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For a nonlinear stochastic flow driven by Markovian or non-Markovian colored noise
£(r) we present the path integral solution for the single-event probability p(x, 1). The
solution has the structure of a complex-valued double path integral. Explicit formulas
for the action functional, i.e., the non-Markovian Onsager-Machlup functional, are de-
rived for the case that (¢) is characterized by a stationary Gaussian process. Moreover,
we derive explicit results for (generalized) Poissonian colored shot noise £(f). The use
of the path integral solution is elucidated by a weak noise analysis of the WKB-type.
As a simple application, we consider stochastic bistability driven by colored noise with

an extremely long correlation time.

1. Introduction

Some years ago, we have witnessed a considerable
activity [1-5] on the path integral solution for the
Fokker-Planck equation (see e.g. the collection of re-
ferences in Chap. VII of [1]). The fundamental role
of path integral approaches has its bearing on the
possibility for systematic, nonperturbative treatments.
The use of a functional integral approach seems par-
ticularly important for non-Markovian processes for
which the standard (Fokker-Planck) techniques are
not readily applicable [6, 7], and good approximate
solutions are difficult to obtain [8]. In the following
we shall consider nonlinear, non-Markovian Lange-
vin equations for a state variable x(t), i.e. stochastic
flows of the form

X=f(x)+g(x) (). (L.1)

Here, the random force £(t) is a non-white stochastic
process such as for example a non-Markovian or
Markovian Gaussian process, or a generalized Po-
issonian shot noise process. £(t) is of vanishing mean
and possesses a finite correlation

M6 =Do(t—s). (1.2)

The constant D, i.e.
2D= | [K@)EWO)]de (1.3)

is a measure of the noise intensity., With &(¢) being
a Fokker-Planck process the non-Markovian Lange-
vin equation in (1.1) can be embedded into a multidi-
mensional Fokker-Planck dynamics. An important
situation is the case of £(z) being an Ornstein-Ublen-
beck process, i.c.

£= () +80) €00, (14b)
-t (14b)

with £,(f) being Gaussian white noise (&,(2) £,(s)>
=20(t—s). In other words, the correlation in (1.2)
becomes a pure exponential

W EO)=" exp(~ ey (1)

Another important case is the Markovian oscillator
dynamics, i.e.

=100+ g(x) E0) (1.6)
é=v, (1.6b)
b= —wf&—yv+]/DE, ) (L69)
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yielding

D 1
<é(t)f(0)>=y—wg—eXp(—ﬂ 1)

-{cos(col r)+% sin(w, ItI)} (1.7

1

2
where ®? =w3—%. In both cases Eq. (1.4), Eq. (1.6),

the Fokker-Planck dynamics for the pair (x(z), £(¢))
does not obey detailed balance and the diffusion ma-
trix does not possess an inverse. The latter property
implies that the integration measure for the path-inte-
gral representation of the multi-dimensional Fokker-
Planck process becomes a singular (0-function like)
quantity [4] which makes it thus difficult to obtain
explicit solutions or approximations of the WKB-
type. In the following we shall elaborate on the path-
integral solution for the non-Markovian process x(f)
in (1.1). In doing so, we need not to make reference
to an underlying, eventually infinite-dimensional sub-
dynamics of the type discussed in (1.4b), or (1.6b),
(1.6¢). Another advantage with a non-Markovian
{(NM) path integral representation lies in the fact that
with a finite correlation time a lattice discretization
involving increments (dxxy)* are of order &*, where
e=(t—1tp)/N is the infinitesimal time step. Thus, in
contrast to the Markovian (M) case there is no need
to expand to second order, where (dxy)*oce. More-
over, with colored noise one obtains smooth sample
paths [6] and therefore the result of the functional
representation of the probability p(x, f) is independent
of the discretization scheme [6, 9]; i.e. no problems
of the type of the Stratonovitch-versus-Ito-interpreta-
tion do arise.

The paper is organized as follows. In Sect. 2 we
consider a one-dimensional, non-Markovian Lange-
vin equation driven by multiplicative colored noise.
We derive a general result for the path-integral solu-
tion and subsequently present explicit results for
Gaussian colored noise and generalized Poissonian
colored shot noise. In Sect. 3 we discuss the weak
noise analysis, D — 0. Finally, in Sect. 4 we present
the result for the multidimensional case and elaborate
on limitations and straightforward applications of the
non-Markovian path integral formulation.

2. Path integral solution for colored noise

We now consider a solution of (1.1) in terms of the
realizations of x(f). Let t, denote the initial time of

preparation. With ¢ denoting the infinitesimal time
step

s=(i;;—°), N—ow 2.1)

we set for (1.1) the difference equation

X, —X

e ~= (%) T8 (%) & 2.2)

Hereby, we set x,=x(t,), t,=t,+n¢, and the notation
X, stands for the symmetrized approximation

xnz%(xn'i'xn—l) (23)
while
£ =gt j £(s)ds. (2.4)

tn-1

With this discretization scheme, Eq. (2.2) is accurate
to order ¢2. Moreover, the symmetric choice implies
the correct transformational properties if we make
a change of variables x — y(x). If we sum Eg.(2.2)
from i=0 to i=n we find with x{t,)=x, for the reali-
zation x(t) the approximation

x,=xo+e& y, [f(&)+g&) &l (2.5)
i=1
: 0x, .
For the Jacobian J, 3t ): |0x,/0&,| we thus obtain

0
L(5E)=e L G+ @) G L+ a(E e

=elg@)[1—2e(f (F)+gF) &), (26)
where the prime indicates a differentiation after x.

For the probability of the discretisized realization
we write

a¢
Plsss sl =plE 81| 3] )
X
where!
0] & -1 9%
o5 29
and p((y, ..., £,) is the multivariate probability of the

random noise £(t). Following the reasoning of Phyth-

U In writing (2.7), we implicitly include multiple contributions that
occur for possible multiple roots of the equation &,=F[x,]; ie.
such possible multiple contributions are incorporated into the inte-
gration measure



ian [9], we evaluate this Jacobian by use of the ma-
trix-identity for the determinant (Det)

Det[I—M]=exp{TrIn(I—M)}
=exp{Tr(—M—1M*-_..))}, (2.9

where I denotes the unity matrix. Thus, we have from
(2.6)

1|5e]- ‘”H|g(x)| !

exp—} Yol )+ (g )

~re)|

(2.10)

Hereby, we do assume that g(x) is not vanishing, i.e.
from (2.2) we can solve for &,

—tpgyf KT Xi-1 =
A | o)

Note that in (2.10) we have expanded only to first
order in & because contributions of order M? are of
order &2,

The general (Markovian or non-Markovian) noise
£(t) of vanishing mean is being characterized by its
multivariate characteristic function

N
xlezy, ...,sz,,]E<exp——ie > zn§n>, (2.12)
n=1
which can be inverted to give
Eroer) =y [ fdzy..d
o, ..., =G z¢...dz,
N
x(ezy,...,€2,) exp(is Y z, 5,,). (2.13)
n=1

Apparently, in the limit N -0, ie. e—0, Eq.(2.12)
approaches the curtailed characteristic functional

[10]
X[z]=<exp—i | i(s)z(s)ds>.

to

(2.14)

For the initial conditional probability R(xt]x,) of the
non-Markovian process we therefore obtain from

N—-1

=[J] dx;p(xy=x, ...,

i=1

R(xt]xo) x| %o), (2.15)
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and the substitution of (2.13, 2.11, 2.8, 2.7, 2.6) into
(2.15) the double path-integral solution

x(t)=x

R(xt|xg)= |

x(to) =Xo

ax()] @( )x[ 2
~exp(i i dSZ(S){X(S)—f(X(S))}/g(X(S)))

-eXp (—% FdsLf Ce(s)+g Ce(sN{X ) —f(x(s)}/g(x (S))])-

(2.16)

Hereby, we introduced the integration measures

Zx(t)= lim (I\I]—_Ildxi>exp<—8_1 jtln[g(x(s))lds)

Nowo\j=1 to

(2.17a)
and

N odz,

2(O\ _ .. i
SO P |
9(2n) Nl}’l:oiﬂ 2n

With g(x)=1, (additive noise) our general result in
(2.16) simplifies? to give

(2.17b)

x{t)=x

Rixt]xo)= 5

x(to) =xo

a0 2(52) 12

oxp(i ] dsz(): 1 (+(0) exp(~%t£ (x(6) ds).

4]

(2.18)

Next we consider two important special cases for the
colored noise &(t).

2.A. &(t): General Gaussian noise

The characteristic functional of a general (Markovian
or non-Markovian) Gaussian process of vanishing
mean and correlation Eq. (1.2) reads [10]

t t

y[z]= exp<2 fdu [dsz(w a(u~s)z(s)) (2.19)

tg I

2 Note that with g(x)=+0 the multiplicative flow in (1.1) can be
transformed in additive noise by setting x > y= g~ *(w)du
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Thus, upon a rescaling of z — z/D we have for (2.16)
the central result

— o z(t) S[x, z]
R(xt]|x,) —x(to)j;xo Dx(t) j @(m) exp<_T)

(2.20a)

where the complex-valued action functional (non-
Markovian Onsager-Machlup functional) reads

S[x,z]=—1i jf ds (X(s)—f (x(s5))) z(s)

fo g(x(s))

+1 jt du f dsz(u)o(u—s)z(s)

Do asls N Ot AtI0))
+2£mpuwngmm(g@@ | e

For additive noise, i.e. g(x)= 1, and exponentially cor-
related Gaussian noise, o(f)=1" ' exp—|t|/7, i.e. £(£)
an Ornstein-Uhlenbeck process, see Eq. (1.4), the re-
sult in (2.20) has been presented previously in [11]
by use of a rather complex method involving é-func-
tionals for functionals F[Q] of the time s on the inter-
valin (to, ) [12], ie. F[Q]=[2x F[x] 6[x—Q].

2.B. &(t): Generalized colored shot noise

Let us consider stationary, generalized shot noise
composed of pulse functions A(t), with h(¢)=0 for t <0
and pulse area

}oh(t) dt=H. (2.21)

We shall assume that the pulses occur at Poissonian
arrival times {t;} which are distributed with a density
q(t)=Aexp—At. The generalized shot noise is then
given by

0= ah(t—t,). (2.22)

The set {a,;} are random variables which are indepen-
dent of {t;}, and independent among each other. The
random variables are distributed with a common
probability n(a) obeying {a)=0, i.e. £(¢) is of vanish-
ing mean, The cumulant averages, <{&(t,)...&(t,)).,
t, =t =...21; read explicitly [10]

&t £t =ALa") }Oh(tn+8)---h(t1+8)d5- (2.23)

—t

h(t)

(1)

N LON

Fig. 1. Realization of colored Poissonian shot noise, Eq. (2.26), with
its pulse function h(t) depicted in the inset

In particular, the correlation function reads

CE@E+1) EQ)> =1{a%> fh(r+u)h(u)du (2.24)

which with <a*)oc D is of the form in (1.2).
The characteristic functional is also explicitly
known [10, 13], and reads

x[z]l=exp (/1 j't ds

to

-[— 1+ f dan(a) exp{ia f du z(w) h(u—s)}]). (2.25)

—© to
Considering the usual shot noise [14]

I®)=) hit—t) (2.26)

whose realization is depicted in Fig. 1, we find with
n(a)=35(a— 1) for shot noise &,(t) of vanishing mean

&()=1(1)—2H, (2.27)

with the correlation function

@ EO)» =2 | h(t+u) h(uydu (2.28)
0

Thus its characteristic functional simplifies to give

x[z] =<exp—i/1H jt z(s)ds)

to

~<expl f ds[— 1+expi }Oh(u)z(u—l-s)du]). (2.29)

to

The substitution of (2.25) or (2.29) into (2.16) then
yields the explicit path integral solution for general-
ized colored shot noise.



With the scaling z — z/D, a WKB analogue of the
form (2.20) with S[x, z] being of order O(D) does gen-
erally not exist. It is readily seen from (2.29) that the
scaling z— z/D introduces singular terms D™" with
nz1. Formally, such a form exists for generalized
shot noise of the type in (2.22), however, when
{a"yocD"~ ! for all n>1. For the remainder of the
paper, we shall now restrict ourselves to Gaussian
noise forces only.

3. Weak-noise analysis

With g(x)=0, we restrict without loss of generality
the discussion to additive noise only. The result for
the conditional probability in (2.20) is then in a suit-
able form for a weak noise analysis, i.e. D —0. With
g(x)=1, we now invoke the multi-dimensional saddle
point method. To leading order in the noise strength,
the action functional S°[x, z] in (2.20) reads

SO[x,z]=4% f du jt dsz(u)a(u—s)z(s)

to to

—i | ds[x(s)—f (x(s)] z(s). (3.1)

The equation for the extremal path Q(s)=(x.(s), z.(s))
satisfies

38°=0 (3.2)

Le.

( [ zw)o(s—u) du—i(x(s)—f(x(s))))éz

o

+(iz(s)%§%+iz’(s))5x=0. (3.3)

The extremal path (x,(s), z.(s)) thus satisfies the equa-
tion of motion

__9
e T axe Zgs (343)
Xe=f(x,)—1 jt o(s—u) z,(u)du, (3.4b)

and the boundary conditions are given by

X (to)=Xxo, X (D)=x. (3.4¢)

279

With this equation of motion, the extremal action
becomes from (3.1) solely a function of z.(2)
=z,(t; X, Xg); 1.€.

S%[x,,z.]=—% f ds j"t duz,(s) o(s—u) z,(u). (3.5)

to to

For the Gaussian fluctuation analysis we follow stan-
dard methods [15, 16]. By setting x=x,+u,, z=z,
+1u,, and expanding S°[x, z] up to second order we
find after Gaussian integrations, and the definition
W=|Det 625°[x,, z.]|
0% S°
_ j Det(_[@)
aQin aQ]m
Lj=1,2 (3.6)

’

Ql Exe: QZ:Ze;

the WK B-type approximation for R(xt]x,), i.c. with
(2.201b), (3.5)
z,(6) \'7?

R(xt|x0)=(2nDW)‘1/2(Z@> exp(—

s° o))

(3.7

An alternative approach consists in transforming the
complex-valued functional in (2.20) into a real-valued
functional. In doing so, one must integrate out the
z-path integration in (2.20a). This suggestion has been
made by Phythian [9], who introduces the (left) in-
verse o~ ! (v—s), obeying (see also Ref. 17)

fdsa‘l(v~s)a(s—u)=5(v-u). (3.8)

io

Thus, the result in (2.20) can (formally) be recast as
a single, real-valued path integral

x({t)=x t
Rectlsg= | @xep( 1 ] dsf (x(5)
x(tg)=x0 to

T t

1
eXp—o {dufdso " u—s)

(X () —f (@) (X (s) — f (x(s))). (3:9)

The memory in (3.9) clearly exhibits the non-Marko-
vian character induced by colored noise, Eq. (1.2).
Equation (3.9) yields from the corresponding action
functional for the extremal path x.(s) the equation
of motion

[1eo(s) § o7 s —u) [X(u)— f(x ()] du

t

d
+35 § 07 =X w)—f ()] du=0

to

(3.10)
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which with x,(t))=x,, x.(f)=x, is not at all simple
to solve. Moreover, generally, even the operator
o~ 1(u—s) is not readily constructed. Therefore, a for-
mulation of the form Egs. (3.8)~(3.10) does not pro-
vide any simplification in practice.

Finally, with £(t) being a Markovian (Fokker-
Planck) process, such as in (1.4) and in (1.6), we like
to point out another pitfall: With the Onsager-Mach-
lup functional for the Ornstein-Uhlenbeck process in
(1.4, 1.5) given by [1-5]

1 ,
S[E)= 5 é+ 2P, (3.11)

or for the Markovian oscillator process &(z) in
(1.6, 1.7) (see [4])

. 1 . .
S[E)= 5 (E+ré+ad e,

(3.12)
respectively, one is tempted to construct the corre-
sponding non-Markovian action-functional in (2.20)
for the non-Markovian process in (1.1) by simply
substituting, via a subsequent differentiation of
(1.1), the &-dynamics in (3.11, 3.12), by the related
dynamics of x(f)y ie. {()=(x—f(x)/g(x),
E(t)=[(x—f'%) g—(X—f) g'%]/g*(x), ctc. By doing so,
however, one formally introduces unknown, addition-
al constants of integration. In particular, the corre-
sponding equation of motion for the extremal path,
x,(t), is readily seen to be a fourth-order nonlinear
differential equation for x,(t) in the case of (1.4), and
a sixth-order nonlinear differential equation for x,(¢t)
in the case of (1.6). With the only known two bound-
ary condition given in (3.4¢), we are thus left with
no complete set of boundary conditions for the extre-
mal path. This fact clearly reflects the loss of informa-
tion introduced upon the formal differentiation of
(1.1).

4. Generalizations, applications, and conclusions

All of the foregoing discussions can naturally also
be generalized to multidimensional non-Markovian
flows of the type

f= o)+ Y 2ail®) &0, 1)

i=1

Moreover, if the condition [5c¢, 18, 19]

ag;ﬁl

_0gy' (4.2)
ox, 0xg

holds, the transformation, y;,=g;,'%, yields a non-
Markovian flow with additive noise forces only. Thus,
for the non-Markovian Langevin equations

X;= f;(x)+ (1) (4.3)
we obtain with colored Gaussian noise
() ¢(s)>=Doay(t—s) 44)

for the generalization of (2.20) the multidimensional
non-Markovian Onsager-Machlup functional

STx,z]=—i | ds z,(s) [%:(s) — fi(x(s))]

1 {du [ sz a,.,.(u—s)zj(s)+§ [ ds aﬁ;’)‘f»

(4.5)

wherein the standard summation convention over
equal indices is implied.

From a practical point of view, the path-integral
formulation put forward in Sect. 2 has its use in non-
perturbative, e.g. “instanton-like” treatments, such as
the weak noise analysis in Sect. 3. Clearly, with Gaus-
sian colored noise forces &(¢) of the type in (1.4), or
(1.6), a corresponding weak noise analysis in the cor-
responding Markovian multi-dimensional phase
space is certainly more complex, due to the presence
of a singular diffusion matrix [4] which in turn im-
plies the highly singular path integration measure. As
a simple illustration let us consider a bistable flow,

X=f(x)+g(x) <) (4.6)

where with x; <x, <x3, f(x;)=f(x;)=f(x3)=0, and
X, x3 are locally stable states, ie. f'(x;)<0, f'(x3)
<0, while x, is a locally unstable state with f”(x,)>0.
Moreover, we assume that £(t) is Gaussian with a
large correlation time

§1<E@® &) dt
0
&

-0, 4.7

T=

and extremely slowly varying correlation, ie. with
>0

OO 2Oy =,

as 71— . 4.8)



Then, one readily finds from (3.4, 3.5), for the asymp-
totic leading part of the extremal action S¢, as T — 00,
the result

2

)

g(x)
The notation (+) indicates that the particle has
started out at x, <x, with the maximum of the abso-
lute value | f/g] taken over the interval (x,, x,), while
(—) indicates the reverse situation with the particle
starting out at x;>Xx,, and the maximum of |f/g|
taken over (x,, x3). Therefore, the forward rate I'"
and the backward rate I'™, respectively, assume for
7 — o0 the asymptotic behavior

Fiocexp{:r—ﬁmaxi % 2}. (4.10)

2D

The result in (4.9) presents a generalization of the
asymptotic study for stochastic bistability being driv-
en by the additive Ornstein-Uhlenbeck process
Eq. (1.5) (i.e. f=1) in [11] to a general (Markovian,
or non-Markovian) process &(t) obeying Egs. (4.7),
(4.8), and general multiplicative noise g(x), with
g(x)==01in (x,, x3). The result in (4.9) is also intuitively
clear by noting that with £(¢) extremely slow, we can
set in (1.1) x==0, i.e. £(2) follows a Gaussian process
with variance, o=Dt # and with maximal mean
value given by |{&(¢)>|~max*|f/g|, which must be
overcome in order to reach the unstable state x,.

In conclusion, we have presented the path integral
solution for non-Markovian stochastic flows of the
form in (1.1). Explicit results have been obtained for
general colored Gaussian noise (Sect. 2.A), and gener-
alized colored Poissonian shot noise (Sect. 2.B). From
a practical point of view however, we suspect that
— just as with the case of white noise (Fokker-Planck
and master equations) discussed in [1-5] —, use of
non-Markovian path integral methods will not neces-
sarily undergo a flurry. This is so because often alter-
native, problem-specific methods [6-8] provide the
same information more simply, as illustrated for ex-
ample below Eq. (4.10). Also, the solution of equa-
tions such as the extremal path solution in (3.4) usual-
ly requires already extensive numerical methods. Nev-
ertheless, the path integral formulation does in many
cases provide additional insight. Moreover, it can be

S%(t »o0)=41¥ max*®

4.9)
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utilized in non-perturbative approximation methods
which are a priori not available otherwise (for exam-
ple, see (3.7) in Sect. 3).
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