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ABSTRACT 

Optimality properties of multiway block designs are deduced from the general results of 
J. Kiefer's approximate-design theory. In the model with additive effects these optimality properties 
solely depend on the two-dimensional marginals of the designs. Uniform designs, and designs whose 
two-dimensional marginals are products of the one-dimensional marginals, are shown to be optimal. 
Approximate Youden designs are introduced for the case when the support sets of the two- 
dimensional marginals are prescribed in advance. They are optimal in a relatively small class of 
competing designs only. 

RESUME 
On se sert de la th6orie des plans approximatifs de Kiefer pour deduire certaines proprietes 

d'optimalite des plans de blocs pluridimensionnels. Dans le cadre d'un modele a effets additifs, ces 
proprietes optimales ne dependent que des marges bidimensionnelles des plans d'experience. On 
montre que les plans uniformes sont optimaux, de meme que les plans dont les marges bidi- 
mensionnelles sont des produits de marges a une dimension. On introduit des plans approximatifs 
de Youden dans le cas oiu les supports des marges bidimensionnelles sont prescrits a l'avance. Ces 
derniers ne sont optimaux que par rapport a une classe relativement petite de plans rivaux. 

1. INTRODUCTION 

The approximate theory of block designs leads to structural insights which complement 
the optimality results from the exact theory, as has been demonstrated for a single blocking 
factor in recent work of Giovagnoli and Wynn (1981) and Pukelsheim (1983a). The 
present paper extends the approximate-theory approach to an arbitrary number of blocking 
factors, in models with additive effects and no interaction. It is the two-dimensional 
marginals of a multiway block design which determine its moment matrix, and hence its 
optimality properties. 

In Section 2 we define various notions of product designs and identify their C-matrices. 
In Section 3 no restriction is placed on the set of support points. Variety-factor product 
designs are shown to be uniformly optimal among the designs with given variety marginals 
and universally optimal among all designs, for the variety contrasts (Theorem 2). 
Multiway product designs turn out to be simultaneously p-mean optimal among all 

*An early version of this paper was delivered at a Statistical Conference dedicated to the memory of Jack 
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designs, for a maximal parameter system (Theorem 3). 
In Section 4 we turn to block designs with a restricted set of support points. Approxi- 

mate Youden designs (AYDs) are introduced as the approximate analogue of exact 
Youden designs. AYDs are seen to be universally optimal for the variety contrasts 
(Theorem 5) and simultaneously p-mean optimal for a maximal parameter system 
(Theorem 6), within a rather small class of competing designs. We demonstrate that their 
optimality breaks down when the class of competing designs is made larger. 

All our matrices are real. Transposition, generalized inversion, and Moore-Penrose 
inversion of a matrix A are denoted by A', A -, and A +, respectively. Block matrices are 
indicated by [A: B]. The orthogonal projections onto the equiangular line of [Rv and onto 
its orthogonal complement are represented by Jv/v and Kv = Iv - Jvv, respectively, 
where Jv is the v x v matrix with each entry unity and I, is the v x v identity matrix. The 
equiangular line in [Rv is 1, = (1,..., 1)', and lv = lv/v is the stochastic vector 
corresponding to the uniform distribution on v points. 

2. C-MATRICES OF PRODUCT DESIGNS 

An approximate block design for v varieties in b, x * x bm blocks, or simply a 
multiway block design, is a probability distribution 1 on the design space 

= {l,....,v} x {l,...,b,} x.x 1 ...,lbm}, 

indicating that a proportion (i,j ,... ,jm) of all observations is to be drawn when variety 
i is combined with factor levels j ,... ,j. The variety marginals of a design t consist of 
the variety replication vector r E Rv with entries ri = 0(i, , ... , ), the dots indicating 
summation. With an analogous definition factor k has factor marginals, or block-size 
vector, Sk E RRbk. Two-dimensional marginals are identified with weight matrices, i.e. with 
matrices having nonnegative entries summing to unity. The variety-factor marginals with 
factor k are denoted by Wk E vx bk, and Wk, E b x bl stands for the factor-factor 
marginals of two distinct factors k and 1. 

In the model with additive effects and no interaction (Cheng 1978, p. 1262) the moment 
matrix M(t) of a design t is determined by its two-dimensional marginals Wk and Wk, 
according to 

Ar W1 W2 ... W,n 

Wl A' W12 ' W A Wr w 
M(Q)= W2 WI2 A2 ' " W2, = , say, (1) 

W' E 

W W lm Wm, ... Am 

where Ar, A i,..., Am are the diagonal matrices formed from the one-dimensional mar- 
ginals r, s, ..., sm of 5. The converse problem of constructing a design t from a given 
moment matrix M is discussed by Pukelsheim and Titterington (1986a). 

Optimal designs will turn out to have product structure on their two-dimensional 
marginals, suggesting the following terminology. A multiway block design t with moment 
matrix M(g) as in (1) is called a 

variety-factor product design if Wk = rsj for k = 1, .., m, 
factor-factor product design if Wkl = SkSI for k +1, k, I = 1,.. ., m, 
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multiway product design if it is both a variety-factor and a factor-factor product design. 
The design r ) s (i * *() sm is a very special case of a multiway product design. 

Interest will be in the parameter system of symmetrized variety contrasts (ota - 
ac,..., av - c.)' = K,a, where at is the v-dimensional vector of variety effects. Given 
a design i, its information matrix for K,a, called the C-matrix, is C(5) = ([Kv: O]M(~)- 
[Kv: 0]')+ if Kvat is identifiable under t, and C() = 0 otherwise. If Kva is identifiable 
under t, then t has positive variety marginals. If e is a multiway product design with 
positive variety marginals, then Kvat is identifiable under t. The following theorem 
presents a set of useful representations for C-matrices. 

THEOREM 1. Suppose t is a multiway block design with moment matrix M(t) as in (1) such 
that the variety contrasts are identifiable. Then 

C(t) = , - WE-W'. (2) 

For variety-factor product designs, (2) specializes to 

C(t) = A - rr', (3) 

and for factor-factor product designs, (2) specializes to 
m 

C(t) 
- 

Ar - rr' - E (W k W; - rr'). (4) 

Proof. Define C = A, - WE-W', which is invariant under the choice of E (Styan 1985, 
p. 45). First we show C(g) = C. Partition M(t) into 

Alr WI R 

M() = W A, S , 
R' S' T 

and choose a symmetric generalized inverse F of F = T - S'A S. Then a generalized 
inverse of E is 

A, + A SFS' A -A SF- 
E=- 

-FS'A F 

With this choice direct computation yields the representation 
C = A, - WAW; - - (R- ,AS)F(R - WIA S)'. (5) 

Now WAi Wll, = r, and (R - W1AS)'lv = 0. This gives Cl, = 0 and C+v = 0. 
For M(i) choose the generalized inverse 

- C+ -C+W - 
G= 

-EW'C+ E + EW'C+WE' 

Hence we have C(g) = ([Kv: O]G([Kv: 0]')+ = (KvC+K,)+ = C++ = C. 
When Wk = rs; for all k, then W A W W rr' and R = WA S; thus (5) entails (3). 

When Wk, = SkSI for all k + 1, then F = Blockdiag [A2 - S2S2 * A - SmS], and we 
find that (5) simplifies to (4) upon choosing F = Blockdiag [A: * *: A . Q.E.D. 2 Am+]. Q.E.D. 

341      



           

Theorem 1 generalizes the well-known formula for simple block designs; the two-way 
results of Krafft (1978, p. 219), Raghavarao and Federer (1975, p. 731), and Pukelsheim 
(1983b, p. 36); and the multiway representation in Cheng (1978, p. 1265). Notice that a 
single iteration on Schur complementation in (5) suffices, independently of the number of 
blocking factors. 

3. OPTIMALITY OF PRODUCT DESIGNS 

The following theorem describes the optimality properties of variety-factor product 
designs. Its proof uses the inequality 

WkAW - rr' (Wk - rs)Ak(Wk - rsk)' Y 0, (6) 

with equality if and only if Wk = rs'. This inequality also shows that (4) reflects the loss 
in information relative to (3) when variety-factor marginals fail to be product distributions. 
THEOREM 2.

(a) Let r E Rv be a positive stochastic vector. Then the variety-factor product designs 
with variety marginals r are the only uniformly optimal designs for the variety contrasts 
among the designs with variety marginals r; their common C-matrix is Ar - rr'. 

(b) The variety-factor product designs with uniform variety marginals lv are the only 
universally optimal designs for the variety contrasts among all designs; their common 
C-matrix is pKv, with p = 1/v. 

Proof. Part (a) simply uses the explicit estimate C(g) - Ar - Wi A W C Ar - rr' which 
follows from (5) and (6); equality forces WI = rsl. The same argument applies to any other 
factor k as well. Hence C() _ A r - rr', with equality if and only if t is a variety-factor 
product design. 

For part (b) partition the set of all designs into its subsets with given variety marginals 
r which, due to identifiability, must be positive. Applying (a) within these subsets, we see 
that we need compare the matrices Ar - rr' only. The Cauchy inequality gives 
traceAr - rr' = 1 - r'r _ 1 - 1/v = tracepK,,, with equality if and only if 
r = Iv. Q.E.D. 

The theorem extends earlier results for one- and two-way block designs, see Pukelsheim 
(1983a, p. 202; 1983b, p. 37). Loewner comparability among C-matrices of the special 
form Ar - rr' is discussed by Baksalary and Pukelsheim (1985). An example where a 
two-way product design has gone unnoticed is the design d' of Kiefer (1958, p. 690). 

We now pass to maximal parameter systems. For a multiway product design t with 
positive marginals, r, s,,... ,s,n the matrix 

G = Blockdiag[Ar' : A-' - J,: * *: - Jm] 

is a reflexive generalized inverse of the moment matrix M of t, i.e., MGM = M and 
GMG = G. Verification uses the idempotent matrix 

Iv 0 ... 0 

Sl: Ib, - s,1l ... 0 
MG = = K(s), say, (7) 

Sm1: 0 ' Ib,, Sm bm v _j~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 
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with s = [sl: s * *: ]'; cf. Cheng (1978, p. 1264), Pukelsheim (1983a, p. 202). Hence 
M has maximal rank v + = I(bk - 1) among all moment matrices. We consider the 
maximal parameter system K(s)'f, where , is the (v + Ebk)-dimensional vector of 
variety effects and factor-level effects. Recall that Kiefer's <pt-optimality is the same as 
maximizing the p-mean of the information matrices for the parameters of interest; cf. 
Pukelsheim (1983a). 

THEOREM 3. The multiway product designs with marginals r,s\,... Sm are the only 
designs which are p-mean optimal for the maximal parameter system K(s)'P, simulta- 
neously for all p E [-oo, +1], among the designs rl such that the one-dimensional 
marginals coincide with the corresponding memberfrom r, s I,..., Sm, unless this member 
is uniform, in which case the corresponding marginals of xq is unrestricted. 

The proof parallels the proof of Theorem 5 in Pukelsheim (1983a) and is omitted. We 
next turn to incomplete block designs. 

4. APPROXIMATE YOUDEN DESIGNS 

Youden's (Youden 1937) rectangles, Kiefer's (Kiefer 1975) generalized Youden 
designs, and Cheng's (Cheng 1981) pseudo-Youden designs correspond to approximate 
designs with two-dimensional marginals which are uniform on restricted support sets. 
To be precise, associate with a fixed variety-factor support set Sk C cEk = {1,. ..., 
x {1,...,bk} 

the v x bk indicator matrix Nk with (i,jk) entry equal to unity or zero according as (i,jk) 
lies in Sk or not, 

the number of points nk = l Nklb in Sk, and 
the weight matrix Nk = Nk/nk of the uniform distribution on Sk. 

A multiway block design ( with moment matrix (1) is called an approximate Youden 
design (AYD) if it satisfies the following three properties: 

(A) ( has variety-factor marginals which are uniform distributions on support sets 
Sk C ~k, i.e., Wk = Nk for all k = 1, ...,m. 

(B) 5 is a factor-factor product design. 
(C) 1 is balanced for the variety contrasts, i.e., C(g) = pKv for some p > 0. 

An AYD with uniform factor marginals has uniform variety marginals, as follows from 
the following transcription of property (C). 

THEOREM 4. Suppose t is a multiway block design with uniform factor marginals which 
satisfies properties (A) and (B); let a = Il= nk. Then (C) holds true if and only if 

(C') a Ek= bkNkN- = ( - h)lv + J, for some scalars v, h; 
and in this case 

(D) r= lv, 
(E) X = (a/v)(m - SEk- bk/nk)/(v - I) and v = (a/v) =, bk/nk are positive 

integers, 
(F) p = 1/v - I,(bk/nk - l/v)/(v - 1) < 1/v, 
(G) rank[N1: **:Nm] = v -C Ek., bk. 

The proof follows standard lines and is omitted. Formula (C') requires Em= NAN to 
be completely symmetric in case bl = - = b, and n, = *. = nm as in Cheng (1981). 
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Hence AYDs are more general than Cheng's pseudo-Youden designs, in the approximate 
theory. The inequality p < 1/v in (F) exhibits the loss of information relative to the designs 
which appear in Theorem 2(b). The rank condition in (G) is an extension of Fisher's 
inequality on BIBDs. We now turn to the optimality properties of AYDs. 

THEOREM 5. An AYD i, with variety-factor support sets S, ... , S, and positive one- 
dimensional marginals r,s, ... ,sm, is universally optimal for the variety contrasts 
among thefactor-factor product designs 1q whose variety-factor support sets are contained 
in SI,..., Sk and whose one-dimensional marginals coincide with the corresponding 
member from r, s I, ..., Sm, unless r is uniform, in which case the variety marginals of lq 
are unrestricted. 

Proof. Property (C) ascertains that ( has a completely symmetric C-matrix. It remains to 
show that the C-matrix has maximal trace, and this will follow solely from properties (A) 
and (B). Thus merely assume that ( satisfies properties (A) and (B) such that the treatment 
contrasts are identifiable, and denote its C-matrix by C. Since trace NkA -' N equals bk/nk, 
the formula (4) yields 

M bk traceC = 1 + (m - l)r'r - (8) 
k= nk 

In order to show that this is maximal we apply the necessary and sufficient condition (3) 
of Pukelsheim (1983a). 

Identifiability entails C+C = Kv. For M(g) choose the generalized inverse 

[ C+ -C+NIA,1 G G

-A ̂ 'NIC A + A lNIC+NA, GI2 . Gim 

G = G' G;2 G22 * G2m , (9) 

G't GCm G2m * ' Gmm 

where for k = 1, k,l/= 2,... m, 

Gk = -CNk(Ak -Jb), 

Gik = A INIC+Nk(' - Jb,), 

Gkk = A- Jbk + (A - Jbk)NC - J- 

= (A - Jbk)NkC N(A - Jb). Gkl = (Ak- - Jbk)fVC+)Vl(1 l)' 
We then obtain C[Kv: O]G = K,[Iv: V: * * *: V,] = Kv[I: V], say, with VI = -NA i
and with Vk = rlk - NkAk1 for k > 2. Now for every competing design q with moment 
matrix 

A, W 
A= 

W' E 

we must evaluate, with K = [Kv: 0]', 
trace CK'GAGKC = 1 + 2 trace VW' + trace VEV'; 

see (3) in Pukelsheim (1983a). If r has variety-factor marginals Wk whose support is 
contained in Sk, block marginals equal to Sk, and variety marginals t, then lengthy but 
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straightforward computation leads to 2traceVW' = 2(m - 1)r't - 2 Z bk/nk, and 
trace VEV' = (trace ) - (m - l)r'r + bk/nk, where 

1 = E (r1l, - NkAk )Wk,(r1, - NA ')'. (10) 

Now if t = r or r = 1,, then r't = r'r, and in view of (8) we obtain 

trace CK'GAGKC = trace C + trace 1. 

Finally, if rq has factor-factor marginals Wk, = SkS', then trace] vanishes because 
(rl, - NkAk )sk = 0. The necessary and sufficient condition for trace optimality thus 
is verified. Q.E.D. 

As in one-way settings (Pukelsheim 1983a, p. 207) an AYD t with uniform factor 
marginals will be seen to be optimal even for a certain maximal parameter system. Indeed, 
the matrix G from (9) is a symmetric and reflexive generalized inverse of the moment 
matrix M of (, and the rank of M is maximal. Define the matrix K(g) = MGD, with D 
= Blockdiag[Iv:b 1/21b, : * : b,1/21b,,]. Then K(t)'P is a maximal parameter system for 
which we have the following optimality result. 

THEOREM 6. An AYD i with variety-factor support sets SI,... ,Sm and uniform factor 
marginals is p-mean optimalfor the maximal parameter system K(t)'P, simultaneouslyfor 
all p E [-oo, +1], among the designs -l whose variety-factor support sets are contained 
in S1,... . Sm and whose factor-factor marginals are uniform. 

Proof. Evidently K(t)'M-K(() = DGD = B, say, and B has a representation VI + V2 + 
pV3 + V4, where 

KV0 0 -KvZ 00 0 0 
VI = , V2= , V3 = , V4 

_0 0 _-Z'KV 0 _0 U_ _0 Z'KVZ_ 

with Z = [b/2N, ** b 2Nmm] and U = Blockidag[lb,: Kb2: **: Kbm]. Since 
Vi,... , V4 span a four-dimensional quadratic subspace of symmetric matrices, we may 
argue as in the proof of Theorem 7 of Pukelsheim (1983a). Fix t > 0. For every competing 
design Tq we must verify traceM(lq)D-'B'+ +D-~ tracepB'. But -q has variety-factor 
support sets contained in Sk, whence for some d, l > 0 we obtain 

traceM(rl)D-'B 'D-' = ptraceB' + dt, +trace . 

Since q has uniform factor-factor marginals, we obtain trace = 0, and the proof is 
complete. Q.E.D. 

The question arises whether we can do away with demanding uniform factor-factor 
marginals. The answer is in the negative: Let ( be an AYD with uniform factor marginals. 
We may use its variety-factor marginals N, ...., N to construct a feasible competitor Xr 
according to 

M 
Nk(i,jk) 

Tl(i,jl, . . . rj) = Nk(i ) 
k=l ri 

The factor-factor marginals of } are Wkl = vNLNi. The necessary and sufficient condition 
for optimality of e will be violated when the trace of X from (10) is positive. But 
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= v E H,kH, with Hk = Nkk Nk - 1,v:. 
ktl 

Here Hk - 0, by (6), and so trace HkHI > O. This shows that trace X _ 0 and that trace $
vanishes if and only if HkHI = 0 for all k + 1. But HkH, = 0 is equivalent to 
NkA-k 'NNlA '1 = Jv/v3, and taking ranks, this entails v = 1. Thus with the trivial 
exception of a single variety, an AYD 5 with uniform factor marginals fails to be trace- 
optimal for the variety contrasts, among the designs whose variety-factor support sets are 
contained in those of (. 

Which design is optimal if not an AYD? This question is resolved in Pukelsheim and 
Titterington (1986b). The point is to move towards a maximal dependence structure 
between factor-factor marginals, thereby increasing information on the parameters of 
interest at the cost of having fewer nuisance parameters identifiable. 
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