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ABSTRACT

The matrix inequality (* ) A, - tt’ < A, - rr’ is considered, where t and r are
positive stochastic vectors, and At and A, are diagonal matrices with t and r on their
diagonals. Necessary and sufficient conditions are established (1) for ( *) to hold when
t and r are given, and (2) for the existence of some vector r satisfying ( * ) when t is
given. The results have applications in various parts of statistics.

1. INTRODUCTION AND RESULTS

Several problems in statistics lead to the consideration of inequalities of
the form A,-ti’<A,-rr’, where t=(t,,...,t,)’ is a positive stochastic
vector in R” (i.e., ti > 0 and Cti = l), and r is a positive stochastic vector in
R”, and A, and A, are diagonal matrices with t and r on their diagonals. The
ordering < denotes the Loewner matrix ordering; see [4, Chapter 16.E].

The matrix A, - ti’ appears as a special case of a C-matrix in experimental
design theory, i.e. as the information matrix for the treatment contrasts of an
experimental design, with treatment replication vector t, in both the twe
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way-classification, fixed-effects model and the interblock model associated
with the two-way-classification, mixedeffects model. See [6, Theorem 4a] and
[2, Lemma 21 for more details. Also, A, - ti’ is the dispersion matrix of a
multinomial distribution with cell probability vector t.

In any case it is of interest to compare two matrices of the special form
given above through the Loewner matrix ordering, and to this end we shall
establish here the following results.

THEOREM 1. Suppose t and r are positive stochastic vectors of dimension
n such that t + r. Then

if and only if there exists some subscript i such that

t, “i> (a )

tj -=c Tj forall j#i, (b)

THEOREM 2. Suppose t is a positive stochastic vector of dimension n.
Then there exists some positive stochastic vector r z t such that the inequality
( *) holds if and only if there exists some subscript i such that ti > $.

Theorem 1 says that the inequality ( * ) is equivalent to the components of
t being strictly smaller than those of r, except for one where the inequality
ti > r, goes the wrong way round as compared to ( * ), and that altogether the
distances between the components of t and r must be so as to satisfy the
quantitative property (c). Theorem 2 is somewhat surprising in that the
condition ti > i does not depend on the dimensionality n.

For the statistical applications Theorem 1 provides an easy means to
compare the information matrices between the corresponding block designs
and to compare the dispersion matrices of two multinomial distributions, by
looking solely at the components of the stochastic vectors t and r. Theorem 2
offers a very simple criterion for when a design with C-matrix A, - ti’ is
admissible, i.e. when A, - tt’ is maximal among all C-matrices, and when a
multinomial distribution is maximally dispersed.
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The necessity of the properties (a) and (b) in Theorem 1, and the direct
part of Theorem 2, were established by Christof and Pukelsheim [2]. In the
present note we adjoin the property (c) and prove sufficiency. We shall give a
brief self-contained exposition of proofs in Section 2.

2. PROOFS

The following lemma is due to Farebrother [3, Appendix] and has been
generalized by Baksalary and I&la [l, Theorem 11. It also follows from
Haynsworth’s inertia formula; cf. (1.28) in [7].

LEMMA. Suppose D is a positive definite n X n matrix, b is a rwnzero
vector in R”, and a is a positive scalar. Then

D>, abb’ = l/a >, b’D-‘b.

Proof. For the first part, premultiplying with b’D_’ and postmultiplying
with its transpose yields b’D_‘b > a(b’D-‘b)2, i.e. l/o > b’D_‘b. For the
converse part, the Cauchy-Schwarz inequality leads to

a( b’x)’ = a( b’Dmm 1’2D1/2x)2 < a( b’D- ‘b)( x’Dx)

for every vector x in R”. Hence l/a > b’D- ‘b implies D 2 abb’. n

Proof of Theorem 1. Since t f r and Cti = 1 = Cr,, there must exist some
subscript i such that ti > ri. Without loss of generality we may take i = 1, and
thus assume t, > rl. Define the matrix K, = I, - 1,1:/n, where 1, is the
n-dimensional vector with all elements unity.

As all components of t are assumed to be positive, we have

(A, - tt‘)K,A,‘K, = K,.

Hence K, A; ‘K n is seen to be the Moore-Penrose inverse of At - tt’, and
rank(A,, - tt’) = n - 1. It now follows from Theorem 3.1 in [5] that the
inequality ( *) is equivalent to the converse ordering

K,A; ‘K, >, K,A; ‘K,



266                                            

among the Moore-Penrose inverses. Premultiplying with ( - l,_, jr,_ 1) and
postmultiplying with its transpose leads to another equivalent form of ( *):

where D is the (n - 1)X( n - 1) diagonal matrix with aj = l/tj - l/rj, for
j > 2, on its diagonal, and (Ye = l/r1 - l/t,. By assumption (Ye > 0, and this
forces D to be positive definite. Thus (t) entails (b); and the Lemma implies

1 1
-2 c ->
a1 j>1 aj

i.e. (c). Conversely (a), (b), (c) and the Lemma establish (t). n

Proof of Theorem 2. The inequalities t, - t,’ < r, - ri2, obtained from
( * ), and ti > ri, given in (a), can hold simultaneously only if ti > $ and
r, E [l - ti; ti). This establishes the direct part. For the converse part, choose
some 1; E [l - ti; ti), and for j f i define

1 - 1; t, - r,r. = -t. = t. + ~1 l-til 1 1 - ti 
tj.

Then r=(rI,..., r,,)’ is a positive stochastic vector satisfying (a) and (b).
Because of

c rjtj 1 - r. riti
p=,-' (l -ti )g~~ 

j  ~ i rj - tj t t , I

it also fulfills (c). The inequality ( * ) now follows from Theorem 1. n
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