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Introduction

In our paper on the “Principle of Reduced Stability” [10] we studied how the
linearized stability of any bifurcating branch can be determined by the Jacobian of a
bifurcation function about the projected branch. Whereas the individual eigenvalues
may differ (i.e. the “Principle of Reduced Stability” is not true, in general) there is an
invariant in the following sense: the sign of the product of all critical eigenvalues is
preserved under any Lyapunov-Schmidt reduction.

In our paper [10] we studied only bifurcation from a semisimple eigenvalue, i.e.
when there are no generalized eigenvectors. In this paper we admit any eigenvalue of
finite geometric and algebraic multiplicity. The invariance of the sign of the product of
all critical eigenvalues remains true (Theorem 3. 1). This result is not only important
for the problem of stability of bifurcating branches but it can also be used for the
proof of existence of bifurcating solutions.

As a matter of fact it allows to give a unifying approach to well known results of
“Linearized Bifurcation Theory” where the conditions for bifurcation are only imposed
on the linearizations. We link bifurcation to eigenvalue perturbation which seems to be
the key for “Linearized Bifurcation Theory”. In the first parts of this paper we give a
kind of survey of local and global bifurcation results, in the last part we come back to
the question of stability of bifurcating branches.

We consider nonlinear equations
©.1) GA,u)=0

depending on a real parameter A in some real Banach space E. To be more precise, the
mapping

(0. 2) G:RxD—E,
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where Dc E is a continuously embedded closed subspace, satisfies the following
conditions:

0.3) G(4,0)=0 for all AeR,

(0. 4) G iscontinuous and has continuous partial Frechet derivatives with respect to
u in a neighborhood of (4, u) =(0, 0). In particular we denote G,(4, 0) = 4 (A).

(0.5) A(0) is a Fredholm operator of index zero,
(0. 6) zero is an isolated eigenvalue of A4(0) (in the sense of [8], p. 180).

An important case is given by a closed family 4(4): D — E and D is endowed
with the graph norm.

The family (4, u)=(4,0), A€ R, is commonly referred to as trivial solutions of
(0. 1). In Bifurcation Theory nontrivial solutions emanating from these trivial solutions
are investigated.

A necessary condition for (4, u)=(0, 0) to be a bifurcation point is
©.7 dim ker (4(0))=n>0.

Well known counterexamples show that condition (0.7) is not sufficient for
bifurcation at (0, 0).

A first general theorem due to Krasnoselskij [11] gives the following sufficient
conditions for bifurcation at (4, ) =(0, 0):

(0.8) D=E, AA)=1+(1—4y)K, K is compact, and A,+0 is a characteristic
value of K of odd multiplicity, i.e. 1 is an eigenvalue of K of odd algebraic

Ao
multiplicity m.

An extension of this result is given by Sarreither [17]. He considers a family
A(A) in its generality assuming a sufficiently high order of differentiability with respect
to 4 and that

(0.9) zero is no eigenvalue of 4(A) for A near zero, 4(0) is a Fredholm operator
of index zero, and the family 4 has an odd generalized algebraic multiplicity at zero.

Using the notation of a “Kette” (chain) the definition extends that of the classical
algebraic multiplicity of an eigenvalue zero of A(A)=(1—1y)I+ B at zero.

Independently Magnus [15] defines a generalized algebraic multiplicity of a
family 4 at zero. He needs less differentiability and for a sufficiently smooth family his
definition is equivalent to the definition in [17]. A bifurcation result in case of an odd
multiplicity is proved in [15], too.

Again independently, Ize [7] introduces a generalized algebraic multiplicity of a
family A at zero. This definition is given by the bifurcation function obtained by a
Lyapunov-Schmidt reduction. An odd algebraic multiplicity says that the determinant
of the linearized bifurcation function about the trivial solutions changes its sign at
2 =0. By the homotopy invariance of Brouwer’s degree this implies bifurcation. Ize’s
main result in this connection is the independence of this multiplicity on the choices of
the projections used for the Lyapunov-Schmidt reduction. It is not explained, however,
which property of the original family A4(4) leads to an odd multiplicity.
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Although we give no proof we think that all notions of multiplicities coincide. A
strong hint for this suggestion is given by our Theorem 3.1 which links the
determinant of the family 4(4) restricted to the m-dimensional invariant generalized
eigenspaces P(A) E to the determinant of the linearized bifurcation function about the
trivial solutions (4, 0). If F is finite dimensional we do not need this restriction and
using Satz 4. 1 in [17] or Theorem 2. 6 in [15] and our formula (3. 9) we can conclude
that all definitions in [7], [15], [17] coincide. (If E is infinite dimensional, however,
Theorem 2.7 in [15] does not help since D and E do not necessarily allow constant
invariant decompositions for 4(4). Therefore our remark in [9], p. 420, is not proved.)

Again independently, Laloux and Mawhin [12] define a multiplicity of a
characteristic value A, for a special family

(0. 10) AQQ)=L+(A—1,) 4

at A=0. They assume that L is a Fredholm operator of index zero and that the
operator A is L-compact. (For precise definitions see [12].) If we assume in addition
that L is a closed operator then the family 4 (1) fits into the framework of this paper
satisfying (0. 5) and (0. 6). Furthermore the notion of multiplicity in [12] should coincide
with these introduced above. (See formula (3.29) which gives a strong hint for this
suggestion. ) In case of an odd multiplicity of an (isolated) characteristic value 4, for the pair
(L, A) it is proved in [12] that bifurcation takes place at (4, v) = (0, 0).

To summarize, all notions of generalized multiplicity are not transparent since
they do not show which intrinsic property of the family A4 (4) yields an odd or an even
multiplicity.

In this paper we offer a different condition for bifurcation allowing also more
general families A4 (A).

We introduce the notion of a crossing number of the family 4(A) at A=0. The
definition of a crossing number is given by the family itself and therefore it is
independent of any finite dimensional reduction. Furthermore it enlightens which
property of A(A) actually causes local bifurcation.

Roughly spoken, any odd number of eigenvalues of A(A) (counted by their
algebraic multiplicities) leaving (or entering) the left complex half plane through zero
entails bifurcation.

Since complex eigenvalues of 4(4) occur in pairs we may also state the result as
follows: any odd number of real eigenvalues of 4(A) leaving (or entering) the negative
real axis at A=0 causes bifurcation at (4, ¥) =(0, 0). We mention that no “transversal”
or “nondegenerate” crossing of the imaginary axis is required. Furthermore the notion
of a “crossing number” is a little misleading since, for instance, the two eigenvalues

j—_ﬂ give rise to an odd crossing number at 1=0.
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For a family of the form
(0. 11) A(A)=B+(A—-14y) 4

with linear operators 4 and B, this local bifurcation result can be found in the book of
Chow and Hale [2], Theorem 7.4, Chapter 5. They require that i, is an isolated
normal eigenvalue of (B, A) which corresponds to our assumptions (0. 5), (0. 6). Our
approach, however, is different since we use a different Lyapunov-Schmidt reduction.
We project D onto ker(4(0)) having dimension n which might be smaller than the
dimension m of the invariant eigenspace E,=ker(4(0)*), « being the ascent of 4(0).
This projection is no longer an eigenprojection of A(0) and it is not uniquely
determined. The space E is projected onto R(A4(0)) along any n-dimensional comple-
ment. In the usual way we get an n-dimensional bifurcation equation. We show that for
any choice of projections an odd crossing number is reflected on the respective
bifurcation function in such a way that its Jacobian determinant at the trivial solutions
changes sign at 4 =0 (Theorem 3. 1). This result does not only entail local bifurcation
but it is also useful for global considerations in connection with a degree theory.
Finally it is useful for the problem of stability of bifurcating solutions. We shall discuss
this later.

Obviously the Krasnoselskij conditions (0.8) are stronger than ours. By the
special form of A4(4) conditions (0.5) and (0. 6) are fulfilled and by the linear

dependence on the parameter the algebraic m-fold real eigenvalue % of A(A) érosses
zero at A=0. °

Under the additional assumption that L is a closed operator Laloux and
Mawhin’s bifurcation result in [12] follows from ours, too. This is shown at the end of
Section III.

Ize’s local bifurcation results in [7], Chapter I, are a consequence of ours as long
as they refer to Fredholm operators of index zero.

Next we mention the well known result for bifurcation from simple eigenvalues
due to Crandall and Rabinowitz [3]. Under the same hypotheses for the family 4 they
assume that dimker(4(0))=1 (n=1) the algebraic multiplicity m of the eigenvalue
zero being arbitrary. The additional requirement

(0. 12) ?1({1‘ A(0) (ker4(0)) & R(A(0))

means that an odd number of eigenvalues of 4 (1) leaves (or enters) the left complex
half plane through zero. This interpretation is given at the end of Section III. It shows
that this—at first sight—different type of bifurcation result can also be embedded into
our general theorem.

The generalization of Westreich [20] on bifurcation at eigenvalues of odd
multiplicities is a consequence of our present paper, too (see Section III).
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The first result in the spirit of this paper is due to Weinberger [19]: any possibly
degenerate crossing of an algebraically simple eigenvalue through zero entails bifurca-
tion. In [9] we showed how the number of bifurcating branches may increase by a high
degeneration of the eigenvalue crossing and that (in the analytical case) the degenera-
tion gives an upper bound for the number of branches. Furthermore all branches can
be constructed with the aid of Newton’s diagram.

Finally, the result presented here embeds stationary bifurcation into the dynamic
bifurcation theory for

du
(0. 13) —a,—t~+G(/1, u)=0.

It is known that any nonzero number of eigenvalues of A(4)=G,(4,0) crossing the
imaginary axis at A=0 apart from zero entails Hopf bifurcation for (0. 13).

Interaction of stationary and periodic bifurcation, i.e. eigenvalues of A4(1)
crossing the imaginary axis including zero, is not yet completely understood. We refer
to results of Lauterbach [13], e.g..

As is well known by simple counterexamples an even crossing number through
zero does not necessarily imply stationary bifurcation. For a double eigenvalue zero,
however, we mention a remarkable result of Lauterbach [14]: For any crossing
number going together with a change of stability we have at least one of three
possibilities: stationary, periodic or homoclinic solutions of (0.13) bifurcate at
4, u)=(0, 0).

This result is a special case of a more general fact: any change of stability of the
trivial solutions of (0. 13) implies bifurcation in a class of functions which are bounded
for all teR. This—under suitable hypotheses—is a consequence of Conley’s index
theory.

In Section IV we give a global bifurcation result by introducing a degree for a
class of proper nonlinear Fredholm operators G: Q <« D — E in the sense of Smale
[18]. Such a degree was introduced in [18] and refined by Elworthy and Tromba [5].
Our contribution simplifies its definition when reducing the class of operators by
requiring that G’'(4) has only finitely many isolated eigenvalues on the negative real
axis. This class contains the compact perturbations of the identity (for D = E) since the
only possible cluster point of eigenvalues of I+ G’'(u), G'(x) being compact, is +1.
Furthermore, by the special form of a compact perturbation of the identity, such
operators are proper which means that the (bounded) inverse image of any compact set
is compact.

If D =F Eisenack and Fenske [4] (p. 79) introduced a class of proper nonlinear
Fredholm maps having exactly the above mentioned eigenvalue property. Their degree
generalizes the Leray-Schauder degree but it is more special than that of [5] and than
ours.
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Let us explain the simplicity of our definition. The index of a map G in R" at the
solution of G(u) =p is given by sign det (G'(v)) provided it is not zero, i.e. p is locally a
regular value. Obviously only eigenvalues of G’(«) on the negative real axis contribute
to the sign of the Jacobian determinant. Therefore this definition can be imitated in
infinite dimensions if G'(#) has only finitely many eigenvalues of finite multiplicity on
the negative real axis: If p is a regular value of G, define the index of G at a solution
of G(u)=p by the sign of the product of all eigenvalues of G’(x) on the negative real
axis. This index gives rise to a degree for G on bounded domains in a natural way. We
show that this degree has the same properties as the Brouwer or Leray-Schauder degree
for their classes of maps, respectively. It is worth mentioning that the proofs are
considerably simplified when using Theorem 3.1: By the theorem of Sard-Smale it
allows to reduce the problems to the one-dimensional case.

When depending on a real parameter, the index of G (4, -) at the trivial solutions
changes its sign by definition when G,(4, 0)=A4(4) has an odd crossing number. By
properness bounded solution sets of G (4, u) =0 are compact and therefore the proof of
Rabinowitz’ [16] global bifurcation result holds also for our class of operators.

Our Theorem 4. 5 is a generalization of all global results of Rabinowitz [16], Ize
[7], and Magnus [15] since all authors use more special families G (4, u). Finally, we
think that our approach lays bare which properties entail local and global bifurcation
for Fredholm operators: odd crossing numbers cause local bifurcation and the only
form of compactness which is needed to prove global bifurcation can be expressed by
properness.

In view of applications our class of operators G seems to be reasonable: If
G,(A, u) are suitable elliptic partial differential operators then their spectrum lies in a
sector with vertex on the negative real axis. If the underlying domain is bounded the
spectrum consists of isolated eigenvalues of finite multiplicity. As for bifurcation, our
results allow a general dependence on the parameter A as long as G(4, u) is a proper
family (for results concerning properness see [1]).

Our final section is devoted to the question of stability of any local nontrivial
branch of solutions of G (4, u)=0 emanating at (0, 0). This question is important in
applications whenever the trivial solutions (4, 0) lose their stability at A=0 and a
nontrivial branch is expected to take it over thus becoming relevant for the
mathematical model.

A “Principle of Reduced Stability” (see [10]) saying that the linearized stability
of a branch is determined by the finite dimensional bifurcation function is not as
simple as in the case when zero is a semisimple eigenvalue of 4(0), i.e. when there are
no generalized eigenvectors. When the invariant eigenspace has a bigger dimension m
than ker (4(0)), the bifurcation function is n-dimensional whereas the eigenvalue zero
might perturb into an m-fold family. Therefore the n eigenvalues of the linearized
bifurcation function about any branch (4, ) of solutions of (0. 1) emanating at (0, 0)
cannot be related to the m eigenvalues of G,(A, u) near zero. There is a method,
however, to connect this eigenvalue perturbation in the space E to an n-dimensional
equation which is of a more complicated form than just an eigenvalue problem. The
given example shows, however, that a “Principle of Reduced Stability” seems not to be
valid for a similarly large class of problems for which zero is a semisimple eigenvalue

(see [10]).
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Nevertheless we give a criterion which holds in the case of bifurcation at simple
eigenvalues in the sense of Crandall and Rabinowitz (n =1, m being arbitrary). No
nondegeneracy condition (0. 12) is needed and it is a first general result on reduced
stability for bifurcation at an eigenvalue zero for which the geometric multiplicity »
and the algebraic multiplicity m may differ. For general » and m we add two
conditions for the validity of the “Principle of Reduced Stability”. These conditions
require, however, that the lowest order term of G,(4, u) in a given branch is known.
Our results in [10] (in the case n=m) were the first to avoid this type of condition
using only the linearized bifurcation function.

I. Lyapunov-Schmidt reduction

By assumption (0. 4) the family A(1): D — E is continuous with respect to A.
Therefore

(1. 1) A(4)=4(0)+B(4), lim [BA)|=0,

where we use the norm for bounded linear operators from D into E.
By assumptions (0. 5), (0. 6)
1.2) dim ker(4,)=codimR(4,)=n>0,
where A, =A(0). Thus there exist closed complefnents
1.3) D=ker(4,) ® D,, E=R(A,) ® E,
with continuous projections
1.4 P: D— ker(4,) alongD,,
1.5) Q: E— R(Ay) along E, .

Obviously these complements, and therefore the projectors, are not uniquely determi-
ned.

Decomposing

(1. 6) GA,uy=AQA)u+F(,u)
the equation

1.7 GAu=0
is equivalent to the system

Aow+ QB(A) (v+w)+QF(A, v+w)=0,
(1.8) I-Q)BQA) w+w)+(I—-Q) F(A,v+w)=0,
v=Pu, w=({I—P)u, ueD.
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Observe that
1.9 Ag: I—P)D— QF

is an isomorphism with a continuous inverse (Banach’s theorem). By the implicit
function theorem applied in a neighborhood of (4, v, w)=(0, 0, 0) we solve the first
equation of (1. 8) and get

(1. 10) w=¥4,v), YA 0=0
for |A|<dy, vl <6,.
The function ¥ has continuous partial Frechet derivatives with respect to v at
(4, 0) which are given by
(1. 11) ¥,(4,0)=—(4,+0B(1)) ' QB(1): ker(4,) — D,.
For small |A| the operator A,+QB(4) is an isomorphism from D,=(/—P)D onto
R(A,). Therefore ¥,(4,0) is a bounded linear operator from ker(4,) into D,.
When w=¥ (4, v) is inserted into the second equation we get
(1.12) dAv)=(I-Q)BA) (v+ ¥4 v))+(U-Q)F(4,v+¥(4,v)=0
which is usually called bifurcation equation. Note that
1.13) ¢: Rxker(4,) — E,, dimker(4,)=dimE, =n,

where the bifurcation function ¢ is defined for |1]| < d,, |v]|< 6.

Finally, the partial Frechet derivative of ¢ with respect to v at (4, 0) is given by
¢,(4, 0)=U~Q) B(A) {I,—(4,+QB(A)) ' QB()},
¢v(i’ 0) ker(AO) - E2 s
I, denoting the identity in ker(4,).

(1. 14)

I1. Eigenvalue perturbation for 4(A) near zero

By (0. 6) zero is an isolated eigenvalue of 4(0) considered as a closed operator in
E with domain D. Let I" be a closed curve in the resolvent set of 4(0) containing in its
interior the unique spectral point zero. (D, E and 4 (A) are complexified in the natural
way.)

For small |A| the curve I' is still in the resolvent set of A(4) and the
eigenprojector onto the generalized eigenspace corresponding to all eigenvalues in the
interior of I' is given by

1 -1

(2.1) P(A)—m ; (z—AQ)) 'dz
(see [8]). For A=0, P(0) projects onto the generalized eigenspace of the eigenvalue zero
of A, which is given by

. 2) U ker(4})=P0)E=E,.

VEN
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By a result of Gohberg and Krein [6] we can conclude for a Fredholm operator of
index zero having an isolated eigenvalue zero:

2.3) P(0)E =ker(45) foran ae N,

dim ker(4y)=m < c©.

The number o is called ascent of A, and m is the algebraic multiplicity of the
eigenvalue zero.

This number is invariant with respect to A in the following sense

2.9 dimP(A) E=m for |A]| < 0;.
The m-fold eigenvalue zero of 4(0)= A, splits into m eigenvalues of 4 (1) counted by
their algebraic multiplicities. Furthermore all eigenvalue perturbations of A4(1) near
zero can be completely determined in the family of invariant m-dimensional subspaces
P(A)E (see [8], p. 106fT.).

We define

(2.5) 0=(A) [62(A)] =sum of the algebraic multiplicities of all nonzero eigenva-
lues of 4(A) in P(A) E with negative [nonnegative] real parts.

We assume the existence of two sequences

2. 6) >0, 27 <0, lim 4 =0

with the properties

2.7 oS (A )+ 024 )=m forall ke N
and

(2. 8) oS )= (A )= e2Z+1

for all k e N. In this sense, passing from A; to 4, , an odd number of eigenvalues of
A(2) have left or entered the left half plane through zero. Therefore we call conditions
(2. 7), (2. 8) the property that 4(4) has odd crossing numbers. (Condition (2. 7) means

that zero is no eigenvalue of A(/lf ).) If lem xx = x(0) exists we call the limit y(0) the
crossing number of A(A) at A=0. It certainly exists if 4(4) depends analytically on A.

The following example, however, shows that the limit does not necessarily exist
although conditions (2. 6) to (2. 8) are fulfilled: Any 2 x2-matrix 4(4) having the

. .1 1 . . :
eigenvalues 4 sin—- and 4 cos—- has, according to our definition, odd crossing numbers.
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III. Odd crossing numbers imply bifurcation

Since ker(4,)< P(0) E and P(0)E, is a complement of R(A4,) in E, the spaces
P(t)ker(4,) and P(t)E, (for teR) are both n-dimensional and the following
decompositions hold for small |¢t] < J,:

D=P(t)ker(4,) @ D,,

E=R(4,) ® PO E,.

The invariant eigenspaces E, = P(t) E allow the decompositions
E,=P(t)ker(4y) ® D;;,, D,,=D,NnE,
E=R ®PQ)E,, R,=R(Ay)NE,.

These decompositions give rise to bounded projectors

P,: D— P(t) ker(A4,) along D,,

0,: E— R(Ay) along P(1)E,.

E, is an invariant space for P, as well as for Q, and when restricted to E, « D < E they
project

(3.1)

3. 2)

3. 3)

P,: E,— P(t) ker(4,) along D,,,
O, E,— R, along P(t)E,.

3. 4)

Furthermore, P, and Q, are bounded families in the space of bounded operators and
P,u as well as Q,u is continuous in ¢ for any u € D or u € E, respectively.

Now we represent 4(A): D — E as follows:

(0, A(R) Q. A(4)
A= ((1— Q) AR (U-Q) A(‘)>’

A(A): P(1)ker(4,) @ D, — R(4,) @ PO E;.
For all |t| < J, the operators
(3. 6) Q,A(A): D, — R(A4,)

are isomorphisms provided |A| is sufficiently small.

3.5)

Introducing
—(I-0Q,)A1 rAl_lI,Z
(3.7 e t)=< e )Eg,AE/lg“ P(O)E>’
C(4, t): R(Ao) ® P(t)EZ — P([)E2 @ D,
and
D(, t)=<(’—Qr)A('1) (=10 AMW]" 0. AD)] 0>’
(3. 8) [Q.{l(l)] Q,AQR) Ip,

D(A, t): P(t)ker(4y) @ D, — P() E; @ Dy, [, = Ip()kerao) »
the following relation holds:

3.9 C(A, t) AA)=D(4,1).
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Since
0 I
. 0.1) = P(t)E>
. 10) co.0=( o

is an isomorphism the same holds for small || and for all |¢| £ J,. In the following we
restrict [A] < 6, |t]| < d,, 05 < J,, where all relations up to now hold. In view of (3. 9) we
may state:

(3. 11) Zero is no eigenvalue of A1) < (I-Q,) A(A) {I,-[Q. A(A)] ' 0, A(A)}:
P(t) ker(A4,) —P(t) E, is an isomorphism
for all |¢| <4,.
Now consider A4(4) restricted to its invariant space E,. By the definitions of the
projectors P, and Q, is follows that
(3.12) E, is an invariant space for C(4,A) and for D(4, A).
Then by (3.9)
(3.13) det(C(4, Dlg,) det(4(4)]g,)=det(D(4, D)lg, ).
Since det(C(4, A)|g,;) is continuous in A and nonzero for all |A| <4, this factor
does not change sign. Let us define
So =sign det(C(4, A)|g,)
= sign[(— )™ ""det(4olp, .g)] £0 for 3] <55,

where the last determinant is evaluated with respect to a fixed basis in E,.

(3. 14)

Then

(3.15) Sy signdet(4(4)|g,)=signdet((I— Q) 4(1) {1, —[2:4(V)] ' Q, A(D)}).

Assume now that zero is no eigenvalue of 4(4), i.e. signdet(4(4)|g,)+0. Then by
3. 11)

(3.16) sign det ((/—Q,) 4(4) {L,—[Q, 4()] ' Q, 4(1)})*0
for all ¢ between A and 0.

Fix bases in ker(4,) and E, and define continuously varying bases in
P(t) ker(A4,) and P(t) E, by the isomorphisms P(¢). Then the determinant in (3. 16)
with respect to these bases is continuous in ¢ and therefore does not change sign. By
(3. 15) we therefore proved the relation

3.17) S, signdet(4()]g,) = sign det ((I— Qo) A(A) {Io—[QoA D] ' Qo 4(1)}).

The spaces E, and P(0) E, are both complements of R(4,) in E. There exists a
continuous and linear homotopy H: [0,1] x E — E with the properties that H(¢) E, is
a complement of R(A4,) in E for all te[0,1] and H(0)E,=P(0)E,, H1)E,=E,.
Take simply

(3.18) H(@)u=P0)u+t(I-P())u, uekE, te[0,1].
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The decompositions

(3.19) E=R(4,) @ HW) E,
define a continuous family of projectors
(3. 20) 0,: E—R(4,) along HQ)E,.

Observe that 0,=0, and J, =Q, where Q is defined by (1. 5). Repeating the
above argument when replacing P, by P, and Q, by 0, we get

(3.21) zero is no eigenvalue of 4(1) < (I—0,) A(A) {I,—[0,A(A)] 10, A(1)}:
ker(4,) — H(t) E, is an isomorphism
for all ¢z € [0, 1].

The bases in H(t) E, are given by the isomorphisms H(¢) and vary continuously.
Then with respect to those bases

sign det ((1_ Qo) A(4) {10 —[QoA(A)]™ ! QoA (i)})
(3.22) =signdet (/- Q) A1) {I,—[04(1)] “10AW)})
=sign det ¢,(4, 0)

where we used (1. 14). By (3. 17) we therefore proved
Theorem 3. 1. Fix any bases in ker(A,) and E,. Then:
(i) Zero is an eigenvalue of A(A) if and only if det¢,(4, 0)=0.

(il) Any change of sign of det(A(4)|g,) implies a change of sign of det¢,(4,0)
and vice versa.

If the orientation of ker(A,) and of E, is suitably chosen we may state for all
|4] < 05:

(3. 23) sign det (4 (A)|5,) = sign det ¢, (4, 0).

In other words: Odd crossing numbers of 4(4)=G,(4,0) imply odd crossing
numbers of any linearized bifurcation function ¢,(4, 0) and vice versa.

Applying Theorem 3. 1 to the sequences (/lki) for some k =k, we get the local
bifurcation result using finite dimensional degree theory for the bifurcation equation

é(4, v)=0.

Under the additional requirement that % B(0) exists formula (1. 14) gives

(3.24) $,1(0,0) = (I—Q)j(i— B(0)1,.
If n=1 and Edf B(0) (ker(4,)) ¢ R(4,) then
(3. 25) $,,(0,0) %0

which, by Theorem 3. 1, implies a change of sign at A=0 of det(4(4)|g,;) This means
that 4(A) has an odd crossing number at A=0 and therefore the Crandall-Rabinowitz
theorem is embedded into our result.
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If n is odd and instead of (0. 12),

(3. 26) %A(O)veé R(A(0)) forall veker(4(0))\{0}
then the first nonvanishing derivative of det(¢,(4, 0)) is given by
d'l
(3.27) 7 det (4,(4,0) +0

which, by Theorem 3.1 again, implies an odd crossing number of 4(1) at A=0. The
corresponding bifurcation result is due to Westreich [20].

By the hypotheses on the pair (L, 4) imposed in [12] and under the assumption
that L is a closed operator the family 4(4)=L+(A—4,) A4 is an isomorphism from D
onto E for each 0< |A|< d¢. From the identity

(3.28) AMA)=(L+@A;—20)A4) (Ip+(A—1y) (L+(A;—2¢)A)" 1 4)
for some fixed 0< |4,| < d¢ we deduce in a similar way as above for small |4]:
(3.29) sign det (4 (A)|g,) =50 signA#P, o€ {—1,1}.

Here f(4,) denotes the multiplicity of the characteristic value A, for the pair (L, 4) as
defined in [12]. Obviously 4(4) has an odd crossing number at A=0 if f(4,) is odd.
This fact embeds the bifurcation result of Laloux and Mawhin into this paper, too.

IV. A degree for a class of proper Fredholm operators
and a global bifurcation result

In this section D < E are both separable Banach spaces. We define

Definition 4. 1. A linear operator 4: D — E is called admissible if it satisfies
(4.1) A is a Fredholm operator of index zero.

(4.2) There exist ¢> 0, ¢> 0 such that the spectrum o(A4) of 4 in the strip
S,=(—00, ¢)x(—ie, ic) consists of finitely many eigenvalues of finite (algebraic)
multiplicity.

Definition 4. 2. Let Q2 = D be a bounded domain. A map G: Q — E is called
admissible if

4. 3) GeC*(Q, E).

(4.4) Its Frechet derivative DG(u)=G'(u) is admissible in the sense of
Definition 4. 1 for all ue Q.

(4.5) G is proper, i.e. the inverse image in Q of any compact set in E is
compact in D.

We refer to [1] and [18] for equivalent definitions of properness. In particular
we mention that nonlinear Fredholm operators G (in the sense that G'(u) are Fredholm
operators for all u e Q) are locally proper (see [18]).
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For admissible maps G we define a degree in a natural way imitating the finite
dimensional case.

We assume in the following that
4. 6) pEG(0RQ).
By properness G(0Q2) is closed and p has a positive distance to G(0Q).

Definition 4. 3. Step 1. Suppose that p is a regular value of G, i.e. G'(u) is
surjective for any ue G'(p). By properness G~ '(p)c Q is compact, and by the
Fredholm property G'(u) are isomorphisms on G~!(p), which implies that G™!(p) is a
finite set. Then define

4.7) deg(G,Q,p)= ¥ i(G,u)
ueG '(p)
where
4.8) i(G, u) =sign I1 U.

Hea(G'(w)N Sg
In this product the eigenvalues u are counted by algebraic multiplicity,

>=0and []=1.

ued ped

Step 2. If p is not a regular value we find a sequence p, — p in E such that
P.tG(0RQ) and all p, are regular values for G. This is the result of Sard-Smale [18].
Then define

4.9 deg(G, 2, p) = lim deg(G, 2, p,).

Obviously it has to be proved that the definition (4. 9) makes sense. If p,, p, are
regular values in the same open component of EN\G(0Q2), by Smale [18] there exists a
C'-path p: [0,1] — E satisfying p(0)=p,, p(1)=p,, p(t) ¢ G(@RQ) for all te[0,1],
which is transversal to G. Therefore G™'(p([0, 1])) is a compact one-dimensional
manifold in Q with boundary G~!(p,) U G~ (p,). (Observe that by the properness of G
the set of regular values of G is open.) The proof that

(4 10) deg(G9 Qa Po) = deg(Ga Q, pl)

is exactly the same as that of the following Theorem 4.4, choosing
H(t,u)=G(u)—p(t), p=0. Therefore we postpone it and we assume for the moment
the validity of (4. 10) and therefore of (4. 9).

Next we show that this degree for the class of admissible maps has the same
properties as the Brouwer or Leray-Schauder degree for their classes of maps,
respectively.

Theorem 4. 4. The degree of Definition 4. 3 is invariant under admissible homoto-
pies.

To be more presice, assume
4. 11) H:[0,1]xQ - E, He C*([0,1]1xQ, E),
H is proper, H(t,-) is admissible for any t e [0,1], p ¢ H(t, 0Q2) for all te[0,1].
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Thena l_f H(Oa u) = GO (u)a II(1 H u) = Gl (u),
4. 12) deg(Go, 2, p) = deg(G,, 2, p).

Proof. Since H(t,-) is admissible for any ¢ € [0,1], D , H(t,u) is a Fredholm
operator from R x D into E of index 1. By the Sard-Smale-Theorem there exists a p in
any neighborhood of p such that p is a regular value for G,, G, and H. Therefore
H™'(p) is a one-dimensional compact manifold with boundary

(0, Gs'(®) v (1,671 (P)

Pick one curve C in H™'(p) starting in (0, G'(p)). It ends at a different point in
(0, G5 '(p)) or at a point in (1, G7*(p)).

As long as H,(t, u) is injective for (¢, u) € C the index i(H(t,-),u) is constant. By
definition (4. 8) this (nonzero) index is locally constant. The global constancy follows
from the fact that C is connected.

If H,(t,u) is not injective for some (¢, u) € C then dim ker (H, (¢, u))=1. Define
(4.13) T={(t, u) € C, dim ker (H,(t, u)) =1}

which is a compact set. In any point of T the local Theorem 3.1 applies: Choose a
parameterization of the curve C near (t,,u,) €T like {(z(4), u(d)), Ae(—1,1)},
t(0)=1ty, u(0)=u,, and define G(A,u)=H (t(4), u(1)+u)—p. Obviously G(4, 0)=0
and G,(4, 0)= H,(t(4), u(4)).

There are finitely many points (¢, %) € T such that T is covered by open sets O,
in (0, 1) x Q where Theorem 3.1 is valid. For the sake of simplicity the complementary
spaces of R(H,(t,w)) in E are chosen to be E,, =span{H,(t, u,)}.

Let (¢, u;) € O; N T be the first point on C when starting at a boundary point in
(0, G5 ' (p)). Choose an orientation of ker (H,(t,, u;)) and of span{H,(t;, u,)} such that

(4. 14) signe,, (1, v) = sign det (H,(t, vl ,))

for all (¢, u) e O, N C (see Theorem 3. 1). Here v= P,u, where P, is a projector onto
ker (H,(t,, u,)), and ¢, is the scalar bifurcation function obtained by the method of
Lyapunov-Schmidt (see Section II). Finally, E, , denotes the invariant finite-dimensio-
nal eigenspace of H,(t,u) for (t,u) e Oy n C.

Now there are two possibilities: O, N O, =0 or O, n O, % . In the first case we
distinguish when at 00, n C the tangent vectors of C point into equal or opposite ¢-
directions. In the first case the index i(H(t,-),u) for (¢t,u) € 90, n C is not changed
whereas in the second case it has opposite signs. For a proof use formula (4. 14) and
observe that the projected plane solution curve of the scalar equation

¢:1(t,)-(I-0Q,)p=0

is oriented like O, N C.
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Now let O,n0O,+@. Then the orientations of ker(H,(s,u)) and of
span{H,(t,,u,)}, k=1,2, have to be compatible in the following sense: Pick
(t, e O, "0, and consider the projections P,u onto ker(H,(4,u)), k=1,2. If
(t,u) ¢ C then ¢, (¢, Puu)—(I— Q) p+0. If

sign (¢1 (t, Pyu)—(I— Q,) p) = sign (¢, (t, P,u)—(I—Q,) p)

and if (¢, P, u) are on the same (right or left) side of the projected plane curves, respectively,
then we orient R xker(H,(t,,u,)) in the same way as R xker(H,(ty,u,)). The
modifications of the orientation in the three remaining cases is obvious. Thus we guarantee
that at points (¢, u) € O, U O, n C where the tangent vector of C points into the same
nonzero t-direction we preserve the sign of ¢,, (¢, P,u), k=1, 2.

Continuing this argument, we see in view of Theorem 3.1 that the index
i(H(t,-),u) along C behaves like the index of a plane isolated solution curve of
¢(t,v)=gq in [0, 1] xR joining two points in {0} xR U {1} xR. By considering regions
where ¢ (t, v)—q is positive and negative it is obvious that the index ¢,(, v) is different
if both boundary points are in {0} xR or {1} xR and that the index is equal for
boundary points in {0} xR and {1} xR.

Since this is true for all (finitely many) curves C < H™!(p) we showed that
(4. 15) deg(Gy, 2, p) = deg(G,, 2, p).
Using (4. 10) and (4. 9), Theorem 4. 4 is proved.

Copying the proofs for the Leray-Schauder degree, a homotopy-invariance of this
degree for proper maps defined on non-cylindrical domains of R x D follows.

Together with the (trivial) additivity-property of our degree these are the tools of
the proof of Rabinowitz’ [16] global bifurcation result. Therefore we may state:

Theorem 4.5. Let G: Rx D — E be a C*-map satisfying the following conditions:
(i) G is proper on any bounded and closed domain in R x D.
(i) G(4,-) is admissible for any i€ R.

Assume that G(4,0)=0 for all LeR, that at some A,€R the operator
A()=G,(A,0) has an eigenvalue zero, and that A(X) for 0<|A—A,|<d, has no
eigenvalue zero.

If A(Q) has~an odd crossing number y(Ay) at A=24, (i.e. A(Z) has an odd crossing
number y(0) at A=0 for A=A—Ay) then (A,,0) is an (isolated) bifurcation point for
G(A,u)=0.

Call
(4. 16) NS=cl{(A,u)e Rx D, G(A,u)=0, u+0}

the closure of the nontrivial solution set. Then the component NS, o, of NS connected to
the bifurcation point (1, 0) is either unbounded in R x D or NS, o, meets a different
bifurcation point (4, 0).

We finally remark that under our hypotheses the set of possible bifurcation
points (4,, 0) met by NS;, o, is not necessarily isolated.
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V. Stability of bifurcating branches

Let us assume that a continuously parameterized branch (A(s), u(s)) bifurcates
(after a normalization) from (4(0), #(0))=(0, 0). When studying the linearized stability
of that branch (considered as stationary solutions of (0. 13)) we are led to investigate
how the eigenvalue zero of G,(0, 0) = A4, perturbs for

5.1 T(s) = G,(A(5), u(s)).

We assume only the conditions (0. 1) to (0. 6) and that G,(4, u): D — E exists and is
continuous in a full neighborhood of (0, 0) e R x D. Then

(5.2 T(s)=Ao+Ty(s), lim [T, (s)Il =0.

As before we decompose (I, =identity in ker(4,))

L

(5.3) T(s)—y]:(Q (T(s) = pl,) Q(T(s)—uID2)>

I-Q) (T()—uly) (I-Q)(T(s)—ulp,)
T(s)—ul: ker(4,) ® D, — R(4,) D E,.

Multiplying from the left by the isomorphism (for small |s| and |u|)

(5. 4 (‘(’—QNT(s)—uI»z) [0 (T(&)—ulp, 1" 1Ez>
| (0T -uIp)]™" 0

we end up with

(5.5)

((I—Q)(T(S)-ulo)—(I—Q)(T(S)—ulpz)[Q(T(S)-#IDZ)]"‘Q(T(S)—ulo) 0)
[Q(T()—pulp, )17 Q(T()—plo) I,

such that the critical eigenvalués of T'(s) near zero satisfy the equation
(5.6)
det (1= Q) (T(s)—ulo)— (I~ Q) (T(s)— plp,) [Q (T(s)— ulp,)1™* Q (T (s)—ul,)) = 0.

The operator in (5. 6) maps ker(4,) into E, which are both given fixed bases. (The
inverse operator appearing in (5. 6) maps R(4,) onto D,.)

The projection Pu(s)=v(s) on ker(4,) of that branch is a solution of an
n-dimensional bifurcation equation

5.7 # (A(s), v(s5))=0
(see (1. 12)).
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The main question in connection with the linearized stability of that branch is the
following: Is it possible to determine the sign of the real parts of the critical
eigenvalues satisfying (5. 6) when ¢, (A(s), v(s)): ker(4,) — E, is known (or is known
in its lowest term)?

Introducing
(5.8) R(s) = ¢,(A(s), v(9)
a derivation similar to that in Section I yields
(5.9 R($)=(-Q)T(s)—(I-Q)T(s) [QT(s)]7' QT (s)

where T(s) is given by (5. 1) and [QT(s)]™': R(4,) — D,. Obviously R(0)=0.
For s=0 (5. 6) reduces to
(5.10)  det(—p(I—Q)Io—p*(I—Q) (Ao—pQIp,) * Qly) =0

which, according to formula (3.9) for A(A)= A4, —ul, P,=Py, Q,=Q,, and E,=E,
for all small |u|, can be computed as follows:

. 11) (- 1)("'—")" det[Qo(Ao"‘HI)]_l|R(A0)nEo det ((AO_NI)|E0)
' =det (I- Qo) { —ulo— 1> [Qo(Ao—pulp,)1 ' Qoo }).

Now, using the same arguments as in Section III, the right hand side of (5. 11) differs
from (5. 10) by a positive factor, and therefore

6. 12) det (—pu(I=Q) Iy —p*(I— Q) (Ag—pQIp,) 1 Q1)
: =a,u" (1+0(p)), a,*0

where, as before, m denotes the algebraic multiplicity of the eigenvalue zero of 4,.
For u=0 (5. 6) reduces to
(5.13) det R(s)=0

which follows from (5. 9).

Let us assume that G as well as the given branch depend analytically on 4, u, and
s, respectively. Then (5. 6) is an analytic equation for the real variable s and the
complex variable u. The Newton diagram for (5. 6) starts on the p-axis in m and ends
on the s-axis in [ if detR(s)=r,s'+0(s'*Y), r; 0.

Introducing

(5. 14) r(w)=p=Q) Iy +p*(I-Q) (4o —1Q1p,)"" I,
equation (5. 6) is of the form

5. 15) det (R(s) — r(u) + O (us)) =0.

Observe that in the case m=n and Q=1— P, r(u) reduces to ul,.
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It would be desirable that the solutions of
(5. 16) det (R(s)—r(u))=0

would give the correct lowest order terms of the solutions of (5. 15) which are the
critical eigenvalues of T'(s). Consider, however, the following counterexample:

G: RxR?*— R? is given by

(5 17) G(4, u)=(g _112);4—(’:3).

Here n=1 and m=2.

Consider the branch (A(s), u(s))=(s, (s, 0)). Then

—S

(5. 18) T(s)=<_0s 12)
and

(. 19) pi()=—s, pa(s)=—s’

are the critical eigenvalues.

For the Lyapunov-Schmidt reduction choose the projectors

1
(5. 20) P=Q=<0 8)
Then
(5.21) R(s)=—s>, r(u)=p?
and (5. 16) is solved by
(5.22) By,2() = %)/ =53
which are different from the eigenvalues (5. 19) in lowest order terms. Obviously the

Newton diagram for (5. 16) is perturbed by an O (us)-term of (5. 15).

Nevertheless a simple sufficient condition for the validity of a “Principle of
Reduced Stability” in the sense that equation (5. 16) gives the correct lowest order
terms of the critical eigenvalues is given by the following

Theorem 5. 1. Assume that n=1, i.e. dim ker (4,)=1, and that R(s) = ,(A(5), v(s))
is given by

(5. 23) R(s)=sR,+0(s?), R, #0.
Then the lowest order terms of all m critical eigenvalues of (5. 1) are precisely
1
m 1
(5. 24) (-%—) o

where a,, is given by (5. 12). In particular

(5. 25) signa,, = (—1)™"""*"sign det(4y|p, ~k,)-
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Proof. The Newton diagram for (5. 6) starts on the u-axis in m and ends on the
s-axis in 1, thus being the same for

(5. 26) R(s)—r(p)=sR;+a,p™ (14 0 (n))+0(s?)=0.
Formula (5. 25) follows from (5. 11).

We emphasize that Theorem 5. 1 applies for bifurcation at simple eigenvalues in
the sense of Crandall and Rabinowitz [3]. We do not need the nondegeneracy
condition (0. 12). If it is fulfilled, however, the unique nontrivial branch (A(s), u(s)) is
parameterized by s which is the real coordinate in the one-dimensional kernel of A4,:

(5.27) V=150, Uy € ker(4,), SeR.
Then (5. 23) is satisfied if for A(s)
(5. 28) A0)+0

holds. Condition (5.28) is fulfilled if the bifurcation equation (1.12) contains a
quadratic term in v which is quadratic in s, too.

Theorem 5. 1 shows that a branch satisfying (5. 28) is linearly unstable if m =3 or
if m=2 and sign R, = —signa,. If m=1 then a, = —1 and we regain the Principle of
Exchange of Stability (see [9]).

For general n and R(s) we give the following

Theorem 5. 2. Assume one of the following conditions:

(5 29) (0 ((1_ Q) T(s)lker(Ao)) =0 (QT(S)lker(Ao)) =k

or
(530 O(U=Q) TWlkerian) = O (U= Q) T($)] gt oertaon) = k-
Then
(5.31) R(s) =s*R,+ O(s**),
where s* R, is also the lowest order term of (I—Q) T(5)|xerao) -
If
(5.32) detR, 0,
then equation
(5.33) det(s*R,—r(n))=0

gives the lowest order terms of the Puiseux series of the eigenvalue perturbations of
T (s) = G, (A(s), u(s)) near zero.
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Proof. Both conditions imply that (5. 6) is of the form
(5. 34) det (s*R,—r(0)+O(s** ")+ 0 (us*)) =0.
Therefore (5. 33) and (5. 34) have the same Newton diagrams.
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