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For a nonlinear stochastic flow driven by Markovian or non-Markovian colored noise
~(t) we present the path integral solution for the single-event probability p(x, t). The
solution has the structure of a complex-valued double path integral. Explicit formulas
for the action functional, i.e., the non-Markovian Onsager-Machlup functional, are de-
rived for the case that ~(t) is characterized by a stationary Gaussian process. Moreover,
we derive explicit results for (generalized) Poissonian colored shot noise ~(t). The use
of the path integral solution is elucidated by a weak noise analysis of the WKB-type.
As a simple application, we consider stochastic bistability driven by colored noise with
an extremely long correlation time.

1. Introduction

Some years ago, we have witnessed a considerable
activity [1-5] on the path integral solution for the
Fokker-Planck equation (see e.g. the collection of re-
ferences in Chap. VII of [-1]). The fundamental role
of path integral approaches has its bearing on the
possibility for systematic, nonperturbative treatments.
The use of a functional integral approach seems par-
ticularly important for non-Markovian processes for
which the standard (Fokker-Planck) techniques are
not readily applicable [6, 7], and good approximate
solutions are difficult to obtain E8]. In the following
we shall consider nonlinear, non-Markovian Lange-
vin equations for a state variable x(t), i.e. stochastic
flows of the form

2 = f (x) + g (x) ~ (t). (1.1)

Here, the random force ~(t) is a non-white stochastic
process such as for example a non-Markovian or
Markovian Gaussian process, or a generalized Po-
issonian shot noise process. ~(t) is of vanishing mean
and possesses a finite correlation

(~( t )  ~(s ) )  = D . ( t -  s). (1.2)

The constant D, i.e.

2 D -  ; I (~( t)~(0)) ldt  (1.3)
- o o

is a measure of the noise intensity. With ~ (t) being
a Fokker-Planck process the non-Markovian Lange-
vin equation in (1.1) can be embedded into a multidi-
mensional Fokker-Planck dynamics. An important
situation is the case of ~(0 being an Ornstein-Uhlen-
beck process, i.e.

2 = f (x) + g (x) ~ (t), (t.4 b)

4= ~_+ ]/D ~w(t) (1.4b)
T 2"

with ~w(t) being Gaussian white noise (~w(t)~w(S))
=26(t-s). In other words, the correlation in (1.2)
becomes a pure exponential

(~ (t) ~ (0)) = D exp ( - ] t]/~). (1.5)
2"

Another important case is the Markovian oscillator
dynamics, i.e.

2 = f (x) + g (x) ~ (t), (1.6 a)
~=v, (1.6b)

(~= -eo2 ~ -  Tv + ~D ~w(t) (1.6c)
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yielding 

D 
(~(t) ~(0))= ?c~176 2 exp( -  89 [t[) 

-{cos(~o~ t) + ~  sin(~ol I t I)} (1.7) 

]22 
where o) 2 =co2--~  -. In both cases Eq. (1.4), Eq. (1.6), 

the Fokker-Planck dynamics for the pair (x(t), ~(t)) 
does not obey detailed balance and the diffusion ma- 
trix does not possess an inverse. The latter property 
implies that the integration measure for the path-inte- 
gral representation of the multi-dimensional Fokker- 
Planck process becomes a singular (6-function like) 
quantity [4] which makes it thus difficult to obtain 
explicit solutions or approximations of the WKB- 
type. In the following we shall elaborate on the path- 
integral solution for the non-Markovian process x(t) 
in (1.1). In doing so, we need not to make reference 
to an underlying, eventually infinite-dimensional sub- 
dynamics of the type discussed in (1.4b), or (1.6b), 
(1.6c). Another advantage with a non-Markovian 
(NM) path integral representation lies in the fact that 
with a finite correlation time a lattice discretization 
involving increments (dXNM) 2 a r e  of order e 2, where 
e=(t-to)/N is the infinitesimal time step. Thus, in 
contrast to the Markovian (M) case there is no need 
to expand to second order, where (dxM)ZOc& More- 
over, with colored noise one obtains smooth sample 
paths [6] and therefore the result of the functional 
representation of the probability p (x, t) is independent 
of the discretization scheme [6, 9]; i.e. no problems 
of the type of the Stratonovitch-versus-Ito-interpreta- 
tion do arise. 

The paper is organized as follows. In Sect. 2 we 
consider a one-dimensional, non-Markovian Lange- 
vin equation driven by multiplicative colored noise. 
We derive a general result for the path-integral solu- 
tion and subsequently present explicit results for 
Gaussian colored noise and generalized Poissonian 
colored shot noise. In Sect. 3 we discuss the weak 
noise analysis, D ~ 0. Finally, in Sect. 4 we present 
the result for the multidimensional case and elaborate 
on limitations and straightforward applications of the 
non-Markovian path integral formulation. 

2. Path integral solution for colored noise 

We now consider a solution of (1.1) in terms of the 
realizations of x(t). Let to denote the initial time of 

preparation. With e denoting the infinitesimal time 
step 

(t --  to) 
e= N ' N ~  (2.1) 

we set for (1.1) the difference equation 

x, - x , _ ~  - f  (2n)+ g(2,) {," (2.2) 
8 

Hereby, we set x, = x(t,), t, = to + n e, and the notation 
2, stands for the symmetrized approximation 

(2.3) 

while 

t n 

3, = e- 1 ~ ~ (s) d s. (2.4) 
t n -  1 

With this discretization scheme, Eq. (2.2) is accurate 
to order e 2. Moreover, the symmetric choice implies 
the correct transformational properties if we make 
a change of variables x-~y(x). If we sum Eq.(2.2) 
from i = 0  to i=n we find with X(to)=X o for the reali- 
zation x(t) the approximation 

Z 
x, = x0 + a L [f()~) + g(2~) ~]" (2.5) 

i = 1  

/Ox,\ 
For the Jacobian Y,~)=[Ox,/O~,l  we thus obtain 

J. (Ox"]=e[f'(2,)+g'(2,)4,] 1j,+ I g 0Z,)l e 

=elg(2,)l[1-  89 -1, (2.6) 

where the prime indicates a differentiation after x. 
For  the probability of the discretisized realization 

we write 

. . . ,x,,xo)=p(~, ..., ~,) J[~xl (2.7) p(xl, 

where 1 

n 

t o x j  ,=, [ar  
(2.8) 

and P(~I, -.., r is the multivariate probability of the 
random noise ~(t). Following the reasoning of Phyth- 

In writing (2.7), we implicitly include multiple contributions that 
occur for possible multiple roots of the equation ~,=F[x~]; i,e. 
such possible multiple contributions are incorporated into the inte- 
gration measure 



ian [9], we evaluate this Jacobian by use of the ma- 
trix-identity for the determinant (Det) 

Det [ I -  M]  = exp {Tr l n ( I -  M)} 
= e x p { T r ( - - M - } M  2 -  ...)}, (2.9) 

where I denotes the unity matrix. Thus, we have from 
(2.6) 

J =e-N 1~ Ig(xi)1-1 
i = 1  

tl .exp- 89 e[f'(2,)+g'(2,)g-'(2,)(x'-? '-' 
(2.10) 

Hereby, we do assume that g(x) is not vanishing, i.e. 
from (2.2) we can solve for ~-i 

~i= g-1 (~i)[x~-? ~-~ f(2~)]. (2.11) 

Note that in (2.10) we have expanded only to first 
order in e because contributions of order M 2 are of 
order e 2. 

The general (Markovian or non-Markovian) noise 
~(t) of vanishing mean is being characterized by its 
multivariate characteristic function 

N ), (2.12) 

which can be inverted to give 

C N 

P(#I . . . . .  ~,)= (~)N S... S dz, ...dz, 

Z(eZl, . . . ,ez , )exp ie z , ~ , .  
\ n = l  / 

(2.13) 

Apparently, in the limit N--*oo, i.e. e ~ 0 ,  Eq. (2.12) 
approaches the curtailed characteristic functional 
[10] 

Z[z] =<exp-- i  ! ~(s)z(s)as). (2.14) 

For the initial conditional probability R(x t lXo) of the 
non-Markovian process we therefore obtain from 

N - 1  

R(xt]xo)=~ I~ dxip(xN=x,-",xtlxo), (2.15) 
i = 1  
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and the substitution of (2.13, 2.11, 2.8, 2.7, 2.6) into 
(2.15) the double path-integral solution 

x(t) = x l~[t~\ 
R(xtlxo)= ~ ~x(t)~@ ( ~ )  zEz] 

x(to) = xo 

-exp i i d s z (s) {2 (s) - f  (x (s))}/g (x (s)) 
\ t o 

t 

�9 exp(--  89 ! ds[f'(x(s))+g'(x(s)){2(s)-f(x(s))}/g(x(s))]). 

(2.16) 

Hereby, we introduced the integration measures 

i N- 1 \ 1 t \ 
@x(t)= lira { 1-[ dx,)expl-e- '  ~ ln[g(x(s))ld ,) 

N~~176 \i= l / \ to 
(2.17a) 

and 

= lim (2.17b) 
N ~ o o  i = 1  27c 

With g(x)= 1, (additive noise) our general result in 
(2.16) simplifies 2 to give 

x(t)= x ( Z2(t)) R(xtlxo)= ~ ~ x ( t ) ~  Z[Z] 
:,(to) =xo 

t t 

(2.18) 

Next we consider two important special cases for the 
colored noise ~(t). 

2.A. ~(t): General Gaussian noise 

The characteristic functional of a general (Markovian 
or non-Markovian) Gaussian process of vanishing 
mean and correlation Eq. (1.2) reads [10] 

( D i d u i dsz(u )a(u_s)z(s)) Z [z] = exp 2 to ,o (2.19) 

2 Note that with g(x)+0 the multiplicative flow in (1.1) can be 
transformed in additive noise by setting x ~ y = ~ g- 1 (u) d u 
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Thus, upon a rescaling of z~z /D  we have for (2.16) 
the central result 

R(xt[xo)= ~ @x(t)5 ~ ( 2 ~ D )  ex p 
x(to)=xo 

(2.20a) 

where the complex-valued action functional (non- 
Markovian Onsager-Machlup functional) reads 

(2(s)- f (x(s))) Z(S) S[x, z] = ' - i  j ds 
,o g(x(s)) 

+  8 9  i dsz(u)a(u-s)z(s) 
to to 

D + 2 i ds[f,(x(s)) . . . . . .  [2c(s)-f(x(s)),] ,o *gtxt  't  -)J (2.20b) 

For additive noise, i.e. g(x)= 1, and exponentially cor- 
related Gaussian noise, a ( t ) = z -  1 exp- ] t l / z ,  i.e. ~(t) 
an Ornstein-Uhlenbeck process, see Eq. (1.4), the re- 
sult in (2.20) has been presented previously in [111 
by use of a rather complex method involving 6-func- 
tionals for functionals F [Q] of the time s on the inter- 
val in (to, t) [12], i.e. F [Q] = ~ ~ x  F [x] 6 [x--  Q]. 

2.B. ~(t): Generalized colored shot noise 

Let us consider stationary, generalized shot noise 
composed of pulse functions h(t), with h(t)= 0 for t < 0 
and pulse area 

co 
j h(t)dt=H. (2.21) 
0 

We shall assume that the pulses occur at Poissonian 
arrival times {t~} which are distributed with a density 
q(t)=2exp-2t.  The generalized shot noise is then 
given by 

(t) = ~ a~ h (t-- h)- (2.22) 
i 

The set {al} are random variables which are indepen- 
dent of {h}, and independent among each other. The 
random variables are distributed with a common 
probability re(a) obeying (a}  = 0, i.e. ~(t) is of vanish- 
ing mean. The cumulant averages, (~(t,)...~(tx)}c, 
t, __> t,_ i >--- > tl read explicitly [101 

(~(t.)...~(tl))c=2(a"} ~ h(t.+s)...h(tl+s)ds. (2.23) 
--t 1 

l ( t )  J 
[i  

Fig. 1. Realization of colored Poissonian shot noise, Eq. (2.26), with 
its pulse function h(t) depicted in the inset 

In particular, the correlation function reads 

(~(t + ~) ~(t))=2 (a 25 ~ h(z +u) h(u)du 
0 

(2.24) 

which with (a  2 } ocD is of the form in (1.2). 
The characteristic functional is also explicitly 

known [10, 13], and reads 

Z[z] =exp  (2 i as  
\ to 

�9 - 1 +  dar~(a)exp ia  5 duz(u)h(u-s) .(2.25) 
-- co to 

Considering the usual shot noise [141 

I ( t )=~h(t - t , )  
i 

(2.26) 

whose realization is depicted in Fig. 1, we find with 
~(a) = 5(a-  1) for shot noise {i(t) of vanishing mean 

r = I( t ) -  2H, (2.27) 

with the correlation function 

oo 
( ~ I  ( t )  ~ 1 ( 0 ) }  = )~ i h ( t  + u) h (u)  du. ( 2 . 2 8 )  

0 

Thus its characteristic functional simplifies to give 

  z =(oxp 
to 

to 0 
(2.29) 

The substitution of (2.25) or (2.29) into (2.16) then 
yields the explicit path integral solution for general- 
ized colored shot noise. 



With the scaling z ~ z/D, a WKB analogue of the 
form (2.20) with S [x, z] being of order O (D) does gen- 
erally not exist. It is readily seen from (2.29) that the 
scaling z ~z/D introduces singular terms D-"  with 
n >  1. Formally, such a form exists for generalized 
shot noise of the type in (2.22), however, when 
(a")vcD "-~ for all n > l .  For the remainder of the 
paper, we shall now restrict ourselves to Gaussian 
noise forces only. 

3. Weak-noise analysis 

With g(x)#0,  we restrict without loss of generality 
the discussion to additive noise only. The result for 
the conditional probability in (2.20) is then in a suit- 
able form for a weak noise analysis, i.e. D ~ 0. With 
g(x) ~- 1, we now invoke the multi-dimensional saddle 
point method. To leading order in the noise strength, 
the action functional S O Ix, z] in (2.20) reads 

S~ =1 i du i dsz(u)a(u-s)z(s) 
to  to 

t 

- i  ~ ds[2(s)-f(x(s))] z(s). (3.1) 
to 

The equation for the extremal path Q ( s ) -  (x~ (s), z, (s)) 
satisfies 

6S ~ = 0  (3.2) 

i.e. 

t 

+ (i z(s) ofox(s)(x(s)) ~-i~(s))fx=O. (3.3) 

The extremal path (Xe(S), Ze(S)) thus satisfies the equa- 
tion of motion 

U z~-  Oxe z,, (3.4a) 

2e= f(x~)--i i a(S--U) Ze(U ) du, (3.4b) 
to 

and the boundary conditions are given by 

Xe(tO)-=X 0 , Xe(t)=x. (3.4C) 
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With this equation of motion, the extremal action 
becomes from (3.1) solely a function of ze(t ) 
-ze(t; x, Xo); i.e. 

S~ zJ = -  89 i ds i duz~(s) a(s-u)ze(u)" (3.5) 
to to 

For the Gaussian fluctuation analysis we follow stan- 
dard methods [15, 16]. By setting x=x~+ul, z=z~ 
+ u2, and expanding S o [x, z] up to second order we 
find after Gaussian integrations, and the definition 

W-= ] Det 62 S O [xe, Ze] [ 
= ~ ~[ a 2 s ~  \ l  

Qx=x~, Q2=z~; i,j=1,2 (3.6) 

the WKB-type approximation for R(xt[xo), i.e. with 
(2.20b), (3.5) 

,/2(ze(t)) '/2 ( s~ Q] ) 
- -  exp - . R ( x t l x o ) = ( 2 n D W ) -  Ze(tO) 

(3.7) 

An alternative approach consists in transforming the 
complex-valued functional in (2.20) into a real-valued 
functional. In doing so, one must integrate out the 
z-path integration in (2.20 a). This suggestion has been 
made by Phythian [9], who introduces the (left) in- 
verse a -1  (v-s) ,  obeying (see also Ref. 17) 

t 

S dsa- l (v-s)a(s-u)=6(v-u)  �9 (3.8) 
to 

Thus, the result in (2.20) can (formally) be recast as 
a single, real-valued path integral 

x(t) = x ( t )) 
R(xtlxo)= ~ ~ x ( t ) e x p  --  89 ~ dsf'(x(s) 

X ( t o ) =  Xo \ to 

1 ! du i dsa_l(u_s) " e x p - ~ t  ~o 

�9 (2(u)-f(x(u))(2(s)-f(x(s))). (3.9) 

The memory in (3.9) clearly exhibits the non-Marko- 
vian character induced by colored noise, Eq. (1.2). 
Equation (3.9) yields from the corresponding action 
functional for the extremal path xe(s) the equation 
of motion 

f '  (x e (s)) i a - '  (s -- u) [2e (u)-- f (Xe (U))] d u 
to 

d ' 
+ ~ t! or-1 ( s -  u) [2e ( u ) - f  (xe (u))] d u = 0 (3.1o) 
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which with xe(to)=Xo, xe(t)=x, is not at all simple 
to solve. Moreover, generally, even the operator 
o--1 ( u - s )  is not readily constructed. Therefore, a for- 
mulation of the form Eqs. (3.8)-(3.10) does not pro- 
vide any simplification in practice. 

Finally, with ~(t) being a Markovian (Fokker- 
Planck) process, such as in (1.4) and in (1.6), we like 
to point out another pitfall: With the Onsager-Mach- 
lup functional for the Ornstein-Uhlenbeck process in 
(1.4, 1.5) given by [1-5] 

holds, the transformation, ))i =g/~l 2, yields a non- 
Markovian flow with additive noise forces only. Thus, 
for the non-Markovian Langevin equations 

2i=f(x)+{i( t  ) (4.3) 

we obtain with colored Gaussian noise 

(~i (t) ~j(s)) = D ~ij(t-- s) (4.4) 

s [r = ~ (~ ~ + ~):, (3.11) for the generalization of (2.20) the multidimensional 
non-Markovian Onsager-Machlup functional 

or for the Markovian oscillator process ~(t) in 
(1.6, 1.7)(see [4]) 

�9 1 ,~  ~ s[r =~(r162 ~ r (3.12) 

respectively, one is tempted to construct the corre- 
sponding non-Markovian action-functional in (2.20) 
for the non-Markovian process in (1.1) by simply 
substituting, via a subsequent differentiation of 
(1.1), the l-dynamics in (3.11, 3.12), by the related 
dynamics of x (t), i.e. ~ (t) = (2 - f  (x))/g (x), 
~(t) = [(5d- f '2)  g - ( 2 - f )  g'2]/g2(x), etc. By doing so, 
however, one formally introduces unknown, addition- 
al constants of integration. In particular, the corre- 
sponding equation of motion for the extremal path, 
xe(t), is readily seen to be a fourth-order nonlinear 
differential equation for xe(t) in the case of (1.4), and 
a sixth-order nonlinear differential equation for xe(t) 
in the case of (1.6). With the only known two bound- 
ary condition given in (3.4c), we are thus left with 
no complete set of boundary conditions for the extre- 
mal path. This fact clearly reflects the loss of informa- 
tion introduced upon the formal differentiation of 
(1.1). 

4. Generalizations, applications, and conclusions 

All of the foregoing discussions can naturally also 
be generalized to multidimensional non-Markovian 
flows of the type 

2~=f~(x)+ ~, g=i(x)~,(t). (4.1) 
i = 1  

Moreover, if the condition [5c, 18, 19] 

g2e 1 _ 0 g~-~l 
t?x~ ~x e 

(4.2) 

Six,  z] = - i  i ds zi(s)[2i(s)-fi(x(s)) ] 
t o  

D t t?f/(x (s)) 
+ 89 i du f dszi(u)au(u-s)zi(s)+ ~ 5 ds ax i 

to to to 

(4.5) 

wherein the standard summation convention over 
equal indices is implied. 

From a practical point of view, the path-integral 
formulation put forward in Sect. 2 has its use in non- 
perturbative, e.g. "instanton-like" treatments, such as 
the weak noise analysis in Sect. 3. Clearly, with Gaus- 
sian colored noise forces ~(t) of the type in (1.4), or 
(1.6), a corresponding weak noise analysis in the cor- 
responding Markovian multi-dimensional phase 
space is certainly more complex, due to the presence 
of a singular diffusion matrix [4] which in turn im- 
plies the highly singular path integration measure. As 
a simple illustration let us consider a bistable flow, 

2 = f (x) + g (x) { (t) (4.6) 

where with x 1 < X 2 < X3 ,  f (xl)  = f(x2) = f(x3) = 0, and 
xl,  x3 are locally stable states, i.e. f ' ( x 0 < 0 ,  f'(x3) 
< 0, while x2 is a locally unstable state with f '  (x2)> 0. 
Moreover, we assume that {(t) is Gaussian with a 
large correlation time 

; [ <~(t) ~(0)> I d t  
o (4.7) z - <~2) - - ' ~ ,  

and extremely slowly varying correlation, i.e. with 
/~>0 

D - - -  as T~oo .  (4.8) <~(t) 4(0)> = (~2(o)>-  r  



Then, one readily finds from (3.4, 3.5), for the asymp- 
totic leading part of the extremal action S e, as z ~ oo, 
the result 

f (x)  2 (4.9) S~176176189 g(x) " 

The notation (+)  indicates that the particle has 
started out at xl < x2 with the maximum of the abso- 
lute value If/gl taken over the interval (xl, x2), while 
( - )  indicates the reverse situation with the particle 
starting out at x3>x2,  and the maximum of If/gl 
taken over (x2, x3). Therefore, the forward rate F + 
and the backward rate F - ,  respectively, assume for 

~ oo the asymptotic behavior 

F • oc exp - -  max • (4.10) { 7 ;  fl f(x) 2"~ 
g(x) J" 

The result in (4.9) presents a generalization of the 
asymptotic study for stochastic bistability being driv- 
en by the additive Ornstein-Uhlenbeck process 
Eq. (1.5) (i.e. fi = 1) in [11] to a general (Markovian, 
or non-Markovian) process {(t) obeying Eqs. (4.7), 
(4.8), and general multiplicative noise g(x), with 
g(x) =t= 0 in (x,, x3). The result in (4.9) is also intuitively 
clear by noting that with {(t) extremely slow, we can 
set in (1.1) 2 g 0 ,  i.e. {(t) follows a Gaussian process 
with variance, a=Dz  -~, and with maximal mean 
value given by [ ({ (t)) I ~ max • ] f ig ], which must be 
overcome in order to reach the unstable state x2. 

In conclusion, we have presented the path integral 
solution for non-Markovian stochastic flows of the 
form in (1.1). Explicit results have been obtained for 
general colored Gaussian noise (Sect. 2.A), and gener- 
alized colored Poissonian shot noise (Sect. 2.B). From 
a practical point of view however, we suspect that 
- j u s t  as with the case of white noise (Fokker-Planck 
and master equations) discussed in [1-5] -,  use of 
non-Markovian path integral methods will not neces- 
sarily undergo a flurry. This is so because often alter- 
native, problem-specific methods [6-8] provide the 
same information more simply, as illustrated for ex- 
ample below Eq. (4.10). Also, the solution of equa- 
tions such as the extremal path solution in (3.4) usual- 
ly requires already extensive numerical methods. Nev- 
ertheless, the path integral formulation does in many 
cases provide additional insight. Moreover, it can be 
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utilized in non-perturbative approximation methods 
which are a priori not available otherwise (for exam- 
ple, see (3.7) in Sect. 3). 
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