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Abstract: Recent work by Giovagnoli and Wynn and by Eaton develops the theory of G-
majorization with application to matrix orderings. Using this theory much of the work begun by
Kiefer on 'universally' optimal designs of experiments can be better understood. The technique
is to combine a group ordering (G-majorization) with another invariant ordering, such as the
Loewner ordering, to define upper weak G-majorization on the information matrices of the
experiments. Using an idea from previous work of Giovagnoli and Wynn combined with work
by Pukelsheim and Styan on the matrix concavity of information matrices a general theory of
weak G-majorization for linear models is developed which includes orderings for subsets of
estimable functions.
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1. Introduction

Majorization is a fairly recent innovation to the theory of experimental design
made roughly simultaneously by a number of authors, cf. Giovagnoli and Wynn
(1980, 1981, 1985a), Hedayat (1981), and Bondar (1983). Much of the motivation
of all this work was to develop and understand the seminal work of Kiefer (1975)
on the 'universal' optimality of experimental design such as balanced incomplete
block designs and Latin squares.

A full description of G-majorization, i.e. group majorization, with special
emphasis on matrix majorization was given in Giovagnoli and Wynn (1985b) which
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we refer to as GW (1985b). Indeed the present paper is the promised second half
of  that work. The central idea of that paper is that a type of  G-majorization for
matrices combined with another ordering such as the Loewner orderings gives a very
natural ordering on the information matrices of experiments. G-majorization is also
discussed by Eaton (1984).

The idea of ordering experiments in some way is old and goes back at least to
Blackwell (1951) and Le Cam (1964). Recent work by Torgersen (1985) discusses
applications to linear models, see also Hansen and Torgersen (1974). Papers by
Pukelsheim (1980, 1983, 1987) develop a duality theory for the Loewner ordering
and for certain kinds of order preserving functionals, cf. our Section 3.

2. G-majorization and GW-majorization

We shall recall here essential results of  G- and GW-majorizat ion following GW
(1985b) and Eaton (1984). Classical majorization is a particular case of what follows
by taking G to be the group of permutation matrices, see Marshall  and Olkin (1979).

Let G be a closed subgroup of the orthogonal group Orth(k) of k × k matrices Q
for which QTQ is equal to the identity matrix. For x, y e R k we define

y < G x  ¢* y ~ c o n v G x ,

where conv denotes the convex hull and Gx= {Qx Q ~  G} is the orbit of  x under
G. The relation <G is called G-majorization and is a preordering in R k.

The ordering G will be Combined with another (partial or pre-)ordering denoted
by <- which is assumed to satisfy a single compatibility condition, namely

y<. x = ~, otiQiy<. ~, otiQix,
i t~ i~ l

for all finite sets of  cti---0 satisfying Y. oti= 1, and of Oi E G. We thus define lower
weak G-majorization < GW by

Y<GWX ¢* y<-  O and o<Gx,  for some o e R  k.

Similarly upper weak G-majorization K Gw is defined by

y<GWx ¢* o < - y a n d o K G x ,  f o r s o m e o e R  k.

An element x is minimal with respect to ,(G if y <G x implies y ~ Gx. The minimal
elements of <G constitute the centre of the ordering. They actually coincide with
the G-invariant elements of R k. For each x e R k there is a unique G-invariant ~ for
which ~ <G x, and more strongly: if  y KG x then ~ <G y. The element ~ is simply the
average of x with respect to the Haar  probability measure on G.

Theorem 1 of GW (1985b) establishes the equivalence of (A) y <Gx and (B)
f ( y )  <_f(x), for all G-invariant convex functions f .  The major  unresolved problem
is to give (under suitable conditions) a statement similar to (B) equivalent to K Gw
or < GW. Certainly if  y < GW X (y < GW X) then f (y )  <_f(x) for all G-invariant, convex,
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<.-increasing (decreasing) functions f ,  but the converse statement remains un-
proved in general. It does hold when the majorization is the usual one and <- is the
componentwise ordering (of the ordered entries), as well as in the following case:

Denote by [x0,x] the straight line between x 0 and x, i.e. [x0,x] = conv{x0,x}. Fix
some G-invariant vector x0. Then the ray ordering

y <_R x ¢* y 6 [Xo, X ]

is G-compatible. In this ordering two vectors x and y are comparable if and only
if they lie on a common ray emanating from x0. An important special case is the
contraction ordering

Y<Kx ¢* y=~ox, for some o e [0,1]

obtained from x0 = 0.

Theorem 1. For <. = <~R the following three statements ore equivalent:
(A) y <GwX (Y <Gw x);
(B) f ( y ) <  f (x) f o r  all G-invariant, quasi-convex, <.-increasing (decreasing)func-

tions f ;
(C) f ( y )  <f(x)  for  all G-invariant, convex functions f which have a minimum

in x o.

Proof. Theorem 3 of GW (1985b) shows that (A) implies (B). Next (B) implies (C)
since the functions in (C) are a f o r t i o r i  quasi-convex, and <--increasing: when
y< .  x, i.e. y = p x o + ( 1 - Q ) x ,  then f(y)<_max{f(xo),f(x)}=f(x).

Now let ~*(z lC)= SUpxecZ'X be the support function of a convex set C. Assume
property (C), fix a vector z, and define the function f (x)=~*(z]  conv{xo} U Gx).
By Lemma 3 of GW (1985b), f is G-invariant and convex, and f has a min imum
in x0. Applying property (C) to such functions f obtained from arbitrary vectors z
we get ~* (z [conv {x0 } O Gy) < ~* (z [ conv {x 0 } O Gx) for all z, i.e. cony {x0 } O Gy c_
cony {Xo } U Gx. In particular y e cony {x o } O Gx, and this is the same as y < Gw z. []

Theorem 1 actually remains true for the more general ordering

y<_x ¢~ yeconv(SoO{X})

with some G-invariant set So. The proof  is similar to the one given above and
therefore omitted.

Next we show that a related result holds in a restricted version for y rather than
y when <. is a G-invariant cone ordering, i.e. y<. x ~ x - y ~ K ,  where K is a
closed convex cone in R k which is G-invariant. Again we identify a large class (B)
of order-preserving functions, of which a smaller subclass (C) is sufficient to charac-
terize the ordering (A).

Theorem 2. Assume <. is a G-invariant cone ordering. The following three state-
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ments are equivalent for  every vector x and every centred vector ~p:
(A) Y<GwX (Y <GWx);
(B) f (y)< f (x )  for  all G-invariant, quasi-convex, <.-increasing (decreasing) func-

tions f ;
(C) f(.P) <f(x)  for  all G-invariant, linear, <. -increasing (decreasing) functions f .

Proof.  Assume (A). Then (B) follows from the properties of monotonicity, quasi-
convexity, and invariance:

f(y)<--f(o)=f( ~ ~iQix)<max f (Qix)=f (x ) .

Evidently (B) implies (C). It remains to show that (C) implies (A), and here the
assumption that <- is a G-invariant cone ordering becomes essential.

Assume (C). Along with the order cone K =  { x e R  k [x.>O} we shall consider the
dual cone K dual: { z e R  k [xTz~_~0, for all x 6 K } .  Let P be the centre of conv Gy,
i.e. P is the average of the orbit Gy under the Haar probability measure. Being an
average, the centring operation y ~ y  is a linear mapping. Now fix a vector z in the
dual c o n e  K dual, and define the function f (x )  =£Tz. This choice of f evidently is
linear and G-invariant. It is also <.-increasing as we shall show next. Indeed, y <. x
means x - y  e K. As the cone K is assumed to be invariant under the action of the
group G, and as G contains linear transformations only, we obtain Q x -  Qy ~ K, for
all Q ~  G. Then also . ~ - P 6 K  since K is closed. Finally we obtain f ( x ) - f ( y ) =
(X - y)Tz > O.

Applying property (C) to all such functions f which are obtained from arbitrary
vectors z in the dual cone K dual we get f ( y ) = y T z < f ( x ) = £ T z ,  i.e. ( £ -  P)Tz>0, for
all z ~ K dual. In other words, x - y  lies in the second dual  (Kdual) dual. But since duali-
sation is an idempotent operation for closed convex cones we have (Kdual) dual : K .
Thus P <" £. Since ~ lies in cony Gx we finally can conclude that f < ow x. []

An important idea for this paper is that of  induced GW orderings. Let ~ be a
function defined from R k to R s which is concave with respect to an ordering <-
defined on R s, namely:

~i~l/(Xi) <" ~b¢( ~ ¢~iXi).

Under suitable conditions weak majorization on R k then induces weak major iza-
tion on R s. The proof of the following theorem parallels that of  Theorem 4 of GW
(1985b) and is therefore omitted. Note that we only require G c_ GL(k) rather than
G _c Orth(k).

Theorem 3. Let a group G c_ GL(k) and a G-compatible ordering <. give < ow on
R k. Suppose -" G ~ GL(s) is a group homomorphism, and set ~ = { Q [ Q ~ G }. Let
the induced group G c_ GL(s) and a ~J-compatible ordering which fo r  simplicity we
indicate again by <. give < ow on R s. Then f o r  all functions qJ" R k--, R s which are
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G-O-equivariant (i.e. q/(Qx)= Qc/(x)) we have:
(i) I f  q/ is convex (concave), then

y < G x  = q/(Y)<GW~(X) (~(Y)<GW~(x)) .

(ii) I f  q/ is convex and increasing (decreasing), then

Y'(GW X (Y <~GW X) = Iff(Y) < GW ~(X).

(iii) I f  ~, is concave and increasing (decreasing), then

y<GWx (Y<GwX) ~ q/(y)<GWq/(X). []

All the above results can be applied to the following version of matrix majoriza-
tion. Let G c_ Orth(k) act on k × k real matrices by congruence, i.e. Q e G carries
A e R k × k into QA QT. For matrices A, B e R k × k thus G-majorization is defined by

A < G B  ~ A e c o n v { Q B Q T ] Q ~ G } ,

cf. Sections 3 and 4 of GW (1985b). The <- ordering can be any G-compatible order-
ing. When we restrict A and B to the symmetric matrices, the most common ones are

- the Loewner ordering <L: A <L B if B - A  is nonnegative definite, and
- the 'contradiction ordering'  -<K: A =QB, for some Q e [0, 1].
When A and B are symmetric and nonnegative definite then

A <_K B = A <L B.

This shows that the contraction ordering is coarser than the Loewner ordering in
that the former orders fewer pairs A, B than the latter.

Example. For A =aa T and B =  bb T having rank 1 and for any G _  Orth(k) and

< ' = B L  :
(i)  A < G B  ~ B ~ GA.

(ii) A <GWB (A <GwB) *~ a = ~ b  for some I 1_>1 (lal_<l).
Of special importance for this paper is the matrix version of  Theorem 3 which

we state-in the GL(k) case. Let G c_ GL(k),  and let Sym(k) denote the set of sym-
metric k x k matrices. Suppose C:  Sym(k)--, Sym(s) is a matrix function such that
a congruence t ransformation of an argument induces a congruence transformation
of the associated image; more precisely let - : G ~ G L ( s )  be a homomorphism in-
ducing the subgroup ¢~c_GL(s) such that C is G-O-equivariant,  i.e.
C ( Q A Q T ) = Q C ( A ) Q  T.

T h e o r e m  4. With respect to the Loewner ordering <. = <-L we have:
(i)  I f  C is matrix-concave then

A < G B ~ C(A) <GW c(B).

(i i)  I f  C is matrix-concave and Loewner-increasing then
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A <(GW B = C(A) <GW C(B).

In both cases the second orderings are with respect to G and <-L On Sym(s). []

If  a matrix M is G-invariant and G'c_ G is a subgroup then M is a fo r t io r i  G'-
invariant. I f  M* is <- -minimal and ~ is an ordering coarser than <- (as for instance
when ~ = <K and < - =  <--L) then M* is also ~-min imal .

The material in Section 4 of  GW (1985b) provides a fair illustration of these inter-
relations. Moreover that paper emphasizes that there are quite a few ways of  obtain-
ing the famous Proposition 1 of Kiefer (1975) as a special case of  the general
considerations as set out above. The next section prepares the stage for a transition
to the proper experimental design problem.

3. Information functionais

Although the theme of this paper is orderings, discussion is needed of the implica-
tions for individual functionals. We specialize now to matrices dg c NND(k)  which
we shall call ' information matrices' .  In the context of  design of experiments, or in
more general problems, the emphasis is on minimizing or maximizing functionals
@(M) over M e  Jr '  c_ NND(k).

In some cases, as we shall see later, <GW, for some G and <. ,  is the natural
ordering to consider for such matrices in that M~ <GWM 2 means that M~ is better
(has 'more '  information and /o r  is more 'balanced')  than M 2.

We shall consider only functionals which are order preserving with respect to
<Gw, i.e. Ml <GW ME .= ~b(MI)___~(M2)" An important  subclass of such func-

tions as we have seen are those which are (1) G-invariant,  (2) convex, and (3) <--
decreasing. We shall usually take G c_ Orth(k) and <. = <--L, or <. = --<K. As explain-
ed above it seems very difficult to characterize <GW in this way, namely
to establish that  if ~ ( M 1 ) < ~ ( M 2 ) ,  for all ~ satisfying (1), (2), and (3), then
Ml < Gw ME" The matrix version of Theorem 2 is the strongest result we have in
general. For the orthogonal group and <L we can make the reverse statement, the
characterization following from Lemma 7 of G W  (1985b), see also Karlin and
Rinott (1981). In this case M 1 <GW M2 means A(MI) <w A(M2 ) where 2(. ) is the vec-
tor of ordered eigenvalues and <w is ordinary upper weak majorization as in
Marshall and Olkin (1979).

A word of  explanation concerning the functionals ~b is due. It may seem more
natural to consider G-invariant concave increasing ¢~ so that higher # is associated
with more information.  For example

qSp(M)=(tr MP) 1/p, p<_ 1, p#:O,

~0(M) = (det M) ilk, cb_ ~(M) = Amin(M)

are such functionals. But by taking (~p(M))-1 or - l o g  ~p(M)  we have the proper-
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ty we need, and dealing with convex decreasing functions ~ is merely a notational
accident.

A more important  question is why use M, rather than consider M -  ~ (or M ÷, the
Moore-Penrose generalized inverse) and convex increasing functions of M-1 or
M+? We shall advance two reasons for this. Firstly, the rationale for not relying
on M-1 is that (under suitable conditions)

M! < GW M2 ~ MI + <~ GW ][//2 +,

see Lemma 9 of GW (1985b). Hence the <GW ordering on the M matrices is coarser
than the <GW on the M ÷ matrices. This justifies the use of  the phrase 'weak
universal optimality '  in Kiefer and Wynn (1981) for an M *  such that (M*) ÷ is
minimal with respect to the <Gw-ordering on the set of M+-matrices for M ~  ~,¢4,
which is a consequence of, but does not imply minimali ty in the <GW-ordering on

itself. The second reason is built on the passage from the grand k × k information
matrices M to reduced s×s information matrices f(M)=(KTM-K) -1 which
becomes essential in the experimental design setting, as opposed to the similar
passage from the grand k × k dispersion matrices M-~ to the reduced s × s disper-
sion matrices g(M)=KTM-K. Pukelsheim and Styan (1983) have given a deriva-
tion of the concavity of the information transformation f ,  and the convexity of the
dispersion transformation g, for a set of  M matrices which is sufficiently large for
the experimental design problem. That derivation visibly demonstrates that f plays
a more primary role than g, again favouring information matrices over dispersion
matrices. The experimental design point of view is to be explained in greater detail
in the next section.

4. G-majorization for the linear model

Let us take a linear regression model of the standard form

Y(X)=xTt~+e, p e R  k.

Let ~'c_ R k be the design region and ~ the design. Then under the usual second
order assumptions,

tM(~) = X X  T d~

is the information matrix of  ~. Given a subgroup of  GL(k) a first central assumption
is invariance of  ~C, i.e.

Q(g~')=~R', for all QeG.

Then we can think of a new measure, ~Q, obtained from ~ by acting with Q first.
Thus G induces an action by congruence on the set of  information matrices, namely
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M(~Q) = i' xxTd~Q=t'xQX(Qx)Td~,

M(~)--* QM(OQ T, for all Q ~ G.

The same result can also be obtained by looking at G as transformations on the
parameter space R k. Then linearity of M(~) in the design measure establishes the
following.

Lemma.  G-majorization o f  the design measure induces (matrix) G-majorization for
the information matrix. []

If we order elements of Ja', the set of  information matrices, according to G-
majorization or GW-majorization, an improvement in the design (in the sense of
making it smaller with respect to G-majorization) will lead to an improved informa-
tion matrix. For instance if  G --- Perm(k) is the group of k × k permutation matrices,
a symmetric design will give an information matrix which is G-minimal. In most
cases we shall be interested in some s-dimensional parameter system KTfl where K
is some k × s matrix. The components of KXfl are estimable under a design ~ if and
only if the range (column space) of M(~) contains the range of  K. We define the
reduced information matrix for KTfl through

I~KTM-K) + if range(M) ___ range(K),
C(M) = otherwise.

This matrix function is (a) nonnegative definite, (b) positively homogeneous, and
(c) concave. Hence it can be shown to be matrix-increasing, i.e.

MI--LM2 = C(MI)_< L C(M2);
see also Theorem 3 of Pukelsheim and Styan (1983).

Given a group G as above a second central assumption is range invariance o f  K,
i.e.

Q(range K) c_ range K, for all Q e G.

This is the same kind of condition as in invariant hypothesis testing.
Range invariance of K implies that the map Q ~ () - K * Q K  is a group homomor-

phism. For upon recalling that the inclusion Q(range K)___ range K is equivalent to
the identity KK * QK = QK, we evidently have PQ = K + PQK = K + PKK + QK = P . Q.
Hence the group G induces a group t~ of linear transformation on R s such that for
all Q ~ G  we have that QK=KQ. with O=K+QK~G.

It also implies an action by congruence of t~ on the reduced information matrices,
namely C(QMQ T) = QC(M)Q T, for all Q ¢ G. For upon realizing that Q- lTM-Q-  1
is a generalized inverse of QMQ x and utilizing the homomorphic  properties of
overbarring we obtain the chain of equalities
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C ( Q M Q  T ) = (K T [ Q M Q  T ] - K )  + __7_ (K T Q -  1TM-  Q - 1K) + -- ( Q -  W K  T M - K Q  - 1) +

= (Q - 1)- I ( K T M - K )  + (Q - 1T )-  l = Q C ( M ) Q  T.

In summary, range invariance of K turns - into a homomorphism from G to O,
and C is G-O-equivariant.

By Theorem 4 in Section 2 the above mentioned assumptions of  invariance of
and range invariance of  K imply that

M~<GWM2 ~ C ( M 1 ) < G w C ( M 2 ) ,  f o r M 1 , M 2 ~ d / .

Thus the result of the lemma given above extends to reduced information matrices:
improving the design via G-majorization leads to an improvement for all the reduc-
ed information matrices.

We now turn to the optimality of a design ~. Optimality for an estimable set of
parameters is insured if  the reduced information matrix C ( M ( ~ ) )  is minimal with
respect to upper  GW-majorization, for a fixed group G induced by G.

If the class of possible designs is such that the set of  reduced information matrices
contains the centre with respect to <G with group G, it is enough to look among
those designs which have invariant information matrices, and compare the reduced
matrices with respect to the other ordering, typically the Loewner ordering <e.  The
results in Proposition 2 and 3 of GW (1985b) are obtained in this way.

If the group ~ is too small, however, the procedure may not end in a minimal
matrix. Consider for instance the case of quadratic regression

Y = f l o + X f l  1 + x 2 f l z + e ,  x z  [ -  1, 1].

The group G contains only two elements, identity and reflection about the origin.
Comparison of the information matrices of symmetric designs ~ for polynomial
regression, that is matrices of the type

i1 0 10 I x  2
S x2 d, 0 x' d*5

has then.to be carried out by the Loewner ordering. The solution in this case is that
the set of best ( 'admissible ')  designs which cannot be improved under < GW consists
of all designs which put masses ½a at x =  +_ 1 and 1 - a  at x=O,  for some O<_a_< 1.
Thus while in this example the improvement procedure does not directly lead to an
optimal design, it does simplify the problem drastically in that it ends in a one-
dimensional class of designs with parameter a, which then may be analysed by a
direct approach.

We conclude this section with some implications of the <GW-ordering for
matrices in ,act'. Given M e  dr' we can think of V = M  + as a general 'dispersion'
matrix. More precisely, for an estimable set of parameters KTfl  based on an experi-
ment with n observations we have
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a-Zn Var(KTfl) = KTM+K= C(M) +,

where O "2 is the error variance, and/~ is the least-squares estimator of  ,6. Then range
invariance of K entails the following.

Let M1,M2 e dg be different information matrices of Kr,6 under designs ~z, ~2,
respectively. If KTfl is estimable under both designs then

MI<GWM2 = Varl(KT/~)<GWVarz(KTfl). (*)

Here Vari indicates the dispersion matrix under the design ~i ( i =  1, 2), and the <Gw-
ordering is taken with respect to the group (3 induced by G. Statement (,) follows
by piecing together the implication

ml "(GW M2 = C(MI ) <GW C(M2 )

from Theorem 4, and the implication

C(MI ) < GW C(M2 ) = C(MI)+ <~ GW C(M2) +

from Lemma 9 in GW (1985b).
A further consequence is obtained by applying Lemmas 9 and 8 of GW (1985b)

which yield

M 1 <~GWM 2 = sup tr(KVQM~QVK) < _ sup tr(KTQMfQVK)
Q~G Q~G

sup tr Var~(KT(Q/~))___ sup tr Var2(KT(Qfi)).
Q~G Q~G

This is particularly meaningful when K is just a vector, so that we are estimating
contrasts of G-transformations of the parameters and comparing the maximum
variances.

5. Improving block designs

In this section we apply the material on the general regression model in Section
4 to treatment block designs. Following Giovagnoli and Wynn (1981) we consider
a weight matrix

N =  {wij } ( i= 1 , . . . , o ; j =  1,... ,b),

which gives the proporion wij of observations on treatment i in block j. In line
with the 'continuous' theory of the last section we assume that min w~/=0 and

~ wij = 1. This can be interpreted as a measure on the set of possible locations
(i, j ) .  Under the usual additive model Yijk = cti + flj + eijk the full information matrix
for estimation of all ai and ,6j can be written as

Ar N ]
M ( N ) =  NT As '
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where the treatment 'replication'  vector r consists of  the row sums of N, and the
block 'size' vector s consists of  the column sums, while Ax denotes the diagonal
matrix with x on the diagonal. Take a 'large' group Go acting on the locations
(i, j ) ,  called the relabeling group. This G O = Perm(o)× Perm(b) where Perm(o) and
Perm(b) are the permutation groups on the treatments (i) and blocks (j),  respective-
ly. If a pair (R, S) with R e Perm(v) and S e Perm(b) is applied to the design repre-
sented by N, we obtain

NQ = RNS T, M(NQ ) = QM(N)Q T,

where Q is block-diagonal with top left block R and bottom right block S. Define
G, then, as

G = I [ R  Os] lR ~ Perm(o),S ~ Perm(b) 1.

Now using the linearity of M(N) in the measure N we have more generally that

N'= ~ aiRiNS~ = M(N') <G M(N).
iel

I.e., G-majorization of the N matrices implies G-majorization of the M matrices
with respect to the same group G which, however, acts through RNS T on the N
matrices and through QMQ T on the M matrices.

We are now in a position to induce results for subsets of contrasts. Most obvious-
ly we can consider treatment contrasts of the form ai-#t by taking

0bxo

It can be checked that K satisfies the range invariance condition of Section 4. The
matrix C(N)= (KTM(N)-K) ÷ is the normalized version of  the usual C-matrix, the
information matrix for the estimation of treatment contrasts, and can be written ex-
plicitly as

C(N) = Ar -  NAs ~NT

(assuming sj>O for j =  1, ..., b). Moreover, C(RNS T) =RC(N)R T so that 0 is just
the permutation group Perm(o) itself. Theorem 4 just leads to the following.

Theorem 5. I f  N'= ~ i ~ 1 ~ t i R i N S  T then  C(N') <GW C(N). []

An implication of this result is that 2 (C(N' ) )<w2(C(N)) .  By taking Ri=Io× o
and Si = lb× b in separate stages we obtain essentially Theorem 7 of Giovagnoli and
Wynn (1981).

One can also consider subgroups of Perm(o). One such subgroup is that which
leaves the first treatment (i = 1) fixed. This would arise when the treatment is a con-
trol. A suitable K matrix for comparison of treatments (o> 1) with the control
would be
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[ : ] / ~ =  - - l o - 1  : [ o - 1  .

Obxo

The information matrix is

~ ( N )  = (I?,T M ( N ) - I ? ,  ) - 1 = A e -  1VA s I/qT,
where iV is obtained from N by omitting the first row, while P is obtained from r
by omitting the first element. Applying Theorem 5 again we see that leaving the
control fixed (except for permutation between blocks) improvement is made by
'improvement' in the test treatments ( i> 1) alone. This is essentially the idea used
in Giovagnoli and Wynn (1985a). The extension to multi-way layouts is straight-
forward. The range invariance condition for K must be checked carefully in any
problem, for example if sets of contrasts from several factors are included.
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