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Abstract: Optimality properties of approximate block designs are studied under variations of (1)
the class of competing designs, (2) the optimality criterion, (3) the parametric function of interest,
and (4) the statistical model. The designs which are optimal turn out to be the product of their
treatment and block marginals, and uniform designs when the support is specified in advance.
Optimality here means uniform, universal, and simultaneous j,-optimality. The classical
balanced incomplete block designs are embedded into this approach, and shown to be
simultaneously j,-optimal for a maximal system of identifiable parameters. A geometric account
of universal optimality is given which applies beyond the context of block designs.

                                                      

                                                                                        
                                    

1. Introduction

It is common practice to divide the theory of experimental design into two parts:
the approximate theory deals with optimality characterizations of approximate
designs, and the exact theory investigates construction and properties of exact
designs. In the present paper we shall be less orthodox and apply the approximate
theory to simple block designs, which usually are viewed as a prime domain of the
exact design theory. A similar approach has been chosen in recent independent work
by Giovagnoli & Wynn (1981).

Given u varieties, or treatments, i= 1, . . . , u, and b blocks j= 1, . . . ,!I, an exact
block design of size n is a set of integers nii E (0, . . . , n} which sum to n, directing
the experimenter to observe nti times the i-th treatment in the j-th block. In this
paper we shall discuss approximate block designs instead, i.e. sets of weights
wii E [0, l] which sum to 1, indicating that a proportion wii of all observations is to
be taken with the i-th treatment in the j-th block.

The approximate theory will provide the tools to discuss optimality properties of
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block designs (1) under variation of the class of competing designs (all designs, all
designs with given treatment marginals, or given block marginals, or both, or given
support), (2) under variation of the optimality criterion (uniform optimality, uni-
versal optimality, j,-optimality), (3) under variation of the parametric function to
be investigated (treatment contrasts, block contrasts, maximal systems of identifi-
able parameters), and (4) under variation of the statistical model (interaction
effects, additive effects).

Perhaps our final Theorem 7 is ‘the result which surprises most. The classical
balanced incomplete block designs (BIBDs) have always been studied with the set
of treatment contrasts being the parameters under investigation. While I was unable
to establish any distinguished optimality properties of BIBDs, for the treatment
contrasts, Theorem 7 does prove a unique optimality property of BIBDs, for a

maximal system of identifiable parameters.
Section 2 sets out with a review and some extensions of optimality characteriza-

tions developed in Pukelsheim (1980). Section 3 offers a geometric account of
universal optimality, and generalizes Kiefer’s (1975) original concept for balanced
designs and Cheng’s (1978) version for asymmetrical designs, both of which were
presented in the context of block designs only.

In Section 4 we discuss block designs with the statistical model including the in-
teraction effects of all possible treatment block combinations. In contrast, Sections
5 and 6 assume additive treatment and block effects, in Section 5 every weight wij
may be positive. The approximate theory suggests a generalization of BIBDs in the
sense that the support of feasible designs is restricted to be contained in a pre-
assigned set S of treatment block combinations; the concluding Section 6 is devoted
to such ‘incompletely supported’ block designs.

2. Uniform optimality and j,,-optimality

For convenience of reference we briefly recall those optimality characterizations
of Pukelsheim (1980) which we shall need in the sequel, including some minor
amendments. As usual, the regression function f on the design space f is an
I@-valued function with compact image f(K), 2 ’ IS the set of all design measures <
on X, and the information matrix of r is M(r)={, f(x)f(x)‘d<, a prime denoting
transposition. Further, K is a fixed k x t matrix of rank s, and a(K) is the convex
cone of all non-negative definite k x k matrices whose range contains the range of
K. We shall say that K’P is identifiable under r if M(r) lies in 91(K). The matrix
J(M(r)) =(K’M(r)-K)+ will be called the information matrix of < for K’/ll pro-
vided K’fi is identifiable under r, otherwise we set J(M(<)) = 0.

In the following statements Z7 is a subset of E such that !J_R = M(17) is a closed con-
vex subset of M(E) and K’P is identifiable under at le,ast one design measure in fl,
< is a fixed member of n under which K’fl is identifiable, M is the information
matrix of [, and C is its information matrix for K’b.
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If A4 has maximal rank in (m, then < is uniformly optimal for K’P in 17 if and
only if

K/M-AM-K I K’M-K, for all A E YJ?; (1)

and then any other design 17 ~fl with information matrix A is also uniformly op-
timal for K’fl in 17 if and only if

AM-K= K. (2)

In (1) maximality of the rank of M is convenient to work with but not necessary,
see Theorem 4(a). Next consider the information functionals jp, p E] - 03, + 11, i.e.
the generalized means of order p> - m of the positive eigenvalues of the informa-
tion matrices for K’P. The design < has Z7-maximal j,-information for K’/l if and
only if there exists a g-inverse G of A4 with

trace K’GAG’KC(K’M-K)l-PCI trace C(K’M-K)‘-P, for all A E Yl?;
(3)

and in case p c 1 then any other design q E 17 with information matrix A also has
U-maximal j,-information for K’/3 if and only if

AG’K= K. (4)

Finally we turn to j_,-, i.e. E-optimality. Define S to be the set of all t x t
matrices of the form zz’ such that z is a normalized eigenvector of K’M-K cor-
responding to ,l,,(K’M-K). The design [ has U-maximal j_ .,,-information for
K’/3 if and only if there exist a g-inverse G of M and a matrix E E conv S such that

trace K’GAG’KEI&,,(K’M-K), for all A E Vl; (5)

and then any other design q ~17 with information matrix A which also has
n-maximal j_ o3 -information for K’/3 necessarily satisfies

AG’KE= KE. (6)

These characterizations follow from Corollaries 5.2, 5.3, 8.2 and a remark after
Corollary 8.1 in Pukelsheim (1980).

There is only one choice of a g-inverse of A4 if A4 is non-singular. There is only
one choice for the matrix E in (5) and (6) provided the eigenvalue J,,(K’M-K) is
simple. If A4 has maximal rank in 9X then G may be replaced by an arbitrary g-
inverse M- of A4 throughout. In particular, (3) becomes independent of the choice
of G, and the apparent discontinuity between (3) and (5) vanishes, as follows.

Proposition 1. Let < ~17 be a design measure whose information matrix M has
maximal rank in !lJl. If < has I7-maximal j,-information for K’fl, for all
p E ] - q 0[, then < also has n-maximal j_ oD and jo-information for K/b.

Proof. By continuity in p, (3) extends to p=O. Let Ai > **a >A,>0 be the distinct
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positive eigenvalues of K’M-K, with associated pairwise orthogonal projection
matrices Et, . . . , E,. Multiply (3) by If” to obtain

trace K’ik-AM-K + i
i=2

As p tends to - 00 this tends to (5), with E = Et/trace El. 0

Obviously (6) coincides with (4) and is sufficient, besides being necessary, pro-
vided E can be chosen to be a multiple of K+K. This is possible whenever the
design r is balanced for K’P, i.e. when its information matrix for K’P equals
QK+K, for some e>O. Moreover, if the design < is balanced for K’P and has
n-maximal j,,-information for K’/?, for some po> - ~0, then < has n-maximal
j,-information for K’jl, for all p E [- OJ, + 11, see Corollary 8.3 in Pukelsheim
(1980). For a design to be simultaneously optimal with respect to all j,-criteria it
is not necessary to be balanced for K’P, see Theorems 5 and 7.

We conclude Section 2 by some general remarks on Kronecker product designs,
those designs being closely related to the results of Section 4. Suppose an informa-
tion functional j on NND(s) has two Kronecker factors jr on NND(s,) and j, on
NND(+); by definition, this means that s =s,s,, jr and j, are information func-
tionals on NND(sr) and NND(s,), respectively, and the information functionals
j, jr, j, and their polar functions j”, jf, jz satisfy j(C, @C,) = j, (C,)j,(C,) and
j”(O, @D2) = j#It)j~(DJ whenever Ci, D~ENND(.Y~), i= 1,2. Given kiXSi
matrices Ki of rank si, i = 1,2, define K = K1 OK2 and k = kt kz. Let YJI, be compact
convex subsets of NND(kJ which intersect Yf(Ki)y i= 1,2, and introduce XII as the
convex hull of all products of the form A, @A2 with Al E 9Jlm,, A2 E 9X2. Then 9JI is
a compact convex subset of NND(k) which intersects !?l(K), and Theorem 5 of
Pukelsheim (1980) permits the following generalization of a result due to Hoe1
(1965, p. 1099), cf. Krafft (1978, p. 286):

Proposition 2. If Mi E Imi has YJ?i-maximal ji-information for Ki’pi, i= 1,2, then
M,@M, has ‘$I?-maximal j-information for K’(P,@&). If Mi E ‘9J?i has maximal
rank in !lXi and is uniformly optimal for Kl’pi in 9J?i, i= 1,2, then M,@M, is
uniformly optimal for K’(/31@P2) in 92. 0

Every jp functional on NND(s) factorizes into the corresponding jp functions on
NND(s,), provided s =sls2. A special situation arises when the design space X is a
Cartesian product X1 x X2, and the regression function f on X is the Kronecker pro-
duct of two regression functions fi on Xi. Then the set of all design measures on X
is the convex hull of all products of the form <1@<2, where [i is a design measure
on Xi, and the associated sets of information matrices behave similarly. An exten-
sion to more than two Kronecker factors is immediate.
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3. Universal optimality

In this section n will be an arbitrary subset of E such that K’P is identifiable under
at least one r ~17. As before, 9JI =M(Z7) is the set of information matrices
associated with n, but YJI need neither be closed nor convex; by J(!JJ?) we denote
the corresponding set of information matrices for K’P. Kiefer (1975) introduced
universal optimality in the situation of simple block designs; without reference to
this particular setting, his Proposition 1 takes the following more general form, with
an almost instant proof.

Theorem 1 (Line projection). Let < ~17 be a design measure under which K’/3 is
identifiable, and let C be its information matrix for K’P. If < is balanced for K’P,
and if C maximizes trace D over D E J(%V), then < has Cmaximal j-information for
K’P, for ali functions j : NND(t)-+ II? such that

(a) j(D) 5 j({trace D/s}K+K), for all D E J(Y_J?), and
(b) j(bK+K) is isotone b>O.

Proof. Taking traces in C=@K+K gives Q = trace C/s. For DE J(9J?) then j(D)5
j({trace D/s}K+K)Ij({trace C/s}K+K)=j(C). 0

By g(K+K) we shall denote the class of functions j which satisfy (a) and (b); of
course, not all these functions admit an interpretation as an information functional.
But Q(K+K) does comprise all j,-criteria. This follows from j,(D)< j,(D) =
j, (D) . j,W+W =.&(.A (DWK), and j,(D) = trace D/s. If a design fulfills the
hypotheses of Theorem 1 it will be said to have II-maximal >information for K’P.
Since 3(K+K) includes also j,, again (4) describes which multiplicities are possible.

Theorem 1 also covers the block design setting in Kiefer (1975). There K’fl is a
maximal set of treatment contrasts and K+K= K,, where KU is the completely sym-
metric u x u matrix with on-diagonal entries 1 - l/u and off-diagonal entries - 1 /u.
Let P(D) be the average (u!)-’ C r;Dr,, where the summation extends over all per-
mutations 7 of (1, . . . , u), and r, is the permutation matrix determined by 7. It is
implicit in Kiefer’s proof of his Proposition 1 that P(D) = {trace D/(u - l)}K,.
Hence if j is concave and permutationally invariant then j is in the class 3(K,),
since

j(D)=(u!)-‘c j(&‘DrT)<j(P(D))=j({traceD/(u-l)}K,).

Bounds for trace D/s can be derived using the dual problem (0) of Pukelsheim
(1980). Namely, when the variable N of (0) is taken to be of the form K’+K+ /v,
with v>O, and when the set 9X of information matrices is closed and convex, then
Theorem 3 (op. cit.) yields

sup
DE J(W)

trace D/s5 y:; 11 K+f(x) 11 2/s.
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Here equality always holds if K= Ikr equality also holds in the situations of
Theorems 3(b) and 4(b); equality does not hold in Theorem 6, even when the better
bound max MEIDl trace K+MK+‘/s is used. The present argument is based on the
observation that trace D/s equals j, (II).

However, the trace function makes its appearance in Theorem 1, not as an
optimality criterion, but due to the fact that (C, D>= traceC’D is the Euclidean
matrix inner product on the space of all t x t matrices. Namely, if DE J(m) then

j,(D)=traceD/s=(D,K+K)/(K+K,K+K),

or in other words, {traceD/s}K+K is the Euclidean projection of D onto the line
spanned by K+K. Therefore, next to projecting directly into the optimal solution
and this trivially being equivalent to the original problem formulation, Theorem 1
proposes the second simplest projection method: first project onto the line spanned
by the optimal solution and then solve a l-dimensional maximization problem along
this line. The next step, then, is obvious: first project onto a plane appropriately
determined by an optimal solution and then solve a 2-dimensional maximization
problem in this plane. Theorem 2.2 of Cheng (1978, p. 1242) is of this type.

Indeed, suppose that optimality is achieved with C being of the form @+ vQ,
with p, v being scalars and P, Q being matrices. Assume that R is a mapping defined
on J(XJ?) which takes its values in the (P, Q)-plane. Cheng’s argument may be
understood so as to compare, not C and D in matrix space, but pP+ vQ and R(D)
in the (P, Q)-plane.

The following notation allows to present a general result in this spirit, separated
from the block design context in Cheng (1978). Define ‘$3(s) to be the convex cone
formed by all matrices of the form K+KAK+K, with A E PD(t). For D Ed let
1(D) be the Rs-vector of its positive eigenvalues, respecting multiplicities and
decreasingly ordered, I 1 (II) r -a. rA,(D). On ‘p(s) every orthogonally invariant
function j(D) decomposes into @(A(D)), with @ : RS, -+R being symmetric in its
arguments. Recall that the ordering in which points become smaller through averag-
ing is majorization, and that real functions which are order-reversing with respect
to majorization are called Schur-concave, see Marshall & Olkin (1979).

Theorem 2 (Plane projection). Let 4 E 17 be a design measure under which K’B is
identifiable, and let C be its information matrix for K’/3. Suppose C has two positive
eigenvalues I(> v, with multiplicities r and s-r, respectively, and let P and
Q = K’K - P be the associated projection matrices. Assume that R is a function
which maps ‘p(s) into the non-negative quadrant of the (P, Q)-plane and which
leaves C= R(C) fixed.

If C maximizes both trace R(D) and g(R(D)) over DE J(‘Bl), where the function
g is given by

g(R) = trace R - {sr/(s - r)} “*{trace R* - (trace R)*/s} I’*, (7)
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then ( has lir-maximal j-information for K;B, for all orthogonally invariant func-
tions j : (p(s)-+ IR, j(D) = @(A(D)), say, such that

(a) j(O) 5 AR(D)), for all DE J(YX),
(b) j is isotone, and
(c) @ is Schur-concave.

Proof. Fix DE J(!J_l?) and define R = R(D), then j(D)Ij(R), by (a). One has
R =P(R)P + vWQ, with p(R) = (R, P)/trace P, and v(R) = (R, Q)/trace Q. If
p(R)>p introduce a=traceC/traceR. Then a21, since C=R(C) maximizes
trace R(D). It follows that A(aR) majorizes A(C), whence (b) and (c) yield j(R)5
j(aR) 5 j(C).

Otherwise p(R) 5~. We shall show that always v(R) I v, whence (b) alone implies
j(R)Ij(C). The point is to identify the quantity g(R) geometrically. Let H=
{traceR/s}K+K be the Euclidean projection of R onto the K+K-axis. The
length of H, and the distance d between H and R are l/Hll =s-‘“trace R and
d= IIR-HI ={traceR2-(traceR)2/s}1’2. Define G to be the (non-orthogonal)
projection of R onto the K+K-axis along the direction of P. Since (P, Q) = 0, the
angle y between G-R and H-R coincides with the angle between Q and K+K, i.e.

and
tan y = { r/(s - r)} 1’2.

The distance between G and H then is (tan y)d, whence the length of G turns out
to be I( G 11 = ((HII - (tan y)d = s-‘“g(R). Since C maximizes g(R(D)), the point R
must lie above or on the line L = {C+ aP 1 a E R}, i.e. v(R) IV. Thus the proof is
complete. 0

Fig. 1. The proof of Theorem 2 is based on a geometric identification of the quantity g(R) in (7) through
lG[ = IHll - (IG-H/I =s-“‘g(R).
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Applicability of Theorem 2 obviously depends on the choice of the mapping R.
Cheng (1978) works with R(D) =,@)P+ v(D)Q so that D and R(D) have the same
projection onto the K+K-axis, the same length, and p(D) 2 v(D). Then g in (7) is
easier to handle since R simply can be replaced by D. Interpreted in terms of a maxi-
mization problem, all of Cheng’s criteria satisfy properties (b) and (c), see Marshall
& Olkin (1979, p. 64). Hence the additional argument needed to derive Cheng’s
results from our Theorem 2 is that property (a) holds for his type-l criteria whenever
r = 1, and for his type-2 criteria whenever r = s - 1. We shall not pursue this subject
here further.

4. Block designs in the interaction model

We now take up the discussion of simple block designs, and first introduce some
necessary notation. The equiangular line in lR” is 1, = (1, . . . , 1)‘. Setting J, = l,lL,
the orthodiagonal projection matrix is KU = 1, - J,,/u. The i-th Euclidean basis vec-
tor in R” is e;, with i-th entry 1 and zeroes elsewhere; similarly dj is the Jth basis
vector in lRb. A stochastic vector r, i.e. ri 2 0 and C ri = 1, is called positive if all ri
are positive; examples are G= 1,/u and &= lb/b. The diagonal matrix with the
vector r on the diagonal is denoted by d,; the notation [K,: 0] indicates block-
matrices.

The design space is X=(1 ,..., o}x{l,..., b}. An approximate block design, or
simply a design, is a probability distribution c on X; [ is taken to be a IRub-vector,
with entries <(i, j) in lexicographic order. Any design c induces a u x b weight matrix
W, with entries wij = <(i, j). Then r= Wl, and s= W’l, are the vectors of trear-
ment marginals and block marginals, respectively. A design of the form r&v is call-
ed a product design, here the measure theoretic product and the Kronecker product
of r and s coincide. In case of uniform marginals r =i; and s=G a design is
called equi-replicated and equi-blocksized, respectively. The design GQ& is the
uniform design on X. By Z, E(r, .), E(.,s), and Z(r, s) we denote the sets of all
designs, of all designs with treatment marginals r, of all designs with block
marginals s, and of all designs with both treatment marginals r and block marginals
s, respectively.

In this section the underlying model is assumed to be Kjk=&+eiik, the ub
parameters pii being interpreted as interaction effects of the i-th treatment and the
j-th block. The regression function f: X+lRvb then is given by f(i, j) =ei@dj, and
a design r has information matrix M(r) = d,. We shall only consider the system of
treatment effects (Z,@l,)‘P = (p1, . . . , P,.)‘, analogous resuls are easily derived also
for the treatment contrasts (K,@&)‘j? = (5 -x, . . . , p,. - r)‘. The treatment
effects are identifiable under < if and only if the support of r is the full design space
X. The following theorem is the approximate analogue of the exact theorems of
Gaffke & Krafft (1979, pp. 122-123), and Gaffke (1981, Theorem 2). Let r, be a
fixed positive stochastic vector in IR”.
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Theorem 3. (a) The product design r&G is the only uniformly optimal design for
(I,@~)‘~ in E(rO, .), its information matrix for (I,@G)‘p is A,.

(b) The uniform design on X is the on/y design which has Smaximal
3-information for (Z,@‘i-,)‘fi, its information matrix for (I,,@&)‘/3 is @I,, with
&J= l/u.

Proof. (a) Define K=I,@G and M=A,@Ib/b. If <Ez(rO, .) then K’M-‘A,M-‘K=
A;‘=K’M-‘K, and (1) gives U-optimality. Uniqueness follows from (2).

(b) The uniform design on X is balanced for K//3. If a competing design q has
treatment marginals r, then J(M(r,r)) I A,, by (a). Hence

j, 0 &V(q)) ~j, (A,) = 1 /u = jr 0 J(M(LOG)),

and Theorem 1 yields the assertion. 0

The proof again demonstrates that jr is a particularly insensitive optimality
criterion: evefy equi-blocksized product design is j,-optimal for the treatment
effects. In particular, (4) is not necessary for uniqueness of jr-optimality. Also
notice that essentially only uniform optimality and je-optimality remain unaffected
by the choice of (I,@G)‘B as a maximal system of treatment effects; this is a con-
sequence of Theorem 1 in Pukelsheim (1980) and the order-invariance of j, under
the general linear group, see Gaffke (1981, Theorem 1). It is straightforward to
verify that the uniform design on X also has E-maximal S-information for the full
parameter p, its information matrix for p being ~l,~, with Q = l/(&i).

While designs with an incomplete support play no role in the model with all in-
teraction effects, unrestricted vs. incomplete supports do make a difference when
the effects are additive.

5. Complete block designs in the additive model

The additive model assumes observations Y& = ai + y; + Q, with treatment
effects a= (aI, . . . , a,)‘E F?‘, and block effects y= (yr, .., , Y~)‘E II?‘. Thus the full
parameter vector for the mean is /?= [F] E R”+b, and the regression function f is
given by f(i, j) = [$I. For a design < with weight matrix IV, treatment marginals r
and block marginals s, its information matrix is

and its C-matrix is, by definition, C(r) = A, - WA: W’. In particular, a product
design r@s has weight matrix rs’, and C-matrix A, -rr’. As usual, the maximal
system of treatment contrasts to be considered is [K,, : 0]/3 = (al -T, . . . , a, -z)‘.
It is well known that [Ku : O]p is identifiable under [ if and only if C(r) has rank
u - 1, and then C(r) is the information matrix of r for [K, : O]p. All this is in accor-
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dance with the exact theory, see Raghavarao (1971, Section 4.3), or Krafft (1978,
§14).

If [K,: 0]/3 is identifiable under < then c has positive treatment marginals; the
converse is also true provided < is a product design. For a product design with
positive marginals r and s its information matrix M, a g-inverse G of M, and the
projection matrix MC are, in turn,

MG=
I,--rl: rl;

0 Ib 1=K(r), say.
(8)

Since rank M = trace K(r) = u + b - 1, any such information matrix has maximal
rank in the set M(E). Notice that the g-inverse G is symmetric, and reflexive, i.e.
GMG= G. In the remainder of this section, let roe IR” and sol lRb be fixed positive
stochastic vectors.

Theorem 4. (a) The product designs with treatment marginals r. are the only
uniformly optimal designs for [Ku : O]p in “c(r,, .), their common C-matrix is
A,-ror&

(b) The equi-replicated product designs are the only designs which have E-
maximal S-information for [K, : O]p, their common C-matrix is QK,, with Q = l/v.

Proof. (a) Define K’= [Ku : 01, and for the design roBso take M and G as in (8).
If q E E(r,, a) then K’GM(v)GK = K’d;‘K = K’GK, and (1) gives U-optimality.
Uniqueness follows from (2), since M(q)GK= K implies rank W(q) = 1, and
W(q) = r,s’.

(b) Equi-replicated product designs are balanced for K’P. If a competing design
q has treatment marginals r, then C(q) sd, - rr’, by (a). The Cauchy Inequality
yields

trace (A, - rr’) = 1 - r’r 22 1 - 1 /v,

with equality only for r =z. Hence

j, 0 C(q)c(l - l/v)/(v- 1) = l/v=j, 0 C(l,@s),

and Theorem 1 yields the assertion. 0

For block contrasts part (a) reads: The product designs with block marginals so
are the only uniformly optimal designs for [0 : Kb]/3 in L?(., so). This immediately
yields Kurotschka’s result (1971, p_ 227) that roBso is the only uniformly optimal
design for [K, : 0]/3, as well as for [0 : Kb]p, in E(ro, so). For jo-optimality the exact
analogue of part (b) is given in Krafft (1978, p. 343). Of course, for block contrasts
the designs in part (b) must be equi-blocksized. The only product design which is
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both equi-replicated and equi-blocksized is the uniform design on X. Therefore, this
design is S-optimal for [K, : O]p, as well as for [0 :KJp. Moreover, it is also
optimal for K(r)‘P, i.e. for a maximal linearly independent system of identifiable
linear forms of p. The following hierarchy complements the results of Kurotschka
(1971, pp. 227, 231).

Theorem 5. For all p E [- 03, + l] one has:
(a) rO@sO has Z(ro, so)-maximal j,-information for K(r,)‘P.
(b) rO@G has Z(rO, .)-maximal j,-information for K(r,)‘/3.
(c) I,@sO has 40, so)-maximal j,-information for K(1,)‘P.
(d) i&l, has S-maximal j,-information for K(&)‘D.

Moreover, if p # - 00, + 1, then these designs are the only designs with the stated
properties.

Proof. With M, G, and K(r) as in (8), define K=MG=K(r,). Then KIM-K= G,
and C=G+. Fix some competing information matrix

M(rl)=A=[ ,“: ;].
For p> - m optimality will follow from (3). In fact, trace G+GlpP equals
trace G-P or trace (G+)P, according as p<O or p>O. Furthermore,

so that we must evaluate trace AGlmP, i.e.

traced&l;’ -J,)l-P+traced,A~-‘. (9)

Define G,, =A;‘-J,, and fix p<O. When r=r,, then the first term in (9) is
trace G,-P - 1; GiprO = trace G;P, since r. is a nullvector of G,r and hence also of
G;P. It is now easily verified that (9) equals trace GdP for either part (a), (b), (c),
and (d). If p>O then G’-P= G(G+)P, and traceAGleP= trace (G+)P, by a similar
argument. Proposition 1 extends optimality to p = - 00, 0. Uniqueness follows from
(4), solving AC= K(r,J for W. q

The system K(r,)‘/3 does depend on the choice of the g-inverse G, see the defini-
tion in (8). Part (d) admists a stronger version in the symmetrical case o = b: the
design c@i; has E-maximal S-information for K(c)‘,& is information matrix for
K(c)‘/3 being

K” 0
@ 0 Z”’[ 1

with Q = l/o.
The uniform design on X is the unique approximate analogue of an exact balanced

block design (BBD), and of an exact balanced incomplete block design (BIBD), in
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as far as these designs aim to have “all nti’s as nearly equal as possible”, required
by Kiefer (1975, p. 333). However, a BIBD may also be understood as a design for
situations when not all treatment block combinations are feasible, or in other words,
when the support of feasible designs must satisfy certain restrictions.

6. Incomplete block designs in the additive model

With the same model assumptions as in Section 5, we now study the class Z(S)
of designs whose support is contained in a fixed subset S of X. Define Z(S; ., sO)=
Z(S)nZ(. , so), and notice that the induced set of information matrices is closed
and convex. Associate with the support set S the u x b indicator matrix N, with
entries nij = 1 if (i, j) E S, and nU =0 otherwise. Thus n = IINl, is the number of
points in S, interest concentrates on n < vb. By definition, the uniform design on S
has weight matrix m= N/n, this is the approximate analogue of a binary design in
the exact theory. The treatment contrasts [K, : O]fl are identifiable under the
uniform design on S if and only if the indicator matrix N of S is connected; this
follows from the exact theory, see Raghavarao (1971, p. 49), or Krafft (1978, p.
195).

Theorem 6. Let < be the uniform design on a set SCX.
(a) If l has positive block marginals so and S has a connected indicator matrix,

then r has .Z(S; -, so)-maximal j, -information for [K, : O]p.
(b) If < is equi-blocksized and S has a connected indicator matrix, then < has

Z(S)-maximal j, -information for [Ku : 0]/3.
(c) If < has positive block marginals so and is balanced for [K, : 01/l, then < is the

only design which has .Z(S; ., so)-maximal g-information for [K, : O]p.
(d) If < is equi-blocksized and balanced for [Ku :01/l, then < has Z(S)-maximal

S-information for [K, : O]/?, with C-matrix QK,, Q = (1 - b/n)/(o - 1).

Proof. Parts (a) and (b) will follow from (3). Define K’= [Ku : 01, M=M(<), and
C= C(r). Then trace C= 1 -b/n. As g-inverse of A4 choose

C+
G= -A-‘WC+

so AG1 +
(10)

cf. Krafft (1978, p. 200). If GEE then

4 WA=Mt7)= w, A

[ 1s
satisfies

trace K’GAGKCC=trace K,(A,- WA;'m-&'A&' W'+nA;'A,A;'R)

= 1 -n-l C Sj/S,i,
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by straightforward calculation. The last expression equals 1 -b/n both if (a) s=so,
or if (b) so=G.

Parts (c) and (d) follow from Theorem 1. In (c) uniqueness is obtained from (4),
since here AGK= K implies W(q) =iV. 0

Theorem 6 calls for a series of remarks. In parts (c) and (d) the j,-information
of < for [KU : O]j? is equal to Q = (1 - b/n)/(u- l), and thus depends on the car-
dinality of S, but neither on the particular support points, nor on the particular
block marginals, nor on p. Hence we may add to (c): no design with n support
points and positive block marginals contains more j,-information for [KU: O]/?
than <. Similarly for part (d): no design with n support points contains more j,,-
information for [K,: O]p than <. However, the set of all designs with n (or less)
support points does not induce a convex set of information matrices.

Some designs with 12 or less support points are listed in Table 1. Designs [i and
& show that positive block marginals are not necessary for optimality. In fact,
blocks with weights 0 can always be added without changing the C-matrix. The
assumption of positive block marginals simply serves to exclude this triviality. In
this sense, designs &, through r7 also apply to 3 treatments in 6 blocks. Notice that

Table 1
Designs to illustrate Theorem 6

110110
(I 1 0 1 1 0 1 C, = +K3

011011

220000
(2 2 0 2 0 0 0 C, = +K,

022000

100111
53 0 1 0 1 1 1 C, = $K3

001111

r4 C, = fK,

56 C,=+K,
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despite of their different supports the designs [, , &, &, and & all share the same
C-matrix. In particular, no uniqueness statement holds in Theorem 6(d). Design &
is an equi-replicated product design and hence better than & et al., by Theorem
4(b). On the other hand, & is better than &, whence in Theorem 6(a) and 6(c)
optimality does not extend from E(S; ., so) to E(S).

In the exact version, however, optimality in Theorem 6(a) does extend to all exact
designs of size n with positive block-marginals, see Kiefer (1958, p. 689) or Krafft
(1978, p. 338). Namely, define m to be the minimal positive weight wij of such an
exact design q. Then

trace C(q) = 1 -m2 C s;‘(wjj/m)21 1 -m2 C ST’W/??l= 1 - mb,
ij ij

with equality if and only if all wij equal either 0 or m. But q is an exact design of
size n, whence m 2 l/n, and trace C(q) I 1 -b/n = trace C(r), with equality if and
only if YZ is another uniform design on n support points. (This argument fails for
approximate designs: q = [, is not as good as &, but has minimal weight 6 <i =
l/n.) A similar extension holds for Theorem 6(c), and here q is also optimal if and
only if q is another uniform design on n support points which is balanced for
[K, : W.

The question whether for n > ub there exists some n point support S such that as
in Theorem 6(d) the uniform design on S is equi-blocksized and balanced for
[Ku : 0]/3 belongs to the combinatorial part of the theory, the answer is in the affir-
mative if and only if there exists a BIBD with n/b observations per block. A design
which is balanced for [K, : 01/l need not be equi-blocksized, see Table 1, nor equi-
replicated, see John (1964, p. 899), Tyagi (1979, p. 335). This is slightly different
with equi-blocksized uniform designs < on S: then r is balanced for [Ku : O]B if and
only if the indicator matrix N of S satisfies

N..=(v-A)Z,+LJ,, for some scalars v,& (II)

and in this case (1) < is equi-replicated, (2) v = n/u and 1= { n/(ub)} { (n - b)/(u - l)}
are positive integers, (3) n > o + b - 1, and (4) rank N= u I b. The proof runs as in
the exact theory.

As an application we now show that in the symmetrical case u =b uniqueness
holds in Theorem 6(d). For

A= A, W
[ 1W’ A,

condition (4) yields A,- b Wp=eK, and W= bnAs. When the support of W is
contained in S this entails r =K and bNA,N’= NN’. Hence W must be equi-
replicated, and in case u = b also equi-blocksized, proving W=N.

Any equi-blocksized uniform design < on n support points which is balanced for
[K, : O]p is an approximate analogue of an exact BIBD of size n, in as far as the
support must not consist of more than n points. But the dominating role that BIBDs
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play in the exact theory is not supported by Theorem 6. As a matter of fact,
<i, &, 13, and & perform identically for [K, : O]p, but only <r is a BIBD. However,
any design r as above needs more than o + b - 1 support points, and its information
matrix M has maximal rank u + b - 1. More precisely, the g-inverse G of (10)
becomes

G=: Kl -bK$

e -b&“K ” ebIb + b211;rlK I?u 1 ’ Q = (1 - b/n)/(u - l), (12)

and is symmetric and reflexive, and the projection matrix A4G equals K(L) of (8).
Thus Theorem 5 suggests that < is j,-optimal also for the maximal system
K(l,)‘P of linear forms of /I and our final theorem will prove this to be true, re-
flecting yet another and surprising aspect of the property of being ‘balanced’. The
difficulty lies in the task to handle powers of G without knowing its spectral decom-
position, here Seely’s (1971) notion and results on quadratic subspaces of symmetric
matrices are the main aid.

Theorem 7. If the uniform design < on a subset S of 3E is equi-blocksized and
balanced for [KU : 0]/3, i.e. for the treatment contrasts, then r has E(S)-maximal
j,-information for K(L)‘/3, i.e. for a maximal identifiable system, for all PE
[- co, + 11. Moreover, if p # - 03; + 1 then r is the only design with this property.

Proof. Theorem 5(d) covers the case S = X. Otherwise define w = (v - A)/n’, so that
(11) implies the relations

NN’K, = wK,, w=(ob-n)/{ubn(u- l)}, b/u=b@+b2w. (13)

Take A = M(q), with rl E g(S). For p E] - q O[ replace -p by t. Then t> 0, and (3)
turns into

trace A(eG)‘+ ’ 5 Q trace (QG)‘.

Introduce 9 as the linear space spanned by the four matrices

-K,lV 19
(14)

It is easy to see that (vi + 5)’ E 8, for all i, j= 1, . . . ,4. Hence 23 is a quadratic
subspace of symmetric matrices, and as such closed under formation of positive
powers, of Moore-Penrose inverses, and of positive powers of Moore-Penrose
inverses, see Seely (1971, pp. 711, 712).

This applies to eG = Vr + b V2 + eb V, + b2 V, E ‘23: for every t > 0 there exist scalars
a,, b,, c,, d, such that

and
(QG)’ = a, VI + b, V2 + c, V, + d[ V,
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a [+,=a,+b,bw, b,+,=a,b+b,b/v=b,+c,b+d,bw,

cl+1 =ebc,, d ,+,=b,b+c,b2+d,b/v.
(15)

The recurrence relation (15) compares coefficients in (@G)‘+’ = (@G)‘(@G). Thus
the right-hand side of (14) equals a,(1 - b/n) + c,, , + dt w(1 - b/n), and invoking
(15) and (13) some computation shows that the left-hand side takes on the same
value. This proves optimality for p E ]- m, 0[, and Proposition 1 extends optimality
to p = - oo,O. If p E 10, l] then a similar argument establishes trace A@G)(G+)J’cc
Q trace (G+)P, i.e. (3). Uniqueness follows from (4), since the two bottom blocks in
AG = K(L) imply W(q) =R. q
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