
                                                                              

On Information Functions and Their Polars

F. PUKELSHEIM2

Communicated by L. Cesari

Abstract. Let ~ be a closed convex cone. Information functions, i.e.,
nonnegative functions on 3 ~ which are positively homogeneous and
concave, are shown to be in a one-to-one correspondence with certain
convex subsets of ~. Information functions are always isotone with
respect to the vector ordering induced by ~, and this order-preserving
property distinguishes them from their convex analogues, gauge func-
tions. A polarity concept for information functions is proposed which
slightly deviates from the well-known polarity correspondence for gauge
functions. Finally, those functions are characterized which differ from
information functions only by some nondecreasing concave transfor-
mation.

                                                                
                                                       

1. Introduction and Summary

Information functions, as defined below, closely resemble their convex
analogues, gauge functions, except that the effective domain of information
functions is a closed convex cone N, only, and except that information
functions are always isotone with respect to the vector ordering _-- induced
by ~. Hence, information functions may be of interest whenever a problem
formulation implies a cone ordering.

The present paper originates from one such example in the statistical
analysis of experimental design (Ref. 1); as a motivation, we outline briefly
this background. Suppose that we wish to design an experiment in order
to estimate, test, or otherwise investigate s unknown real parameters. Under
suitable assumptions on the statistical model, the performance of a design
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~: is reflected by an s x s information matrix (n/o'2)J(~); i.e., information
is directly proportional to the size n of the sample, inversely proportional
to the error variance 0 -2, and otherwise given by a nonnegative definite
matrix J(£). The objective is to maximize a real functional j of (n/0.2)J(~).
In order that j conforms with the notion of information (and rightly j is
called an information function), we demand that j be (a) positive, i.e., a
positive (or nonnegative) definite information matrix is mapped into a
positive (or nonnegative) information number; (b) positively homogeneous,
whence the common scalar factor n~ 0.2 may be neglected; and (c) concave,
so that information cannot be increased by interpolation. Convex analysis
then allows one to characterize and study those designs which have maximal
j-information for the s parameters under investigation.

Moreover, every information function is isotone with respect to the
Loewner ordering ~ ,  which is induced by the closed convex cone ~ of
nonnegative definite matrices. A characterization of designs whose informa-
tion matrix is maximal in the Loewner ordering is easily deduced from
those results which pertain to maximizing j-information; admissible infor-
mation matrices necessarily have maximal j-information, for certain func-
tions j and for certain parameters; see Corollaries 5.2 and 8.4 in Ref. 1.
These results point to a wider applicability of information functions beyond
the mere statistical problem, inasmuch as determination of admissible
(sometimes called efficient or Pareto-optimal) solutions plays a central role
in the theory of vector optimization. Of course, existence and characteriz-
ations of admissible points may also be established by alternative methods;
see Refs. 2 and 3. Yet, it appears natural to investigate a given vector
ordering by' means of a suitable family of scalar functionals (compare
the approaches taken in Refs. 4 and 5), and the monotonicity
behavior of information functions makes them prime candidates for this
purpose.

Therefore, we have collected below what seems to us the basic proper-
ties of information functions. In Section 2, it is shown that information
functions are in a one-to-one correspondence with those closed convex
subsets of ~ which do not contain 0 and which recede in all directions of
~. The polarity concept for information functions leads to information
functions on the dual cone ~a, as detailed in Section 3. Information-like
functions are discussed in the concluding Section 4. Although there is no
counterpart for the cone ~ in the theory of gauge functions, our presentation
will emphasize the common aspects of the convex and the concave case, in
that exposition and terminology closely follow Section 15 of Rockafellar
(Ref. 6) on polars of convex functions. Thus, our frame of reference is the
Euclidean n-space; then, application to matrix space and generalization to
paired spaces are straightforward.
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Partial results when ~ =N+ is the nonnegative quadrant have been
obtained by Rockafellar (Ref. 7) and McFadden (Ref. 8). Rockafellar
introduces monotone concave gauges and proves (Theorem 3.4) a polarity
correspondence similar to our Theorem 3.1, while McFadden defines dist-
ance functions and establishes (Lemma 7.4) a function-set correspondence
similar to our Theorem 2.1.

Finally, let us recall some notation. We write {j_-> 1} for the set {xe
~" t j(x)  >= 1}. A convex set C CR" is said to recede in the direction of y ~ R n
if

x + ,~y ~ C, for every A ~> 0 and x c C.

These directions form the recession cone 0*C of C. A concave function is
proper  if it is not identically - c o  and never attains the value + c~; a proper
concave function is said to be closed if it is upper semicontinuous. The
polarity concepts for gauge and information functions are directed toward
0 and oo, respectively; in Section 3, our notation seeks to express this
orientation.

2. Information Functions

Let ~ be a closed convex cone in the Euclidean n-space R'. A real
function j defined on ~ will be called an information function on ~, if j is

(a) nonnegative on ;P and positive on its relative interior, ri ~ ;
(b) positively homogeneous, j(Ax) = ;tj(x), VA > O, Vx  ~ ~;
(c) superadditive, j( x + y) >- j(  x) + j (y) ,  Vx, y ~ ~.

Outside ~, the value of j (x)  is taken to be -oo;  thus, j is a concave
function on E" with effective domain ~.

Let  x_-< y denote the vector ordering induced by ~, i.e.,

x<- y e : ~ y - x ~ .

As a consequence of the definition, every information function j is concave,
isotone, and satisfies

j(O) =0 ;

if j is strictly concave, then it is strictly isotone, i.e.,

x < y and x # y imply j (x)  < j (y ) .

The average of an arbitrary collection of information functions and the
minimum of a finite collection again are information functions. Even the
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infimum of an arbitrary collection is an information function, provided it
is positive on ri ~.

The convex analogue of information functions are gauge functions, i.e.,
real functions k on R n which are nonnegative, positively homogeneous, and
subadditive. Just as gauge functions k are in a one-to-one correspondence
with their unit ball {k -_< 1}, the same is true for information functions j" and
their unit set {j>= 1}. If j is a closed information function, then {j_-> 1} is a
closed convex subset of ~ which does not contain 0 and which recedes in
all directions of N.

Conversely, define the function ~7(' [C) for a subset C of En by

~(xlC)=Isup{~>=Ol~=Oorx~C}, for x c  ~,
( - 0% for x~ ~.

Under  suitable conditions on C, this is an information function.

Lemma 2.1. If C is a closed convex subset of ~, which does not
contain 0 and which recedes in all directions of ~, then 7(" t C) is a closed
information function on ~.

Proof. We write

For x c 3 ~, then

by definition, and

~(x) = n(xl C).

~(x)_->0,

n(x)<~.

For, since 0 is not contained in C, there exists some e > 0 such that eB lies
outside C, where B denotes the closed Euclidean unit ball. If

->--Ilxll/~,
then x/~ lies in eB and not in C; hence,

~( x) <=llxll/ ~.
In order to show that

n(x)  > 0 ,  f o r x ~  r i ~ ,

there is no toss of generality to assume that ~ actually has nonempty
interior. But

71(x)=O and x ~ i n t ~
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lead to a contradiction. From

~(x) =0,
it follows that the half-ray

R = { a x l a  >0}

does not meet C; hence, there exists a hyperplane H which properly
separates C and R. Let  H + be the open half-space determined by H which
does not contain C If, if addition,

x ~ int N,

then H meets int 3 ~, and ~ n H + cannot be empty. But, for every y ~ ~ n
H +,  one has x + y ~ H +,  by construction, and x + y c C, by the assumption
that y is a direction of recession of C; this contradicts the choice of H +.

Homogeneity of ~7 is immediate. Superadditivity is obvious if

or if

If

then

imply

x ¢ ~  or y¢~O,

n ( x ) = n ( y ) = O .

~ ( x ) > 0  and ~ ( y ) = 0 ,

a > O  and x ~ a C

x +  y = ~ [ x / a  + y/~]c ~c,
since y~ a is a direction of recession of (7. If

~ ( x ) > 0  and ~ ( y ) > 0 ,
then

imply

In any case,

a , / 3 > 0  and x~aC, y~flC

- +  ~(c~+3)C.x+y=(~+~) ~+t~a ~+/~

n(x+y)>-_ n(x)+ n(y).
Finally, closedness of ~7 is equivalent to closedness of the sets {r/_>- a},

for all a ~ N. Certainly,

{~7_-> a } =  ~, if a = O .
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If o~ > O, then

for, if

then

{7 >= a} = aC;

~_-__a>O and x~ t zC ,

x = a[x/t~ + (1/a  - 1/t~)x] ~ aC, ~C c::: o~C,

ri g~ C{r/> O}C L.J~,>o a C C ~ ;

and, taking closures, this yields

= cl U~,>o o~C.

Hence, for closed convex sets C which do not contain 0 and whose recession
cone 0+C coincides with c lU,>o  a c ,  Lemma 2.1 applies with N=0+C.
Then, notice that N is the Kuratowski limit of a C  as a $ 0; see Salinetti
and Wets (Ref. 9, p. 19). Summarizing, we have the following theorem.

Theorem 2.1. The relations

j ( x )=w(x lC) ,  C={xlj(x)>- l},
define a one-to-one correspondence between the closed information func-
tions ] on N and the closed convex subsets C of N, which do not contain
0 and which recede in all directions of N.

Proof.

Given j,

follows from

Given C, Lemma 2.1 showed that

c={n>-_l}.

j(x) <-_ ,7(x)

x ~j(x){j>= 1},

and therefore

{,7 --- o d c  o~c,

the converse inclusion following from the definitions. []

The condition that C recedes in all directions of ~ may also be
expressed solely in terms of C Indeed, the proof of Lemma 2.1 shows that



                                    539

while

is implied by

j(x) ~= "q(x)

j (x)  ~= ~,

whenever x ~/zC. 7~

3. Polar Information Functions

The dual cone of ~ is

~a ={u ~ ~ [(x, u ) -O,  Vxe ~},
where (x, u) denotes the standard inner product of R ". In fact, the mapping

L(x) = (x, u)

itself is an information function on ~, provided

u c 3  ~d and u ~ ± .

Moreover ,  if u e ri ~ a  and ~ contains no lines, then j~, is strictly isotone
(but fails to be strictly concave).

The polar set C ~ of a convex set C not containing 0 and the polar
function j~ of an information function ] on ~ are defined by

c ~ = { u  ~R"l<x, u)>= l, Vx ~ C},

j~(u) = inf{(x, u)[x~{j>= 1}}.

These definitions and the equality

ct{j= > 1} ={el j =  > 1}

entail

C ° =  (cl C) ~ = (ri C) ~,

.)~ f inf{(x/j(x), .)t  x ~ ri ~}, on ~ a
j~ = (el 1 = ~ - cG otherwise.

The last alternative follows from

(el j )~(u)  = inf{(x, u)[x E {el j = 1}} = inf{(y/(cl j)(y), u)[y ~ {el j > 0}},

for u ~ ~ d,
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upon observing that

u ~  d and y E { c l j > 0 }

imply

(y/(cl  j)(y), u)cel{(x/j(x), u)[ x c ri ~}.

The relations between polars of sets and functions are canonical.

Lemma 3.1. If C is a convex subset of ~, which does not contain 0
and which recedes in all directions of ~, then C ~ is a closed convex subset
of ~ ,  which does not contain 0 and which recedes in all directions of ~d;
and if ] is an information function on ~,  then j< is a closed information
function on ~ .  Moreover,

(C~) ~ = cl C and (j°~)~ = cl j.

Proof. The set C °~ is closed and convex. If u ~ C °, then

(x+hy ,  u )>  1, forallxcC, y ~ , h > O ;
hence, u ~ ~d. Certainly, 0 ~ C. If v ~ 0+(C~), then

(x,u+hv)>->_l, forallx~C, ucC°°,h>O,
and

(x, v)Z-7_O, for all x c  C;

this again implies v e ~d. The converse inclusion ~d C O+(C ~) is immediate.
Now, if j is an information function and

C={j=>I} ,

the assertion then follows from Lemma 2.1 by showing that

j ~ =  ~(.I C~).

But, fo r / z  > 0, one has

u ~ ~ C ° ~ ¢ ~  <-_j~(u),

and this implies

~(utC~)=j~(u),  if r/(ul C~) > O,

j°°(u) =0, if n(ulC~)=O.
For studying double polars, assume C to be closed. Since C C C ~ is
immediate, fix Xo ¢ C. If xo ~ ~, then Xo ~ C °~°°, since

COO~C ~dd = ~.
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If Xo e N, choose some vector u e E" such that

(x0, u) < inf{(x, u)[ x c C} = a,

say. Then,

(x + •y, u) > (Xo, u),

and therefore,

Now,

f o r a l l x e  C, y e  ~, h > 0 ,

(x,u/a)>=l>(xo, u/a), for alt x e  C,

and this establishes u/a e C ° as well as xo~ C ~ .  This also yields

{j~o~____ 1} ={clj__> 1},

and Theorem 2.1 gives

j°~°~=cl j.

Thus, the proof is complete. E3

In summary, we have the following analogy with the polarity correspon-
dence of gauge functions. However,  notice that, as in Theorem 2.1, the
cones ~ and ~a  are additional ingredients which do not have a counterpart
in the theory of gauge functions.

Theorem 3.1. The polarity operation j-~j~ induces a one-to-one
symmetric correspondence in the classes of all closed information functions
on ~ and ~d. Two closed convex subsets of ~ and ~d, which do not contain
O and which recede in all directions of ~ and ~a, respectively, are polar
to each other  if and only if their information functions are polar to each
other.

The relation with the support function 6" (, t C) of C is also straight-
forward. If C is a closed convex subset of ~ which does not contain 0 and
which recedes in all directions of ~, the function ~ (. I C) and the function
h given by

h(u )=-6*( -u]C)
are information functions polar to each other.

Examples of information functions on the nonnegative quadrant R2
are the generalized means of order p e [ -oo ,  + 1], defined for x e ri R+ by

jp(X)=(?l-1]~XiP) I/p, p¢-oo,  p¢O,

jo(O) = (xt . . . . .  x~) 1/",

j_~(x) = rain{x1 . . . . .  xn},

u e ~ d  and (xo, u)---->0.
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and extended to all of R2 by semicontinuity. The polar of jp is njq, by
H61der's inequality, where p, q ~ [ -oo ,  + 1] must satisfy

p+q =pq.

Notice that, in the jp-family, the geometric mean J0 is the only member
which, up to positive proportionality, is self-polar.

The jp-means serve as prime examples in experimental design theory,
where they are interpreted as information functions (cf. Section 2 in Ref.
1), and in econometric production theory, where they serve as production
functions (cf. Section 1.9 in Ref. 8).

4. Information-Like Functions

It is of natural interest to determine those functions which, except for
a monotone transformation, coincide with some information function. A
concave function g on R" will be called information-like on ~ if g is proper,
dom g C ~,

g(O)=inf{g(x)lxc~}<g(x),  for some x e ~,

and, for a ~ (g(0), sup g), the sets {g-> a} are all positively proportional
and have recession cone N. Since any such function g is nonconstant, it is
necessarily proper, provided it is closed.

Theorem 4.1. A closed concave function g is information-like on
if and only if it can be expressed in the form

g=hoj,

where j is a closed information function on ~ and h is a nondecreasing
closed concave function on [0, + co) such that

h(0) < h(~), for some ~'> 0,

while

h ( -  oo) = -oo.

Proof. For the direct part, assume g to be given Let I be the open
interval (g(O), sup g), and fix

C={g>=al}, for some a l e  I.

Then, C is closed and convex, it is contained in ~, but does not contain O,
it recedes in all directions of ~ ;  and, for a c / ,  there exists some if> 0 such
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that

Hence, choose

and, for ~->_ 0, define h by

{g => a} = ~C.

j=~7( ' lC);

h( ( )=g(O) ,

if (C is not contained in any of the sets {g ~ or} for o~ • / ,  and define h by

h(K) = sup{a • I [ ~ C C { g ~  ~x}},

otherwise. Now, h is nondecreasing; for, if 0 < ~ < ~, then

~c ={~x+ ~ (U~-  1)xlx ~ c } c ~ c ,

and hence,

h(O) = g(O) _-< h(~) _-< h (4:).

Furthermore, for x e ~ with g(x) > g(O), one has

g(x) = sup{~ e ~lx ~ {g = ~}}
= sup{o~ c t I 3 K >  0: xc KC and (CC{g>= a}}

-- sup{h(~') I ~'> 0 and x e KC}

= h oj(x).

Otherwise,

o r

In both cases, the equality

x e ~  and g(x)=g(O),

x ~ .

g(x) = h oi(x)

follows from the definitions. Any xl e C with j(xl) = i permits the alternative
representation of h as

h( ]d) = g(Kxl),

showing that h has all the required properties.
For the converse part, assume h and j to be given. Then,

g = h o j
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is a closed proper concave function with

d o m g C ~

and

g(O) = h(O) = inf{g(x)ix E ~} < sup g = sup h.

Fix

a < sup g,

and introduce the pseudo-inverse

h- l (a )  = inf{~->_ O I h(~) _-> a}.

Then,

with equality if and only if

With

this yields

h-l(~)-_O,

~h(0)  =g(0).

C={j>-I},

{g>=,~}={]>=h-l(a)}=h-l(a)C,  if a>g(O) .  [~

The concave conjugate of information-like functions again is informa-
tion-like. Indeed, the conjugate of a function

g = h o j

as in Theorem 5.1 turns out to be

g * = h - o f  °,

where the monotone conjugate h -  of h is given by

h-(~) = inf{~'ff- h(~) I K -_> 0};

see page 111 in Rockafellar (Ref. 6). Moreover, applying Corollary 12.2.2
of Rockafellar (Ref. 6) and using

ri ~ c U ; > o  KD,

with

D ={cl j = 1},
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the following argument, for u c ~d, does not require j to be closed:

g*(u) = i n f x ~  (x, u ) -  h oj(x)

= infx~ri ~ (x, u ) -  h o (cl j ) (x)

= inf,>0 ~" infx~D (X, U)-- h(O

= h - o i l ( u ) .

An instructive example is given by the transformation

h(()  = C,

with monotone conjugate h - ( ( )  equal to - o o  or 0 according as ~<  1 or
_>- 1. The transformation

h(O = log ¢

is employed in the proof of Theorem 4 in Pukelsheim (Ref. 1); its monotone
conjugate is

log- ~: = 1 + log ~:.

Further  examples are listed in Section 7 of Bellman and Karush (Ref. 10).
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