
                                                             
             

I M P R O V I N G  M U L T I - W A Y  B L O C K  D E S I G N S  A T  T H E  C O S T
O F  N U I S A N C E  P A R A M E T E R S

Friedrich P U K E L S H E I M
Unwersitiit Augsburg. FR Germany

D. Michael T I T T E R I N G T O N
University of Glasgow, UK

                     
                     

Abstract: For a model of multi-way elimination of heterogeneities we show that information on the parameters of interest is
increased to an optimum by generating dependencies among nuisance parameters. Such designs realize more information than
Youden designs and their generalizations.

                                              

                                                                                                                  

1. Introduction

We consider an m-way classification, with ad-
ditive fixed effects and no interaction, as given by

Y'J1 , ~ , = a , + y ) " +  " "  +v~m~=oe, j ,  (1)
" " " J m " " "  J m l  "

where a,, for i = 1 . . . . .  v, is the effect of level i of
a treatment (or variety) factor, and (~,'lkl, for j~ =
1 . . . . .  b~ and k = 1 . . . . .  rn, is the effect of  level Jk
of the k-th (out of  m) blocking factor. The error
terms e,j, Jm~ are assumed to be independent,
each with mean 0 and variance 1, while o > 0 is an
unknown scaling factor. Interest is in the symme-
trized treatment contrast  (a~ - ~ . . . . . .  ~ , , -  ~ ) ' ,
with ~ . =  ~ a , / v ,  while the y)kl effects are consid-
ered as nuisance parameters. The information ma-
trix for the symmetrized treatment contrasts is
called the C-matrix, as usual.

For  such a setting Youden designs and gener-
alizations thereof are known to be optimal (Krafft.
1978; Cheng, 1978, 1981). Here optimality refers
to wide classes of criteria, in the spirit of  Kiefer's

(1975) concept  of  universal optimality. Moreover,
optimality obtains only among a subset of all
designs, namely among  these designs which have
uni form marginals between any two blocking fac-
tors. Delimiting a subset of compet ing designs is
indeed essential, as demonstra ted by example in
Pukelsheim (1983, p. 38). That  example is for two
blocking factors with six levels each, and fails to
indicate a general method.

In  the present note we propose a general result
on the optimality of  block designs when the class
of  compet ing designs places no restriction on the
marginals between any two blocking factor. The
idea is simple: we choose designs with a heavy
dependence structure between the levels of  block-
ing factors. This destroys identifiability of certain
nuisance parameters and thus effectively decreases
their total number,  while at the same time infor-
mat ion  about  the parameters of  interest is in-
creased to an optimum.

In Section 2 we identify one-way block designs
with null information for the treatment contrasts,
producing the type of dependence to be aimed at.
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In Section 3 we give the detailed result for two-way
block designs, indicating the extension to the
multi-way case in Section 4.

In summary,  WA~7 W ' =  A r, and C ( ~ ) =  0. For  the
converse part  observe that if C ( ~ ) = 0  then
W A  W'  is diagonal. The latter is impossible un-
less ~ is a one-treatment-per-block design. []

2. Simple block designs with one treatment per
block

Consider a one-way classification (1), setting
h l = b  and J l = J  for short. A design ~ may be
identified with the v × b matrix W whose entries
w,s give the proport ion of observations to be real-
ized at level i of the treatment factor and at level
j of  the blocking factor. Let r be the v-dimen-
sional treatment replication vector with entries
r, = Z s  n~;' and let s be the b-dimensional block-
size vector with entries s; = 2;,w,;. Then the C-ma-
trix is well known to have the explicit form

C(~) = A ~ -  WA; W' ,  (2)

where A r and A are diagonal matrices formed
from the vectors r and s respectively, while
indicates generalized inversion and ' transposition.

It is intuitively clear that a design is useless for
investigating treatment contrasts if each blocking
level contains one single treatment level only. For-
mally we define a one-treatment-per-block design
by requiring that just a single treatment level i ( j )
appears with blocking level j ,  for all j = 1 . . . . .  b.
We now show that these are the designs with null
information for the symmetrized treatment con-
trasts.

Lemma 1. ~ is a one-treatment-per-block design if
and only if C(~) = O.

Proof. For the direct part assume ~ to be a
one-treatment-per-block design with associated
weight matrix W. Letting 1 { ---  } be the indicator
function with values 0 and 1,

~;s = s;1 {i = i ( j ) } .

Always ( W A  W'),~ =Zs~;sS~Wk ;. In case i ~  k
the latter equals

S/s/s) s / l { i  = i ( j ) } l ( k  = i ( j ) }  = 0,

and in case i = k we obtain

Ssssl {i = i ( j ) }  = Ssw, s = r,.

One-treatment-per-block designs were shown to
provide maximal information in the interblock
model  which is associated with random block ef-
fects; see Christof and Pukelsheim (1985). At the
opposite extreme Lemma 1 shows that under
model  (1) they provide as little information as
possible, namely none at all. We now step up to
two-way block designs.

3. Two-way blocks designs with a determining
blocking factor

Consider  a two-way classification (1), setting
b I = b .  b 2 = c .  and Jl=J,  J2=k,  for short. A
design ~ now is a weight distribution on { 1 . . . . .  v }
X{1  . . . . .  b } × ( 1  . . . . .  c}, and can no longer be
identified by any one of its two-dimensional
marginals W 1, W 2, or W12 between treatment fac-
tor and first blocking factor, treatment factor and
second blocking factor, and first and second
blocking factor, respectively. Let r, s, and t be the
vectors of t reatment replications and first and
second blocksizes, respectively. The C-matrix then
takes the form

C ( ~ )  = ~  r - W1A, W l t - ( W  2 - Wl~s- W12 )

x~(w2- wlJTwl~.)', (3)
where ff is a nonnegative definite generalized in-
verse of F =  A , -  WI~A" 14/12 (Puketsheim, 1983,
p. 36). We can take i f =  0 if F = 0 ,  and this is
where Lemma 1 comes in.

For  a two-way block design ~ we shall say that
the first blocking factor is a determining factor if
just  a single level k ( j )  of the second blocking
factor appears with level j of the first blocking
factor, for all j = 1 . . . . .  b. Our optimality result
now is as follows.

Theorem 1. Suppose ~ is a two-way block design
with a determining first blocking factor and with a
C-matri,~ of rank v -  1. Then ~ is uniformly optimal
for the svmmetrized treatment contrasts among all
designs which have the same two-dimensional margi-
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nal between treatment factor and first blocking fac-
tor as ~.

Proof. The C-matrix of ~ has maximal rank, by
assumption. This shows that the symmetrized
treatment contrasts are identifiable, whence the
design ~ is feasible.

Let W t be the two-dimensional marginal
of ~ between treatment factor and first blocking
factor. In view of Lemma 1 we have F = 0 ,  so
that (3) turns into C ( ~ ) = A  r - -  W 1 A s W 1  t. As a
result of (3) every competing design ~ has C(~)
= A -  W1,~ I V ( - G ,  say, since ~ and ~ share
WI, and hence also r and s. Therefore the dif-
ference C ( ~ ) -  C(~) equals G, which itself is a
nonnegative definite matrix. Hence the result. []

A two-way block design ~ with a determining
first blocking factor is essentially reduced to a
simple block design, rendering the effects of the
second blocking factor non-identifiable. The ex-
ample of Pukelsheim (1983, p. 38) illustrates that
the designs of Theorem 1 are uniformly better
than generalized Youden designs.

Extension to multi-way block designs is now
quite feasible.

4. Multi-way block designs with a determining
blocking factor

For a two-way design the roles of the first and
second blocking factors are evidently inter-
changeable. This suggests the following definition
for an m-way classification (1) with blocking fac-
tors k = 1 . . . . .  m.

Definition. A design ~ is said to have a determin-
ing blocking factor k if for every other blocking
factor l ~ k just a single level J/(Jk ) appears with
level j~. of factor k, for all Jk = 1 . . . . .  b k.

In a general m-way setting no closed form
expression is available for the C-matrix of an
arbitrary design ~. However, when blocking factor
k is a determining factor the essential quantities
are the two-dimensional marginal W k between
treatment factor and k-th blocking factor, and its
corresponding one-dimensional marginals r and

s k. These indeed prove sufficient for the computa-
tion of the C-matrix of such designs ~.

Lemma 2. The C-matrix of an m-way design ~ with
determining blocking factor k is

C ( ~ ) = J ~ -  WkA~W f.

Proof. The C-matrix of an arbitrary design $ can
be expressed as

C(~)  = J , -  W ~ a / W / -  ( R -  W ~ J s S  )

×F(R- W~AsS) ' ,  (4)

with appropriate matrices R, S, and F: s ee fo r -
mula (5) in Pukelsheim (1985). We do not need
the explicit form of R, S, and F, except that F is
nonnegative definite with blocks A -  WlkA~- ~ W a,
for l 4= k, down the diagonal. Hence (4) generalizes
(3), with F again denoting a nonnegative definite
generalized inverse of F.

Thus if blocking factor k is a determining
factor then F has a vanishing diagonal and, being
nonnegative definite, must vanish itself. The feasi-
ble choice F =  0 now proves the lemma. []

The proof of Theorem 1 readily caries over to
the multiway situation, giving the following gen-
eral result.

Theorem 2. Suppose ~ is an m-way block design
with a determining blocking factor k and with a
C-matrix of rank L, - 1. Then ~ is uniformly optimal
for the svmmetrized treatment contrasts among all
designs which have the same two-dimensional margi-
nals between treatment factor and k-th blocking
factor as ~. []

Section 4 of Pukelsheim (1985) presents ad-
ditional details about where optimality of gener-
alized and pseudo Youden designs holds, and
where it fails. Here we have taken a more con-
structive approach by explicitly giving those de-
signs which are optimal.
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