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Introduction. We consider nonlinear evolution equations 

(0.1) du 
3 7  ~ ~ (;~ u) = o 

depending on a real parameter 2 in some real Hilbert space E. For  all 2MR 
(0.1) has a trivial equilibrium 

(0.2) G(2, 0) =0. 

The mapping 

(0.3) G:]RxD~E, 

where D is a continuously embedded dense subspace of E, has the following 
properties: 

(0.4)' G depends analytically on 2 and u in a neighborhood of (2, u)=(0, 0). In 
particular, if Gu(2, 0)=derivative with respect to u at (2, 0), we denote G,(2, 0) 
=A(2). 

(0.5) The operator -A(O)=-Ao:D~E generates an analytic semigroup 
e - a ~  in E. 

(0.6) The spectrum of A o (in the complexified space E) lies in a sector ~,~ of 
the complex plane with an angle ~ less than n and with vertex on the negative 
real axis. There exists an ~>0 such that the spectrum of A o in ~6c~{z~112, 
Re z<e} consists only of finitely many eigenvalues of finite (algebraic) multi- 
plicity. 

(0.7) itc o and possibly 0 are eigenvalues of A 0 =A(0). 

Here and in this sequel we refer to our paper [10] where we introduced 
abstract and concrete operators which satisfy all required conditions. We 
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mention that the class possible applications covers parabolic equations inclu- 
ding the Navier-Stokes system. 

In order to study periodic solutions of (0.1) it is convenient to introduce 
spaces of periodic functions defined on IR and having values in D or E. We do 
not  want to specify all properties of these spaces here but we simply say which 
abstract attributes are needed to prove our general theorem. Again we refer to 
[101 or [111 where such spaces were introduced in an abstract and concrete 
setting. 

The scalar product and the norm in E are denoted by ( , ) and I[ [I. Then 
2~ 

(0.8) E2~ = L  2 [(0, 2~), E] with scalar product ( ' )o = ~ ( , )dr and with norm 
II II0 o 

DEs= U: [0,2~1 ~ D ,  u is continuous, ~ - ,  AousE2~, u(0)=u(2~z) 

with continuous embedding D2~ ~ E2~. 

We assume that for any ~c 0 > 0 the evolution operator 

d 
(0.9) Jo=~Co~+A0:  Da~--*E2~ is continuous and is a Fredholm operator of 

index zero. 

In practice this Fredholm property follows from a compact embedding of 
DEs into E2~ together with an a priori-estimate 

(0.10) IlullD2 <const(llJoul]~2 + ][ullg2~), u~D2~, 

and from the corresponding properties of the adjoint operator J~. In [10] we 
proved the compact embedding and the estimate (0.10) for the chosen norm in 

d 
D2~. Since in this case the adjoint operator is given by J~ = -~:o ~ + A *  it has 

the same properties and condition (0.9) follows from the closed range theorem. 
Finally we need that G as given by (0.3) gives rise to an operator 

(0.11)~ G: I (  x D2~ ~E2~ depending analytically on 2 and u with respect to the 
norms in D2~ and EEl. 

Again we mention that a proof of property (0.11) for a class of operators G 
can be found in [10]. 

In order to formulate our main Theorem we need the notion of a crossing 
number of A(2)~=G,(~, 0) at 2 0 =0. 

Assume that 

(0.12) ink o is an eigenvalue of A(0), n s N  ~ {0}, of algebraic multiplicity m 

which perturbs into an m-fold family of eigenvalues of A(2) for 2 near zero. We 
define 

(0.13) a < (2)[a > (2)1 = sum of the algebraic multiplicities of all perturbed 
eigenvalues of A()0 near in~: o with negative [positive1 real parts 
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and we assume that 

(0.14) a<(2)+a>(2)=m for 2*0 ,  near zero, l i m ( a < ( - e ) - a < ( +  ~))=z(inKo,O ) 
exists. ~ ~ o 

Then 

(0.15) )~(intco, 0) is the crossing number of A(2) through in~c o at 2 o =0. 

For n = 0  (0.14) can be generalized in this sense that eigenvalues may perturb 
apart from 0 as complex conjugate pairs on the imaginary axis. 

Now we are ready to give our result. 

Theorem. Let 0, i~c o be eigenvalues of A o =A(0) and assume that 
(i) A(2) has an even crossing number through 0 at )~o =0;  

(ii) the eigenvalue itc o is (algebraically) simple and the crossing number of 
A(2) through i~ o is +_ 1; 

(iii) if in2Ko,...,in;_l~cO are all eigenvalues of A o for n j sN ,  n j>2 for 
j =  2, . . . ,  l -  1, then gcd(n 2 . . . . .  nl- 1) > 1 (gcd-=greatest common divisor). Fur- 
thermore no perturbed eigenvalue of A(2) near any ini~:o, j =2 . . . .  , l - l ,  stays on 
the imaginary axis for 2 near 2 o =0. (We agree upon n 1 =1, n t =0.) 
Then (2, u)=(0, 0) is a bifurcation point of periodic or stationary solutions of 
(0.1). I f  no stationary solutions bifurcate there are periods near 2~/~c o. 

I f  0 is no eigenvalue of A o then assumption (i) is redundant and (2, u)=(0, 0) 
is a bifurcation point of  periodic solutions of (0.1). 

I f  A(2) has an odd crossing number through 0 then in any case (2, u) =(0, 0) is 
a bifurcation point of stationary solutions of (0.1) (see [12], e.g.). 

Some comments have to be made. 
The Theorem is a result of ,,Linearized Bifurcation Theory" in the sense that 

the conditions for bifurcation are only imposed on the linearizations G,(2,0) 
=A(2) along the trivial branch. In contrast to the results of [1, 2, 7, 8] we 

allow an eigenvalue zero. Notice that no condition is imposed on the crossing 
number of A(2) through in, tOo, j =2, ..., l - 1 .  

In its essential parts our Theorem can already be found in [16]. The reason 
for this paper is twofold: it shows how to get rid of superfluous technical 
assumptions and how to simplify the proof. (In [16] the basic solution in 
x D is a fold and therefore the linearization along the fold has an odd crossing 

number through 0. The result of [16] then follows by the same arguments of 
degree theory under the additional assumptions (ii) and (iii) of our Theorem.) 

Following the classical arguments for Hopf bifurcation a second parameter 
~c is introduced representing the unknown period. The main point of this paper 
is to eliminate this second parameter by solving one scalar equation for ~: in 
terms of the other variables. Thus the problem is reduced completely to a one- 
parameter "stationary" bifurcation problem in a space of periodic functions 
(which contains the stationary functions as a subspace). This approach is very 
simple and purely analytic. On the other hand the result is certainly not the 
best possible of "Linearized Bifurcation Theory" for stationary or periodic 
solutions. 
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It is well known that under our assumptions a Lyapunov-Schmidt pro- 
cedure reduces the problem to a finite dimensional one. When the critical 
generalized eigenspace (dependent on Z) is chosen the critical eigenvalues 
(depending on )~) are preserved. Therefore one-parameter bifurcation in its 
linearized theory is completely described by an odd crossing number of the 
critical eigenvalues through 0 (see [12], e.g., where more references concerning 
this point can be found). In this paper we provide only a first step in studying 
this critical eigenvalue perturbation after eliminating the second parameter ~:. 

There are more results comparable to ours. In [3, 15] the eigenvalues 0 and 
i~c 0 are (algebraically) simple and there are no eigenvalues of A 0 of the form 
in~:o, n = 2 , 3 , . . .  (no further resonance). In [3] the crossing of the simple 
eigenvalues through the imaginary axis is transversal whereas in [15] any 
degeneration is allowed. In both papers we find additional nonlinear con- 
ditions under which bifurcation of periodic solutions can be guaranteed. In [5] 
the results of [3] are generalized in this sense that the multiplicity of the 
eigenvalue 0 is not necessarily one. In [-4] the multiplicities of the eigenvalues 0 
and i~: o are arbitrary but they have to be semisimple (i.e. there are no 
generalized eigenvectors). No further resonance is allowed, too, and the ad- 
ditional conditions for bifurcation of stationary or periodic solutions are not 
related to a crossing of eigenvalues of A()o) through 0 or i~: o. They refer to all 
terms of G up to order 3 and they correspond exactly to those given in [-10]. 

In the papers [6, 9, 14, 17] the interaction of stationary and periodic 
bifurcation is studied from a different viewpoint. The parameter ;~ is two- 
dimensional and can be considered to be a bifurcation parameter and a 
splitting parameter which splits the degenerate bifurcation into several nonde- 
generate ones. The eigenvalues 0 and i~: o are simple and no further resonance 
is allowed. Additional nondegeneracy conditions are imposed on the two- 
parameter eigenvalue perturbation such that a whole neighborhood of (0, 0) in 
the parameter plane can be studied. The goal in these papers is different: 
exclude any additional degeneration and characterize all bifurcation diagrams 
by the lowest order terms of the two-dimensional bifurcation equation. 

Under our conditions we do not know more about the bifurcating solution 
set than that it is connected. The following simple examples given in cylindrical 
coordinates show that stationary or periodic solutions bifurcate under the same 
linear conditions: 

(0.16) 
~=2r  i =; tr  

~b --1 ~b =1 
~ = ~ 2 z q - r 2  z = ~ 2 z - { -  z 3 . 

Proof of the Theorem. Since the period of any nontrivial solution of (0.1) is not 
prescribed we make the Ansatz that the periods are near 2rc/~ 0 which is the 
period of the linearized equation at 2 o =0. We introduce a real parameter ~:, 
we substitute U(~:o + ~:) for t, and we obtain from (0.1) 

du 
(1.1) (Ko + K) ~-:+ G(2, u) =0, u(0) = u(2r0. 
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We define 

(1.2) G(4, u) =A(4)u + F(4, u) 

J(•, 4) =(~c o + lc) ~ + A ( 4 ) :  D2~ ~ E 2 ,  ~ 

and we rewrite Eq. (1.1) as 

(1.3) N(n, 4, u) =J(~,  4 ) u + F ( 4 ,  u)=0, u~O2n. 

We consider (1.3) in the complexified spaces E2~, D2~. The solutions u to be 
found, however, have to be real. First we study the spectral properties of J(~, 4) 
which is a perturbation of J0 =J(0,  0). 

The algebraic invariant eigenspaces of A(4)  corresponding to the eigenval- 
ues in i~r j = 1, . . . ,  l, perturb into 

(1.4) Einj~o, a for 4 near 4 0 =0. 

Then the invariant eigenspace of J(~c, 2) which perturbs from the eigenspace of 
Jo =J(0,  0) with eigenvalue 0 is given by 

l--1 
J E (1.5) E 2 n , , ~ =  @ E z n , . z G  o,~., 

j = l  
EJ _ - - i n j t r  ~einJtE j = l ,  l - 1 .  2~z,A - e  J~'inflr ~--) --injro, 2~ " ' ' ,  

Obviously each of these spaces E j and E o x is invariant for J(~, 2) and 2 ~, ,I, 

(1.6) all eigenvalues of J(~c, 4) which perturb from 0 are given by/~(4)-inj(~c o 
+ ~c),/i(4)+ inj(~c o + ~c), where #(4) is an eigenvalue of A(4) which perturbs from 
inj~o,  j =1 . . . .  , l. 

For a proof we refer to [10], e.g. Then 
I--1 

(1.7) det (J(~c, 4)[E~. ~) = 1-[ det (J(~c, 4)1~;=. ~) det (A(4)[eo ' 4) 
j = l  

and by assumptions (i) to (iii) 

(1.8) det(J(tc, 2)[E~=,~)>0 for (~c, 2)#(0,0), j = l  . . . .  , 1 - 1  
det(A(4)[eo.~)>0 (or <0) for all 2#0 ,  near 0. 

By the simplicity of the eigenvalue i~: o of A(0) 

(1.9) it is perturbed into a simple eigenvalue #1(2) and E 1 has an eigenpro- 2n,,~ 
jector P1 (2) depending analytically on 2 of the form 

P1 (4) u = (u, 0* (2))o 01(4) + (u, ~* (2))0 ~1 (4), 
01(4) = e - " v ( 4 ) ,  01(4) =e-"v*(4),  
v(4)~Ei~o,;, , v*(4)eE*_iro,; ~ (=eigenspace of A*(4)). 
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We introduce 

(1.10) 

Then 

H. Kielh~fer 

E ~  =(I  -Pa(0)E2,,  D~ 

(1.11) S(2): E~ given by S(2)u=(I-P~(2))u for ueE~ is an 
isomorphism depending analytically on 2 for 2 near 0 and S(0)=IE%. 

We decompose (1.3) as 

(1.12) (a) P1(2)N(~,)o,r(O1(2)+t~1(2))+S(2)u)=O, reP,, 
(b) S(2)-~(I -P1 (2))(4(tc, 2, ./ .)=0, ueD~ 

Since R(Jo)c~E~ is closed and since ker(Jo) has a closed complement D o in 
DOs the map 

(1.13) (1-Pl(O))Jo: D~176 is an isomorphism (with continuous in- 
verse ) .  

When u6D~ is decomposed as 

(1.14) u=v+w, v~ker(Jo)c~O~ , w~D ~ 

the implicit function theorem yields the following: For any solution of equa- 
tion (1.12b) in a neighborhood of (~, 2, r, u)=(0, 0, 0, 0) the component of u in 
D ~ depends on the component in ker (Jo)c~ DOn and all other variables as 

(1.15) w =$(~,  2, r, v), $(tc, 2, 0, 0) =0, where the function $ depends analyti- 
cally on all variables near (0, 0, 0, 0). 

Thus, as indicated in the Introduction, any bifurcating solution depends only 
on finitely many modes in ker (Jo). 

We use this function $ in order to eliminate ~. Since any v~ker(Jo)c~D~ is 
of the form 

 9 c~ , e _ i n j t  - -  - -  in j t - -  2 < j <  v=~(cj,  k vj, k~-cj, ke Vj, k), = =I 
(1.16) 

Vj, k~Ein j t~o ,  O, 

assumption (iii) implies that any m-linear form in v (depending on (~:, 2)) 
satisfies 

(1.17) (~(")(,~, 2;  v . . . .  , v), ~ , T ( 2 ) ) o - 0 .  

This is a simple consequence of 
l 

(1.18) ~ o ~ j n j ~ - - 1  for all (~2,. . . ,~l)eZ 1-1. 
j = 2  

This observation implies 

(1.19) Pl(2)(a(~,2, S(2)(v+$(~,2,0, v))-O for all vEker(Jo)c~D~ 
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The Ol(2)-component  of equat ion (1.12a) is complex conjugate to the ~l(/~)- 
componen t  (for real u). When  decomposed  into real and imaginary parts the 
real system being equivalent to (1.12a) can be written as (see (1.19)): 

0.20) 
Rel~l()~)r+rgl(~c, 2, r,v)=O, gj(tc, 2, 0, 0) =0,  

(Im/~l (2) - re  0 - t c ) r  + rg2 (to , 2, r, v) =0,  j =1,  2. 

After division by r the imaginary par t  is solved for ~ in terms of the other  
variables: 

(1.21) ~: = ~c()~, r, v), ~,(2, O, O) =0.  

The last proper ty  follows from the fact that gs(~c, 2, r,0) is even in r (see [10], 
e.g.). 

We insert this function into the system (1.12) and after deleting the imag- 
inary part  of (1.12a) the resulting one-parameter  system has a l inearization 
along the trivial solution given by 

(1.22) (Reol(2) 0 0), 2)S(2)) S(~)--1 (I --P~ (2)) J Oc() . O, 

By (1.8) and assumpt ion (ii) this family has an odd  crossing number  th rough  0. 
This observat ion completes the proof  of our  Theorem (see Theorem 3.1 in 
[12], e.g.). 
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