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Weighted averages of class means using different sets of 
weighting factors are compared in terms of sampling vari- 
ances and of relative weights given to the class means. 
Details are given for the 1-way classification, and extensions 
to other models are indicated. 

1. INTRODUCTION 
When subclasses of data have unequal numbers of ob- 

servations, averages of the subclass means can be defined 
in a variety of ways, depending on the weights used for 
(linearly) combining the subclass means. At least three dif- 
ferent weighting systems are often used: (I) weighting by 
the number of observations, which leads to the grand mean; 
(II) weighting equally, which yields the simple average of 
the subclass means; and (III) weighting inversely according 
to variances of the observed subclass means. In the 1-way 
classification, with the fixed effects model, III is the same 
as II; but with the random effects model (which we call the 
mixed model, see Sec. 3.1) in which the class effects are 
taken as random, I and II are special cases of III corre- 
sponding to an intraclass correlation of 0 and 1, respectively. 

Variances of these weighted averages are compared in 
each model, and the manner in which changes in the intra- 
class correlation affects the relative weights given to the 
class means is described. Extensions to 2-way classifications 
are suggested. 

2. FIXED EFFECTS MODELS 

2.1 A Model 
Suppose that yij is the jth observation of the ith class of 

a 1-way classification, with i = 1, . . ., a andj = 1, . . .. 
ni; that is, a classes and ni observations in the ith class. 
Then the model equation for yij can be taken as 

yij = g + ati + eij = gi + eij' (1) 

in which gi = ,u + ai is the population mean of the ith 
class and the ei1 terms are random variables, identically 
distributed with zero mean, variance o2-, and zero covari- 
ances. Under these conditions the best linear unbiased es- 
timator (BLUE) of gi and the sampling variance of that 
estimator are 

ni 

A= Ini= y/n and VF(yi) = o-2/ni, (2) 
j=1 

respectively, similar to Searle (1971, p. 235 and 339). In 
(2) the subscript F in vF(yi) emphasizes that the variance 
is based on the fixed effects model. 

2.2 Weighted Averages 
We begin with weighted averages I and II of the intro- 

duction. The first is denoted by g,tt in which weights pro- 
portional to the numbers of observations are used: 

/I n iniilEni 
(All summations are with respect to i, over the range i = 
1, 2, . . ., a.) The second weighted average is denoted by 
1l and is based on equal weights: 

/1 = >Li/la. 
The third average mentioned in the introduction uses weights 
inversely proportional to v(yi) and so, on using (2), is the 
same as Fn 

1:(,ini (JU2) j(nj /(y2) = >njigj1/n1= j n 

A general form of weighted average is to use arbitrary, 
(usually) positive weights wi: 

/-w = EwigilEwi. 
Then gln and gte are special cases of ,u w, since wi = ni gives 
/1w = gn, and wi = 1 gives pw = gte. The BLUE's of 
these three averages and their sampling variances are 

= :njyj1jnj = y. ., with VF(/f) = oE-1/ni, (3) 

A = yjjla, with VF(/Ae) = a2, lln. a2 (4) 

/w = EwiYiEwi, 

with VF(fAW) = a (2wini) () (5) 

Clearly, 2n is the grand mean y. , whereas le is the average 
of observed class means, Eyila. 

2.3 Discussion 
Estimators (3), (4), and (5) are BLUE's of different para- 

metric functions, so comparing their sampling variances 
does not seem, a priori, to be beneficial. In Section 3, where 
we are interested in the case in which the subclass means 
gi are all the same, namely ,u, the three estimators then all 
estimate ,u and comparing variances of those estimators is 
then of some interest. As a prelude, the variances in (3)- 
(5) are compared, beginning with those of A, and AfW. 

From applying the Cauchy-Schwartz inequality, Ep2Eq2 
? (pq)2, we have 
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Hence 

' (Eww1) ( i) 

and so from (3) and (5), 

V(Il n) C /F() (6) 

Therefore, in the fixed effects model, no weighted average 
of the gi's has a BLUE with variance smaller than that of 

ln- This is an attractive property for ft,n. In particular, it
applies for wi = 1, giving 

V(iltn) C VF /I 

This is perhaps a little surprising, since defining an overall 
mean as /-te seems more natural than does gln because of 
the dependence of p,2 on the numbers of observations in the 
classes. 

In applications, ,w for a particular set of wi values can 
well be a parameter of interest; for example, if three varieties 
of wheat are grown in a county in acreages proportional to 
w1:w2:w3, the county's mean wheat yield per acre is puw. 
Therefore, if in some experiment designed to measure yield 
the areas in which the three varieties are grown are pro- 
portional to nl:n2:n3, different from w1:w2:w3, then p,n # 
,/W, and Atw will be the estimated mean of interest. Never- 
theless, (6) shows that Atw always has variance never less 
than that of ft,n. This suggests one reason for having subclass 
sizes in data proportional to subclass population sizes. 

3. MIXED MODELS 

3.1 A Model 
Suppose with the model equation (1) that we take the ai's 

as uncorrelated random effects with zero means and variance 
o-2, with the covariance between every ai and every ehk 

being zero. The eij terms retain the same mean, variance, 
and covariance properties as described following (1). With 
these properties, the model is usually called the random 
effects model, or random model, of the 1-way classification. 
But since ,u is a fixed effect and the ai's are random effects, 
it is strictly a mixed model, and we think of it in that manner 
for purposes of estimating ,u in the presence of the random 
effects. 

3.2 Weighted Averages and Estimators 

In the preceding mixed model the BLUE of ,u, to be 
denoted by fr, is similar to Searle (1971, p. 463): 

r=2ni (y2 + a 2 Y ni (y 2 + aJ2 a + e alO + eO

with VMa(fr) = 1 / ; n (7) 

The subscript M in VM of (7) denotes variance based on the 
mixed model. The estimator ftr in (7) is, of course, a special 
case of ,i with w, = ni/(nio-r, + o-e2); and if fti, for other 
values of w1 is to be used, its variance is 

VM(/IW) = a+ oI/ni) Wi (8) 

derived by replacing (o2 Ini in vF(/iW) of (5) with (o2R + 
( -2Ini. 

3.3 Comparing Variances of Estimated Averages 
First, from (8) and (5) it is easily seen that 

Ewi2 
VM(Qw) a (o w )2 + VF(Iw) > VF(/Lw), 

for (J 2 > 0. 

Thus every weighted average has variance in the mixed 
model that exceeds its variance in the fixed model, as one 
would expect. (When o-2 = 0 the variances are equal.) 
What is more interesting is that by applying the same rea- 
soning to (7) and (8) as is used in deriving (6), it is easily 
shown that 

VM(/.Lr) ? VM(/.LW). (9) 

This shows that in the mixed model no weighted average 
fw has smaller variance than does lr (as is to be expected 
because Pr is the BLUE of ,u). 

A special case of (9) is VM(Jitr) V VM(/.Ln). Nevertheless, 
VF(/ln) of (3) is less than VM(/Ir) of (7), as may be seen by 
observing that 
1 /VF (IJn) -1 /VM(ftr)= = ni[[1/ - 1/(ni +J e2)]>0 

for (J2 > 0. 

Hence 

VF(/.Ln) C VM(/Lr) ? VM(/Ln). (10) 

Thus the variance of fr in the mixed model is between that 
of f,( in the fixed and mixed models, with these variances 
being equal when (J2 = 0, for then ,, = fr 

3.4 Relative Weights for Observed Subclass 
Means in g, 

In ft, the observed subclass means, Yi, are weighted in 
proportion to their ni-values; in /le they are weighted equally. 
In the mixed model with intraclass correlation p = a 2,/ 

(o-2x + (e2), it is interesting to see how the weights in 
/Qr change from those of /ln when p = 0 to those of /te 
when p = 1. To observe this, write /lr of (7) as 

nip + 1 - pYi nip + _p 

Then p = Oyieldsf/ro = = y of (3) and p = 1 gives 
/lr, = /te of (4). This is not surprising. p = 0 is equivalent 
to Ca(2 = 0, which reduces the mixed model to being a fixed 
effects model yij = ,u + eij and so /lr,o = fln2 the BLUE 
of ,u in that model. And p = 1, although equivalent to 

( = 0, is more interestingly the case of observations within 
each class being perfectly correlated-in effect, identical. 
Hence no matter what the value of n, is, Y, has variance 
Co-2, and so the linear combination of yi's that has minimum 
variance iS /le = Y2yi/a. 
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Despite these consequences of putting p = 0 and p = 1 
in Ar it is nevertheless surprising how quickly the weights 
given to each yi change from being proportional to ni in 
Ptr,O = /I n to approaching being equal in I2r,I = yIe as p 
increases from 0 to 1. Consider two classes, one described 
as having a large number of observations, nL, and the other 
having a small number, ns, with of course, nL > nS. In 

Ar the ratio of the weight given ys to that given to YL is rp, 
where, from (11), 

coefficient of ys in /tr,p 

P coefficient of YL in btr, p 

ns(nLP+ -P) p p+(l- p)/nL 

nL(nSP + 1 - P) p + (1 - p)lns 

Corresponding to p = 0 with I2r,O = ln we have T = 
nSInL; and as p increases from zero to unity, Trp increases 
from TO = nSInL to Tm = 1. Thus as p-> 1, we see that 
ys, the data mean of the smaller-sized class, gets increas- 
ingly larger weights in Alr,p, relative to YL. It is interesting 
to see that this increase can, depending on the magnitudes 
of nL and ns, be quite appreciable, even for very small values 
of p. This is so because the first derivative of Tr with respect 
to p is 

Tp= aTp/ap= (1/ns- l1nL)(p+ ( - p)lns)2, (13) 
and for small values of p and not-too-small values of ns, 
this can be relatively large. In particular, for p = 0, 

To = ns(1 - nSInL), (14) 
and so when nSInL is small and ns is not too small, T6 can 
be relatively large [e.g., for ns = 20 and nL = 100, T0 = 
20(1 - .2) = 16]. This is the slope at p = 0 of Tr plotted 
against p. The value 16 represents an angle of 86.40 from 
the horizontal, which means that, for values of p near zero, 
r,p increases very rapidly from T = ns ML= 20/100 = .2. 
This is evident in the second column of Table 1, which 
shows values of Tr for three pairs of ns nL values and a 
range of values of p. 

3.5 Discussion 

The BLUE of ,u in the mixed model is Alr; it reduces to 
A= y in the fixed model wherein (o-2 = 0, and to Ale 

= ila in the trivial case of (o- = 0 when all observations 
in each class are then identical (and of course, if every ni 
has the same value, then ,2ln = I.le = y. .). Each of the 
estimators flnt ILe, and ftr has variance in the mixed model 
that exceeds its variance in the fixed model, as is, of course, 
to be expected. In contrast, as in (9), in the mixed model 
flr has the smallest variance of any (linearly) weighted av- 
erage, although in the fixed model On has still smaller vari- 
ance. 

In Atr the weight given to ys having ns observations, 
relative to that given to YL with nL > nS observations, is Trp 
given by (12). The value of -ri, is nS'nL for p = 0, that is, 
in ft,2; and it is 1.0 for p = 1, that is, in fte. The rate of 
increase in rTp for p increasing from 0 to 1 is given by r,p 

Table 1. Dependence on Intraclass 
Correlation of the Relative Weights Given to 

Two Observed Subclass Means in the Estimator 
,r,p = X[n1l(n,p + 1 - p)] y,IY2[nj1(njp + 1 - p)] 

coefficient of Ys in u,p p + (1 - p)InL 
Intraclass p coefficient of yL in Ar,p p + (1 - p)lns 
correlation, for three (ns, nL) pairs 

2 
p aa ns = 4 ns = 20 ns = 5 

a+ea2 nL = 20 nL = 100 nL = 100 

0 (4r,o = Any 
mo = nsInL) .20 .20 .05 

.05 .33 .61 .28 

.1 .45 .75 .38 

.3 .71 .92 .70 

.5 .840 .962 .842 

.7 .923 .983 .925 

.9 .978 .996 .979 
1.0 (r1 = Ae, 

71 = 1 ) 1.00 1.00 1.00 

of (13) with T6 = ns(1 - nSInL). Thus for small values of 
p the rate of increase in Tp depends not only on nSInL but 
also on ns; hence small changes in p can bring about big 
changes in Tp. This is illustrated in Table 1, where, for the 
example having ns = 20 and nL = 100, changing p from 
0 to .05 changes Tp from .20 to .61. Thus not only can 
relative sizes of data subclasses be important in the contri- 
butions that observed subclass means make to fr, but ab- 
solute sizes are also important. This is also illustrated in 
Table 1, where in each of the first two examples nSInL = 

.2: in the first of these, ns = 4 and .05 is .33, whereas in 
the second, with ns = 20 the value of T05 is .61, nearly 
double its value for ns = 4. 

4. EXTENSIONS 

Consider a 2-way nested classification in which the num- 
ber of main classes is a, with the ith having bi subclasses, 
in the jth of which there are nij observations Yijk for k = 1, 

. .. nij, with i = 1, . . ., a and j = 1, . . ., bi. A mixed 
model for this situation can be taken as Yijk = Pi + f3ij + 
eijk with gi as a fixed effect and 3ij and eijk as random effects 
with zero means, variances a-2 and a-2, respectively, and 
with all covariances zero. Then, similar to fr of (7), the 
BLUE of gi is 

b nij y b nij 

j=1 ni1+o V ' j=1 nlijOaj + e 

Discussion of this and of linear combinations of the ,i2's 
can be made similar to those of Sections 2 and 3. Analogous 
extensions could also be made for a 2-way crossed classi- 
fication for combining BLUE's fiij = Yi;. in situations in 
which v(yij.) = (2 + 0-21nij 
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