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ABSTRACT

Classical vector majorization captures the idea of whether the entries 
of a vector are more nearly equal than those of another one. Much of 
experimental design theory revolves around the same idea, and is called 
"balance” here. In the present paper we outline the use of majorization 
techniques for a general concept of balancedness: Matrix majorization 
replaces vector majorization, and linear transformation groups which 
leave the design problem invariant take the place of the permutation 
group for vector majorization.

1. INTRODUCTION
Majorization has emerged as a powerful tool to describe the notion 
of balancedness in experimental design theory. Its possible useful
ness was already alluded to by Kiefer (1974, p. 862). The papers 
of Giovagnoli & Wynn (1981) and Bondar (1983) study majori
zation properties of the vector of eigenvalues associated with the 
information matrices of the designs. Further work of Giovagnoli &
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Wynn (1985a,b) suggests a transition from vector majorization to 
matrix majorization, as elaborated in Giovagnoli, Pukelsheim & 
Wynn (1987). Applications of this theory to the design problem 
has been surveyed by Pukelsheim (1987a,b). In the present paper 
we sketch the essential steps of this recent development.

In Section 2 we first identify the various levels of the design 
problem:

-  designs f , i.e. discrete probability distributions on an experi
mental domain X c R fc,

-  moment matrices Af(£), i.e. k  x k  nonnegative definite ma
trices depending on a design £,

-  information matrices C(M ), i.e. s x s nonnegative definite 
matrices representing the information for the s-dimensional 
parameter system of interest, as a function of moment matri
ces M, and

-  objective functions 0(C), i.e. real functions of the information 
matrices C with information-like properties.

Invariance of the design problem under a group Q, of linear 
transformations has its impact on each of these levels, as discussed 
in Section 3. We wish to stress that the groups act on moment 
matrices and on information matrices by congruence, not by si
milarity.

In Section 4 we turn to the desired orderings for experimental 
designs. Majorization relative to the group Q leads to the notion 
of when one moment matrix is more balanced than another one. 
However, for design applications this has to be built up into a 
two-st age preordering also involving the Lowner ordering of non
negative definite matrices. The resulting information increasing 
ordering^  generalizes Kiefer’s (1975) notion of universal optima
lity, and is intimately related to simultaneous optimality relative 
to all objective functions which are invariant.
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2. MAXIMIZING INFORMATION

Suppose the experimental conditions are given through some k- 
dimensional vector from a compact experimental domain X C Rfc. 
Under experimental conditions x E X we may draw a single real- 
valued observation

Y(x) = x'9 + <re,

where we assume that the error e has unit variance, and that the 
errors are uncorrelated between observations under different ex
perimental conditions as well as between repeated observations 
under the same experimental conditions. A design £ then is ta
ken to be a discrete probability distribution on the experimental 
domain X, determining allocation and proportion of the expe
rimental conditions. However, the problem is not really one of 
dealing with probability distributions £ themselves, but to study 
the behaviour of certain matrices associated with designs £.

2.1 Moment matrices

The mean vector parameter & is of dimension k. Accordingly we 
associate with a design £ its k x k moment matrix

M(£) = x x > d € =  5 2  
•'1 t =i

The set of all moment matrices forms a convex compact subset of 
nonnegative definite matrices, due to the assumed compactness of 
the experimental domain X. Formally we simply assume to start 
with a convex compact feasible set M of k x k nonnegative defi
nite matrices. The primary choice for X certainly is the set of all 
moment matrices, but other choices are of interest. For instance, 
M may be a set of moment matrices obtained from designs with
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certain restrictions on their marginals, or with restrictions on the 
support, here M would be a proper subset of all moment matrices. 
Bayesian design problems call for a choice of M to be the set of 
all moment matrices shifted by a prior information matrix R, see 
Chaloner (1984, p. 286). Through the introduction of the set M 
we are in a position to allow for such cases and others. Optimality 
will thus always be meant relative to the set X.

2.2 Information m atrices

We shall assume that the parameter system of interest K'0  is given 
through the k x s matrix K  of rank s. For a nonsingular moment 
matrix M  the s x s information matrix for K'0 is defined to be

In our earlier work (Pukelsheim 1980, p. 341) we have chosen to 
define the information matrix for K f 0 to be 0 when K'0  is not 
identifiable. The resulting discontinuity is unnecessarily strong, 
as has transpired in recent work of Gaffke (1985b, p. 73) and 
Müller-Funk, Pukelsheim & Witting (1985, p. 23). Moreover, the 
old definition fails to measure identifiability of subsystems of K r0. 
A refined definition for singular moment matrices M  is

C{M) =  lim(A-'(M + eIk ) - 1K )~ 1 = min LM L',

where the minimum is taken over all left inverses L  of K , rela
tive to the Löwner matrix ordering. Now identifiability holds if 
and only if the matrix C(M ) in the refined definition is nonsin
gular, and in this case C(M ) admits the simpler representation 

where M ~  is an arbitrary generalized inverse of M .
Thus identifiability is entirely encoded in the rank behaviour of 
the information matrix, under the refined definition.
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2.3 Objective functions

Over the years a considerable amount of work has gone into ex
ploring the frontiers of the class of functionals which may rightly 
serve as optimality criteria for the experimental design problem. 
The classical criteria of D-, A-, E'-optimality have been embedded 
into the continuous class of p-means (Kiefer 1974, p. 865). Pu- 
kelsheim (1980) admits information functionals which are defined 
to be concave, positive, and homogeneous; Gaffke (1985a, p. 385; 
1985b, p. 69) presents a subgradient theorem covering functionals 
which are concave and isotonic (under the Lowner ordering).

Such a bewildering variety of optimality criteria does not 
please every human mind. Yet it serves its purpose. For in
stance let us discuss uniform optimality of some moment matrix 
M , i.e. in the Lowner ordering -  the ‘usual’ ordering between sym
metric matrices -  we have M > A for all A E At. Then optimality 
is inherited by the huge class of isotonic (i.e. increasing) criterion 
functions, since evidently <$(M) > 0(A) whenever 0 is isotonic. 
Conversely, if M  is ^-optimal for every function 0 in the relati
vely small class 0(C) = z'Cz, with z E R*, then M  is uniformly 
optimal (Pukelsheim 1980, p. 344).

More generally let be a partial ordering for information 
matrices. Then it is useful to know which class of objective func
tions is order preserving, and the bigger the class the better. On 
the other hand it may be helpful to identify a subclass of functio
nals as small as possible so that simultaneous optimality over the 
subclass implies optimality under the partial ordering » .  Hence 
we study wide classes of criteria in order to move away from any 
single particular criterion in the direction of statistically more re
asonable partial orderings » .  Section 4 will illuminate this situa
tion further, but first we must briefly digress into when a design 
problem is invariant.
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3. INVARIANT DESIG N PROBLEM S

The groups which determine our majorization relations originate 
from the invariance properties of the design problem. Assume 
that a subgroup Q of the general linear group GL(k) acts linearly 
on the experimental conditions x, i.e.

x —» Qx, with Q G 2  C GL{k}.

For this to make sense we require that the experimental domain 
is invariant, i.e. Q W  c  X for all Q G Q.

3.1 M om ent congruence

The linear group action on the experimental conditions induces a 
congruence action on moment matrices:

= i  xx'd£ —  i  Q xx'Q 'dt = Q M ^ Q 1 
J X J X

For this to make sense we require that the feasible set M is in
variant, i.e. QMQ' G M for all Q G <2- This invariance property 
is clearly satisfied for instance when Al is the set of all moment 
matrices because then Q M ^ Q '  =  Af(^), say, with T) being the 
distribution of Qx under £.

3.2 Information congruence

The final invariance property focuses on the parameter system of 
interest K'Q, stipulating

Q(range/i) =  range# for all Q E Q-

This simply means that the linear hypothesis K'S =  0 is invariant 
(or that the group Q acts on the parameter space in such a way
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that the set of parameters of interest remains invariant as does 
the set of nuisance parameters).

Range invariance of K  entails that for every Q e  Q the s x s 
matrix ÿ  =  K + QK  is nonsingular, where K +  is the Moore- 
Penrose inverse of K . Furthermore we have

Q K = KQ, and C(QMQ'} -  .

Since the set £  = {$ e  GL{s) I Q G Q} forms a subgroup 
of GL(s) the latter property means that the transition C from 
moment matrices to information matrices is equivariant under the 
groups Q and

3.3 Invariant objective  functions

Once on the level of information matrices the reduced group $ 
has been determined it is clear that for an optimality criterion $ 
to be invariant we require

M C ^ )  = 4>(C) for all <5

As the group $  becomes larger the class of invariant criteria 
will evidently become smaller. For instance for the trivial group 
5  = w  all criteria are invariant, for the orthogonal group 
£  = Orth(s) an invariant criterion 4>(C) must be a function of 
the ordered eigenvalues of C, and for the group of unimodular li
near transformations & = Unim(s) the only invariant information 
functional is (detC )1^ .

It ought to be acknowledged that invariance is not automa
tically built into any given design problem. The preceding expo
sition has dwelt on its mathematical prerequisites. Whether it is 
meaningful from a statistical point of view must be decided on 
the ground of the practical poblem in question.
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4. INFORMATION INCREASING ORDERINGS

Group majorization underlies the idea that given a point A any 
other point M  in the convex hull of the orbit of A is an average 
and as such is more balanced. For instance the group £  acts on 
the designs themselves through f  —> £ ° Q~ l . Hence a design £ is 
more balanced than T] when

€ = r i°Q 7 1
i

for a finite number of transformations Qi E Q, where min a,- > 0 
and 52 a i — 1- For a finite group Q =  {Qi, - • -,Qn} of order n 
we may choose a, =  1/n and average over all transformations Qi 
to obtain a design £ which is invariant. For an infinite compact 
group a similar averaging procedure is possible with respect 
to Haar probability measure, but the resulting invariant measure 
may no longer be discrete. For instance an equidistant design on 
the circle averaged over all rotations yields Lebesgue measure on 
the circle.

Fortunately we rarely work on the level of designs £. Rather 
we let a design £ inherit its performance properties from the mo
ment matrix and the information matrix C(Af(£)). As an 
example recall that a design £ is uniformly optimal for K'0 when 
in the Lowner ordering for all competing
designs Tj. Thus orderings of moment matrices and of information 
matrices are of greater interest.

4.1 Balancedness among moment matrices

We shall call a moment matrix B  more balanced than another 
moment matrix A  when B  lies in the convex hull of the orbit of 
A, i.e.

B = Y ,a i QiA^ i
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for a finite number of transformation Qi £ Q., where min a, > 0 
and =  !• This is the usual concept of group majorization 
where B  is considered “smaller” than A. In the design context 
B  carries more information and therefore we reverse the majori
zation notation and consider B  to be “larger” than A, from the 
information point of view.

When the group Q is compact then each moment matrix A 
has in the convex hull of its orbit a unique invariant and hence 
most balanced matrix A, obtained from averaging with respect to 
Haar probability measure dQ according to

A =  I QAQ'dQ.
JQ

Due to compactness and convexity the feasible set At must contain 
any such matrix A. Hence the invariant matrix A may be obtai
ned as the moment matrix of a design £, without necessitating the 
invariance of £! For instance in trigonometric regression (Pukels- 
heim 1980, p. 360) every uniform distribution on an arbitrary set 
of equidistant support points leads to the same moment matrix 
as Lebesgue measure on the circle which is the unique rotation 
invariant distribution.

An ordering which is always available for comparing informa
tion is the Lowner ordering among moment matrices. It is natural 
to try and combine these two concepts.

The combination appropriate for the design problem produ
ces the information increasing ordering, as follows. A moment 
matrix M  is called at least as informative as another moment 
matrix A, denoted by M  »  A, when Af is larger in the L6wner 
ordering than some matrix B which is more balanced than A, i.e.

M  > B €  convex hull of the orbit of A under Q, for some B.
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The information increasing ordering is transitive, in that M  A 
and A »  F  imply M  F. When the group £  is compact 
the ordering is also antisymmetric ‘modulo Q,’, i.e. M  A and 
A M  entail M  = QAQ' for some Q G Q (rather than M  = A).

Other combinations of the two orderings are feasible and are 
discussed by Giovagnoli, Pukelsheim & Wynn (1987). That the 
present combination is appropriate for the design problem beco
mes apparent as we continue the discussion on the information 
matrix level.

4.2 Balancedness among information matrices
An information matrix C  is called at least as informative as an
other information matrix D, denoted by C »  D, when C is larger 
in the Lowner ordering than some matrix E  which is more balan
ced than D, i.e.

C > E  6 convex hull of the orbit of D  under £ , for some E.

Notice that we do not insist that the intermediate matrix E  lies in 
C(.M): On the level of moment matrices the intermediate matrix 
B  automatically lies in the feasible set M, but due to the lack of 
convexity of C(M) we have no such knowledge about E.

Consistency of the information increasing ordering from the 
level of moment matrices to the level of information matrices is 
shown by the following.

Theorem 1 (Giovagnoli, Pukelsheim & Wynn 1987, Thm. 4). 
I f M  is at least as informative as A then C(M) is at least as 
informative as C(A).

Proof. If M  > B  =  52 a iQiAQ\ then monotonicity, concavity, 
and equivariance of C  yield

C(M ) > C(B) =

> =  E < s a ? ■
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Evidently E  lies in the convex hull of the orbit of C(A). □

An analysis of the proof shows that when B is more balanced 
than A it does not generally follow that C(B) is more balanced 
than C(A), while it does follow that C(B) is more informative 
than (7(A). A similar remark pertains to the “opposite” two-stage 
ordering: When M  is more balanced than some matrix B which 
is larger in the Lowner ordering than A then C(M) is more infor
mative than C(A) rather than inheriting the “opposite” ordering 
property.

Using a notion first introduced by Kiefer (1975) we now define 
an information matrix C to be universally optimal when C is at 
least as informative as D for all competing information matrices 
D. When the group is compact then a given information matrix 
C may be averaged with respect to Haar probability measure dQ 
to obtain

C = [ d C & d Q .
J 2

However, this matrix C need not be a feasible information matrix 
as the set may fail to be convex. On the other hand we 
have the following result.

Theorem 2. Suppose the group is compact and the infor
mation matrix C is invariant. Then C is universally optimal if 
and only if C is larger in the Lowner ordering than the invariant 
matrices D obtained from the competing information matrices D.

Proof. If C  is invariant and universally optimal then C = C > 
E  =  P , for every competing information matrix D. Conversely, 
if (7 > P  then obviously C »  P , since D lies in the convex hull 
of the orbit of P . 0

As an example let £  be the permutation group. Then an 
invariant information matrix is completely symmetric, i.e. it has
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the form a J  + fl(I — J) where J  is the s x s matrix with all entries 
equal to 1/s. Comparison in the Lowner ordering thus reduces 
the task to comparing the two eigenvalues a  and 0.

4.3 Invariant objective functions

If an information matrix C is at least as informative as D, then 
^(C) > for every criterion function which is isotonic, 
concave, and invariant. This simply follows from a repetition of 
the steps used to establish Theorem 1. In many cases the subclass 
of linear criteria is sufficient to establish universal optimality:

Theorem 3 (Giovagnoli, Pukelsheim & Wynn 1987, Thm. 2). 
Suppose the group £  is compact and the information matrix C 
is invariant. Then C is universally optimal if and only if  C is </>- 
optimal simultaneously for all criteria </> which are linear, isotonic, 
and invariant.

Proof. The functions <j>(D) = z 'D z  are linear, isotonic, and in
variant. Hence C > D, for all competing information matrices D, 
and we may invoke Theorem 2. 0

Whether universal optimality under a noncompact group £  
is equivalent to simultaneous optimality relative to an appropriate 
subclass of criteria remains an open question.

Acknowledgement. Sincere thanks go to James V. Bondar and 
the referees for their helpful remarks on the original draft of the 
paper.
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