
                                      

On the Construction of Approximate Multi-Factor
Designs from Given Marginals Using the Iterative
Proportional Fitting Procedure

By F. Pukelsheim 1 and D. M. Titterington2

Summary: For multifactor designs based on linear models, the information matrix generally
depends on a certain set of marginal tables created from the design itself. This note considers the
problems of whether a set of marginal tables is consistent, in that a design exists that can yield
them, and of calculating such a design when at least one does exist. The results are obtained by
direct analogy with the problem of maximum likelihood estimation in loglinear models for categor-
ical data.

1 Introduction

Suppose an experiment involves three factors at levels i =  1 . . . .  ,a ,  j =  1 . . . .  ,b ,  k =
1 . . . . .  c, respectively. An approximate design is defined by a probability measure, ~, on
the design space

X = { I  . . . . .  a} x { i  . . . . .  b} x { I  . . . . .  c},

so that ~(i, j, k) denotes the proportion of all observations to be taken at the combina-
tion (i, L k) of factor levels. A particular manifestation of this is the class of multiway
block designs in which one factor is singled out to be a set of varieties or treatments,
and the remaining factors are blocking factors.

Any design ~ is to be thought of as a vector of probabilities of dimension abc  with
elements ~(i, ], k) in lexicographic order.
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We shall consider only linear models, with the assumptions that errors are un-
correlated, of  zero means and of constant variances. Thus an observation generated
from a combination (i, ], k) of factor levels will have mean

f(i, ], k)'~, (1)

where f(i, L k) is a design vector, fl is the vector of parameters in the linear model, and
a prime denotes transposition. A design ~ therefore has information matrix

M(~) = ~ f(i, j, k)f(i, L k)'~(i, j, k). (2)
i,j,k

Here we do not discuss optimality questions for the particular case of multiway block
designs, but take up the following rather more basic questions about the information
matrix M(~). Suppose we are given a matrix M that is alleged to be an information
matrix as defined in (2) above.

(i) Is there indeed a design ~ such that M(~) = M?

(ii) Is it possible to compute a compatible design ~?

Note that we are not going so far as to demand from (ii) a design that is necessarily
optimal in any familiar sense. We may of course be lucky, but any design we come up
with might at least be used as the starting point for some algorithm for computing an
optimal design.

Section 2 of this note is devoted to the special model with additive main effects.
The crucial link is forged with the topic of loglinear models for contingency tables and
the Iterative Proportional Fitting Procedure for obtaining maximum likelihood esti-
mates of the parameters therein. Section 3 looks beyond the main effects model, and
indicates the straightforward extension to an arbitrary number of factors. Questions
(i) and (ii) have been touched upon in the context of multiway block designs in
Pukelsheim (1986).

2 Main Ef fec t s  Mode l

Suppose the model contains only main effects and denote these effects by
(a i, i = 1, . . . ,  a}, (7i ,]  = 1 . . . . .  b}, {5 k, k = 1 . . . . .  c}. This model is described by (1)
provided
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~3= , and f(i,j,k)=
e' 1

where i ~ = (C~ 1 . . . . .  C~a)' and e7 is the a-dimensional vector with unity in the i-th position
and zeroes elsewhere, etc. Since f(i, L k)'/3 = a i + 7/+ 8k this is the model with addi-
tive main effects as desired.

A design ~ then has information matrix

M(~) =

I Ao I¢ol 14102

W01 A1 ['1/12

w~2 w~2 zx2

(3)

in which the W's are matrices of two-dimensional marginals of ~, and the A's are
diagonal matrices whose diagonal elements are a set of one-dimensional marginals of
~. For instance, the (i, j)-th element of Wol is obtained from ~(i, L k) by summing over
k, and the i-th diagonal element of A o is obtained by then summing over] as well.

Another way of describing the "weight matrices" Wpq is obtained with the help of
a further notation. Let a dot denote summation. Then, for example,

(w01)i/= ~(i, L "), for all i, j, (4)

(Wo2)~7~ = ~(i, ", k), for all i, k, (5)

(wl:)/k -- ~(-,J, k), for all j, k, (6)

and

(Ao) u = ~(i, ", ") etc.

The numbering of the factors is motivated by the context of multiway block designs
where factor 0 comprises varieties or treatments and plays a distinctive role, while the
blocking factors 1 and 2 give rise to nuisance parameters.

The grand information matrix M(~) in (3) is determined by the two-dimensional
marginals of ~. These are sufficient because they clearly imply the one-dimensional
marginals.
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Question (i) of Section 1 becomes the following. Given matrices { Wpq }, is there
a design ~ for which the matrices {Wpq} are indeed the two-dimensional marginals?

The main problem is to discover whether the marginals { Wpq } are mutually con-
sistent. Kellerer (1964) derives a necessary and sufficient condition for consistency
that applies to any of the problems considered in this note. However, the condition
appears to be very difficult to apply in practice and here we present a more practical,
if algorithmic and inexact, check. To describe the check we must introduce the proce-
dure by which we intend to answer question (ii) of Section 1 : if there is at least one
design with which the two-dimensional marginals are compatible, can we compute one
of them?

The proposed procedure for finding a design, if one exists, is as follows.
First choose a design measure ~o with two mild provisos, that ~o is of a factorized

form consonant with (12) below and that if (Wpq)i] > 0, say, then the appropriate
margin of ~o is also positive. Clearly these conditions are achieved by taking ~o(i, ], k)
= 1/(abc).

Then we compute

h( i , / ,  k) = ~o(i,/, k)to(i ' ], .~ (Wol)i/, for all i, ], k, (7)

i~(i,L k)
~2(i, ], k )  - - -  (Wo2)/k, for all i, ], k, (8)h ( i ,  . ,k)

~3(i,j, k) = t2(i'J' k.______~) (W12)17,, for all i,j, k. (9)t2(',/, k)

For any case for which (Wpq)q = 0, the corresponding elements in the next ~n are to
be automatically set to zero.

Note that ~1 satisfies (4), ~2 satisfies (5), and ~3 satisfies (6).
Equations (7), (8) and (9) represent one cycle of the algorithm. It  continues by

returning to (7) with t3 in place of to and recycling until "convergence" occurs.
We may state the following result.

Theorem 1:

(a) There is at least one design ~ with which I¢01 , I4/o2 and t¢12 are compatible if and
only if the above algorithm converges.
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(b) If the algorithm converges then its limit ~ is a design compatible with W01, W02
and WI2. Furthermore, the elements of ~ are of a special form, namely

{(i,/, k) = ~,i 8ik~j~, (10)

for all i, j, k, and for certain ~, 8, ~.

(c) The design ~ given in (10) is the only design of form (10) compatible with Wol,
Wo2 and W12.

(d) The design ~ given in (10) is the design ~, of the factorized form indicated by (10),
which maximizes

.~. (W01)//log ~(i, ], ") + Z (I4/o2)/k log ~(i, ", k) + X (W12)jg log ~(',/', k), (11)
1,1 i ,k j , k

over p, a, r provided that Wol , Wo2, W12 are consistent. []

It should be emphasized that there may be many designs other than (10) that are
compatible with 14Ol, It]o2 and Wl2. It should also be acknowledged that the design
given by (10) may not be an exact design, thus limiting the immediate practical
importance of the result.

From the point of view of question (i) of Section 1 the important part of the
theorem is part (a), in that convergence of the algorithm deafly leads to a feasible
design.

We are relieved of the need to prove Theorem 1 ourselves, provided we notice
the parallel between the structure of our problem and that of maximum likelihood
estimation of parameters in loglinear models for contingency tables. Suppose, in a
three-way contingency table, ~(i, L k) is the probability of obtaining an observation
in row i, column ], and layer k. Suppose also that a loglinear model is specified in
which

log ~(i, j, k) = Pij + oR + r/k, (12)

for all i , j  and k. Note that, for instance, Pij in (12) corresponds to log Pij in (10).
Suppose also that, under a multinomial model, I4/ol , Wo2 and $¢12 represent the row/
column, row/layer and column/layer marginal sets of relative frequencies. Then (11)
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is the loglikelihood, (4), (5) and (6) are the likelihood equations, and the following
theorem can be compiled.

Theorem 2:

(a) The algorithm converges if and only if Woa, Wo2 and WI2 are consistent.

(b) If it does converge, the algorithm converges to the unique set of probabilities of
the form (12) that satisfy (4), (5) and (6).

(c) The limit ~ is the unique distribution ~ of the form (12) that maximizes the log-
likelihood. []

Proofs of the more general versions of these statements, which we shall state in Section
3, appear in Darroch and Ratcliff (1972) and, in part, in Darroch (1962), as remarked
by Bishop et al. (1975, p. 101); see also Csiszfir (1975).

The algorithm described earlier is called the lterative Proportional Fitting Proce-
dure (IPFP) or iterative scaling, in the context of loglinear models. It is also called the
raking method when used as a device for constructing a full table of frequencies from
sets of marginal tables in the context of incomplete data from sample surveys: see, for
instance, Oh and Scheuren (1983). Section 3.5 of Bishop et al. (1975) provides a
detailed discussion of the practice and properties of the IPFP.

Theorem 1 clearly follows from Theorem 2.
In numerical examples we used total variation distance to measure the deviations

between the current and the last round, i.e. between ~n and ~n-3, ~n+l and ~n-2, and
~n+2 and ~n-1. Within each round we computed the sum of the total variation dis-
tances between ~n and ~n+l, ~n+ 1 and ~n+2, and ~n+2 and ~n. Consider for instance
the two sets of marginals from Krafft (1978, pp. 186-188) both of which are exact
for 20 observations on 3 treatments in 4 x 5 blocks with uniform marginals W12. In
the case

1 [ 4  0 1 0
Wol = 2-0 / 0 3 3 3

1 2 1 2

1(21002)
, Wo2 = ~ 1 2 3 3 0

1 1 1 1 2

it is known that no common joint distribution ~ exists for Wol, Wo2, and/4/12. Indeed
it becomes evident after a first dozen of rounds or so that the IPFP gets into a cycle
with one round as period, while within each round the sum of the total variation
distances remains constant 0.39.
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For the second example, with

1(2133) 1(2302!)
= 1 2 2 1 , Wo2 = ~ 0 1 3 1 ,

W°l 2-0 2 2 0 1 2 0 1 1

the algorithm converges after a couple of dozen of rounds to a design ~ which is
distinct from the design D of  Krafft (1978, p. 186).

As discussed in Section 3.4 of  Bishop et al. (1975) there are some models for
which parameter estimates of  the required form can be written down explicitly with-
out the need for recourse to the IPFP, although in these cases the algorithm generally
reaches the solution after one cycle anyway. For the three-way table one such model
is of  the form

log ~(i, L k) = p / /+  ~Tm,

for which the associated sufficient statistics are W01 and Wo2 and the maximum likeli-
hood estimates of  ~ are

~(i, j, k) = (Wol)o(Wo2),~/(ZXo)u. (13)

In the design context,  this is a special case of the conditional block-block product
designs considered by Pukelsheim (1986). That (13) represents a valid design is clear.
Each component  of  ~ is nonnegative, and summation over/', k and the i gives a total of
unity. We note that the conditional block-block product designs often have good
properties but  may not be optimal. Design BAD of Pukelsheim (1983) is a nonoptimal
design of  this type.

3 M o r e  G e n e r a l  M o d e l s

First we briefly indicate the extension to more than three factors, which follows the
same pattern as for multiway block designs (Pukelsheim 1983, 1986). Suppose an
experiment involves m + 1 factors and that factor k can appear at levels]k = 1 . . . .  , b k,
k = 0, 1 . . . . .  m. A design ~ then is a probability measure on the design space

X = (1 . . . .  ,b  o} x . . . x  {1 . . . . .  bin).
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In the model with only additive main effects the information matrix of ~ turns out to
be

M(~)  =

/% I%1 ... l%m

I¢~1 A1 ... Wlm

l¢/0m Wlm .. .  A m

Hence the grand information matrix M(~) again is solely determined by the two-dimen-
sional marginals { Wpq } of ~. Application of the IPFP to this case is straightforward.

If  the underlying model contains terms other than main effects, then the informa-
tion matrix contains third-order or higher-order marginals. The following example
illustrates inclusion of three-dimensional marginals.

Suppose the model includes all first-order interactions of factor 0 with factors
1 . . . .  , m. Thus a single observation at levelsjo . . . . .  Jm has expected value

c~(°~) + c~(o2) + + c~(.o. ~ )
]011 1012  " ' "  l O l r a "

I f  we define a (°1) etc. by lexicographic order, this corresponds to

/3' = [a(ol ) ' ,  . . . .  c~(Om)'],

f(Jo . . . . .  /m)' = [ (e~'oO ® e~l )', ..., (eboO ® e~-mm }'],

in which ® denotes the Kronecker product.
Then M(~) contains all three-dimensional marginals { l#opq, 0 < p < q}, as well as

certain lower-order marginals which can be derived from ( Wop q ).
It is now clear that the set of marginals which determines the grand information

matrix M(~) depends on which effects enter into the regression of the expected value.
The list of examples could be extended along this line.

In general, M(~) can be defined by a minimal system of marginals {Wr, T E  Y}.
In the contingency-table literature, these marginals represent the minimal sufficient
statistics associated with the type of loglinear model under investigation. All members
of T are subsets of the subscript set (0, 1 . . . . .  m).

The general IPFP amounts to solving the equations

~7" = WT, (14)
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for all T E T. The algorithm can be defined concisely as follows. Let the members of
Y be denoted by T 1 . . . . .  Tt, choose to suitably (see later) and let n denote the number
of cycles that have been carried out so far. Then

t . t  + ~q) = ~.t + • -  i q )  wr,  O'rO/ fl'.l+,- ~ fJrO. (15)

for all ] --- (]o, -.., ira), for s = 1 . . . . .  t and for n = 0,1 . . . . .  The notations ~Ts and its
indicate appropriate marginals from t and from].

In terms of  loglinear models, provided the WT are consistent and provided to is of
the factorized form

t

~= I I P s , (16)
S = I

then the IPFP converges to the maximum likelihood estimate of  t which is of  the form
(16). In fact, a general version of  Theorem 2 holds and from it we can deduce the
following result, which is largely a generalization of  Theorem 1.

Theorem 3:

(a) There is at least one design ~ with which {WT: TE T} are compatible if and only
if the IPFP based on (15) converges.

(b) If the algorithm converges, then the resulting design g is the unique design satisfy-
ing (14) that is of  the form (16).

(c) The design g in (b), if it exists, is the unique design t of  the form (16) that maxi-
mizes

]~ ~ WT lOg ~r,
T~T

where the inner summation is over all values of  subscripts within each T.
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