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Abstract. - The stochastic theory is developed for overdamped, nonlinear stochastic systems
with periodic forcing. By use of a generalized Floquet theory we show that such systems
averaged over the random phase 9 are not strongly mixing, but exhibit ever present undamped
oscillations, e.g. the power spectrum contains &-function peaks at  multiples of the driving
frequency SZ. For the archetypal periodically driven, bistable stochastic flow, x =
= x - x3 + A cos (Qt + 9)  + E(t), we evaluate by means of matrix continued fraction techniques
the stationary probability Wst(x, 6 = Qt + 9)  and the q5 averaged, complex-valued dynamical
susceptibility. The stationary probability has a most interesting, rich topology in (5, @-phase
space exhibiting several, competing modulation-induced escape paths.

The interesting behaviour of a bistable stochastic system which is driven by periodic
forces has been noticed first by Benzi and coworkers [l]  when they attempted to explain the
periodicity of Earth’s ice ages. In their model the two stable states of the potential
correspond to two stable climatic configurations, a cold one (ice age) and a warm one. The
nearly periodic switching between the stable states (i.e. occurrence of ice ages) is explained
by a cooperative effect of noise and small periodic variations of the excentricity of the earth.
Moreover such models are of relevance for the description of laser-assisted desorption from
surfaces. In such systems there seems to occur a cooperative effect between the in temal
random behaviour of an overdumped stochastic process and the external time-periodic
driving mechanism. The effect has been termed <&ochastic resonance. [l, 21, due to its
characteristic signature of a dramatic increase of the signal-to-noise ratio of the output. This
technical important phenomenon has also been observed in numerical simulations [2] and in
actual experiments [31. The notion of &ochastic resonance. is not well defined, however,
and it is actually somewhat unfortunate (see below). Nevertheless, the phenomenon is
clearly distinct from the related effect of <<resonance activation>> which occurs in under-
damped metastable systems [41 wherein the external periodic force resonantly interacts
with the intrinsic time scale of the periodic motion around a locally stable state. Up to
present time the theoretical approaches have been limited either to a phenomenological
reasoning only [l-31, or have been restricted to the extreme adiabatic limit (51. In this work we
present a first theoretical treatment in terms of the underlying (time-dependent) Fokker-
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Planck process. In particular, our focus is on asymptotic probability density and the
asymptotically time-homogeneous autocorrelation function of the process x ( t ) ,  obeying

2 = f ( x )  + A sin (Qt + ji) + 5 ( t ) ,  (1)

where t(t) denotes Gaussian white noise with correlation ( S ( t )  Hs)) = 2D&t - s )  and # is a
random phase being uniformly distributed over one cycle (0, e x )  with a density p(#> = (2xI-l.
If the random phase +,is held futed the dynamics in (1) is equivalent with a nonstationary
Fokker-Planck process p'(x, t) with a time-periodic generator, i . e .

where

a a 2go = - - j ( x )  + D-ax ax2 '
In analogy to the concept of quasi-energies in quantum mechanics with periodic

forcing[61, a solution of (2) is composed of expressions of the form
m

p t  (XI = exp [- ~ t l p , ~  (x, t )  = exp [- $1 p ;  (x) exp [in fit1 , (3)
n=-x

where ,cu (2, t )  is time-periodic (period T = 27i/sZ) with Fourier coefficients {pi (x)} and ,U is a
Floquet characteristic exponent obeying the infinite coupled set of equations

(4)i a
2 ax 0 = ( s o  + (p - ins) 1) p;  (x) - -A- (pC+1 (x) - p'i-1 (x)).

Alternatively, one can recast the dynamics in (1) in the form of a two-dimensional, time-
homogeneous Fokker-Planck process, Wt(x, e), in the random variables x and 6 = Dt + #, i .e.

a a
ax ae

a
at -Wt(x, e) = Z W t ( x ,  e) = 3 - A s h e -  -a-) Wt(x, e) .  (5)

Because the random variable 6 is observable only modulo 27i we have periodic boundary
conditions, i.e. W, (x, 6) = W, (x, 6 + 2 z ) .  With f ( x )  an unbounded function, which corres-
ponds to a confining potential, we further assume for x the natural boundary condition
Wt(x+ k m, t )  = 0, and for 6 the marginal steady-state density f W,(x, 6) dx = p(6) = ( 2 d - l .
Due to the periodic boundary conditions, we expand W, (x, 6) into a Fourier series with
respect to 6, i . e .  W, (x, e) = 2 c, (x, t )  exp [in el where upon a substitution into (5) we find
for the set {c,} the infinite system of linear differential equations

rc

n=-x

Hereby we made use of the orthogonality and the completeness relation of the trigonometric
basis functions.
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Thus we observe that with c,(x, t )  = exp [- h l ; k t ]  E,(x) the eigenvalues {hl;k} are identical
with the Floquet exponents { p }  in (4). Moreover, the set of eigenvalues { h l ; k }  of the two-
dimensional Fokker-Planck process contains a branch of purely imaginary eigenvalues.
This can be seen from the adjoint eigenvalue equation of eq. (5) by using an ansatz for the
(left-)eigenfunctions which depends only on 8. The corresponding eigenvalues are hO;k = ikQ,
k = 0,  f 1, f 2, ... . Therefore, the autocorrelation S(z) = ( ~ ( 7 )  x(0)) undergoes undamped
oscillations (see below). Moreover, S(r)  is then not strongly mixing [7], i.e. limS(r+
+ a) # (x ) ' .  If the system is initially prepared with a uniformly distributed random phase
F ($) = (2xI-l the probability W, (x, 0) relaxes to a time-independent, stationary probability
Wst(x, On the other hand, the long-time limit of (2) relaxes for fixed phase to a time
periodic, asymptotic probability p& (x, t )  = to+-= lim p+ (x, t lxo,  to) ,  where to denotes the initial
time. The stationary probability Wst(x, 0) obeys from (5)

Thus, noting that the time t equals, t = (0 - $)/a, one obtains upon a comparison with (2)  that
W,, ( x ,  0) is connected with the asymptotic probability p$ (x, t ) ,  i.e. W,, (x, 0) =

The time-homogeneous, real-valued autocorrelation S (7)  = S (- T) is obtained from

S(T) = ( x ( ~ ) x ( O ) )  = ~ d x ~ d e z e x p [ - j ? [ x ; B l ~ l  {xWst(x,e>},

= (1/27c)p& ( x ,  t ).

( 8 4

with f given in (5). Alternatively, this very same correlation S ( r )  can be evaluated from
the nonstationary dynamics in (2) ,  which becomes time-homogeneous after an averaging
procedure over the unijiormly distributed random phase $, i.e. with t z -  t l = r

where RC denotes the time inhomogeneous propagator (conditional probability) of (2). Note
that the dependence of the quantities RC, pk on $ enters solely via the combination
x = tl + Q-' $, which plays the role of a random time. With F(z) = ,c($)ld$/dxI = Q/2x = T-',
one finds with the substitution $ + x for (8b)

S (T) = 1 [dz I d x d y x y R z  (x, z + xly, z>pt ( y ,  2) , ( 8 ~ )To
which clearly exhibits the (continuous) time-translation symmetry (2). The dynamical

(') In other words, initial probabilities which include a weighting corresponding to relaxation
frequencies Ao;k are excluded; then all such transient probabilities relax uniquely to the stationary
probability WSt(z, 0) which corresponds to the eigenvalue = 0. In contrast, the relaxation of an
initial %function in (2, @-phase space, i . e .  the conditional probability of R,(x, O l d ,  e')  of (5) involves all
eigenvalues, and thus is not strongly mixing [7].

(2) In contrast, with a nonuniform distribution p($), the constant weight p ( z )  = 1/T in (8c) becomes
time dependent (i.e. a function of tl), thereby breaking the continuous time translation symmetry in
(8~).
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susceptibility

                   

x (0) = [ 5' (7)  exp [- io71 dz = Rex (w) + i Imx (w)

can readily be expressed in terms of the spectral properties of (5)(3). In particular, the
asymptotic result S,  (2) = S (T+ a) exhibits ever present undamped oscillations

0

with the real-valued weights a, given in terms of the right eigenfunctions {$on}  of the
operator 4 in (5) corresponding to eigenvalues Ao;, and the left-eigenfunctions {pori},
respectively [B].

In the following we present explicit results for the archetypal bistable flowf(x) = x - x3.
The corresponding potential, U ( x )  = - (1/2) x2 + (1/4) x4, provides attractors at  xliZ = k 1,
with a barrier height AU = 0.25 at x = 0, and (x) = 0 due to the symmetry. For our
numerical investigation we use the matrix-continued fraction technique [B], i . e .  we expand
the set {c,(x, t ) }  in (6) into the complete and orthogonal set of Hermite functions (see, e .g . ,
10.1.4 in ref. [9]). The stationary probability is then obtained in terms of the time-
independent solutions in (6). Figures la), b)  show the altitude charts of the two-dimensional
stationary probability density WSt(x, 0) for D = 0.1, i . e .  AUID = 2.5 and 9 = 1, for two
values of the modulation strength A = 0.1 and A = 1. For A = 0.1 (fig. l a ) )  the probability is
very high near the attractors xli2 = k 1 over the total period 0 = (0,Bx).  It decreases rapidly
for 1x1 < 1, and exhibits two craters close to the unstable position x = 0. In order to switch
between the locally stable state x1;2 the system is forced to surmount high barriers near
x = 0, i . e .  the most probable path describes the mmningw along the contour lines at 1x1 = 1.

X -1.5 -1.0 -0.5 0 0.5 1.0 1.5

Fig. 1. - Altitude charts of the stationary distribution WSt(x, 0) for D = 0.1 and L2 = 1 for A = 0.1 (a))
and A = 1 (b ) ) .  The full dots indicate saddle points and the + (-1 signs denote regions of high (low)
probability. The contour lines are equidistant with respect to the corresponding probability density.

(3) See section 3'2 and eq. (5.2.14) in ref. ["I.
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For A = 0.5, the situation is qualitatively the same as for A = 0.1; the flow lines along 0 are,
however, more distorted towards the x-direction, while the craters have grown conside-
rably. For A = 0.75, the situation has changed drastically. The saddle points (depicted by
full dots in fig. 1) along the 0-flow and those along the escape path, x = 7 1+ x = k 1, are
now of comparable probabilistic weight. This fact implies a strong modulation-induced
enhancement of the escape process. Moreover, for A = 1 (fig. lb)), the situation is almost
contrary to that for A = 0.1. Now the most probable path describes the escape along
x = - 1 + x = + 1, and vice versa. Thus, it is quite improbable to stay within one attractor
during one cycle 8 = ( 0 , Z x ) .

The correlation function and the associated dynamical susceptibility can be evaluated by
use of coupled vectorial recursion relations (see, e.g., in ref. [8]). Figure 2 depicts the (w-

Fig. 2. - Real part and imaginary part (inset) of the dynamical susceptibility ~ ( 9 )  are plotted as a
function of frequency w for D=O.l and A =0.5. The real part exhibits &spikes (solid line), which
become broadened in the presence of an additional diffusion in 8 (dotted line for Q = 0.01).

symmetric) real part and the (wantisymmetric) imaginary part (see inset) of the dynamical
susceptibility, respectively. The real part, Re ~ ( w ) ,  exhibits the theoretically derived (see
eq. (9)) &function peak at the driving frequency w =8, while ImX(w) exhibits a
characteristic pole structure at w = 8. This behaviour follows from (9) upon performing the
one-sided Fourier transform, i.e.

The singular behaviour can be regularized if we allow for an additional diffusion for the angle
variable 0, i.e. if we add a diffusion Q(a2/ae2) in (5). This noisy  modula t ion  for the driving
frequency  8 impl ies  n o w  strong mix ing  for the dynamics in (5), i.e. all nonvanishing
eigenvalues h l ; k  assume a positive real part. For Q=O.Ol we show the effect of this
regularization (finite peak height) by the dotted line in fig. 2. Moreover, the inversion-
symmetric cubic flow in (14) implies for the Fokker-Planck operator in (5) the symmetry,
<(x, 8) = f ( -  x, 0 + x ) ,  with the corresponding symmetry for left and right eigen-
functions. This in turn implies the vanishing of even numbered weights ak, i.e. aZk = 0 with
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k = 1,2,  ... . Thus, only odd multiples of D are selected as the observable resonance
frequencies U,, = (2% - 1) 0.

In conclusion, we have studied the long-time properties of periodically driven, over-
damped stochastic systems. For the correlation function s(~),  we find ever present
oscillations in spite of a phase (time) averaging procedure, see (9). Thus, a characterization
of <&ochastic resonance. via its <<signal-to-noise enhancement. [ 1-31, which is bounded
(regularized) by the ever present experimental minimal bandwidth, seems somewhat
unfortunate. A more physical characterization could be given in terms of the weight
nl(D, D), or by the enhancement of the rate of escape in bistable flows, which at  weak noise
is governed by the ratio between the smallest, nonzero Floquet exponent and the smallest,
nonvanishing eigenvalue of the force-free (A  = 0) bistable stochastic system.
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