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1. Introduction

The abundance of  optimality criteria which are available in experimental design
theory calls for a qualitative comparison of  how various criteria compare, for
various parameter sets. Galil and Kiefer (1977), Pukelsheim (1980, Section 6), and
Studden (1980) are some of  the papers which present results along these lines. That
work is complemented here by a somewhat detailed report o f  what happens in
quadratic regression on the interval [ - 1 ,  + 1]. This model lends itself to a par-
ticularly simple study because the set o f  all designs may be reduced through sym-
metry to a complete class which is one-dimensional, depending on a single weight
c~ e [0, 1] only.

The optimality criteria to be mainly considered are the p-means, with - oo _<p_< 1,
of  the eigenvalues o f  the information matrices for the parameters o f  interest. When
p varies between - oo and 0 this p-mean optimality coincides with Kiefer's (1975,
p. 279) ~p-Optimality, and covers the classical criteria such as D-, A-, and E-
optimality. The case p = 1 corresponds to trace-optimality which is instrumental in
Kiefer's (1975) concept o f  universal optimality. Indeed, the domain of  variation of
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p extends to also include the full interval from 0 to 1, cf. Pukelsheim (1980, p. 342).
It is there that in quadratic regression the optimal weight function a(p) and the op-
timal information value o(p) grow fastest, and have points of  inflection.

2. Quadrat ic  regression m o d e l

Let the observation Y depend on the design variable x through

Y(x)=flo+fllx+fl2x2+ae, x e [ -  1;1],

where e is the random error with mean 0 and variance 1 and tr > 0 is the unknown
scaling factor, while the quadratic expression forms the mean regression. Repeated
observations are assumed to be independent, as usual. By abuse of language we call
flo, ill, ,62 the constant, linear, quadratic parameter, respectively. Interest is in fin-
ding optimal designs for any given subset of these parameters.

A design ~ is a discrete probability distribution on the experimental region
[ -  1, + 1] and determines allocation and proportion of the observations. A par-
ticular role is played by the symmetric three-point designs

~a( - 1) = ~a( + 1) = ½a, ~a(0) = 1 - a ,  a ~ [0, 11.

It is not hard to show that for every design ~ we can find a design ~a which is at
least as good as ~, see Kiefer (1959, Lemma 3.5) or Giovagnoli, Pukelsheim and
Wynn (1987, Section 4). Therefore it suffices to determine the optimal member
within the one-dimensional class of symmetric three-point designs, parametrized by
a. This reduction greatly facilitates the problem.

3.  Opt imal i ty  results for  means  of  i n f o r m a t i o n  e igenvalues

Let the parameter system of interest be represented in the form

with an appropriate 3 x s matrix K. The p-mean criterion, with - ~ _<p_< I, max-
imizes information for the parameters of interest through the function jp(J(Ma)),
where jp(J) is the generalized mean of order p of the eigenvalues of J, and J(M)
is the information matrix for the parameters of interest (i.e. J(M) = (K 'M-  K) -  1 in
case of identifiability and J(M) = 0 otherwise), and M a is the moment matrix of the
design Ca as given in Table 2. The optimal weight will be denoted by a(p), and the
value

o(p)=jp(J(Ma(p)))= sup jp(J(Ma) )
ae[O;l]



                                                                215

then gives the optimal information for the parameters of  interest. Our results per-
tain to the behaviour of  the optimal weight a(p) and the optimal information o(p),
as functions of  the criterion parameter p.

Only for three subsets o f  the parameters will the optimal designs depend on the
criterion parameter p: the constant-linear-quadratic, the linear-quadratic, and the
constant-quadratic parameters.

Figure 1 shows that the optimal weight functions a look almost constant between
- oo and - 6, increase moderately towards 0, and show a steeper ascent in the inter-
val between 0 and 1. For the linear-quadratic parameters the optimal weight func-
tion a is seen to be convex. For the constant-linear-quadratic parameters the
function a has a point of  inflection at u(0 .450)=0.872,  and for the constant-
quadratic parameters a point of  inflection is a (0 .608)=  0.822. The constant-linear-
quadratic case ends in an almost constant piece for 0.8_<p___ 1. Forp  = 1 no optimal
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Fig. 1. Graphs o f  optimal weight a and optimal information o for three parameter subsets in quadratic
regression, as functions o f  the criterion parameter p e [ -  ~ ,  + 1] when the objective is to maximize the
p-mean o f  the information eigenvalues. Dots indicate exact results. For p = 1 no optimal weights exist
whence a(1) are limiting values.
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design exists for either of  the three cases, due to lack of identifiability. The D-
criterion is particularly pleasing since the weight a =  $ is optimal for both the
constant-linear-quadratic, and the linear-quadratic parameters.

The optimal information values o in Figure 1 show a similar behaviour. However,
when p tends to - oo convergence is much slower. At  the other end of  the scale the
three o-curves fail to end in a common value for p = 1. Again there are points of
inflection, in the constant-linear-quadratic case the coordinates are o(0.710) = 0.836,
in the constant-quadratic case 0(0 .828)=0.867.

Table 1 presents numerical values of  a(p) and o(p) for selected values o f p .  Exact
values were obtained for p =  - o o ,  - 1 ,  0, 0.5, and 1, as well as for the remaining
subsets o f  the constant-linear parameters and the three single parameters.

We briefly comment on the derivation of  these results. With fixed parameter
p e [ - o% + 1] the problem reads:

Table I
Numerical and exact values of optimal weight a and optimal information o for all parameter subsets in
quadratic regression. Only for the first three parameter subsets these values depend on the criterion
parameter p ~ [ - o o ,  - 1] when the objective is to maximize the p-mean o f  the information eigenvalues.
For p = 1 braces indicate limiting cases where no optimal design exists

mean constant-linear-quadratic linear-quadratic constant-quadratic

p a(p) o(p) a(p) o(p) a(p) o(p)
- o o  0 . 4 0 0 = 2 / 5  0.200= 1/5 0.500= 1/2 0.250= 1/4 0 .400=2 /5  0.200= 1/5
- 10 0.400 0.223 0.500 0.268 0.400 0.214
- 5  0.407 0.248 0.507 0.285 0.400 0.230
- 3 0.425 0.278 0.525 0.304 0.400 0.252
- 2.5 0.435 0.292 0.534 0.311 0.401 0.263
- 2 0.449 0.310 0.547 0.319 0.402 0.279
- 1.5 0.468 0.336 0.563 0.330 0.406 0.304
- l 0 .500= 1/2 0.375 = 3/8 0 .586=2-x /20 .343=6-4x /2  0.414=x/2-1 0.343 = 6 - 4 v ~
- 0 . 5  0.555 0.434 0.618 0.361 0.436 0.405

0 0 .667=2 /3  0 .529=41~/3  0 .667=2/3  0 . 3 8 5 = 2 / 1 ~  0.500= 1/2 0.500= 1/2
0.1 0.702 0.556 0.680 0.391 0.524 0.524
0.2 0.743 0.586 0.694 0.398 0.556 0.551
0.3 0.790 0.621 0.710 0.405 0.598 0.581
0.4 0.844 0.663 0.729 0.413 0.652 0.614
0.5 0 . 9 0 0 = 9 / 1 0  0 .711=32/45 0 .750=3 /4  0 .422=27 /64  0.724 0.655

=(5 +x/5)/lO = (3 + x/5)/8
0.6 0.951 0.768 0.775 0.432 0.814 0.704
0.7 0.986 0.830 0.806 0.44~ 0.912 0.766
0.8 0.999 0.893 0.845 0.458 0.984 0.843
0.9 1.000 0,951 0.898 0.475 1.000 0.926
1.0 { 1.000= l} 1.000= 1 {1.000= 1} 0.500= 1/2 {1.000= 1} 1.000= l

constant-linear quadratic linear constant

1/2 1/2 1/2 1/4 1 1 0 1
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Table 2
Information matrices and their eigenvalues of  symmetric three-point designs Ca, a e(0,1), for four
parameter systems. The last row gives the expression whose zero determines the optimal weight ct(p)

constant-linear-quadratic linear-quadratic constant-quadratic constant-linear

Iformation I!0  l
a =Ma

matrix 0

Eigenvalues ,l, a, A

a(p) is zero of  ~. 'A  p -  1 +a p-  l + A ' A  p-  1

(oo,,°o,) ('o:) ('o oo)
a, a ( 1 - a )  2, A a, 1 - a

1 +(1 - 2 a ) ( l - a )  p-I  ) t ' A P - I + A ' A  p-1 a - ½

Maximize fp (a )= jp (J (Ma) ) ,  subject to a ~ [0, II.

Omitting the discussion of  the boundary  weights a = 0  and a =  1 we assume
a e (0, 1). Set

2 = ½ ( l + a ) - w ,  A=½(l+a)+w, w=(¼(1-a)2+a2) 1/2.

These quantities satisfy the relation 0 < 2 < a < 1 < A,  and appear as eigenvalues of
the information matrices for subsets which contain more than one parameter,  as
displayed in Table 2. All eigenvalues 2, a ,  A of the moment matrices Ma are in-
creasing for a t ( 0 ,  0.4), whence an optimal weight a must satisfy a>__0.4.

It is now straightforward to compute,  as a function of  a ,  the derivatives 2 '  and
A ' .  For - c o  < p <  1 the function fp is strictly concave. Hence the optimal weight
a(p) is the unique zero of the derivativef~, or equivalently, of the expression given
in the last row of Table 2. Newton-Raphson or bisection iteration was used for
numerical computation.  The optimal information value then is found from the for-
mula o(p) =fp(a (p ) ) .  The graph of each curve is based on 500 points. More details
are given in Preitschopf and Pukelsheim (1985).

4. Other criteria based on generalized means

Alternatively we may maximize the mean of the diagonal elements of the informa-
tion matrix for the parameters of  interest. In case of  the constant-linear-quadratic,
and the constant-quadratic parameters with information matrices as given in Table
2 the diagonal elements are maximized when a = 1. It is pleasing that the optimal
weight a = 1 does not depend on the criterion parameter p,  it is distracting that the
parameters o f  interest fail to be identifiable.

As an alternative to maximizing information we may wish to minimize dispersion
by using a convex mean of order r, i.e. 1 _<r_< oo. However, r-mean minimization
of the eigenvalues of the dispersion matrices (J(Ma))-l coincides with p-mean
maximization, p = - r ,  of  the eigenvalues of the information matrices J(Ma).
Hence we are led back to a subset of  solutions as presented in Section 3.
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Finally we mention minimization of the diagonal elements of the dispersion
matrices for the parameters of interest when the criterion is a convex r-mean. For
instance, the case r=  oo, i.e. minimizing the maximal diagonal element, is listed as
criterion (d) in Kiefer (1960, p. 383). For the constant-linear-quadratic parameters
the optimal weight is found to be a = ½ and does not depend on the criterion
parameter r. Now let u(p)  be the optimal weight for the p-mean of the information
eigenvalues for the linear-quadratic parameters as discussed in Section 3. For this
parameter subset the weight minimizing r-means of the diagonal elements of the
dispersion matrix (J(Ma))- 1 then is found to be a ( - r ) ,  while for the constant-
quadratic parameters it turns out to be 1 - a ( -  r) with the optimal weight function
a(p) of the linear-quadratic case. Notice that in the latter two cases the monotonici-
ty behaviour of the optimal weight function is reversed.

In summary this discussion would seem to suggest that the Kiefer criteria, of max-
imizing concave means of information eigenvalues, are those which rightly carry the
greatest interest.
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