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1. Introduction

Theories of flow of viscous Newtonian’s and nonlinear viscous fluids are based on the
Navier–Stokes equations and on modifications of them in which the viscosity depends
on the second invariant of the rate of strain tensor, see [2, 27]. These models describe
satisfactorily slow laminar flows, but they are not fit to compute and explore flows with
large gradients and turbulent flows.

Let us consider flows of viscous and nonlinear viscous fluids in the circular tube and
some characteristics of turbulent flows.

The constitutive equation of the power model of the nonlinear viscous fluid is the
following:

σij(p, u) = −p δij + 2 k(2I(u))
m−1

2 εij(u). (1.1)

Here σij(p, u) are the components of the stress tensor which depend on the pressure p
and the velocity vector u = (u1, . . . , un),

δij =

{
1, if i = j

0, if i 6= j
, i, j = 1, . . . , n, n = 2 or 3,

k and m are positive constants, εij(u) components of the rate of strain tensor,

εij(u) =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
, (1.2)

and I(u) is the second invariant of the rate of strain tensor

I(u) =
n∑

i,j=1

(εij(u))2. (1.3)

In this case, the viscosity function ϕ is defined by

ϕ(I(u)) = k(2I(u))
m−1

2 . (1.4)

At m = 1 the fluid is the Newtonian one. If m < 1, the fluid is pseudoplastic, the
viscosity decreases as the shear rate increases. At m > 1 the fluid is dilatant, the
viscosity increases with a rise of the shear rate.

Under increase of the shear rate, the structure of fluid, as a rule, is destroyed and
the viscosity decreases. Because of this, the most part of real fluids are pseudoplastic.
Melted and dissolved polymers, oils, paints, pastes, blood are examples of pseudoplastic
fluids. For the power model (1.1), the problem on rectilinear flow of the fluid in the
circular tube is exactly solved [2], and its solution is the following:

v(r) =
m

m+ 1

∣∣∣ 1

2k

dp

dz

∣∣∣ 1
m
R

m+1
m

[
1−

( r
R

)m+1
m
]
. (1.5)

Here v(r) is the velocity of the fluid at a distance r from the axis of the tube, dp
dz

=
constant < 0 the drop of pressure per unit of the length of the tube, R the radius of the
tube.
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Relation (1.5) changes to the well–known Poiseuille formula for the Newtonian fluid
at m = 1.

The velocity profiles computed by formula (1.5) are shown in Figure 1. Line 1 is the
profile of the Newtonian fluid m = 1, line 2 a pseudoplastic fluid m = 1

3
, line 3 a dilatant

fluid m = 2, lines 4 and 5 are the limits as m → 0 and m → ∞, the corresponding
profiles are rectangular and triangular.

Figure 1

In accordance with an experiment, see [30], pp. 625–628, [8], p. 23, the relations
between the mean velocity vm in the circular tube,

vm =
2

R2

∫ R

0

v(r)r dr, (1.6)

and the pressure p in the inflow of the tube have the forms shown in Figure 2.

Figure 2

Here line 1 is for the Newtonian fluid, 2 for a pseudoplastic one, a1 and a2 are the points
of transition to the turbulent flow. When the flow becomes turbulent, whirlwind flows
appear and the relation p

vm
increases as vm is increased, while for the pseudoplastic fluid

in the range [0, a2] the relation p
vm

decreases as vm is increased, and for the Newtonian

fluid p
vm

= constant for vm ∈ [0, a1].
The velocity profiles obtained by experiment for the flow of the Newtonian fluid in

the circular tube are shown in Figure 3, see [30], page 588, lines 1,2,3 correspond to
vm = b1, b2, b3. In this case b1 < b2 < b3 and b1 corresponds to the laminar flow (line 1
is the parabola), lines 2 and 3 define the profiles of averaged velocities for the turbulent
flows.

Figure 3

For Newtonian’s fluids, the transition from the laminar flow to turbulent occurs when
the Reynolds number, defined as

Re =
vmDρ

µ
, (1.7)

is equal to Rec. Here D is the diameter of the tube, ρ and µ are the density and the
viscosity of the fluid. Rec is said to be the critical value of the Reynolds number.

We mention that for a flow which is different from the flow in circular tube, the
values vm and D in (1.7) are changed for a characteristic velocity and a characteristic
length. However, these values are not strictly specified, and in many cases there is a
large arbitrariness in deciding on these values.

For turbulent flows of the Newtonian fluid in the circular tube, the profiles of averaged
velocities are analogous to the velocity profiles of pseudoplastic fluids for the laminar
flow (see Figures 1 and 3) and vm

v(0)
→ 1 as vm → ∞, i.e. the velocity profile tends to

the rectangular one as Re→∞.



3

In 1877 Boussinesq set up the hypothesis that the constitutive equation of the New-
tonian fluid for turbulent flows is identical to that for laminar flows, only the normal
viscosity is changed for the turbulent viscosity, i.e.

σij(p, u) = −pδij + 2ϕtεij(u), (1.8)

where ϕt is the turbulent viscosity.
Experiment show (see [30], p. 625 and Figure 2) that the turbulent viscosity is far

greater than the laminar one, it may be more than the laminar viscosity by a factor
105, and the turbulent viscosity increases as the mean velocity vm and accordingly Re
rises. Experiments also show [30], p. 627, that the turbulent viscosity increases with
the increase of the distance to the hard wall, but the shearing rate decreases with the
increase of this distance (see Figure 3), in addition, in a small vicinity of the hard wall,
the flow is laminar.

A rich variety of models for turbulent flows of the Newtonian fluid were suggested.
Reviews of these models are contained in [3, 30, 32]. The models of Boussinesq and
Prandtl, and the ”k − ε” model appear to be the most used. The Boussinesq model
is used in hydraulics, meteorology, oceanology. In this case, one assumes that that the
turbulent viscosity increases with the increase of the distance to the hard boundary and
empirical relations are used.

In 1925 Prandtl constructed the so-called ”mixing length theory“ [38] and, on the
basis of it, obtained the following formula for the shear stress τ at turbulent flows:

τ = ρl2
∣∣∣∣dudy

∣∣∣∣ dudy , (1.9)

where l is the mixing length and du
dy

is the velocity gradient.

In line with (1.9), the turbulent Prandtl viscosity has the form

ϕt(I(u)) = ρ l2(2I(u))
1
2 . (1.10)

Comparing (1.10) with (1.4), we can see that ϕt in (1.10) is the viscosity of the power
model of fluid at m = 2. Such fluid is dilatant, its velocity profile is the line 3 in Figure
1, and the form of the profile is independent of the mean velocity vm.

However, experiments show that the velocity profile of the Newtonian fluid in the
circular tube at the turbulent flow is identical to that of a pseudoplastic fluid, and it
tends to rectangular one as vm tends to infinity, i.e. it has a form of the line 2 in Figure
1 and tends to the form of the line 4 there.

Yet, the Prandtl viscosity (1.10) describes the super-lineal increase in the resistance to
flow with the increase of the Reynolds number at turbulent flows, see Figure 2. Because
of this, formulas (1.9) and (1.10) are used for calculations of great variety of turbulent
motions.

In the ”k − ε” model, a system of the Reynolds equations, of the equation of incom-
pressibility, of the transport equation for turbulent fluctuations, and of the equation of
dissipation of the fluctuations is solved, see [3, 33, 41].

Six empirical constants are contained in this model, and it was successfully employed
for two-dimensional flows of the Newtonian fluid in a vicinity of the hard plane boundary
when the flow was close to rectilinear.

Modifications of the ”k−ε” model, which take into account the curvature of the hard
boundary, were suggested. However, they did not furnish the desired result even at
small curvatures, see [32].
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Presently, the Large Eddy Simulation or LES is widely used for approximation of
solutions of the Navier-Stokes equations at large Reynolds numbers.

In LES the functions of velocity u and pressure p in the Navier-Stokes equations are
represented in the following form:

u = u+ u′, p = p+ p′,

where u and p are space averaged functions u and p, u′ and p′ fluctuations.
By averaging the Navier-Stokes equations, the following relations are obtained:

ρ
(∂ui
∂t

+
∂ui
∂xj

uj

)
− µ∆ui +

∂p

∂xi
+
∂αij(u)

∂xj
= Ki, i = 1, ..., n, (1.11)

n∑
i=1

∂ui
∂xi

= 0, (1.12)

where αij(u) are components of the Reynolds stress tensor α(u), αij(u) = ρ(uiuj−ui uj),
Ki components of the volume force vector K, see [3]

In (1.11) and below the Einstein convention on summation over repeated index is
applied.

The tensor α(u) is approximated in LES as follows:

αij(u) ≈ −2ϕt(u, γ)εij(u) +
1

n
αkk(u)δij. (1.13)

Here γ is the radius of the averaging kernel (mollifier).
One of the most popular LES models is the Smagorinsky model [42], in which

ϕt(u, γ) = ρ (CSγ)2 (2I(u))
1
2 , (1.14)

where CS is the Smagorinsky constant.
By (1.13), (1.14) the motion equations (1.11) take the form

ρ
(∂ui
∂t

+
∂ui
∂xj

uj

)
− µ∆ui − 2

3
2ρ (CSγ)2 ∂

∂xj

(
(I(u))

1
2 εij(u)

)
+
∂p̌

∂xi
= Ki, i = 1, ..., n, (1.15)

where p̌ = p+ 1
n
αkk(u).

Comparing (1.10) with (1.14), we see that the Smagorinsky turbulent viscosity is the
turbulent viscosity of Prandtl in which l = CSγ.

The velocity profile of the fluid described by (1.15) in the circular tube is intermediate
between the profiles 1 and 3 in the Figure 1, and it tends to the profile 1 of the Newtonian
fluid as γ tends to zero.

The motion equations (1.15) are the regularized Navier-Stokes equations, in which
the Prandtl turbulent viscosity serves as a regularizer. That is, LES leads to the reg-
ularization of the Navier-Stokes equations, wherein the averaging radius γ serves as a
parameter of regularization.

Mathematical problems for dilatant fluids with the constitutive equation

σij(p, u) = −pδij + 2µεij(u) + 2k(I(u))γ εij(u),

where µ, k and γ are positive constants, γ ≥ 1
4
, were investigated in [23, 24]; in so doing

it was assumed that the velocity is equal to zero on the whole of the boundary.
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We point out that in any real flow, there are areas of the boundary of the domain of
flow, in which fluid flows into and out. Therefore, the velocity is not equal to zero on
the whole of the boundary in any real flow.

Problems on flow of nonlinear viscous fluids, in which the viscosity is a relatively
general function of the second invariant of the rate of strain tensor, are analyzed in
[27] under inhomogeneous Dirichlet and mixed boundary conditions, where velocities
and surface forces are given on different parts of the boundary. However, the nonlinear
terms in the inertial forces are not taken into account there.

Considerable recent attention has been focused on the LANS-α turbulent model, or
the Lagrangian-averaged Navier-Stokes α model, see [12], [13], [15]. The LANS-α model
equations are the following:

ρ
(∂vi
∂t

+
∂vi
∂xj

uj +
∂uj
∂xi

vj

)
− µ∆vi +

∂p̃

∂xi
= Ki, i = 1, 2, 3, (1.16)

v = u− α2∆u, div u = div v = 0 (1.17)

Here v is the Lagrangian-averaged velocity, u the Eulerian-averaged velocity, which is
smoother than v, u is the transport velocity and v the transported velocity, α the scale
parameter, µ > 0 the constant viscosity, p̃ the modified pressure,

p̃ = p− 1

2
ρ(|u|2 + α2|∇u|2), (1.18)

while p is the pressure.
(1.16)–(1.18) imply that u satisfies the following conditions:

ρ
∂

∂t
(ui − α2∆ui) +

∂(ui − α2∆ui)

∂xj
uj +

∂uj
∂xi

(uj − α2∆uj)

−µ∆(ui − α2∆ui) +
∂p̃

∂xi
= Ki, i = 1, 2, 3, (1.19)

div u = 0. (1.20)

At α = 0 the equations (1.19) and (1.18) transfer to the Navier-Stokes equations. (1.19)
is a system of equations of the fourth order. Therefore, one has to prescribe two bound-
ary conditions. However, the LANS-α equations were obtained provided that there is
no a boundary of a domain of flow.

The LANS-α equations are usefully employed in the ocean-climate modeling [11, 37],
where the domain under consideration is very large, and the boundary has a slight
impact on the dominant flow.

Global existence result for LANS-α equations for flow with periodic boundary condi-
tions was obtained in [7]. The global regularity of the solution to LANS-α equations in
a three-dimensional bounded domain at smooth initial velocity and zero volume forces,
and zero boundary conditions is proved in [31]

It is shown in [7], [35] that solutions to LANS-α equations converge to the solution of
the Navier-Stokes equations as α goes to zero. Because of this, for any Reynolds number,
the velocity profile of the LANS-α fluid in the circular tube is close to parabolic for small
α. However, this is not compatible with experimental evidence, see Figure 1.

Turbulent flows are also under investigation from the position of the statistical hy-
dromechanics, see [9] and references there.

In complicated fluid flows there exist regions of laminar flow together with regions
of turbulent flow. Because of this, the models which cover both laminar and turbulent
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flows are of particular interest. In [28, 29] nonlocal models were suggested which describe
laminar and turbulent flows of viscous and nonlinear viscous non-Newtonian fluids.
In these models, the domain of flow is divided into subdomains, and the solution of
the problem on fluid flow determines which flows laminar or turbulent are in these
subdomains and describes them. However, this solution depends on the partition of the
domain of flow.

Below we introduce and investigate a new model that covers laminar and turbulent
flows of viscous and nonlinear viscous fluids. We introduce a characteristic which we call
a local Reynolds number and which is calculated at each point of the domain of flow.
The local Reynolds number defines the value of the turbulent viscosity . The viscosity
of the fluid is the sum of the laminar and turbulent viscosities. In the case that the local
Reynolds number does not exceed some value, the turbulent viscosity is equal to zero.

In Section 2 we introduce the model of the fluid and set out the basic equations.
Formulations of the problems under consideration and main results are contained in
Section 3. We consider stationary and nonstationary flow problems with inhomoge-
neous boundary conditions where velocities are given on the whole of the boundary and
where velocities and surface forces are given on different parts of the boundary. Sec-
tion 4 contains auxiliary results. In Sections 5 and 7, we prove existence results for
the stationary and nonstationary flow problems. Numerical methods for solving these
problems are investigated in Sections 6 and 8.

2. Model of the fluid and basic equations.

2.1. Local Reynolds number. We consider two reference frames in Rn. Denote points
of the first frame by x = (x1, . . . , xn) and points of the second frame by x′ = (x′1, . . . , x

′
n).

Let Ω be a domain in which a fluid flows. We suppose that the reference frame x is
immovable relative to the domain of flow Ω, and the frame x moves with respect to the
frame x′, which is considered as immovable.

For example, if a fluid flows in a canal, the reference frame x is rigidly bound with
the body of the canal. The canal can be located in a moving object, e.g. in a car or in
a plane. The reference frame x′ is rigidly bound with some immovable object which is
situated on the Earth.

In this case x is the actual frame that moves relative to the frame x′ that is an inertial
frame.

Let S be a boundary of Ω. We denote a hard part of the boundary by S1. In the case
that a fluid flows in a canal, the hard boundary of the canal is S1, and the boundary
S of Ω is the join of S1 and S21, and S22 , where S21, and S22 are open subsets of S
corresponding to the regions of inflow and outflow of the fluid, see Figure 4.

Once a fluid flows around a hard body, the boundary of the hard body is S1.
S21S22S1S1Ω

Figure 4

We suppose that the domain of flow satisfies the following conditions:

(C1): Ω is a bounded domain in Rn, n = 2 or 3, with a Lipschitz continuous
boundary S. S1 is an open subset of S of the class C2, and the absolute values
of the principal curvatures of S1 at points of S1 are bounded.

It is significant that these conditions can be weakened. We can assume that S1 is
Lipschitz continuous, S1 =

⋃k
i=1 S1i, where S1i are open subsets of S1 of the class C2

and such that S1i

⋂
S1j = ∅ at i 6= j, and the absolute values of the principal curvatures
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of S1i at points of S1i are bounded, i = 1, . . . , k. However, for the sake of simplicity, we
consider the condition (C1).

Let u = (u1, . . . , un) be a vector of fluid velocity in the reference frame x. By analogy
with the Reynolds number, that is defined by (1.7), we introduce the following local
Reynolds number:

(Rl(u))(x, t) =
|u(x, t)|d(k(u, x, t), r(x, S1))ρ

µ(x, t)
, x ∈ Ω, t ≥ 0. (2.1)

Here

|u(x, t)| =
( n∑
i=1

(ui(x, t))
2
) 1

2
, (2.2)

t is the time variable, ρ the density, µ(x, t) the laminar viscosity of the fluid. For the
Newtonian fluid µ = constant > 0, and

µ(x, t) = (ϕ(I(u)))(x, t), x ∈ Ω, t ≥ 0 (2.3)

for the nonlinear viscous fluid. In (2.1) d is a function of conventional distance, that
serves instead of the diameter of the tube D in (1.7). The arguments of d are k(u, x, t)
and r(x, S1), k is a function of a curvature of S1, and r(x, S1) is the distance between x
and S1,

r(x, S1) = inf
x̌∈S1

[ n∑
i=1

(xi − x̌i)2
] 1

2
. (2.4)

In the case that S1 is planar, we take

d(k(u, x, t), r(x, S1)) = r(x, S1). (2.5)

It has been found experimentally, see [36, 39], that in a vicinity of convex boundary,
the turbulent stresses are smaller than those in a vicinity of plane boundary. For a
concave boundary, the situation is inverse, the turbulent stresses in a vicinity of concave
boundary are greater than those in a vicinity of plane boundary.

We suppose that curvatures of S1, at points s of S1 are not large. Then these curva-
tures have an influence on the fluid flow only at points x from Ω which are spaced in a
not large vicinity of S1.

Let B be such a vicinity,

B = {x|x ∈ Ω, r(x, S1) ≤ b0}. (2.6)

Since b0 is not large, for an arbitrary x from B there exists a unique point s = (s1, . . . , sn)
of S1 such that

r(x, S1) =
( n∑
i=1

(xi − si)2
) 1

2
. (2.7)

We denote this point s by s(x). Consider the case where Ω ⊂ R3.
Let x ∈ B and Ps(x)u(x, t) be the projection of the velocity vector u(x, t) on the plane

that is tangential to S1 at the point s(x). We define k(u, x, t) as the curvature at the
point s(x) of the curve of intersection of the surface S1 and the plane that goes through
the normal to S1 at the point s(x) and the tangential vector Ps(x)u(x, t).

In the case where Ω ⊂ R2, k(u, x, t) is defined as the curvature of S1 as the point s(x).
Thus

k(u, x, t) = c(s(x)),
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where c(s(x)) is the corresponding curvature of S1 at the point s(x).
The following should be stressed: We assumed that the curvature of S1 influenced

the fluid flow at points of Ω which were at a distance up to b0 from S1, where b0 was a
constant. However, in the general case, the distance under consideration b0 should be a
function of the curvature of S1 at points s ∈ S1 in the above sense.

Relation (2.1) is appropriate in the case that the fluid velocity is equal to zero on the
whole of the hard boundary, i.e. the hard boundary is immovable in the reference frame
x. However, in specific cases, the boundary of the domain of flow contains a movable
hard part along with an immovable one. For instance, this is the case when a fluid
moves between two coaxial cylinders such that one cylinder is immovable, whereas the
second rotates around its axis.

Swirl flows are widely used in modern practice, see [32]. For example, such a flow is
created when a fluid is situated between an immovable cylinder and a screw that rotates
inside of the cylinder, the axis of rotation of the screw coinciding with the axis of the
cylinder.

If the reference frame x is immovable with respect to the cylinder, the domain of flow
is a periodical function of the angle of rotation of the screw with the period 2π. And
the domain of flow is time-independent provided that the reference frame x is fixed in
relation to the rotating screw.

Let us define the local Reynolds number for such an event. Denote the immovable and
movable hard parts of the boundary by S11 and S12, respectively. Then S1 = S11

⋃
S22.

The velocities of the points of S12 are assumed to be given.
Let x ∈ Ω and r(x, S11), and r(x, S12) be the distances of x to S11 and S12, respectively.

In the case where r(x, S11) ≤ r(x, S12), we compute Rl(u) by the formula (2.1). Once
r(x, S11) > r(x, S12), we replace the factor |u(x, t)| in (2.1) by |u(x, t)− ǔ(s(x), t)|, where
ǔ(s(x), t) is the velocity of the movable hard part S12 at an instant t at the point s(x)
that is defined as follows:

r(x, S12) = |x− s(x)| =
( n∑
i=1

(xi − (s(x))i)
2
) 1

2
.

Consider the case where Ω ⊂ R3. Let Ps(x)(u(x, t)− ǔ(s(x), t)) be the projection of the
vector u(x, t) − ǔ(s(x), t) on the plane that is tangential to S12 at the point s(x). We
denote by k1(u, x, t) the curvature at the point s(x) of the curve of intersection of the
surface S12 and the plane that goes through the normal to S12 at the point s(x) and the
tangential vector Ps(x)(u(x, t)− ǔ(s(x), t)).

For Ω ⊂ R2, we denote the curvature of S12 at the point s(x) by k1(u, x, t).
Thus, in the case that the boundary of the domain of flow contains a movable hard

part along with an immovable one, the local Reynolds number is defined as follows:

(Rl(u))(x, t) =


|u(x, t)|d(k(u, x, t), r(x, S11))ρ|µ(x, t)|−1

at r(x, S11) ≤ r(x, S12), t > 0,

|u(x, t)− ǔ(s(x), t)|d(k1(u, x, t), r(x, S12))ρ|µ(x, t)|−1

at r(x, S11) > r(x, S12), t > 0.
(2.8)

Since the hard boundary is not deformed when it moves, formula (2.8) also is true when
the domain of flow depends on the displacement of the hard boundary S12.

We assume

(C2): d is a continuous in [−b1, b2]× [0, b3] function with values in R+.
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Here, b1, b2, b3 are positive constants, b3 ≥ b0, R+ = {y|y ∈ R, y ≥ 0}.
In line with experimental results and the above assumptions, the function d satisfies

the following conditions:

d(0, y2) = y2 at y2 ∈ [0, b3],

d(y1, y2) = y2 at y2 ∈ [b0, b3], y1 ∈ [−b1, b2],

d(y1, 0) = 0 at y1 ∈ [−b1, b2],

d(y1, y2) ≤ y2 at y1 > 0, d(y1, y2) ≥ y2 at y1 < 0. (2.9)

2.2. Constitutive equation. Define the following constitutive equation for both lam-
inar and turbulent flows:

σij(p, u) = −pδij + 2(ϕ(I(u)) + ϕt(Rl(u)))εij(u). (2.10)

Here ϕ is the laminar viscosity that depends on I(u), ϕt is the turbulent viscosity
depending on the local Reynolds number.

For the Newtonian fluid

ϕ(I(u)) = µ = constant > 0. (2.11)

We assume that ϕt satisfies the following conditions:

(C3): ϕt : y → ϕt(y) is a continuous and nondecreasing mapping of R+ into R+

and

ϕt(y) = 0 at y ≤ b, ϕt(y) > 0 at y > b. (2.12)

Here b is a positive constant, it is the point of transition from the laminar flow to
turbulent.

Relations (2.12) are in agreement with experimental results, which were treated above.
It is supposed that the laminar viscosity ϕ satisfies the following conditions:

(C4): ϕ is a continuous function in R+, and the following inequalities hold:

a1 ≤ ϕ(y) ≤ a2, y ∈ R+, (2.13)

(ϕ(y2
1)y1 − ϕ(y2

2)y2)(y1 − y2) ≥ a3(y1 − y2)2, (y1, y2) ∈ R2
+, (2.14)

where a1, a2, a3 are positive constants.
The inequality (2.13) indicates that the laminar viscosity is bounded from below and

above by positive constants, (2.14) means that in the case of simple shear flow, the shear
stress increases with increasing shearing rate.

These inequalities are natural from the physical point of view.
The local Reynolds number, like the Reynolds number, depends on the velocity of the

fluid in the frame that is immovable relative to the domain of flow. Because of this, the
turbulent viscosity ϕt is independent of the motion of the domain of flow with respect to
the immovable frame x′. Moreover, the turbulent viscosity is independent of the chosen
frame, providing that the frame is immovable relative to Ω.

Indeed, an arbitrary frame which is immovable relative to Ω is given by

y = x+ r1 + r2, (2.15)
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where r1 = (r1
1, . . . , r

1
n) is a vector of translation, r2 = (r2

1, . . . , r
2
n) is a vector of turn.

At n = 3 the vector r2 has the following form:

r2
1 = ω2x3 − ω3x2,

r2
2 = ω3x1 − ω1x3,

r2
3 = ω1x2 − ω2x1. (2.16)

Here ω = (ω1, ω2, ω3) is the angle of the vector of turn.
Let e1, e2, e3 and e′1, e

′
2, e
′
3 be unit base vectors in the frames x = (x1, x2, x3) and

y = (y1, y2, y3). Let also u(x, t) = ui(x, t)ei be a velocity vector in the frame x, and
u′(y, t) = u′i(y, t)e

′
i be the same vector in the frame y, i.e. u(x, t) = u′(y, t). In this case,

u′i(y, t) = γijuj(x, t), γij = (e′i, ej), i, j = 1, 2, 3,

where (e′i, ej) is the scalar product of the vectors e′i and ej.
It follows from the definition of the local Reynolds number that

(Rl(u))(x, t) = (Rl(u
′))(y, t). (2.17)

Therefore,

(ϕt(Rl(u)))(x, t) = (ϕt(Rl(u
′)))(y, t), (2.18)

and the turbulent viscosity is invariant relative to the transformation (2.15).

In what follows, we consider the following modification (regularization) of the consti-
tutive equation (2.10):

σij(p, u) = −pδij + 2(α(I(u))
1+β

2 + ϕ(I(u)) + ϕt(Rl(u)))εij(u). (2.19)

Here α and β are small positive constants, α(I(u))
1+β

2 is the regulating term.
We assume that for the nonlinear viscous fluid, the viscosity µ(x, t) in Rl(u) is defined

by a regularized velocity field, i.e. instead of (2.3), we use such relation

µ(x, t) = (ϕ(I(uγ)))(x, t), (2.20)

where

uγ(x, t) =

∫
R3

ωγ(|x− z|)ũ(z, t) dz,

ωγ ∈ C∞(R+), supp ωγ ⊂ [0, γ], ωγ(y) ≥ 0, y ∈ R+,∫
R3

ωγ(|x|) dx = 1. (2.21)

Here γ is a small positive constant, and ũ(., t) is an extension of the function u(., t) to
R3 which preserves the class of smoothness.

Formulas (2.21) and (2.20) define averaged values of the velocities and the laminar
viscosity. As a result of regularization, we have uγ|S1 6= 0, while u|S1 = 0. However, this
has no effect on the validity of our model, since Rl(u) and ϕt(Rl(u)) are equal to zero
in a vicinity of S1.

Because the averaged velocities and stresses are calculated for turbulent flows, the
relation (2.20) is natural from the physical point of view.

We mention that the functions ϕ, ϕt, and d can be defined by identification. In the
case where the fluid is Newtonian and the boundary S1 is plane, ϕt is identified only.
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2.3. Basic equations. We denote by
∗
u(x, t) = (

∗
u1(x, t),

∗
u2(x, t),

∗
u3(x, t)) the vector of

transfer velocity,
∗
u(x, t) is the velocity of a point x of the actual frame at an instant t

in the immovable (inertial) frame x′.

In the general case, the function
∗
u is of the form

∗
u(x, t) = l(t) + w(x, t), (2.22)

where l(t) = (l1(t), l2(t), l3(t)) is the vector of translation velocity, and w(x, t) = (w1(x, t),
w2(x, t), w3(x, t)) the vector of rotational velocity,

w1(x, t) = ω2(t)x3 − ω3(t)x2,

w2(x, t) = ω3(t)x1 − ω1(t)x3,

w3(x, t) = ω1(t)x2 − ω2(t)x1, (2.23)

ω(t) = (ω1(t), ω2(t), ω3(t)) being the vector of angular velocity.
The absolute velocity of the fluid is ua,

ua(x, t) =
∗
u(x, t) + u(x, t). (2.24)

In the case under consideration that the actual frame x moves at a velocity
∗
u given by

(2.22) and (2.23), the motion equation is defined as follows:

ρ
(Dua
Dt

+ (gradu)u
)
− div σ(p, u) = K in Q. (2.25)

Here Q = Ω × (0, T ), T = constant > 0, K = (K1, K2, K3) is the volume force vector,
Dua

Dt
the total derivative with respect to time of the function of absolute velocity ua .

According to the Coriolis theorem on composition of accelerations, we obtain

Dua

Dt
=
∂u

∂t
+
dl

dt
+
dω

dt
× x+ ω × (ω × x) + 2ω × u, (2.26)

where × is the sign of vector product.
In (2.25) gradu is a tensor of the second order of the form

gradu =
{∂ui
∂xj

}3

i,j=1
,

and div σ(p, u) is a vector with components

∂σij(p, u)

∂xj
, i = 1, 2, 3.

We assume that l and ω are known functions and denote

G = ρ
(dl
dt

+
dω

dt
× x+ ω × (ω × x)

)
. (2.27)

By using the above formulas, we obtain the following representation of the motion
equations:

ρ
(∂ui
∂t

+
∂ui
∂xj

uj + 2(ωi+1ui+2 − ωi+2ui+1)
)
− ∂σij(p, u)

∂xj
(2.28)

= Ki −Gi in Q, i = 1, 2, 3. (2.29)

Here we take i+ k equal to i+ k − 3 at i+ k > 3, k = 1, 2; the terms

2ρ(ωi+1ui+2 − ωi+2ui+1), i = 1, 2, 3,

are the components of the Coriolis force.
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In the special case that the frame x is immovable (inertial), the function G and the
Coriolis force are equal to zero, and we have

ρ
(∂ui
∂t

+
∂ui
∂xj

uj

)
− ∂σij(p, u)

∂xj
= Ki in Q, i = 1, 2, 3. (2.30)

Since the local Reynolds number is independent of the motion of the frame x with
respect to any inertial frame, the motion equations (2.28), (2.30) in which σij(p, u) are
defined by (2.10) or by (2.19), are invariant with respect to the Galilei transformation
x → z, where z = (z1, z2, z3) is an arbitrary inertial frame, x = z + V t, where V is a
constant velocity. In this case, one assumes that Rl is computed in the frame x, and the
move of time in the frames x and z is identical, i.e. t = t′, t′ is the time in the frame z.

It is presupposed that the fluid is incompressible

div u =
3∑
i=1

∂ui
∂xi

= 0 in Q. (2.31)

We consider two types of boundary conditions, the mixed conditions and the Dirichlet
ones. In the case of mixed conditions, we prescribe the nonslip condition on S1 and
surface forces on S2, i.e.

u|S1×(0,T ) = 0, (2.32)

σij(p, u)νj|S2×(0,T ) = Fi, i = 1, 2, 3. (2.33)

Here Fi and νj are components of the vector functions of surface force F = (F1, F2, F3)
and unit outward normal ν = (ν1, ν2, ν3) to S2, respectively.

In the case of the Dirichlet conditions, we set

u|S×(0,T ) = û. (2.34)

The initial condition is the following:

u(x, 0) = u0(x), x ∈ Ω. (2.35)

Be virtue of the nonslip condition, we can consider that

û|S1×(0,T ) = 0, and u0|S1 = 0.

In investigation of the stationary problem, we suppose that the frame x moves with a
constant velocity V relative to the frame x′, in particular, it can be V = 0. In this case,
the motion equations have the form

ρ
∂ui
∂xj

uj −
∂σij(p, u)

∂xj
= Ki in Ω, i = 1, . . . , n, (2.36)

and the mixed boundary conditions are the following:

u|S1 = 0, σij(p, u)νj|S2 = Fi, i = 1, . . . , n. (2.37)

We also consider the Dirichlet condition

u|S = û. (2.38)

We mention that in the majority of publications on mathematical problems for the
Navier-Stokes equations, the authors assumed that the velocity is equal to zero on the
whole of the boundary of the domain of flow. However, in any real flow there are regions
of the boundary in which fluid flows into and out, the velocity is nonzero in these regions.

So far as we know, there are no results on the solvability of the Navier-Stokes equations
with nonhomogeneous Dirichlet boundary conditions (2.34) and (2.38) in the general
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case, where û ∈ W
1
2

2 (S)n,
∫
S
ûiνi ds = 0. There are results for the cases of stationary

flow, where there exists a vector function w such that curlw|s = û, and where the values
of û are small, see [25], Section 2, Chapter 5, and [27], Sections 3, 4, Chapter 3.

A problem on nonstationary flow of the viscous fluid with mixed boundary conditions
(2.32), (2.33) is investigated in [20]. However, the nonlinear terms in the inertial forces
are not taken into account in this work.

To the best of our knowledge, the problem with mixed boundary conditions (2.32),
(2.33) for the full Navier-Stokes equations was not investigated. Although such boundary
conditions are quite important for practical application.

We will now point out some features of the fluid model under consideration.
1. The adhesion (nonslip) condition is usually accepted for viscous fluids. This means

that the velocity of a fluid at points of the hard boundary coincides with the velocity of
points of the hard boundary. Because of this, the values of the local Reynolds number
are small in a vicinity of the hard boundary and the turbulent viscosity equals zero.
Hence, the constitutive equations (2.10) and (2.19) predict the existence of a laminar
boundary layer in a vicinity of the hard boundary at turbulent flow of the fluid.

2. The equations (2.10) and (2.19) identify the areas of the laminar and the turbulent
flow in the domain of flow, they enable us to describe special features of turbulent flows
such as a drastic increase in the resistance to flow and the variation of the velocity profile
with the increase of the Reynolds number, see Figures 2 and 3.

3. The equations (2.10) and (2.19) incorporate the curvature of the hard boundary
and they describe the convex and concave surface curvature effects in wall-bounded
turbulent flows, see (2.9). Therefore, these equations can be used for the simulation of
curved and swirling turbulent flows.

4. The implementation of the non-inertial reference frame x enables us to solve flow
problems in moving domains; in this case, the inertia forces induced by the motion of
the domain of flow are taken into account.

5. The constitutive equation (2.19), which is the regularization of the relation (2.10),
leads to well posed mathematical problems. We prove the existence of global solutions
to stationary and nonstationary flow problems with the nonhomogeneous Dirichlet and
mixed boundary conditions.

6. The Smagorinsky model, which is one of the most popular LES models, represents
a particular case of our model. Indeed, at β = 0, ϕ(I(u)) = µ, and ϕt = 0, we obtain
(1.15) from (2.19), (2.30), and (2.31).

The above properties of our model from 1., 2., and 3. cannot be described by other
models, in particular, by LANS-α equations.

Essentially, there are no results on solvability of the Navier-Stokes equations with
nonhomogeneous boundary conditions for the velocity function. To the best of our
knowledge, there are no whatsoever results on solvability of the Navier-Stokes equations
for the most important engineering problem with mixed boundary conditions, where
surface forces are prescribed on the inflow and the outflow of the fluid, and zero velocities
are given on the remainder of the boundary of the domain of flow.

There are also no results on solvability of the LES and LANS-α equations with non-
homogeneous Dirichlet and mixed boundary conditions. However, for our model these
results are contained in Section 3.

Our model cannot describe so well the turbulent structure as it does the LANS-α
model. But on the other hand, it can describe complicated flows, not only viscous but
also nonlinear viscous non-Newtonian fluids as well, in which there are areas of laminar
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and turbulent flows. It gives boundary effects, the distribution of averaged velocities,
forces, the energy consumed in flow, and so on.

The model under consideration lets us obtain good approximations to the solutions
of the corresponding problems, see Sections 6 and 8.

Thus, our new approach can compliment earlier approaches, in particular, LANS-α
approach, for modeling complicated flows in real-world, specifically , engineering appli-
cations.

3. Formulations of the problems and the main results.

3.1. Stationary problems. We use the following spaces:

V = {u|u = (u1, . . . , un) ∈ W 1
3+β(Ω)n, β ∈ (0, 1), u|S1 = 0}, (3.1)

V1 = {u|u ∈ V, div u = 0}, (3.2)

V2 = {u|u ∈ W 1
3+β(Ω)n, u|S = 0}, (3.3)

V3 = {u|u ∈ V2, div u = 0}. (3.4)

In the sequel, we will use the following notations:
If Y is a normed space, we denote by Y ∗ the dual of Y , and by (f, h) the duality

between Y ∗ and Y , where f ∈ Y ∗, h ∈ Y . In particular, if f ∈ L2(Ω) or f ∈ L2(Ω)n,
then (f, h) is the scalar product in L2(Ω) or in L2(Ω)n, respectively. L(X, Y ) is the
space of linear continuous mappings of a normed space X into Y .

Once B(Ω) is a normed space of functions which are given in Ω, we denote by Bloc(Ω)
the set of all functions f given in Ω, which satisfy the condition: For an arbitrary
subdomain Λ ⊂ Ω such that Λ ⊂ Ω, the restriction of f to Λ belongs to the space B(Λ).

The sign ⇀ denotes weak convergence in Banach spaces.
Define an operator N : V → V ∗ as follows:

(N(u), h) = 2

∫
Ω

(
α(I(u))

1+β
2 + ϕ(I(u)) + ϕt(Rl(u))

)
εij(u)εij(h) dx

+ρ

∫
Ω

uj
∂ui
∂xj

hi dx, u, h ∈ V. (3.5)

The functions of volume and surface forces are assumed to satisfy the following condi-
tions:

K = (K1, . . . , Kn) ∈ Lr(Ω)n, (3.6)

F = (F1, . . . , Fn) ∈ Lr(S2)n, r > 1. (3.7)

We consider the problem: Find a pair of functions u, p satisfying

(u, p) ∈ V1 × L 3+β
2+β

(Ω), (3.8)

(N(u), h)−
∫

Ω

p div h dx = (G1, h), h ∈ V, (3.9)

where

(G1, h) =

∫
Ω

Kihi dx+

∫
S2

Fihi ds. (3.10)

By using the Green formula, one can verify that the pair u, p resolving the problem
(3.8), (3.9) is a weak solution of the problem (2.36), (2.31) wherein Q is changed for Ω,
and (2.37) with σij(p, u) defined by (2.19).
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In the case that the boundary condition is given by (2.38), we assume that there exists
a function ũ that satisfies the conditions

ũ ∈ W 1
3+β(Ω)n, div ũ = 0, ũ|S = û. (3.11)

With the proviso that the boundary S is out of the class C2, for an arbitrary û such
that

û ∈ W
1− 1

3+β

3+β (S)n,

∫
S

ûiνi ds = 0, (3.12)

there exists a function ũ that meets the conditions (3.11), see Lemma 4.2 below.
We introduce an operator L : V2 → V ∗2 of the form

(L(v), h) =2

∫
Ω

(α(I(ũ+ v))
1+β

2 + ϕ(I(ũ+ v)) + ϕt(Rl(ũ+ v)))εij(ũ+ v)εij(h) dx

+ρ

∫
Ω

(ũj + vj)
∂(ũi + vi)

∂xj
hi dx, v, h ∈ V2. (3.13)

Consider the problem: Find a pair v, p such that

v ∈ V3, p ∈ L 3+β
2+β

(Ω), (3.14)

(L(v), h)−
∫

Ω

p div h dx =

∫
Ω

Kihi dx, h ∈ V2. (3.15)

If v, p is a solution of problem (3.14), (3.15), then the pair u = ũ+v, p is a weak solution
of the problem (2.36), (2.31) wherein Q is changed for Ω, and (2.38).

Theorem 3.1. Suppose that the conditions (C1)–(C4) and (3.6), (3.7) are satisfied.
Let the local Reynolds number be defined by (2.1), where µ is either a positive constant,
or is given by (2.20). Then there exists a function u and a unique function p such that,
the pair u, p is a solution of the problem (3.8), (3.9).

Theorem 3.2. Suppose that the conditions (C1)–(C4) and (3.6), (3.11) are satisfied.
Let the local Reynolds number be defined by (2.1), where µ is either a positive constant,
or is given by (2.20). Then there exists a pair v, p which is a solution of the problem
(3.14), (3.15). In this case p is defined within a constant addend.

3.2. Nonstationary problems. We suppose that the functions of volume and surface
forces and the initial data satisfy the conditions

K = (K1, . . . , Kn) ∈ L 3+β
2+β

(0, T ;Lr(Ω)n), (3.16)

F = (F1, . . . , Fn) ∈ L 3+β
2+β

(0, T ;Lr(S2)n), r > 1, (3.17)

u0 ∈ U, (3.18)

where

U = {h|h ∈ L2(Ω)n, div h = 0}. (3.19)

It is also assumed that the vector of transfer velocity
∗
u, that is defined by (2.22), (2.23),

is known, and the function of turbulent viscosity is Lipschitz continuous, i.e.

|ϕt(y1)− ϕt(y2)| ≤ ξ |y1 − y2|, y1, y2 ∈ R+, ξ = constant > 0.
(3.20)
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We consider the problem: Find a pair u, p such that

u ∈ L3+β(0, T ;V1),
du

dt
∈ L 3+β

2+β
(0, T ;V ∗), (3.21)

p ∈ L 3+β
2+β

(Q), (3.22)

ρ
(du
dt
, h
)

+ (Ñu, h) + (N(u), h)− (p, div h) = (G̃, h) in D′(0, T ), h ∈ V,
(3.23)

u(0) = u0. (3.24)

Here

(Ñu, h) = 2ρ
3∑
i=1

∫
Ω

(ωi+1 ui+2 − ωi+2 ui+1)hi dx, (3.25)

(G̃, h) = (G1, h)− (G, h). (3.26)

In (3.25), we take i+ k equal to i+ k − 3 at i+ k > 3, k = 1, 2. In (3.26) G is defined
by (2.27), and we suppose that

l ∈ W 1
3+β (0, T )n, ω ∈ W 1

3+β (0, T )n. (3.27)

The pair of functions u, p, which is a solution of the problem (3.21)–(3.24), is a weak
solution of the problem (2.28), (2.31), (2.32), (2.33), (2.35).

Theorem 3.3. Suppose that the conditions (C1)−(C4) and (3.16)–(3.18), (3.20), (3.27)
are satisfied. Let the local Reynolds number be defined by (2.1), where µ is either a
positive constant, or is given by (2.20). Then there exists a solution of the problem
(3.21)–(3.24).

In the case that the boundary condition is given by (2.34), we assume that there exists
a function ũ which complies with the conditions

ũ ∈ L3+β (0, T ;W 1
3+β(Ω)n),

dũ

dt
∈ L 3+β

2+β
(0, T ;V ∗2 ), div ũ = 0, ũ|Γ = û, (3.28)

where Γ = S × (0, T ).
We consider the problem: Find a pair v, p such that

v ∈ L3+β(0, T ;V3),
dv

dt
∈ L 3+β

2+β
(0, T ;V ∗2 ), (3.29)

p ∈ L 3+β
2+β

(Q), (3.30)

ρ
(dv
dt
, h
)

+ (Ñ(ũ+ v), h) + (L(v), h)− (p, div h) = (G2, h) in D′(0, T ), h ∈ V2,
(3.31)

v(0) = u0 − ũ(0). (3.32)

Here

(G2, h) =

∫
Ω

Kihi dx− (G, h)−
(dũ
dt
, h
)
. (3.33)

If v, p is a solution of the problem (3.29)–(3.32), then the pair u = ũ + v, p is a weak
solution of the problem (2.28), (2.31), (2.34), and (2.35).
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Theorem 3.4. Suppose that the conditions (C1) − (C4) and (3.16), (3.18), (3.20),
(3.27), (3.28) are satisfied. Let the local Reynolds number be defined by (2.1), where µ
is either a positive constant, or is given by (2.20). Then there exists a solution of the
problem (3.29)–(3.32).

For simplicity sake, we do not consider the case where the boundary of the domain
of flow contains a movable hard part, but the domain of flow is independent of time.
The local Reynolds number is defined by (2.8) in this case. As will be seen from the
following presentation, the Theorems 3.1–3.4 can be extended to this case.

4. Auxiliary results.

4.1. Equivalent norms.

Lemma 4.1. Let Ω be a bounded domain in Rn, n = 2 or 3, with a Lipschitz continuous
boundary S. Let S1 be an open nonempty subset of S and 1 < l < ∞. Then the
expression

||u||1 =
(∫

Ω

(I(u))
l
2 dx

) 1
l

+

∫
S1

|u| ds (4.1)

defines a norm in the space W 1
l (Ω)n, that is equivalent to the main norm of W 1

l (Ω)n.

Proof. It is known, see [34], that the norm

||u||2 =
(∫

Ω

(I(u))
l
2 dx

) 1
l

+ ||u||Ll(Ω)n (4.2)

is equivalent to the main norm of W 1
l (Ω)n.

Therefore, it is sufficient to show that there exists a constant c such that

||u||Ll(Ω)n ≤ c||u||1, u ∈ W 1
l (Ω)n. (4.3)

Indeed, it follows from (4.3) that there exists a constant c1 such that

||u||2 ≤ c1||u||1, u ∈ W 1
l (Ω)n.

Therefore,

||u||W 1
l (Ω)n ≤ c2||u||1, u ∈ W 1

l (Ω)n.

The inverse inequality follows from the triangle inequality.
Suppose that (4.3) is false. Then there exists a sequence {um} that satisfies the

conditions

||um||Ll(Ω)n = 1,
(∫

Ω

(I(um))
l
2 dx

) 1
l → 0,

∫
S1

|um| ds→ 0. (4.4)

It follows from (4.2) and (4.4) that the sequence {um} is bounded in W 1
l (Ω)n. Hence, a

subsequence {uk} can be extracted such that

uk → u0 in Ll(Ω)n, (4.5)

and, in addition,

lim inf
(∫

Ω

(I(uk))
l
2 dx

) 1
l ≥

(∫
Ω

(I(u0))
l
2 dx

) 1
l

= 0, (4.6)

lim inf

∫
S1

|uk| ds ≥
∫
S1

|u0| ds = 0. (4.7)
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By virtue of (4.6), the function u0 belongs to the well known space of rigid displacements,
and it has the following form at n = 3:

u0(x) = a+ Ax, (4.8)

where

u0 =

 u01

u02

u03

 , a =

 a1

a2

a3

 , A =

 0 −b3 b2

b3 0 −b1

−b2 b1 0

 . (4.9)

Here ai and bi are constants.
Since S1 has a positive two-dimensional area, there exists three points x(1), x(2), x(3)

of S1 such that the vectors x(1)− x(2) and x(1)− x(3) are linearly independent. (4.7) and
(4.8) imply

Ax(1) = Ax(2) = Ax(3) = −a.
Therefore

A(x(1) − x(2)) = 0, A(x(1) − x(3)) = 0. (4.10)

Thus, the rank of the matrix A does not exceed unit, and all the minors of A of the
second order are equal to zero. It follows here from that b1 = b2 = b3 = 0, and (4.7), (4.8)
yield a1 = a2 = a3 = 0, i.e. u0 = 0. However, (4.4) and (4.5) imply that ||u0||Ll(Ω)n = 1.
The two last relations are contradictory. Therefore, (4.3) is true, and our lemma is
proved.

We assign the following norm in V

||u||V =
(∫

Ω

(I(u))
3+β

2 dx
) 1

3+β
. (4.11)

It follows from Lemma 4.1 that the norm ||.||V is equivalent to the main norm of the
space W 1

3+β(Ω)n.

4.2. Renewal of functions.

Lemma 4.2. Let Ω be a bounded domain in Rn, n = 2 or 3, with a boundary S of the

class C2. Let g be a function from the space W
1− 1

3+β

3+β (S)n that meets the condition∫
S

giνi ds = 0. (4.12)

Then there exists a function v such that

v ∈ W 1
3+β (Ω)n, div v = 0, v|S = g,

||v||W 1
3+β(Ω)n ≤ c||g||

W
1− 1

3+β
3+β (S)n

, (4.13)

where c is independent of g.

Proof. We consider the problem: Find ψ ∈ W 2
3+β(Ω) satisfying

∆ψ = div gradψ = 0 in Ω, (4.14)

∂ψ

∂ν
= gν on S, (4.15)

where gν = g · ν = giνi.
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By virtue of (4.12) and (4.14), there exists a solution of the problem (4.14), (4.15),
which is defined within a constant addend and such that, see [40], Theorem 5.3.1,

||∇ψ||W 1
3+β(Ω)n ≤ c1||gν ||

W
1− 1

3+β
3+β (S)

. (4.16)

Consider the problem: Find h ∈ W 1
3+β(Ω)n which satisfies the conditions:

div h = 0, h|S = g −∇ψ|S. (4.17)

(4.15) and (4.16) yield

(g −∇ψ|S) · ν = 0, (g −∇ψ|S) ∈ W
1− 1

3+β

3+β (S)n. (4.18)

By virtue of the known results, see [25], Chapter 1, Section 2, relations (4.18) imply
that there exists a function θ which complies with the following conditions:

θ ∈ W 2
3+β(Ω)n, curl θ|S = g −∇ψ|S, (4.19)

|| curl θ||W 1
3+β(Ω)n ≤ c2||g −∇ψ|S||

W
1− 1

3+β
3+β (S)n

. (4.20)

The function h = curl θ is a solution of the problem (4.17). It follows from (4.14), (4.16),
(4.19), and (4.20) that the function v = ∇ψ + curl θ meets the conditions (4.13). This
completes the proof.

4.3. Operators div and grad. We introduce the following spaces:

Y = {f |f ∈ V ∗2 , (f, u) = 0, u ∈ V3}, (4.21)
◦
Le(Ω) = {q|q ∈ Le(Ω),

∫
Ω

q(x) dx = 0}, (4.22)

where e ∈ (1,∞).

Lemma 4.3. Let Ω be a bounded domain in Rn, n = 2 or 3, with a boundary S of
the class C2 . Then the operator div is an isomorphism of the factor space V2/V3 onto
◦
L3+β(Ω), and the operator grad, that is adjoint to the operator div, is an isomorphism

of
◦
L 3+β

2+β
(Ω) onto Y .

Proof. Let v ∈ V2. The Green formula yields∫
Ω

div v dx =

∫
S

viνi ds = 0.

Thus

div ∈ L(V2,
◦
L3+β(Ω)).

Let us show that the operator div maps V2/V3 onto the whole of
◦
L3+β(Ω).

Let g be a function from
◦
L3+β(Ω). Since the boundary S is of the class C2, there

exists θ ∈ W 2
3+β(Ω) such that

∆θ = g in Ω,
∂θ

∂ν

∣∣∣
S

= 0. (4.23)

The function h = ∇θ belongs to the space W 1
3+β(Ω)n and satisfies the conditions

div h = ∆θ = g in Ω, h|S · ν = 0, h|S ∈ W
1− 1

3+β

3+β (S)n. (4.24)
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By Lemma 4.2, there exists a function v satisfying

v ∈ W 1
3+β(Ω)n, div v = 0, v|S = h|S. (4.25)

The function u = h− v belongs to V2 and div u = g.

Therefore, the operator div maps V2 onto
◦
L3+β(Ω), and it is a one-to-one mapping of

V2/V3 onto
◦
L3+β(Ω).

It follows from the Banach theorem on inverse operator, see e.g. [44], Chapter 2,

Section 5, that the inverse operator div−1 is a continuous mapping of
◦
L3+β(Ω) onto

V2/V3.

Thus, the operator div is an isomorphism of V2/V3 onto
◦
L3+β(Ω)n. It follows here

from, see [18], Chapter 3, Theorem 5.30, that the operator grad−1, that is the inverse

of the operator grad, is a linear continuous mapping of Y onto
◦
L 3+β

2+β
(Ω). Therefore, the

operator grad is an isomorphism of
◦
L 3+β

2+β
(Ω) onto Y . �

Lemma 4.4. Let Ω be a bounded domain in Rn, n = 2 or 3, with a boundary S of
the class C2 . Then the operator div is an isomorphism of the factor space V/V1 onto
L3+β(Ω), and the operator div∗, that is adjoint of div, is an isomorphism of L 3+β

2+β
(Ω)

onto W , where

W = {f |f ∈ V ∗, (f, v) = 0, v ∈ V1}. (4.26)

Moreover, there exists a constant ζ > 0 such that

inf
χ∈L 3+β

2+β

(Ω)
sup
v∈V

∫
Ω
χ div v dx

||v||V ||χ||L 3+β
2+β

(Ω)

≥ ζ, (4.27)

|| div−1 ||L(L3+β(Ω),V/V1) ≤
1

ζ
, (4.28)

||(div∗)−1||L(W,L 3+β
2+β

(Ω)) ≤
1

ζ
, (4.29)

where div−1 and (div∗)−1 are the inverse operators of div and div∗, respectively.

Proof. Let us show that there exists a function w satisfying

w ∈ V, divw = 1. (4.30)

Take a function g such that

g ∈ V, supp g ⊂ Ω ∪ S2,

∫
S2

giνi ds = a 6= 0. (4.31)

By the Green formula and (4.31), we obtain∫
Ω

(mes Ω

a
div g − 1

)
dx = 0. (4.32)

Lemma 4.3 and (4.31), (4.32) imply that there exists a function u which meets the
conditions

u ∈ V2, div u =
mes Ω

a
div g − 1. (4.33)
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Therefore, the function

w =
mes Ω

a
g − u (4.34)

complies with (4.30).
By virtue of Lemma 4.3 and (4.30), the operator div maps V onto L3+β(Ω). Owing to

this, the inequality (4.28) follows from the Banach theorem on inverse operator. Thus
the operator div is an isomorphism of V/V1 onto L3+β(Ω).

The space (V/V1)∗ can be identified with W . Taking into account the following
equalities:

(div−1)∗ = (div∗)−1,

|| div−1 ||L(L3+β(Ω), V/V1) = ||(div−1)∗||L(W,L 3+β
2+β

(Ω)), (4.35)

see [17], Chapter 12, Section 2, or [14], Section 6.5, we obtain (4.29) from (4.28).
Hence

|| div∗ χ||W = sup
v∈V/V1

(v, div∗ χ)

||v||V/V1

≥ ζ||χ||L 3+β
2+β

(Ω), χ ∈ L 3+β
2+β

(Ω), (4.36)

and (4.27) follows from (4.36). �

Lemma 4.5. Let Ω be a bounded domain in Rn, n = 2 or 3, with a Lipschitz continuous
boundary S. Let p,R, b, and g be four functions such that

p ∈ L 3+β
2+β

, loc(Ω), R = {Rik}ni,k=1, Rik = Rki, Rik ∈ L 3+β
2+β

(Ω),
(4.37)

b = {bik}ni,k=1, bik ∈ L 3+β
2+β

(Ω), g = (g1, . . . , gn) ∈ Le(Ω)n, e > 1,
(4.38)∫

Ω

Rikεik(h) dx+

∫
Ω

bik
∂hi
∂xk

dx−
∫

Ω

p div h dx =

∫
Ω

gihi dx,

h ∈ W 1
3+β(Ω)n, supph ⊂ Ω. (4.39)

Then p ∈ L 3+β
2+β

(Ω) and

||p||L 3+β
2+β

(Ω) ≤ c
( n∑
i,k=1

||Rik||L 3+β
2+β

(Ω) +
n∑

i,k=1

||bik||L 3+β
2+β

(Ω)

+
n∑
i=1

||gi||Le(Ω) + ||p||L 3+β
2+β

(Ω\Ωδ)

)
, (4.40)

where

Ωδ = {x|x ∈ Ω, r(x, S) < δ}, (4.41)

δ is a small positive constant, r(x, S) is defined by (2.4) at S = S1, and c depends on
δ, but independent of R, b, and g.

Proof. The following lemma is proved in [26]: Let Ω be a bounded domain in R3,
with a Lipschitz continuous boundary S. Let p, A = {Aik}3

i,k=1, g = {gi}3
i=1 be three
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functions such that

p ∈ W 1
2,loc(Ω), Aik ∈ W 1

2 (Ω), gi ∈ L 6
5
(Ω), i, k = 1, 2, 3, (4.42)

∂p

∂xi
=
∂Aik
∂xk

+ gi in Ω, i = 1, 2, 3. (4.43)

Then p ∈ L2(Ω) and

||p||L2(Ω) ≤ cδ

( 3∑
i,k=1

||Aik||L2(Ω) +
3∑
i=1

||gi||L 6
5

(Ω) + ||p||L2(Ω\Ωδ)

)
, (4.44)

where cδ is independent of Aik and gi.
It follows from the proof of this lemma and the Calderon-Zygmund theorem on sin-

gular integrals (see [5], [16], Chapter 1, Section 2) and the Sobolev theorem on integrals
with weak singularity, that the statement of this lemma remains true in the cases where
n = 2 and n = 3, and the index 2 in (4.42) and (4.44) is changed for an arbitrary
q such that 1 < q < ∞, and the space L 6

5
(Ω) for gi is changed for the space Le(Ω)

such that Le(Ω) ⊂ W−1
q (Ω). The relation Le(Ω) ⊂ W−1

q (Ω) denotes that we identify an

element f ∈ Le(Ω) with the functional f̃ ∈ W−1
q (Ω) that is given by (f̃ , h) =

∫
Ω
fh dx,

h ∈ W 1
q
q−1

(Ω), h|S = 0.

We consider the case that q = 3+β
2+β

and e > 1.

Let (4.37), (4.38), and (4.39) be satisfied, and let pγ, Rikγ, bikγ, and giγ be the regu-
larized functions p, Rik, bik, and gi which are defined as it is in (2.21).

Let also {Ωj}∞j=1 be a sequence of subdomains of Ω satisfying

Ωδ ⊂ Ωj, Ωj ⊂ Ω, Ωj ⊂ Ωj+1, ∪∞j=1Ωj = Ω.

For any j there exists γj > 0 such that r(x, S) > γj for all x ∈ Ωj.
Since the operators of regularization and differentiation commute with each other, we

obtain from (4.39) that

∂pγ
∂xi

=
∂Rikγ

∂xk
+
∂bikγ
∂xk

+ giγ in Ωj at γ < γj, i = 1, . . . , n. (4.45)

Thus, the functions pγ, Rikγ, bikγ, giγ satisfy the above conditions in Ωj, and hence,

||pγ||L 3+β
2+β

(Ωj) ≤ c
( n∑
i,k=1

||Rikγ||L 3+β
2+β

(Ω) +
n∑

i,k=1

||bikγ||L 3+β
2+β

(Ω)

+
n∑
i=1

||giγ||Le(Ω) + ||pγ||L 3+β
2+β

(Ω\Ωδ)

)
.

We pass here to the limit as γ tends to zero. This gives

||p||L 3+β
2+β

(Ωj) ≤ c
( n∑
i,k=1

||Rik||L 3+β
2+β

(Ω) +
n∑

i,k=1

||bik||L 3+β
2+β

(Ω)

+
n∑
i=1

||gi||Le(Ω) + ||p||L 3+β
2+β

(Ω\Ωδ)

)
, j ∈ N.

Therefore, (4.40) holds and our lemma is proved.
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Theorem 4.1. Let Ω be a bounded domain in Rn, n = 2 or 3, with a Lipschitz continu-

ous boundary S. Then the operator div is an isomorphism of V2/V3 onto
◦
L3+β(Ω), and

the operator grad = div∗ is an isomorphism of
◦
L 3+β

2+β
(Ω) onto Y = (V2/V3)∗. Moreover,

there exists a constant ζ1 > 0 such that

inf
χ∈

◦
L 3+β

2+β

(Ω)

sup
v∈V2

∫
Ω
χ div v dx

||v||V ||χ||L 3+β
2+β

(Ω)

≥ ζ1,

|| div−1 ||
L(
◦
L3+β(Ω),V2/V3)

≤ 1

ζ 1

,

|| grad−1 ||
L((V2/V3)∗,

◦
L 3+β

2+β

(Ω))
≤ 1

ζ 1

. (4.46)

Proof. Let us show that for an arbitrary f ∈ (V2/V3)∗ there exists a unique function

p ∈
◦
L 3+β

2+β
(Ω) satisfying

(f, h) =

∫
Ω

p div h dx, h ∈ V2. (4.47)

There exists a sequence {Ωi} of subdomains of Ω such that

Ωi ⊂ Ω, Ωi ⊂ Ωi+1, ∪∞i=1 Ωi = Ω, (4.48)

and the boundaries of Ωi are of the class C2.
Let {V i

2} and {V i
3} be sequences of subspaces of V2 and V3, which are given as follows:

V i
2 = {v|v ∈ V2, supp v ⊂ Ωi}, V i

3 = {v|v ∈ V3, supp v ⊂ Ωi}. (4.49)

Let f be an arbitrary element of (V2/V3)∗ . We apply Lemma 4.3 in which Ω, V2

and V3 are changed for Ωi, V
i

2 , and V i
3 . This gives the existence of a unique function

pi ∈
◦
L 3+β

2+β
(Ωi) such that

(f, h) = (pi, div h), h ∈ V i
2 , i ∈ N. (4.50)

In this case pi = pi+j|Ωi + ci+j, where ci+j is a constant, j ≥ 1.
By (4.48) there exists a function p̃ ∈ L 3+β

2+β
,loc(Ω), satisfying

p̃|Ωi = pi + c̃i, (4.51)

(f, h) = (p̃, div h), h ∈ V2, supph ⊂ Ω, (4.52)

c̃i being a constant.
The functional f can be presented in the form (see [1], Theorem 3.8)

(f, h) =

∫
Ω

b0ihi dx+

∫
Ω

bik
∂hi
∂xk

dx, h ∈ V2, (4.53)

where b0i and bik are elements of L 3+β
2+β

(Ω) which meet the condition (f, h) = 0 for any

h ∈ V3. We mention that the representation (4.53) is not unique.
By (4.48), there exists l ∈ N whereby Ωl ⊃ (Ω \ Ωδ), where Ωδ is a subdomain of

Ω defined in (4.41). Taking (4.52), (4.53) into account, and applying Lemma 4.5, we

obtain that p̃ ∈ L 3+β
2+β

(Ω). Therefore, there exists a unique p ∈
◦
L 3+β

2+β
(Ω), p = p̃+ c̃, c̃ is a
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constant, such that (4.47) holds. In this case, the operator A : f → Af = p is a linear

continuous mapping of (V2/V3)∗ into
◦
L 3+β

2+β
(Ω).

Conversely, the equality (4.47) defines a mapping
◦
L 3+β

2+β
(Ω) 3 p → f ∈ (V2/V3)∗.

Therefore, the operator A maps (V2/V3)∗ onto the whole of
◦
L 3+β

2+β
(Ω). Because of this,

the Banach theorem on inverse operator implies that the operator A is an isomorphism

of (V2/V3)∗ onto
◦
L 3+β

2+β
(Ω).

It is obvious that A = grad−1. Therefore, the third inequality of (4.46) holds. The
other inequalities of (4.46) are proved in the same way, as it is done in the proof of
Lemma 4.4. �

Remark. It can be proved that the statement of Theorem 4.1 remains true in the
case where the indices 3 + β and 3+β

2+β
in the spaces V2, V3 and in the statement are

changed for any l ∈ (1,∞) and l1 = l/(l − 1) respectively.

Theorem 4.2. Let Ω be a bounded domain in Rn, n = 2 or 3, with a Lipschitz con-
tinuous boundary S. Then the operator div is an isomorphism of V/V1 onto L3+β(Ω),
and the operator div∗, is an isomorphism of L 3+β

2+β
(Ω) onto (V/V1)∗. In addition, the

inequalities (4.27), (4.28), and (4.29) are satisfied.

Proof. By the Theorem 4.1, we have div{V2} =
◦
L3+β(Ω), in addition, there exists a

function w that satisfies (4.30). Therefore, the operator div maps V onto L3+β(Ω), and
div is an isomorphism of V/V1 onto L3+β(Ω). By analogy with the proof of the Lemma
4.4, we obtain that the operator div∗ is an isomorphism of L 3+β

2+β
(Ω) onto (V/V1)∗ and

(4.27), (4.28), (4.29) are satisfied. �
Remark. The statement of Theorem 4.2 remains true in the case that the indices

3 + β and 3+β
2+β

in the spaces V, V1 and in the statement are changed for any l ∈ (1,∞)

and l1 = l/(l − 1), respectively.

4.4. Operators Ni. We consider the following operators Ni : V → V ∗, i = 1, 2, 3, 4.

(N1(v), h) = 2α

∫
Ω

(I(v))
1+β

2 εij(v)εij(h) dx, (4.54)

(N2(v), h) = 2

∫
Ω

ϕ(I(v))εij(v)εij(h) dx, (4.55)

(N3(v), h) = 2

∫
Ω

ϕt(Rl(v))εij(v)εij(h) dx, (4.56)

(N4(v), h) = ρ

∫
Ω

vj
∂vi
∂xj

hi dx. (4.57)

It is obvious that

N =
4∑
i=1

Ni. (4.58)

Lemma 4.6. Let Ω be a bounded domain in Rn, n = 2 or 3, with a Lipschitz continuous
boundary S. Then the operator N1 is a bounded, monotone, and continuous mapping of
V into V ∗.
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Proof. By using the inequality

|εij(v)εij(h)| ≤ (I(v))
1
2 (I(h))

1
2 (4.59)

and the Hölder inequality with the numbers 3+β
2+β

and 3 + β, we obtain from (4.54) that

|(N1(v), h)| ≤ 2α

∫
Ω

(
I(v)

) 2+β
2
(
I(h)

) 1
2 dx ≤ 2α

(∫
Ω

(
I(v)

) 3+β
2 dx

) 2+β
3+β

×
(∫

Ω

(
I(h)

) 3+β
2 dx

) 1
3+β

= 2α ||v||2+β
V ||h||V . (4.60)

Therefore, N1 is a bounded mapping of V into V ∗.
The application of the inequality (4.59) gives

(N1(v)−N1(w), v − w) = 2α

∫
Ω

[(
I(v)

) 1+β
2 I(v) +

(
I(w)

) 1+β
2 I(w)

−
(
I(v)

) 1+β
2 εij(v)εij(w)−

(
I(w)

) 1+β
2 εij(w)εij(v)

]
dx

≥ 2α

∫
Ω

[(
I(v)

) 1+β
2
(
I(v)

) 1
2 −

(
I(w)

) 1+β
2
(
I(w)

) 1
2

]
×
[(
I(v)

) 1
2 −

(
I(w)

) 1
2

]
dx ≥ 0, v, w ∈ V.

Hence N1 is a monotone operator.
Taking into account that

( k∑
m=1

am

)q
≤

k∑
m=1

(kam)q, am ∈ R+, q ≥ 1,

we obtain

∣∣((I(v))(x)
) 1+β

2 (εlm(v))(x)
∣∣ ≤ ((I(v))(x)

) 2+β
2 ≤ n2+β

n∑
i,j=1

|(εij(v))(x)|2+β

≤ c
n∑

i,j=1

∣∣∣ ∂vi
∂xj

(x)
∣∣∣2+β

, v ∈ V, l,m = 1, . . . , n. (4.61)

From (4.61) and the continuity of the Nemytskii operator, see [43], Sections 5.1, 25.1, it
follows that the condition vm → v in V implies(

I(vm)
) 1+β

2 εij(vm)→
(
(I(v)

) 1+β
2 εij(v) in L 3+β

2+β
(Ω), i, j = 1, . . . , n.

Therefore, N1 is a continuous mapping of V into V ∗.

Lemma 4.7. Let Ω be a bounded domain in Rn, n = 2 or 3, with a Lipschitz continuous
boundary S. Let also the condition (C4) be satisfied. Then the operator N2 is a strictly
monotone and continuous mapping of V into V ∗.
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Proof. Taking (2.14) and (4.59) into account, we obtain from (4.55) that

(N2(v)−N2(w), v − w) = 2

∫
Ω

[
ϕ
(
I(v)

)
I(v) + ϕ

(
I(w)

)
I(w)

−ϕ
(
I(v)

)
εij(v)εij(w)− ϕ

(
I(w)

)
εij(w)εij(v)

]
dx

≥ 2

∫
Ω

[
ϕ
(
I(v)

)(
I(v)

) 1
2 − ϕ

(
I(w)

)(
I(w)

) 1
2
][(

I(v)
) 1

2 −
(
I(w)

) 1
2
]
dx

≥ 2a3

∫
Ω

((
I(v)

) 1
2 −

(
I(w)

) 1
2
)2
dx ≥ 0, v, w ∈ V. (4.62)

Let now

(N2(v)−N2(w), v − w) = 0. (4.63)

By (4.62), we have

I(v) = I(w) a.e. in Ω, ϕ(I(v)) = ϕ(I(w)) a.e. in Ω. (4.64)

Taking (2.13), (4.55), and (4.64) into account, we derive from (4.63) that

I(v − w) = 0 a.e. in Ω.

Therefore ||v − w||V = 0, and the operator N2 is strictly monotone.
The continuity of the operator N2 follows from the continuity of the Nemytskii

operator.�

Lemma 4.8. Suppose that the conditions (C1), (C2), (C3), and (2.13) are satisfied. Let
µ in (2.1) be either a positive constant or be given by (2.20). Then the terms {vm} ⊂ V ,
vm ⇀ v in V imply N3(vm) ⇀ N3(v) in V ∗.

Proof. Let vm ⇀ v in V . Then we have

εij(vm) ⇀ εij(v) in L3+β(Ω), i, j = 1, ..., n, (4.65)

vm → v in C(Ω)n, (4.66)

d(k(vm, ·), r(·, S1))→ d(k(v, ·), r(·, S1)) in C(Ω), (4.67)

in addition,

ϕ(I(vmγ))→ ϕ(I(vγ)) in C(Ω), (4.68)

where vmγ and vγ are the regularized functions vm and v, that are defined by the formula
(2.21).

(4.66)–(4.68) and (2.1) yield

Rl(vm)→ Rl(v) in C(Ω). (4.69)

(C3) and (4.69) imply ϕt(Rl(vm)) → ϕt(Rl(v)) in C(Ω), and the application of the
Lebesgue theorem gives

ϕt(Rl(vm))εij(h)→ ϕt(Rl(v))εij(h)) in L3+β(Ω), h ∈ V, i, j = 1, . . . , n.
(4.70)

Now by (4.65) and (4.70), we obtain

lim
m→∞

∫
Ω

(
ϕt(Rl(vm))εij(vm)− ϕt(Rl(v))εij(v)

)
εij(h) dx = 0, h ∈ V

This completes the proof.
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Lemma 4.9. Let Ω be a bounded domain in Rn, n = 2 or 3, with a Lipschitz continuous
boundary S. Let {vm} ⊂ V , and vm ⇀ v in V . Then N4(vm) → N4(v) in V ∗ and, in
addition,

|(N4(w), h)| ≤ c||w||2V ||h||V , w, h ∈ V. (4.71)

Proof. Let

vm ⇀ v in V. (4.72)

It is obvious that

|(N4(vm)−N4(v), h)| ≤ ρ (A1m + A2m), (4.73)

where

A1m =
∣∣∣ ∫

Ω

(vmj − vj)
∂vmi
∂xj

hi dx
∣∣∣, A2m =

∣∣∣ ∫
Ω

(vj

(∂vmi
∂xj

− ∂vi
∂xj

)
hi dx

∣∣∣.
(4.74)

Here vmj and vmi are components of the vector function vm.
We have

A1m ≤ c||vm − v||C(Ω)n||vm||V ||h||V . (4.75)

The application of the Green formula gives

A2m ≤
∣∣∣ ∫

Ω

[∂vj
∂xj

(vmi − vi)hi + vj(vmi − vi)
∂hi
∂xj

]
dx
∣∣∣ +

∣∣∣ ∫
S

vj (vmi − vi)hiνj ds
∣∣∣.
(4.76)

It follows from (4.72) that

vm → v in C(Ω)n. (4.77)

(4.75), (4.76), and (4.77) imply

A1m + A2m ≤ αm||h||V , lim αm = 0. (4.78)

Now (4.73) and (4.78) yield N4(vm)→ N4(v) in V ∗. The inequality (4.71) is evident. �

We will use the following known result (see [6], [21], Theorem 5.1, Chapter 1 ):

Lemma 4.10. Let B0, B, B1 be three Banach spaces such that B0 ⊂ B ⊂ B1, B0 and
B1 are reflexive, and the embedding of B0 in B is compact. Let also

W = {v|v ∈ Lq0(0, T ;B0),
dv

dt
∈ Lq1(0, T ;B1)}, (4.79)

where T is finite, 1 < qi <∞, i = 0, 1, and the norm in W is defined by

||v||W = ||v||Lq0 (0,T ;B0) + ||dv
dt
||Lq1 (0,T ;B1). (4.80)

Then the embedding of W into Lq0(0, T ;B) is compact.

Lemma 4.11. Let the local Reynolds number Rl(u) be defined by (2.1), where µ is given
by (2.20). Suppose that the conditions (C1)− (C4) and (3.20)are satisfied. Let also

v ∈ L3+β(0, T ;V ), {um} ⊂ L3+β(0, T ;V ), um → u in L3+β(Q)n and a.e. in Q.
(4.81)

Then

lim
m→∞

||(ϕt(Rl(um))− ϕt(Rl(u)))εij(v)||L 3+β
2+β

(Q) = 0, i, j = 1, . . . , n.
(4.82)
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Proof. By applying (3.20) and the Hölder inequality with the numbers 2+β
1+β

and 2+β,

we obtain (∫
Q

∣∣∣(ϕt(Rl(um))− ϕt(Rl(u))
)
εij(v)

∣∣∣ 3+β2+β
dx dt

) 2+β
3+β

≤ ξ
(∫

Q

∣∣∣Rl(um)−Rl(u)
∣∣∣ 3+β2+β |εij(v)|

3+β
2+β dx dt

) 2+β
3+β

≤ ξ
(∫

Q

∣∣∣Rl(um)−Rl(u)
∣∣∣ 3+β1+β

dx dt
) 1+β

3+β
(∫

Q

|εij(v)|3+β dx dt
) 1

3+β
.

(4.83)

Therefore, our lemma will be proved, if we argue that

Rl(um)→ Rl(u) in L 3+β
1+β

(Q). (4.84)

Denote

(g(w))(x, t) =
d(k(w, x, t), r(x, S1))ρ

(ϕ(I(wγ)))(x, t)
, w ∈ L3+β(0, T ;V ). (4.85)

(2.1) and (4.85) yield

Rl(um) = |um|g(um), Rl(u) = |u|g(u). (4.86)

Since | |um| − |u| | ≤ |um − u|, the relation (4.81) implies

|um| → |u| in L3+β(Q). (4.87)

By (C1), (C2), and (C4), the functions (x, t) → (g(um))(x, t) are bounded in L∞(Q).
By (4.81), we have g(um)→ g(u) a.e. in Q. Therefore,

g(um)→ g(u) in L 3+β
β

(Q). (4.88)

The function e, h → eh is a bilinear continuous mapping of L3+β(Q) × L 3+β
β

(Q) into

L 3+β
1+β

(Q). Because of this (4.84) follows from (4.86), (4.87), and (4.88). �

Lemma 4.12. Let Ω be a bounded domain in Rn, n = 2 or 3, with a Lipschitz continuous
boundary S. Then the operators N1 and N4 are bounded mappings of L3+β(0, T ;V )
into L 3+β

2+β
(0, T ;V ∗). The operator N2 also is a bounded mapping of L3+β(0, T ;V ) into

L 3+β
2+β

(0, T ;V ∗) provided that (2.13) holds.

Proof. Let v and h be elements of L3+β(0, T ;V ). Taking into account (4.60) and
applying the Hölder inequality with the numbers (3 +β)/(2 +β) and (3 +β), we obtain

|(N1(v), h)| ≤ 2α

∫ T

0

||v(t)||2+β
V ||h(t)||V dt

≤ 2α ||v||2+β
L3+β(0,T ;V ) ||h||L3+β(0,T ;V ). (4.89)

(4.71) and the Hölder inequality with the same numbers (3 + β)/(2 + β) and (3 + β)
yield

|(N4(v), h)| ≤ c

∫ T

0

||v(t)||2V ||h(t)||V dt

≤ c||v||2L 2(3+β)
2+β

(0,T ;V ) ||h||L3+β(0,T ;V ). (4.90)
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By (2.13) and (4.55), we get

|(N2(v), h)| ≤ 2a2

∫
Q

(I(v))
1
2 (I(h))

1
2 dx dt

≤ c1||v||L3+β (0,T ;V ) ||h||L3+β(0,T ;V ). (4.91)

and our lemma is proved.

Lemma 4.13. Suppose that the conditions (C1), (C2), (C3), (2.13) and (3.20) are
satisfied. Let the local Reynolds numbers be defined by (2.1) where µ is either a pos-
itive constant, or is given by (2.20). Then the operator N3 is a bounded mapping of
L3+β(0, T ;V ) into L 3+β

2+β
(0, T ;V ∗).

Proof. Let v and h be elements of L3+β(0, T ;V ). We take in (3.20) y1 = (Rl(v))(x, t),
(x, t) ∈ Q, y2 = 0. Then by (2.12), we receive

ϕt(Rl(v)) ≤ ξRl(v). (4.92)

(2.1), (C2), and (2.13) imply

Rl(v) ≤ c|v|. (4.93)

(4.56), (4.92), and (4.93) yield

|(N3(v), h)| ≤ c1

∫
Q

|v|(I(v))
1
2 (I(h))

1
2 dx dt

≤ c1

(∫
Q

|v|
3+β
1+β dx dt

) 1+β
3+β ||v||L3+β(0,T ;V ) ||h||L3+β(0,T ;V )

≤ c2||v||2L3+β(0,T ;V ) ||h||L3+β(0,T ;V ). (4.94)

This completes the proof.

5. Proof of Theorem 3.1.

5.1. Approximate solutions. It is apparent that if a pair u, p is a solution of the
problem (3.8), (3.9), then u is a solution of the following problem:

u ∈ V1, (N(u), h) = (G1, h), h ∈ V1. (5.1)

Let {V1k} be a sequence of finite dimensional subspaces of V1 such that

lim
k→∞

inf
z∈V1k

||v − z||V = 0, v ∈ V1, (5.2)

V1k ⊂ V1k+1, k ∈ N. (5.3)

We seek an approximate solution of the problem (5.1) in the form

uk ∈ V1k, (N(uk), h) = (G1, h), h ∈ V1k. (5.4)

Taking into account (C2), (C3), (C4), (3.6), (3.7) and (4.71), we obtain

(N(v), v)− (G1, v) ≥ 2α||v||3+β
V + 2a1

∫
Ω

I(v) dx− c||v||3V

−||G1||V ∗ ||v||V , v ∈ V1. (5.5)

Here c is the constant from (4.71).
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It follows from (5.5) that there exists a constant R > 0 such that

(N(v), v)− (G1, v) ≥ 0 if ||v||V ≥ R. (5.6)

Let j(k) be the dimension of V1k and (w1, . . . , wj(k)) be a basis of V1k. The function

Jk : Rj(k) 3 ξ = (ξ1, . . . , ξj(k)) → Jkξ =
∑j(k)

i=1 ξiwi is an isomorphism of Rj(k) onto V1k.

Define an operator Pk that maps Rj(k) into Rj(k) as follows:

Pk(ξ) = b = (b1, . . . , bj(k)), bi = (N(Jkξ)−G1, wi). (5.7)

It follows from (5.6) and (5.7) that

(Pk(ξ), ξ) = (N(Jkξ)−G1, Jkξ) ≥ 0 if |ξ| ≥ R1, (5.8)

where |ξ| =
(∑j(k)

i=1 ξ2
i

) 1
2

and R1 is a positive constant that depends on k.

(5.8) and the corollary of the Brower fixed point theorem, see [21], Chapter 1, Lemma
4.3, yield the existence of a solution uk to problem (5.4) for any k.

(5.4) implies

(N(uk), uk) = (G1, uk) ≤ ||G1||V ∗ ||uk||V . (5.9)

Since (N(v), v) ≥ α||v||3+β
V at large ||v||V , we deduce from (5.9) that there exists a

constant c1 > 0 such that

||uk||V ≤ c1, k ∈ N. (5.10)

Therefore,

||N1(uk)||V ∗ ≤ c2, ||N2(uk)||V ∗ ≤ c3, (5.11)

and we can extract a subsequence {um} such that

um ⇀ u0, in V1, (5.12)

N1(um) +N2(um) ⇀ χ in V ∗. (5.13)

5.2. Passage to the limit. Let m0 be a fixed positive integer, and let h ∈ V1m0 . Taking
Lemmas 4.8, 4.9 and (5.12), (5.13) into account, we pass to the limit in (5.4) with k
changed for m; this gives

(χ+N3(u0) +N4(u0), h) = (G1, h), h ∈ V1m0 . (5.14)

Since m0 is an arbitrary positive integer, (5.2) and (5.3) yield

(χ+N3(u0) +N4(u0), h) = (G1, h), h ∈ V1. (5.15)

For an arbitrary fixed w ∈ V1, we define a mapping Nw : V1 → V ∗1 as follows:

(Nw(v), h) = 2

∫
Ω

ϕt(Rl(w))εij(v)εij(h) dx, v, h ∈ V1. (5.16)

It is obvious that Nv(v) = N3(v). Let

Zm = Num +N1 +N2. (5.17)

Lemmas 4.6 and 4.7 imply

(Zm(um)− Zm(v), um − v) ≥ 0, v ∈ V1, m ∈ N. (5.18)
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It follows from the proof of Lemma 4.8 and (5.12) that

lim(Zm(v), v) = (Z0(v), v), (5.19)

lim(Zm(v), um) = (Z0(v), u0). (5.20)

Taking into account Lemma 4.8 and relations (5.12), (5.13), (5.15), and (5.17), we obtain

lim(Zm(um), v) + (N4(u0), v) = (G1, v), v ∈ V1. (5.21)

Lemma 4.9, (5.4), and (5.12) yield

(Zm(um), um) = (G1, um)− (N4(um), um)→ (G1, u0)− (N4(u0), u0).
(5.22)

Upon (5.19)–(5.22), we pass to the limit in (5.18). This gives

(G1 − Z0(v)−N4(u0), u0 − v) ≥ 0, v ∈ V1. (5.23)

Take here v = u0 − ξh, ξ > 0, h ∈ V1, and let ξ tends to zero. Then we obtain

(G1 − Z0(u0)−N4(u0), h) ≥ 0, h ∈ V1.

Therefore,

(N(u0)−G1, h) = −(G1 − Z0(u0)−N4(u0), h) = 0, h ∈ V1,
(5.24)

and the function u = u0 is a solution of the problem (5.1).
It follows from (5.24) that N(u0)−G1 ∈ W , and by Theorem 4.2 there exists a unique

p ∈ L 3+β
2+β

(Ω) such that

(N(u0)−G1, h) = (p, div h), h ∈ V.

Therefore, the pair u = u0, p is a solution to the problem (3.8), (3.9). �

The proof of Theorem 3.2 is closely analogous to the proof of Theorem 3.1. Because
of this, it is not given.

6. Approximation of the velocity and pressure for problem (3.8) (3.9).

We consider a method for simultaneous calculation of approximate velocity and pres-
sure.

Let {Ak} and {Bk} be sequences of finite-dimensional subspaces of V and L 3+β
2+β

(Ω),

such that

lim
k→∞

inf
z∈Ak

||v − z||V = 0, v ∈ V, (6.1)

lim
k→∞

inf
χ∈Bk

||w − χ||L 3+β
2+β

(Ω) = 0, w ∈ L 3+β
2+β

(Ω), (6.2)

Ak ⊂ Ak+1, Bk ⊂ Bk+1. (6.3)

Define operators divk ∈ L(Ak, B
∗
k) as follows:

(divk v, χ) =

∫
Ω

χ div v dx, v ∈ Ak, χ ∈ Bk. (6.4)

The adjoint operator of divk is given by

(div∗k χ, v) = (divk v, χ), v ∈ Ak, χ ∈ Bk. (6.5)

It is evident that div∗k ∈ L(Bk, A
∗
k).
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We introduce the following spaces
◦
Ak and Wk

◦
Ak = {v|v ∈ Ak, (divk v, χ) = 0, χ ∈ Bk}, (6.6)

Wk = {q|q ∈ A∗k, (q, v) = 0, v ∈
◦
Ak}. (6.7)

Lemma 6.1. Let {Ak} and {Bk} be sequences of finite-dimensional subspaces of V and
L 3+β

2+β
(Ω), respectively. Suppose that there exists a positive constant γ such that

inf
χ∈Bk

sup
v∈Ak

(divk v, χ)

||v||V ||χ||L 3+β
2+β

(Ω)

≥ γ, k ∈ N. (6.8)

Then the operator divk is an isomorphism of Ak/
◦
Ak onto B∗k, and the operator div∗k is

an isomorphism of Bk onto Wk, moreover

|| div−1
k ||L(B∗k , Ak/

◦
Ak)
≤ 1

γ
, k ∈ N, (6.9)

||(div∗k)
−1||L(Wk, Bk) ≤

1

γ
, k ∈ N. (6.10)

Proof. It follows from (6.8) that

sup
v∈Ak

(v, div∗k χ)

||v||V
≥ γ ||χ||L 3+β

2+β

(Ω), χ ∈ Bk.

Therefore,

|| div∗k χ)||A∗K ≥ γ ||χ||L 3+β
2+β

(Ω), χ ∈ Bk. (6.11)

and div∗k is an isomorphism of Bk onto its range R(div∗k).
It is obvious that R(div∗k) is a closed subspace of A∗k. Consequently, R(div∗k) = Wk,

see [17], Chapter XII, Section 2, and (6.10) follows from (6.11).
Taking into account that (div−1

k )∗ = (div∗k)
−1 and

|| div−1
k ||L(B∗k , Ak/

◦
Ak)

= ||(div−1
k )∗||L(Wk, Bk),

we obtain (6.9) from (6.10).�
We seek an approximate solution of the problem (3.8), (3.9) in the form

(uk, pk) ∈ Ak ×Bk, (6.12)(
N(uk), h

)
−
∫

Ω

pk divk h dx =
(
G1, h

)
, h ∈ Ak, (6.13)

(divk uk, q) = 0, q ∈ Bk. (6.14)

Theorem 6.1. Suppose that the conditions (C1)–(C4) and (3.6), (3.7) are satisfied. Let
the local Reynolds number be defined by (2.1), where µ is either a positive constant or
is given by (2.20). Let also {Ak} and {Bk} be sequences of finite-dimensional subspaces
of V and L 3+β

2+β
(Ω) which satisfy the conditions (6.1), (6.2), (6.3), and (6.8). Then for

an arbitrary k, there exists a solution of the problem (6.12)–(6.14), and a subsequence
{um, pm} can be extracted from the sequence {uk, pk} such that um ⇀ u in V , um → u
in C(Ω)n, pm ⇀ p in L 3+β

2+β
(Ω), where u, p is a solution of the problem (3.8), (3.9).
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Proof. It follows from (6.6) and (6.12)–(6.14) that the function uk is a solution of
the problem

uk ∈
◦
Ak, (N(uk), h) = (G1, h), h ∈

◦
Ak. (6.15)

By analogy with the proof of Theorem 3.1, it is argued that there exists a solution of
the problem (6.15) for any k and, in addition,

||uk||V ≤ c, k ∈ N, (6.16)

||Ni(uk)||V ∗ ≤ c1, i = 1, 2, 3, 4, k ∈ N. (6.17)

For an arbitrary f ∈ V ∗, we denote by Ykf the restriction of f to Ak. In this case,
Ykf ∈ A∗k, Yk ∈ L(V ∗, A∗k).

It follows from (6.7) and (6.15) that Yk(N(uk)−G1) ∈ Wk, and by Lemma 6.1, there
exists a unique pk ∈ Bk such that

div∗k pk = Yk(N(uk)−G1). (6.18)

Thus, the pair uk, pk is a solution of the problem (6.12)–(6.14).
Due to (6.10), (6.17), (6.18), (3.6) and (3.7), we obtain

||pk||L 3+β
2+β

(Ω) ≤ c2. (6.19)

By (6.16), (6.17) and (6.19), we can extract a subsequence {um, pm} satisfying

um ⇀ u0 in V and um → u0 in C(Ω)n, (6.20)

pm ⇀ p0 in L 3+β
2+β

(Ω), (6.21)

N1(um) +N2(um) ⇀ χ in V ∗. (6.22)

We pass to the limit in (6.13), (6.14) with k changed for m in much the same way as it
is carried out in the proof of Theorem 3.1. In so doing, we use (6.20)–(6.22) and lemmas
4.6–4.9. Then we obtain that the pair u = u0, p = p0 is a solution of the problem (3.8),
(3.9).

7. Proof of Theorem 3.3.

7.1. Approximate solutions. It is obvious that if u, p is a solution of problem (3.21)–
(3.24), then u is a solution of the following problem:

u ∈ L3+β(0, T ;V1),
du

dt
∈ L 3+β

2+β
(0, T ;V ∗), (7.1)

ρ(
du

dt
, h) + (Ñu, h) + (N(u), h) = (G̃, h) in D′(0, T ), h ∈ V1, (7.2)

u(0) = u0. (7.3)

Let w1, . . . , wk, . . . be a sequence of functions such that

wi ∈ V1, i ∈ N,
w1, . . . , wk are linearly independent, k ∈ N,
linear combinations of wi are dense in V1. (7.4)

We seek an approximate solution of the problem (7.1)–(7.3) in the form

uk(t) =
k∑
i=1

gik(t)wi, (7.5)
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where gik are defined out of the conditions

ρ
d

dt
(uk(t), wi) + (Ñuk(t), wi) + (N(uk(t)), wi) = (G̃(t), wi), i = 1, . . . , k,

(7.6)

uk(0) = u0k, u0k =
k∑
i=1

αikwi → u0 in L2(Ω)n. (7.7)

The functions uk are computed from these conditions on some interval [0, tk], tk > 0.
We will show that tk = T .

7.2. A priory estimates. We multiply the equations (7.6) by the functions gik, sum
over i, and integrate both sides of the sum over t from 0 to t. This gives

1

2
ρ ||uk(t)||2L2(Ω)n +

∫ t

0

(
Ñuk(τ) +N(uk(τ)), uk(τ)

)
dτ

=

∫ t

0

(
G̃(τ), uk(τ)

)
dτ +

1

2
ρ ||uk(0)||2L2(Ω)n . (7.8)

Taking the assumptions (C3), (C4), and Lemma 4.9 into account, we obtain

(N(v), v) ≥ 2α||v||3+β
V − c||v||3V , v ∈ V1. (7.9)

(3.25) and (3.27) yield

|(Ñv, v)| ≤ c1||v||2L2(Ω)n ≤ c2||v||2V , v ∈ V1. (7.10)

For an arbitrary z ∈ C([0, T ];V1), bearing in mind (7.9) and (7.10), we get∫ t

0

(
Ñz(τ) +N(z(τ)), z(τ)

)
dτ ≥ α

∫ t

0

||z(τ)||3+β
V dτ + Y (t), (7.11)

where

Y (t) =

∫ t

0

(α ||z(τ)||3+β
V − c ||z(τ)||3V − c2 ||z(τ)||2V ) dτ ≥ −c3, t ∈ (0, T ],

(7.12)

c3 = c4T, c4 = − min
y∈R+

(α y3+β − c y3 − c2 y
2) > 0. (7.13)

Granting (7.11) and (7.12), we obtain from (7.8) that

1

2
ρ||uk(t)||2L2(Ω)n + α

∫ t

0

||uk(τ)||3+β
V dτ

≤
∫ t

0

||G̃(τ)||V ∗ ||uk(τ)||V dτ +
1

2
ρ||uk(0)||2L2(Ω)n + c3

≤ α

2

∫ t

0

||uk(τ)||3+β
V dτ + c4

∫ T

0

||G̃(τ)||
3+β
2+β

V ∗ dτ +
1

2
ρ||uk(0)||2L2(Ω)n + c3.

(7.14)

Here we used the following Young inequality:

ab ≤ 1

p1

(εa)p1 +
1

p2

(
b

ε

)p2
,

1

p1

+
1

p2

= 1,

where a, b ∈ R+, ε > 0, p1 > 1.
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It follows from (7.14) and (7.7) that tk = T and

uk are bounded in L3+β(0, T ;V1) ∩ L∞(0, T ;L2(Ω)n). (7.15)

(2.13), (7.15), and Lemmas 4.12, and 4.13 imply

Ni(uk) are bounded in L 3+β
2+β

(0, T ;V ∗), i = 1, 2, 3, 4. (7.16)

Define functions qk, k = 1, 2, 3, ... by the following relations:

e1 = w1, q1 =
e1

||e1||L2(Ω)n
,

ek = wk −
k−1∑
i=1

(wk, qi)qi, qk =
ek

||ek||L2(Ω)n
, k > 1. (7.17)

The functions qk are orthonormal with respect to the scalar product in L2(Ω)n, and qk
is a linear combination of w1, . . . , wk.

We denote the span of the functions w1, . . . , wk by V1k; the subspace V1k also is the
span of q1, . . . , qk.

Define a projection operator Pk that maps V ∗ onto V ∗1k as follows:

h ∈ V ∗, Pkh =
k∑
i=1

αiqi, αi = (h, qi). (7.18)

Relation (7.6) can be represented in the form

ρ
duk
dt

+ Pk(Ñuk +N(uk)) = PkG̃. (7.19)

Since the sequence {Pk} converges weakly to the identity operator in V ∗1 , there exists a
constant c > 0 such that ||Pk||L(V ∗,V ∗1k) ≤ c for all k. The relations (3.25), (3.27), (7.15),
(7.16), and (7.19) yield

duk
dt

are bounded in L 3+β
2+β

(0, T ;V ∗). (7.20)

7.3. Passage to the limit. By (7.15) and (7.20), we can extract a subsequence {um}
such that

um ⇀ u in L3+β(0, T ;V1), (7.21)

um
∗
⇀ u in L∞(0, T ;L2(Ω)n), (7.22)

um(T ) ⇀ ξ in L2(Ω)n, (7.23)

dum
dt

⇀
du

dt
in L 3+β

2+β
(0, T ;V ∗), (7.24)

where
∗
⇀ is the sign of ∗ - weak convergence.

We apply Lemma 4.10. Take

B0 = V1, B = L3+β(Ω)n, B1 = V ∗, q0 = 3 + β, q1 =
3 + β

2 + β
.

Then (7.21) and (7.24) imply

um → u in L3+β(Q)n. (7.25)
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We can also consider that the sequence {um} converges to u almost everywhere in Q,
and so, Lemma 4.11 gives

ϕt(Rl(um))εij(v)→ ϕt(Rl(u))εij(v) in L 3+β
2+β

(Q), v ∈ L3+β(0, T ;V1),

i, j = 1, . . . , n. (7.26)

It follows from (7.25) that

umj umi → uj ui in L 3+β
2

(Q), (7.27)

and for an arbitrary h ∈ L3+β(0, T ;V ), we have

umj hi → uj hi in L 3+β
2

(Q). (7.28)

(4.57), (7.21), (7.27), and (7.28) imply

lim
m→∞

(N4(um), um) = (N4(u), u), (7.29)

N4(um) ⇀ N4(u) in L 3+β
2+β

(0, T ;V ∗). (7.30)

(3.25), (3.27), and (7.25) yield

Ñum → Ñu in L 3+β
2+β

(0, T ;V ∗). (7.31)

By (7.16), we can consider that

N1(um) +N2(um) +N3(um) ⇀ χ in L 3+β
2+β

(0, T ;V ∗). (7.32)

Multiplying the equation (7.6) for k = m by a function θ ∈ C1([0, T ]), integrating the
result from 0 to T , and using the integration by parts formula, we obtain∫ T

0

[
− ρ (um(t), wi)

dθ

dt
(t) +

(
(Ñum(t), wi) +

4∑
i=1

(Ni(um(t)), wi)
)
θ(t)

]
dt

=

∫ T

0

(G̃(t), wi)θ(t) dt+ ρ (um(0), wi)θ(0)− ρ(um(T ), wi)θ(T ),

i = 1, 2, . . . ,m. (7.33)

For fixed wi, we pass to the limit in (7.33). By applying (7.7), (7.21), (7.23), (7.30),
(7.31), and (7.32), we get∫ T

0

[
− ρ (u(t), wi)

dθ

dt
(t) +

(
(Ñu(t), wi) + (χ(t), wi) + (N4(u(t)), wi)

)
θ(t)

]
dt

=

∫ T

0

(G̃(t), wi)θ(t) dt+ ρ (u0, wi)θ(0)− ρ(ξ, wi)θ(T ),

i = 1, 2, . . . ,m. (7.34)

By virtue of (7.4), the function wi in (7.34) can be changed for an arbitrary function
from V1. Since D((0, T )) ⊂ C1([0, T ]), (7.34) yields(

ρ
du

dt
+ Ñu+ χ+N4(u), h

)
= (G̃, h) in D′(0, T ), h ∈ V1. (7.35)

We integrate the first term in the left-hand side of (7.34) by parts. Taking a function
θ ∈ C1([0, T ]), θ(0) = 0, we obtain from (7.34) and (7.35) that

u(T ) = ξ, (7.36)
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and taking θ such that θ(T ) = 0, we get

u(0) = u0. (7.37)

If we show that

χ = N1(u) +N2(u) +N3(u), (7.38)

the function u will be a solution of the problem (7.1), (7.2), and (7.3).

7.4. Proof of the equality (7.38). Take the notation.

Φm(v) = 2

∫ T

0

∫
Ω

{[
α
(
I(um)

) 1+β
2 + ϕ(I(um)) + ϕt(Rl(um))

]
εij(um)

−
[
α
(
I(v)

) 1+β
2 + ϕ(I(v)) + ϕt(Rl(um))

]
εij(v)

}
εij(um − v) dx dt,

v ∈ L3+β(0, T ;V1). (7.39)

Lemmas 4.6 and 4.7 imply

Φm(v) ≥ 0, v ∈ L3+β(0, T ;V1), m ∈ N. (7.40)

Taking t = T and k = m in (7.8), we obtain

2

∫ T

0

∫
Ω

[
α
(
I(um)

) 1+β
2 + ϕ(I(um)) + ϕt(Rl(um))

]
I(um) dx dt

=

∫ T

0

(
G̃− Ñum −N4(um), um

)
dt+

1

2
ρ ||um(0)||2L2(Ω)n −

1

2
ρ ||um(T )||2L2(Ω)n .

(7.41)

(7.39) and (7.41) imply

Φm(v) =

∫ T

0

(G̃− Ñum −N4(um), um) dt+
1

2
ρ ||um(0)||2L2(Ω)n −

1

2
ρ ||um(T )||2L2(Ω)n .

−2

∫ T

0

∫
Ω

[
α
(
I(um)

) 1+β
2 + ϕ(I(um)) + ϕt(Rl(um))

]
εij(um)εij(v) dx dt

−2

∫ T

0

∫
Ω

[
α
(
I(v)

) 1+β
2 + ϕ(I(v)) + ϕt(Rl(um))

]
εij(v)εij(um − v) dx dt.

(7.42)

(7.23) and (7.36) yield

lim
m→∞

inf ||um(T )||L2(Ω)n ≥ ||u(T )||L2(Ω)n . (7.43)

By using (7.7), (7.21), (7.26), (7.29), (7.31), (7.32), (7.37), and (7.43), we obtain from
(7.40) and (7.42) that

0 ≤ lim sup
m→∞

Φm(v) ≤
∫ T

0

(G̃− Ñu−N4(u), u) dt+
1

2
ρ ||u(0)||2L2(Ω)n

−1

2
ρ ||u(T )||2L2(Ω)n −

∫ T

0

(χ, v) dt− 2

∫ T

0

∫
Ω

[
α
(
I(v)

) 1+β
2 + ϕ(I(v))

+ϕt(Rl(u))
]
εij(v)εij(u− v) dx dt, v ∈ L3+β(0, T ;V1). (7.44)

Take h = u in (7.35) and integrate the result in t from 0 to T . This gives∫ T

0

(G̃− Ñu−N4(u), u) dt+
1

2
ρ ||u(0)||2L2(Ω)n −

1

2
ρ ||u(T )||2L2(Ω)n =

∫ T

0

(χ, u) dt.
(7.45)
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Upon (7.44) and (7.45)∫ T

0

(χ, u− v) dt− 2

∫ T

0

∫
Ω

[
α
(
I(v)

) 1+β
2 + ϕ(I(v)) + ϕt(Rl(u))

]
εij(v)

×εij(u− v) dx dt ≥ 0, v ∈ L3+β(0, T ;V1). (7.46)

We take here v = u − λw, where λ > 0 and w is an arbitrary element of C([0, T ];V1).
Applying the Lebesgue theorem, we pass to the limit as λ→ 0. This gives∫ T

0

(χ,w) dt− 2

∫ T

0

∫
Ω

[
α
(
I(u)

) 1+β
2 + ϕ(I(u)) + ϕt(Rl(u))

]
×εij(u)εij(w) dx dt ≥ 0. (7.47)

Since C([0, T ];V1) is dense in L3+β(0, T ;V1), we obtain (7.38) from (4.54)–(4.56), and
(7.47).

7.5. Calculation of the pressure. We denote

Λ = ρ
du

dt
+ Ñu+N(u)− G̃. (7.48)

If follows from (7.24), (7.30)–(7.32), and (7.2) that

Λ ∈ L 3+β
2+β

(0, T ;V ∗), (Λ(t), h) = 0 a.e. in (0, T ), h ∈ V1, (7.49)

i.e. Λ(t) ∈ W = (V/V1)∗.
By Theorem 4.2 there exists a unique function p = L 3+β

2+β
(Q) such that Λ(t) = div∗ p(t)

a.e. in (0, T ). Therefore, the pair u, p is a solution of the problem (3.21)–(3.24). �

The proof of Theorem 3.4 is closely analogous to the proof of Theorem 3.3. Because
of this, it is not given.

8. Approximation of the velocity and pressure for problem (3.21)–(3.24).

Let {Ak} and {Bk} be sequences of finite-dimensional subspaces of V and L 3+β
2+β

(Ω),

which satisfy the conditions (6.1), (6.2), (6.3), and (6.8). Consider the problem: Find
functions t→ uk(t) ∈ Ak, t→ pk(t) ∈ Bk satisfying

ρ
(duk
dt

(t), h
)

+ (Ñuk(t), h) + (N(uk(t)), h)− (pk, divk h)

= (G̃(t), h), t ∈ (0, T ), h ∈ Ak, (8.1)

(divk uk(t), q) = 0, q ∈ Bk, (8.2)

uk(0) = u0k ∈
◦
Ak, u0k → u0 in L2(Ω)n. (8.3)

Theorem 8.1. Suppose that the conditions (C1)–(C4) and (3.16)–(3.18), (3.20), (3.27)
are satisfied. Let the local Reynolds number be defined by (2.1), where µ is either a
positive constant or is given by (2.20). Let also {Ak}, {Bk} be sequences of finite-
dimensional subspaces of V and L 3+β

2+β
(Ω) which meet the conditions (6.1), (6.2), (6.3),

and (6.8). Then, for an arbitrary k, there exists a solution of the problem (8.1), (8.2),
(8.3). From the sequence {uk, pk}, one can extract a subsequence {um, pm} such that
um ⇀ u in L3+β(0, T ;V ), pm ⇀ p in L 3+β

2+β
(Q), where u, p is a solution of the problem

(3.21)–(3.24).

Theorem 8.1 is proved by using the arguments of the proof of Theorems 3.3 and 6.1.
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