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ABSTRACT

The matrix partial orderings considered are: (1) the star ordering and (2) the
minus ordering or rank subtractivity, both in the set of m X n complex matrices, and
(3) the L&vner ordering, in the set of m X m matrices. The problems discussed are:
(1) inheriting certain properties under a given ordering, (2) preserving an ordering
under some matrix multiplications, (3) relationships between an ordering among
direct (or Kronecker) and Hadamard products and the corresponding orderings
between the factors involved, (4) orderings between generalized inverses of a given
matrix, and (5) preserving or reversing a given ordering under generalized inversions.
Several generalizations of results known in the literature and a number of new results
are derived.
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1. INTRODUCTION AND PRELIMINARIES

Let c?n,rl stand for the set of m X n complex matrices. Given A E Cm, n,
the symbols A*, %‘(A), r(A), and a(A) will denote the conjugate transpose,
range, rank, and set of all nonzero singular values, respectively, of A. Further,
A{ l} and A(2) will denote the sets of all inner and outer inverses of A,
specified as

and

A(1) = {XEQ:_:AXA=A} (1.1)

A(2) = {X EC,,,:XAX =X}, (1.2)

while A(3) and A(4) will denote the sets of all right and left symmetrizers of
A (cf. Baksalary and Kala [S]), specified as

and

A(3) = {X EC,,,:AX = (AX)*} (1.3)

A(4) = {X E C,,,:XA = (XA)*}. (1.4)

Various intersections of the sets from among (1.1) through (1.4), denoted
according to the convention A{i,,...,ik} =A{i,}n **. nA(ik}, constitute
the well-known classes of generalized inverses of A; cf. Ben-Israel and
Greville [7], Rao and Mitra [29], Styan [33]. In particular, A{ 1,2} is the class
of all reflexive generalized inverses of A, and the unique member of
A{ 1,2,3,4} is the Moore-Penrose inverse of A, henceforth denoted by A+.

The star partial ordering A < B, the minus partial ordering or rank
5

subtractivity A 2 B, the space preordering A < B, and the singular-values

preordering A : B in Cm, nr are defined as follows:

A;B = A*A = A*B and AA* = BA*, (1.5)

A:B a A-A=A-B and AA’=BA= forsome A-,A=EA{~},

(1.6)

A:B ti .%‘(A) c g(B) and %‘(A*) c .4?(B*), (1.7)

A:B = a(A) c a(B). (1.6)
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The star ordering (1.5) is due to Drazin [ll, 121. Matrices A and B
satisfying (1.5) were, however, also considered earlier by Hestenes [21,
Lemma 3.41. It was pointed out by Drazin [12] that

A:B w A+A=B+A and AAi=AB+, (1.9)

as well as

AZB a A+A=A+B and AA’=BA+. (1.10)

These characterizations are easily seen to be equivalent to

A:B = AA+B=A=BA+A 0 B+AA+ = A+ = A+AB; (1.11)

cf. Hartwig [14].
Hartwig [15] proved that (1.6), with both A- and A= replaced by one

and the same reflexive generalized inverse of A, defines a partial ordering
relation, and called it “plus ordering.” Hartwig and Luh [16] and Hartwig
and Styan [18] noted that the reflexiveness and identity of generalized
inverses in the two equalities in (1.6) are immaterial, and adopted the term
“minus ordering.” Moreover, Hartwig [15] showed that (1.6) is equivalent to

A:B e r(B - A) = r(B) - r(A). (1.12)

In view of Marsaglia and Styan [24, p. 2881 and Cline and Funderhc [lo, p.
1951, (1.12) may alternatively be expressed as

A:B ti BB-A=AB’B=AB’A=A forsomeB_,B’,B’ EB{~}.

(1.13)

It is clear that each of the relations A f: B and A J B, defined in (1.7) and
(1.8), is reflexive and transitive but not antisymmetric, and therefore (cf.
Marshall and Olkin [25, p. 131) constitutes a preordering of C,,,. It is well
known that

A:B o BB-A=A=AB’B forsome B-,B”EB{~}. (1.14)
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Also, it may be pointed out that the space preordering A J B entails the
invariance of AI-A with respect to the-choice of BP E-B{ l}, and that the
reverse implication holds whenever both A and B are nonzero; cf. Rao and
Mitra [29, pp. 21 and 431. See also Hartwig [13] and a recent discussion on
invariance properties by Carlson [8].

From (1.6) (l.lO), (1.13), and (1.14) it is seen that

A:B * AZB * A:B. (1.15)

Several characterizations of the star ordering through supplementing rank
subtractivity by one or more suitable extra conditions were recently given by
Hartwig and Styan [18]; see also Baksalary [2] for an extension of a part of
their Theorem 2. Further, from (1.13) and (1.14) it follows that

AZB w AiB and A{l}nB{l} #0,

while Mitra [27, Theorem 2.1) showed that

A:B CJ B(1) &A(l).

Combining this result with Theorem 1 of Sambamurty [31] yields

AZB = B{1,2} cA{l}.

On the other hand, from Theorem 2 of Hartwig and Styan [18], it is clear that

A;B j A:B. (1.16)

The first part of (1.15) and the implication (1.16) motivated Baksalary and
Hauke [4] to investigate the partial ordering defined as the conjunction of the

minus partial ordering A 2 B and the singular-values preordering A : B.

The Lijwner partial ordering A 2 B in C m, m may be defined by

A:B e B-A=KK* forsome K. (1.17)

The ordering (1.17), due to Lawner [23, p. 1771, is usually considered when
both the matrices A and B are Hermitian or even both Hermitian nonnega-
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tive definite. This is, however, not necessary and, as in Hartwig and Styan
[19], will not, in general, be assumed in the present paper.

There is no known relationship between A 2 B and any of A < B, A 2 B,

A < B, and A : B when A and B may vary over the entire C,,,. However,
Hartwig and Styan [19, Theorems 2.1 and 2.21 proved that

A=A*, O:B, and AZB j A:B (1.18)

and

A=A’, B = B2, and A 2 B * A&

Also, it is known (cf. Baksalary and Hauke [3, p. 351) that

O;A:B = Af:B. (1.19)

The implications (1.18) and (1.19) may be strengthened to the equivalence

OiA:B a A=A*, O:B, As:B, and AB-A:A (1.20)

for some (and hence ah) B- E B{ l}, which follows by applying Theorem 1 of
Albert [l] to the matrices

see also Hartwig [14, Lemma 11. Comparing (1.20) with

A:B = AiBandAB-A=A forsome(andhenceall) B-EB{~}

(1.21)

reveals an essential difference between the minus and L6wner partial order-
ings. Finally, for solutions to the problem of characterizing A 2 B via

supplementing A 2 B by a suitable extra condition, when 0 2 A and 0 2 B,
the reader is referred to Corollary l(d) of Hartwig and Styan [18].
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The purpose of this paper is to examine various properties of the star,
minus, and Lijwner partial orderings. Section 2 is concerned with the
problem of inheriting certain characteristics under these orderings, with the
problem of preserving a given ordering under some matrix multiplications,
and also with the problem of establishing relationships between orderings of
direct (or Kronecker) and Hadamard products and analogous orderings of the
factors involved in them. Sections 3 and 4 deal with generalized inverses of
matrices: the former in the context of orderings between generalized inverses
of a given matrix, and the latter in the context of preserving or reversing a
given ordering under generalized inversions. Several generalizations of the
results known in the literature and a number of new results are derived.

2. GENERAL PROPERTIES

In the first part of this section, we collect together various results
concerned with inheriting some properties of matrices under the partial
orderings and preorderings considered, in the sense that if a matrix has a
certain property, then all its predecessors have it as well.

THEOREM 2.1. For A,BeQ:,,_, the following inheritance properties
hold:

(a) B + = B* and A ; B * A’ = A*,

(1)) BB* 2 I,,, und A : B =S AA* 2 I,,.

l+r A, B E C ,,,, ,,, , the following inheritance properties hold:

(c) B” = 0 and A ; B * A2 = 0,
0

(d) B = B* = B”, A = A*, and A -c B - A = A3,
(e) B = B” and A 2 B 3 A = A2,

(f) 0 2 B, A = A*, and A 2 B j 0 2 A,

(g) B=BB*,AzB, andA:B*A=AA*,

(h) B*B+ = B+B* and A 2 B - A*A+ = A+A*.

The results (a) and (b), concerning partial isometries and contractions,
respectively, were given by Baksalary and Hauke [4, Theorem 11. In view of
(1.16), they strengthen the corresponding results in which the singular-values

preordering A ; B is replaced by the star ordering A 2 B, as in Theorem 3 of
Drazin [12] and Lemma 2 of Hartwig and Spindelbock [17]. On the other
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hand, the matrices

‘=( 2 _“z)> B=(; _:) (2.1)

show that A : B cannot be replaced by A 2 B or A 2 B.
The result (c), stating that nilpotency is inherited under the space

preordering, follows by noting that if B2 = 0 and A f: B, then (1.14) yields

In view of (1.15), this result strengthens Proposition l(ii) of Hartwig [15], in

which A x B is replaced by A 2 B.
Since a Hermitian matrix is tripotent if and only if it is a partial isometry,

the property (d) is an immediate consequence of (a); cf. Corollary 1 in

Baksalary and Hauke [4]. Again, the matrices in (2.1) show that A : B cannot

be replaced by A 2 B or A 2 B. Moreover, the matrices

(2.2)

show that for non-Hermitian matrices, tripotency need not be inherited even

when A : B is strengthened to A 2 B. [Notice, parenthetically, that the
matrices in (2.2) also show that if B is Hermitian, normal, or EP, then the
star-predecessors of B need not have the same property.]

The property (e) is a particular case of Proposition 1.8(a) of Chipman and
Rao [9]. In view of (1.15), it clearly implies that idempotency is inherited
under the star ordering; cf. Drazin [12, Theorem 31 and Hartwig and
Spindelbijck [ 17, Lemma 21. See also Theorem 3.1 in Hartwig and Styan [ 191
and a version of (e) in Hartwig and Styan [18, p. 1591.

The result (f) is an immediate consequence of (1.21). In view of (1.18)

the right-hand side of (f) may actually be extended to 0 2 A 2 B.
The result (g), concerning orthogonal projectors, was given by Baksalary

and Hauke [4, Theorem 11. In view of (1.15) and (1.16), it strengthens the
corresponding result in which the partial ordering defined by A 2 B and

A : B is replaced by the star ordering A 2 B, as in Theorem 3 of Drazin [ 121
and Lemma 2 of Hartwig and Spindelbijck [17]. On the other hand, taking



64                          

any non-Hermitian idempotent A together with B being the identity matrix

shows that the condition A : B on the left-hand side of (g) cannot be
dropped. See also Theorem 3.2 in Hartwig and Styan [19].

Finally, the result (h) was pointed out by Drazin [ll, p. 581. Its proof is
obtained by noting that, in view of (1. ll),

A*A+ = A+AB*B+AA+ = A+AB+ B*AA+ = A+A*.

Since the property A*A+ = A+A* is equivalent to AA*A’A = AA+A*A, it
follows that it is trivially fuIfiIled for all partial isometries and normal matrices
and also when r(A) = 1.

It is obvious that the star, minus, and Lijwner partial orderings, as well as
the space and singular-values preorderings, are ah preserved under conjugate
transposition of the matrices involved. Further, as pointed out in Baksalary
and Hauke [4, p. 211, the following properties can easily be verified:

? s

THEOREM 2.2. Let A, B E Cm, ,,, andlet < standfor < or 2 0T <.
Then

A:B *
B*A : B*B and AB* : BB*,

?
B+A < BfB and AB+ : BB+.

(2.3)
\

Similar properties do not hold for the Liiwner partial ordering and
singular-values preordering. As an example we may take

-; and B =

In view of (1.5), it is clear that the first part of (2.3), with i replaced by

< , implies the result given originally by Drazin [ll, Proposition 7.21.

COROLLARY 2.1. Let A, B E C *, “. Then

A:B j A*A < B*B and AA* 2 BB*. (2.4)
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In view of (1.8), another consequence of Theorem 2.2 is that

A,;B a A+A 2 B+B and AA+ 2 BB+. (2.5)

This was established by Drazin [ll, Corollary 7.41 by combining (2.4) with
the properties

A*A ; B*B a A+A<B+B

and

AA* : BB* * AA+ 2 BB+,

given in his Proposition 7.3. Since the relations of the star ordering, minus
ordering, LGwner ordering, and space preordering are actually all identical in
the set of orthogonal projectors (cf. Theorem 5.8 in Hartwig and Styan [19]),
the result (2.5) may be strengthened to the form revealed in Corollary 2.2
below. On the other hand, (2.4) cannot be modified to the statement

A 2 B = A*A 2 B*B or AA* 2 BB* or to the statement AZ B =

A*A 2 B*B or AA* 2 BB*, a counterexample being the matrices in (2.1).

COROLLARY 2.2. Let A, B E Q: “,, “. Then

A:B * A+A 2 B+B and AA+ 2 BB+.

It is obvious that the space preordering is preserved under multiplication
of the matrices involved by any (possibly different) nonzero scalars. The
singular-values preordering and the Lowner ordering are much more sensitive
to such manipulations, although the use of different nonzero scalars is still
possible. The star ordering and minus ordering, however, are extremely
sensitive, as shown in the theorem below, which follows directly from (1.11)
and (1.13).

THEOREM 2.3. Let A,B E C m,n, andleta,bEC. ZfA#O and A<B

or A 2 B, then neither a A 2 bB rwr a A 2 bB can hold except for the trivial
ca.seswherea=Oma=b.
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The last part of this section is concerned with two special products of
matrices. First, it is shown (in Theorem 2.4) that if A, B E C,,, and CD E

C> are star-ordered, minus-ordered, or space-preordered, then so are the
co!r&onding direct products, also referred to in the literature as Kronecker
products or sometimes (cf. [20]) as Zehfuss products. It is also shown that the
reverse implications for the star and minus orderings require certain minor
modifications.

THEOREM 2.4. Let A, B E C m, n and C, D E C p, Q be all nonzero. Then:

(a) A8C~BeDoA~sBandsC~DforsomesZ0,
(b) A8C~B~DoA~sBafidsC~Dforsomes#O,

(c) A@CCBBDDAABaandCJD.

Proof. On account of (1.5), the ordering A Q C 2 B 8 D is equivalent to

A*A@C*C=A*B@C*D and AA*@CC*=BA*@DC*. (2.6)

Lemma1in[5]assertsthat,foranynonzeroK1,K2EQ=,,,andL,,L,ECp,,,
the equality K,OL, = K,@L, holds if and only if K, = sK, and sL, = L,
for some s # 0. Consequently, (2.6) is equivalent to

A*A = s,A*B, siC*C = C*D, AA* = s,BA*, sscc* = DC*.

(2.7)

Observing that ss in (2.7) must be identical with si concludes the proof of
(a). The statements (b) and (c) follow similarly in view of (1.13) (1.14) and
thefactthatB_@D-E(BOD){l}foranyB- ~B{l}andD- ED(~). H

Combining Theorems 2.3 and 2.4 leads to the following:

COROLLARY 2.3. Let A, B E C ,,,, ,,, and kt i stand for either < or 2 .

A@A: B@B = A:B or A: -B.

Since a(K8 L) consists of all possible products of the nonzero singular
values of K with those of L, it is clear that, for any A,B E C m.n and
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A:BandC:D * A&B@D,

but not the other way around.
Considering the L&vner ordering between Hadamard products of matri-

ces (cf. Styan [32]), J h o nson [22, p. 5901 established a result which is
generalized here to the following form:

THEOREM 2.5. Let A,BEC *,+, let C,DEC,,,, and let A with C, A
with D, or B with C be Hennitian nonnegatioe de$nite. Then

z~rooj’. If 0 2 A and 0 2 D, then A 2 B and C : D imply

&A@(D-C)+(B-A)@D=B@D-A@C,

as desired. Similarly, if 0 2 B and 0 2 C, then

o;Be(D-C)+(B-A)OC=BOD-ABC.

that

(2.8)

Since 0 2 C and C 2 D entail 0 2 D, the case where 0 2 A and 0 2 C is
covered by (2.8). n

The assumption in Theorem 2.5, which actually means that at least three
of the matrices involved are Hermitian nonnegative definite, is essential. The
quadruplets
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and

A, = C,, B,=D,, C, = A,, Da=B, (2.11)

constitute appropriate examples.
Since the operation of taking principal submatrices is isotonic with

respect to the I.&vner ordering and since the Hadamard product, K * L, of
K,L~Crn,rn is just a principal submatrix of the corresponding direct prod-
uct, Theorem 2.5 leads to Corollary 2.4 below, which is comparable with
Theorem 17 of Johnson [22].

COROLLARY 2.4. Let A,B,C,D EC,,,, and let A with C, A with D, or
B with C be Hennitian nonnegative definite. Then

AkBandCiD =S A*C:B*D. (2.12)

The matrices in (2.9), (2.10), and (2.11) can again be utilized to show that
the assumption in Corollary 2.4 is essential.

In view of the above and Theorem 2.4, we may ask whether an analogue
to (2.12) holds under the star ordering or minus ordering. The answer is in
both cases negative, as can be seen by taking

0
0

This example also shows that the operation of taking principal submatrices is
not isotonic with respect to the star ordering or the minus ordering.

3. ORDERINGS AMONG GENERALIZED INVERSES OF A
GIVEN MATRIX

Theorem 2 in Drazin [12] asserts that A+ is the least element in the set
A{ 1,3,4} and the greatest element in the set A{2,3,4} with respect to the
star ordering, that is

H<A+:G foreveryGEA {1,3,4} andeveryHEA{2,3,4}. (3.1)

The part A + 2 G is an immediate consequence of Corollary 2.6 in Drazin
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[II], stating that

A:B - A+BA+=A+, A+B=(A+B)*, BA+=(BA+)*,

while the part H < A+ follows by the dual characterization

A:B a AB+A = A, AB+ = (AB+ )*, B+A = (B+A)*;

cf. Hartwig and Styan [18, Theorem 2(c)]. In the first part of this section, a
number of new relationships among star-ordered inner and outer inverses of a
given A EC,,, are established. In particular, it is shown that A{ 1,3,4} and
A{2,3,4} are actually the sets of all star-successors and all star-predecessors,
respectively, of A+.

THEOREM~.~. LetAEC,,,.Then, fori=3or4,

G,EA{l,i}, G,zG * GEA{I}. (3.2)

Proof. If i = 3, then A = G,*A*A, cf. (1.1) and (1.3), and hence

AGA = AGG,*A*A = AG,G,*A*A = AG,A = A.

For i = 4, the result follows similarly using the equality A = AA*G,*; cf. (1.1)
and (1.4). W

Notice that the implication (3.2) is no longer true when the condition
G, E A{ I, i } is weakened to the form G, E A{ l}. A counterexample is the
triplet

A=(:, ;), G,,=(z 21, G=(: ;)> (3.3)

with to = u,, = o0 = W, = 1 and t = w = 0, u = v = 2. Moreover, G need not
be an inner inverse of A either in the case where the star ordering on the
left-hand side of (3.2) is reversed, a counterexample being (3.3) with to = w,
= I, u0 = v, = 0 and t = u = v = 0, w = 1. However, if the reversed ordering
holds and G is known to be an inner inverse of A, then G has necessarily the
same additional property as G,.
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THEOREM 3.2. Let A E Q: m, “. Then, for i = 3 or 4,

GEA{~}, G,EA{l,i}, G:G, * GEA{l,i}. (3.4)

Proof. If i = 3, then

A(G - G,)(G - Ga)*A* = A(G,,G,* - GG*)A* = AG, - AGG*A*. (3.5)

But

AG, = AGAG, = AGG,*A* = AGG*A*, (3.6)

and combining (3.5) with (3.6) yields AG = AG,. If i = 4, then similar
arguments lead to the equality GA = G, A. W

If the star ordering on the left-hand side of (3.4) is reversed, then G need
not have the additional property of G,. A counterexample for i = 3 is (3.3)
with to= uo= 1, ~a= w,=O and t = u = w = 1, U= -1. However, the
situation changes when G, has the two additional properties simultaneously.

THEOREM 3.3. Let A E Cm, *. Then

G,~A{1,3,4}, G,:G ==. G~4{1,3,4}.

Proof Theorem 3.1 implies that G E A( 1). Moreover,

AC = AG,AG = AA*G,*G = AA*G$Ga = AG,

and, similarly, GA = G,A. W

Combining Theorem 3.3 with the latter part of (3.1) yields the following:

COROLLARY 3.1. Let A E C,,,. Then

A{1,2,3} = (G&,,,:A+ <G),

that is,

A+<G = G E A{ 1,3,4}.
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In view of (1.15), an obvious consequence of (3.1) is that A+ is the least
element of A{ 1,3,4} also with respect to the minus ordering. However, a
characterization similar to that in Corollary 3.1 is not valid in this case.
Actually, none of Theorems 3.1, 3.2, and 3.3 remains true when the star
ordering involved is replaced by the corresponding minus ordering. Coun-
terexamples are obtained from (3.3) taking t,, = 1, ua = u,, = q, = 0 and
t = 2, u = u = w = 1 in the first and third cases, and to = wa = 1, u0 = q, = 0
and t = u = 1, u = w = 0 in the second case (i = 3).

A similar series of results will now be given for outer inverses of A. The
first may be formulated using the minus ordering.

THEOREM 3.4. Let A E Cm, ,,. Then

H,EA{~}, H:H, =, HEA

Proof. In view of (1.13) it follows that, for any Hi E Ho{ l},

HAH = HH, H,AH,H, H = HH, H = H. 8

THEOREM 3.5. Let A E Cm, “. Then, for i = 3 or 4,

HEA( H,EA{2,i}, H,:H - HEA(2,i).

Proof. If i = 3, then on account of (1.11) and (l.lO), it follows that

AH=AH,H;H=H,*A*H;H=H,+H=H,fH,. W

THEOREM 3.6. Let A E Cm. n. Then

H,~A{2,3,4}, H;H, * H~A{2,3,4}.

Proof. Theorem 3.4 implies that H E A(2). Moreover, on account of
Wll),

AH=AH,H+H=(H+HAH,)*=H+H

and, similarly, HA = HH+.
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Combining Theorem 3.6 with the first part of (3.1) yields the dual of
Corollary 3.1:

COROLLARY 3.2. Let A E C,,,,. Then

A{2,3,4} = (HEC_:H 2 A+},

that is,

H:A+ CJ HE A{2,3,4}.

The matrices

with y = z = 0, constitute an example that Theorem 3.5 is no longer true
when the star ordering involved is replaced by the corresponding minus
ordering. Setting y = z = 1 in (3.7) shows that the same conclusion may be
made about Theorem 3.6.

The second part of this section refers to Theorems 3 and 4 of Wu [37],
which are restated in Theorem 3.7 below. Henceforth, A{ 1, > } and A(2, > }
will denote the sets of all Hermitian nonnegative definite inner and outer
inverses, respectively, of a Hermitian nonnegative definite A E Cm m.

THEOREM 3.7. Let A E C,,, be Hermitian nonnegative definite, and
let r(A) = p. Then, for any fixed Gy E A{ 1, >, } of rank r and any p < q < r
< s, there exist Gz, Gt E A{ 1, > } of ranks q and s, respectively, such that

and for any fixed Hy E A(2, > } o rank r and any s < r < q < p there existf
Ht,Ht E A(2, a} of ranks q and s, respectively, such that

(3.9)

Precise inspection of the arguments used by Wu [37, pp. 53-541 in
establishing the results quoted in Theorem 3.7 shows that he actually proved
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stronger relations than (3.8) and (3.9), namely Gi 2 Gz 2 Gy and H: 2 Hz
< H”g, respectively; cf. (1.18). It appears that similar relations can be
established for inner and outer inverses of any A E C m, ,,.

THEOREM 3.8. Let A E C m,n and let r(A) = p. Then fm any fixed
G,.=A{l} of rank r and any p<q<r<s there exist G,,G,EA{~} of
ranks q and s, respectively, such that

G, 2 G, 2 G,, (3.10)

and for any fixed H, E A(2) o rank r and any s < r < q < p there existf
H,,H, E A(2) of ranks q and s, respectively, such that

H,:H,zH,. (3.11)

Proof. If q = r = s, which is necessarily the case when p = min( m, n),
then the only solution to (3.10) is G, = G, = G,. Now, let min(m, n) < p < q
< r < s, and let P E Q= m,m and Q E C n,n be nonsingular and such that
PAQ = Jpr where J, denotes the matrix, of size clear from the context, with
I,, in the northwest comer and zeros elsewhere. Consequently, G, admits the
representation

(3.12)

with some fixed KEG,,,_,, LeC,_,,,, and M,EQ:,_~,~_~ such that
r@‘f,-~)=r-P. Let SEcn_-p,n--p and TEC,_~,~_~ be nonsingular
and such that

S(M, - LK)T = JI_-p.

Then it can easily be verified that G, and G, of the form (3.12) but with M,
replaced by

M, = LK+S-‘J,_,T-’ and M, = LK+S-‘J,+,T-‘,

respectively, satisfy the conditions r(G,) = q, r(G,) = s, and (3.10) thus
establishing the first part of the theorem.
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To prove the second part, let

H, = V,A,v,*, (3.13)

with u, E Q=,,,, v, E c,,,, and positive definite diagonal A, E C I, r, be a
singular-value decomposition of H,. Then since H, E A(2), it follows that

U,*AV, = A;? (3.14)

Let the matrices U, and V, comprise the first s columns of U, and V,,
respectively, and let A, be the s X s northwest submatrix of A,. From (3.14),
it is seen that U,*AV,* = Ai i, and thus H, = V,A,U,* is an outer inverse of A
with rank s. Moreover,

r(H, - H,) = s - r = r(H,) - r(H,). (3.15)

To complete the proof of (3.11) let WE C,,,_, and Z EC,,,_, be of ranks
m - r and n - r, respectively, and such that

W*AV,=O and U,*AZ=O. (3.16)

From (3.14) and (3.16) it follows that .%‘(U,)n 9(W) = (0) and .@(V,)n
9(Z) = {0}, and hence both (U,: W) and (V,: Z) are nonsingular. Conse-
quently, r(W*AZ) = p - r, and thus there exist S E C m_-r, 9_, and T E

Q= I n_-r 9_~ such that

S*W*AZT = I,_,. (3.17)

Using (3.16) and (3.17), it can easily be verified that

H, = V,A,U,* + ZTS*W*

is an outer inverse of A such that r(H,) = 9 and

r(H, - H,) = r(ZTS*W*) = 9 - r = r(H4) - r(H,),

which concludes the proof. n

It is interesting to remark that three of the four results in Theorem 3.8 do
not hold if the minus orderings involved are replaced by the corresponding
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star orderings. For example, if

then there does not exist G E A{ l} with rank 1 such that G 2 G, and there

does not exist G E A{ l} with rank 2 such that G, < G. Further, if

then there does not exist H E A(2) with rank 1 such that Hi 2 H. However,
an outer inverse of
found.

THEOREM 3.9.
H, E A(2) of rank

such that H, 2 H,.

A preceding a given outer inverse of A can always be

Let AEC,,, and let r(A) = p. Then for any fixed
r and any s < r d p, there exists H, E A(2) of rank s

Proof. Let H, be decomposed as in (3.13) and let H, be specified as in
(3.15). Then, HTH, =U,AtUs* = HTH, and H,H: =V,A”,v,* = H,H:, as
desired. W

4. PRESERVING OR REVERSING MATRIX ORDERINGS UNDER
GENERALIZED INVERSIONS

Drazin [12, Corollary 11 pointed out that

A:B = A+:B+, (4.1)

which means that the Moore-Penrose inverse is isotonic (cf. Marshall and
Olkin [25, p. 131) with respect to the star ordering. Combining ( 4.1) with our
Corollaries 3.1 and 3.2 shows that

A;B =. H, 2 A+ 2 B+ 2 G, forevery H*E A{2,3,4}

andevery G,~B{1,3,4}. (4.2)

A part of (4.2) may be used to generalize (4.1).
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THEOREM 4.1. Let A,B E C m,n. Then the following statements are
equivalent:

(a) A 2 B,

(b) A+ 2 G, for every G, E B{l,3,4},

(c) A s: B and A+ 2 G, for some G, E B{1,3,4}.

Proof. The part (a) * (b) is inherent in (4.2). The condition (b) implies,

in particular, that A+ < B+. Then (1.15) entails A’ J B+, which is clearly

equivalent to A ; B. If (c) holds, then from (1.14) and (1.11) it follows that
AG,B = A = BG,A and

A+AG, = A+ = G,AA+. (4.3)

Consequently, postmultiplying the first and premultiplying the second equal-
ity in (4.3) by B yields the two equalities in (1.10). n

It is interesting to remark that the Moore-Penrose inverse is not, in
general, isotonic with respect to the minus ordering. A counterexample is
given by

A=(: ;), B=(; ;).

The problem of characterizing the cases in which the isotonicity property
holds was considered by Hartwig and Styan [18, Theorem 31. They showed
that if A 2 B, then AC 2 B+ if and only if A+ BA+ = A+, and also pointed

out that even if the orderings A 2 B and Ai 2 Bt hold simultaneously, then

A 2 B need not hold.
On the other hand, there is no nontrivial case in which the Moore-Penrose

inverse is antitonic with respect to the star ordering or minus ordering. This
is a direct consequence of the following more general statement:

THEOREM 4.2. Let A, B E C *, “, and let H, E A(2) and G, E B(1).

Then the orderings A 2 B and G, 2 H, cannot hold simultaneously except
for the trivial case where A = B and H, = G,.

Proof. If A 2 B and G, 2 H,, then (1.15) implies that r(A) < r(B) and
r(G,) < r(H,). But, in view of (1.1) and (1.2), we have r(HA) < r(A) and
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r(B) < r(G,), and hence r(A) = r(B) and r(HA) = r(Gn). Consequently, (1.12)
yields A = B and H, = G,. n

Clearly, in view of (LlS), Theorem 4.2 also holds for the star ordering.
Contrary to the above, however, the Moore-Penrose inverse proves to be
antitonic with respect to the Owner ordering, although within the set of
Hermitian nonnegative definite matrices of equal ranks only. Generalizing
the well-known result (cf. Roy and Shah [30, p. 140]), that if Hermitian

nonnegative definite A, B E d= m m
L

are both nonsingular, then A < B is equiva-

lent to B-’ 2 A-‘, Mill&en and Akdeniz [26], Harhvig [14], and Werner [36]
contributed to establishing the following:

THEOREM 4.3. Let A,B E Q= m,m be Hermitian nonnegative definite.
Then any two of the conditions

(a) A 2 B,
@) r(A) = r(B),
(c) B+ 2 A+,

imply the third condition.

For a quick proof of Theorem 4.3 see Styan [34, Theorem 1.21.
From (1.19) it is clear that the condition (b) in Theorem 4.3 may be

replaced by W(A) = 9?(B); cf. Hartwig [14, Theorem 11. Also notice that the
restriction to the case of Hermitian nonnegative definite matrices is essential,
as may be seen taking

A=(; ;), B=(: ;).

Theorem 4.3 can be generalized by considering wider classes of the
generalized inverses involved. Henceforth, A{ 1,2, H} will denote the set of all
Hermitian reflexive generalized inverses of a Hermitian nonnegative definite
AEQ=nl,?n* Observe that all matrices in A{ 1,2, H} are Hermitian nonnegative
definite (cf. Wu [37, Theorem 11) and also that A+ E A{ 1,2,H}.

THEOREM 4.4. Let A,B E C m,m be Hermitian nonnegative definite.
Then, for any G*E A(L2,H) and GB E B{L2,H},

A:B and G,::G, e A:B and G,iG,.
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Proof Since A E G,{ l}, it follows from (1.20) that the proof of the a
part reduces to establishing that

G,AG, 2 G,. (4.4

But (4.4) is equivalent to

G,(A - B)G, 2 0,

which is a straightforward consequence of A 2 B and G, = Gz. The reverse
implication follows similarly. n

A somewhat different approach to the problem of reversing the ordering

A 2 B results in the following:

THEOREM 4.5. Z&t A,B E C m,m be Hennitian nonnegative definite. Zf

A:B, then for any G,EA{~,~,H} and G,EB{L~,H} the following
statements are equivalent:

(a) G, 2 GA,

o>) G, : G,,
Cc) WG,) = WG,)>
(d) AG, = BG,.

Proof. The result that if A $ B then (a) a (d) is due to Styan and
Pukelsheim [35]; for a quick proof see Styan [34, Theorem 1.11. That
(a) *(b) follows by (1.19). The part (b)*(c) is a consequence of the
equalities r(G,) = r(A) and r(Gn) = r(B) and the inequality r(A) Q r(B). Fur-
ther, since A E G,{ l}, the condition (c) implies that G, = G,AG,. Premulti-
plying this equality by B and using BG,A = A yields (d). W

It is clear that the condition (c) in Theorem 4.5 implies r(A) = r(B).
Contrary to the case when G, = A+ and G, = B+ (cf. Theorem 4.3), this
rank equality is not sufficient for the ordering

G,kG, (4.5)

to hold for any Hermitian reflexive generalized inverses of A and B. A
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counterexample is obtained by taking

A=,,=,=(; ;), &=(; ;).

A simple consequence of Theorem 4.5 is the result originally given in
Theorem 7 of Wu [37].

THEOREM 4.6. Let A,B E C m,m be Hennitian nonnegative definite. Zf

r(A) = r(B) and A 2 B, then fix any fixed G, E A{ 1,2, H} there exists a
G, E B{1,2,H}, and fo7 any fixed GB= B{1,2,H} there exists a GA=

A{1,2,H}, such that G, 2 G,.

Proof. In view of (1.20) the assumptions r(A) = r(B) and A 2 B imply

9(A) = S(B) and AB+A 2 A. Given G, E A{ 1,2}, let G, = G,AB+AG,*,
and notice that BG,B = BB+ B = B, r(Gn) = r(AB+A) = r(B), and

G, - G, = G,(A - AB+A)G,* ; 0,

as desired. The proof of the second statement follows similarly.

Theorem 4.5 obviously implies that there are no G, E A{ 1,2,H} and
G, E B{ 1,2,H} satisfying (4.4) when Hermitian nonnegative definite A,B E
4: m,m are such that r(A) c r(B). However, the ordering (4.4) may hold when
the generalized inverses involved need not be reflexive. This was shown by
Werner [36, Theorem 21 and, in a much stronger form, by Wu [37, Theorem
51. The first part of Wu’s result is restated below as Theorem 4.7 with a new,
shorter proof.

THEOREM 4.7. Let A, B E C m,m besuchthat OiA:B,andleta,bbe
positive integers such that r(B) d b < a d m. Then for any fixed G, E
B{ 1, 2 } of rank b there exists a G, E A{ 1, >, } of rank a such that

G,:G,
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Proof. In view of (1.20), the assumption 0 2 A 2 B implies that AG,B

= A and AG,A 2 A. Consequently, the matrix

G=Gn+GaBA+(A-AG,A)A+BGn

satisfies the conditions G, 2 G, r(G) = r(G,) = b, and G E A{ l}. This actu-
ally concludes the proof, for Theorem 3.7 assures the existence of G, such

that r(G,) = a and G 2 G,, which in turn entails G, 2 G,. n

An immediate consequence of Theorem 4.7 and the fact that the LGwner
ordering of Hermitian nonnegative definite matrices entails the correspond-

ing space preordering [cf. (1.19) and (1.20)] is that if 0 2 A 2 B, then for any
Hermitian nonnegative definite C E C m,m and for any (A + C)- E
(A+C){l} and (B+C)- ~(B+c){l} we have

A;(B+C)-A, 2 A;(A+C)-A, and C:(B+C)-C, 2 C:(A+C) -C,,

where A,AT = A and C,C: = C. Consequently,

trace[(B+C)-A] < trace[(A+C)-A]

and

trace[(B+C)-C] < trace[(A+C)-C]. (4.6)

The inequality (4.6) may be applied to establish a generalization of a result in
Pate1 and Toda [28, Inequality V].

COROLLARY 4.1. Let A,B E C,,, be such that 0 2 A 2 B. Then, for
any Hermitian nonnegative definite C E C,,, and any (A + C>- E
(A+C){l} and (B+C)- l (B+C){l},

trace[(A+C)-A] < trace[(B+C)-B].
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Proof It is clear that 0 2 A+ C 2 B + C. Hence, r(A+C) < r(B+C)
[cf. (1.19)] and using this inequality along with (4.5) yields

trace[(A+C)-A] = trace[(A+C)-(A+C -C)]

= r(A+C) - trace[(A+C)-C]

< r(B+C) - trace[(B+C)-C]

=trace[(B+C)-(B+C-C)]

= trace[(B+C)-B],

as desired. n

Hartwig [14, Theorem l] proved that if Hermitian nonnegative definite
L

A,BEQ=,,, are ordered as A < B, then their Moore-Penrose inverses cannot

be ordered as A+ 2 B+ unless A 2 B, which in view of (1.9) is equivalent to
the equality AB+ = AA+. The following theorem generalizes this result to
Hermitian reflexive generalized inverses.

THEOREM 4.8. Let A, B E Cm, m be such that 0 2 A k B, and let G, E
A{ 1,2, H} and G, E B( 1,2, H}. Then the fiZZowing statements are equiva-
lent:

(4 GA 2 G,,
(b) AG, = AG,,
(c) G, : G,.

Proof. In view of (1.20), it follows that

0 2 A - AG,A = A(G, - G,)A.

Combining this with (a) yields the equality A(G, - G,)A = 0, and hence (b).
Since (b) a(c) and (c) *(a) follow directly from (1.6) and (1.18), respec-
tively, the proof is complete. n
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The condition A 2 B (cf. Hartwig [14]) for Hermitian nonnegative defi-

nite A,B E C,,, to satisfy simultaneously A 2 B and A+ 2 B’ may also be
expressed as the equality BA+ = AA+; cf. (1.10). Its counterpart BG, = AG,,

however, proves to be insufficient for A 2 B to hold along with G, 2 Ga
when G, and G, are any Hermitian reflexive generalized inverses. The

reason is that the preordering G, f: G, is then not assured as seen by the
following example:

Theorem 4.8 solves the problem of isotonicity of Hermitian reflexive
generalized inverses with respect to the Lawner and minus partial orderings.
When considering the same problem in the context of the star ordering, the
first observation is that (4.1) fails to be true if the Moore-Penrose inverses At
andB+ arereplacedthereinbyanyG,~A{1,2,H}andanyG,~B{1,2,H},
respectively. An example is obtained by taking

in which case A 2 B while G, is not a predecessor of Ga even under the
Lijwner ordering. A general solution is given in the following:

THEOREM 4.9. Let Hermitian nonnegative definite A, B E Cm, m be such

that A G B, and let G, E A{l,2,H} and Ga E B{l,2,H}. Then GA 2 GB if
and only if G, 2 G, and GAGB = G BGA.

Proof. The necessity is obvious in view of (1.18) (1.15), and (1.5).

Conversely, according to Theorem 4.8, G, 2 G, implies that AG, = AG,,
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and then

G,G, = G,AG,G, = G,AG,G, = G,AG; = G;,

as desired.

The commuting condition in Theorem 4.9 may be deleted when G, = A+.

In view of Theorem 4.8, A+ 2 G, implies that AG, = AA+. Premultiplying
this equality by (A’)2 yields AfG, = (A’)2 = G,,A+. This establishes the
following:

COROLLARY 4.2. Let Hemnitian nonnegative definite A,B E Cm, m be

such that A 2 B, and let G, E B{ 1,2,H}. Then A+ < G, if and only if

A+ 2 G,.

This concludes our results on some properties of matrix partial orderings.
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