise-driven dynamics in a periodic,
multistable potentialJ 22)
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