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1 Knowledge in economics

In March 2000 the Members of the European Council set a new and very ambitious goal,

which states to become by 2010 ”the most competitive and dynamic knowledge-based

economy in the world, capable of sustainable growth with more and better jobs and

greater social cohesion”. Throughout the 20th century, the question, what knowledge

is or what it could be, and disputes about a concise definition of the term knowledge

and its economic importance has been engaged several economists. Nowadays, there

is consensus, that knowledge plays an important role not only in economics but also

in politic debates, such as propagated by OECD and EU. The so called ”knowledge

society” is one crucial topic on the research agenda of the ”socio-economic sciences

and humanities (SSH)” programme which is embedded into the ”Seventh Framework

Programme (FP7)”. The aim of SSH is to advance the understanding of the socio-

economic challenges facing Europe in the near future. Besides, growth, employment,

social cohesion, education, migration and sustainability, the major aim of FP7 is to

maintain a leadership in the global knowledge economy. Hence, knowledge can be

recognised as one of the competitive advantages in a globalised economy.

Although the ”knowledge based society” is a hot topic from a politician point of

view, the idea, that knowledge should be treated as a key determinant for economic

development, is not new nor it is a new introduced fact. All areas of economic de-

velopment are based on knowledge. But since the industrial revolution the degree of

knowledge and information has become so great that knowledge itself, as an input fac-

tor of production for instance, exhibits a strong influence on economic development.

Hence, the increasing knowledge intensity in the globalised economy needs to focus on

the determinants of the ”knowledge based society”. Two major determinants on which

the ”knowledge based society” relies are the creation and the diffusion of knowledge,

besides the use of knowledge. The development of new information and communica-

tion technologies has favoured particularly the knowledge diffusion but also enforces

indirectly knowledge creation. As laid out in the FP 6 the ”knowledge based society”

is not only focused on national but also on regional level. Regions as ”knowledge labo-

ratories” should ensure long run economic development and networks between regions

should promote knowledge diffusion.

From an economic point of view, the research field of the economic analogon of the

1



1 Knowledge in economics

”knowledge based society”, the so called ”knowledge based economy”, is rather new

and gives several revenues for research. In particular, the role of network effects for

knowledge diffusion, the role of knowledge in the production process and the question

which effect exhibit territorial structures such as spatial proximity of regional know-

ledge laboratories on regional growth are predominant topics on the research agenda

and define the motivation for this work.

This chapter provides not only a short overview of specific theoretical and empirical

knowledge creation and diffusion topics mentioned in early economic related literature

but also focus on more recent strands of the relevant literature. The aim of this chapter

is not only to recapitulate research results but also to highlight economic intuition of the

models which have been used in this thesis. Finally, the last section of this chapter deals

with concretion of the research fields based on the topics laid out in this chapter and

the derivation of research questions which will be discussed in the following chapters.

1.1 Basic considerations

From an economic growth point of view, knowledge is not only treated as a pure in-

put factor in production process, but also as the result of a production process itself.

Hence, sources of new knowledge are commonly associated with learning-by-doing, ac-

cumulation of human capital, R&D or patent activity and via spillovers generated by

universities1. From empirical analysis, two (Kaldor and Mirrlees, 1962) stylized facts

are of importance with respect to knowledge: first, the average product of labour is

decreasing over time and second, labour productivity varies over regions. The last

stylized fact can be explained with (Arrow, 1962). He proposes, that knowledge gener-

ation itself is often assumed to be path depended: a historically given knowledge stock

determines the creation of new knowledge. In this way, historic endowment of knowl-

edge can be used to predict future’s knowledge stock. In consequence of that and with

respect to regions, lurching effects are excluded and everlasting regional divergence can

be observed. Therefore, knowledge has an explicit time dimension. But from (Arrow,

1962) an another important character of knowledge can be derived: knowledge is space

depended, or has a spatial dimension as already mentioned by (Hayek, 1945).

Another important feature of knowledge is its context dependence. (Polany, 1967)

has pointed out that knowledge has an implicit and explicit context. Implicit knowledge

cannot be captured instantaneously, over time and space and it must be transmitted by

personal contact, e. g. via face-to-face communication, because it is often embodied.

1Refer to (Audretsch and Feldman, 1996) and (Audretsch, 1998).

2



1 Knowledge in economics

Explicit knowledge, on contrast can be easily articulated, transferred and saved and is

often disembodied.

Closely linked with knowledge creation is knowledge diffusion which was implicitly

addressed before. With respect to the dimension of knowledge we have to distinguish

between context, time and spatial knowledge diffusion. Practically and theoretically,

knowledge diffusion is hardly to measure, because ”[k]nowledge flows are invisible;

they leave no paper trail by which they may be measured and tracked[...]”, as stated

by (Krugman, 1991). The diffusion process itself can be imagined as an epidemic or

as a hierarchical phenomenon. The first assumes that from a given source knowledge

diffusion spreads uniformly over space, the latter instead interprets knowledge diffusion

as depended from agglomeration phenomena: Knowledge first flows from the source to

agglomerated areas and then with a certain delay to peripheral economic areas.

To sum up, knowledge creation and knowledge diffusion are not only context or

problem based dependent, but further have a time and a spatial dimension.

1.2 Knowledge diffusion, knowledge transfer and

network effects

Economists and sociologists both seek better understanding, of why some knowledge

disperses widely whereas other knowledge does not exhibit this kind of pattern. As

mentioned above, one reason could be that knowledge itself should be treated as hetero-

geneous. For instance, if absorptive capacity is required to understand tacit knowledge

and further a certain group of people does not have the qualification in terms of skills,

then the implication is, that knowledge diffusion tends to be very slow, et vice versa.2

As a result, this group cannot benefit from new technologies or other applications

which contain a significant knowledge component, as highlighted by (Henderson and

Cockburn, 1996), (Teece, 1998) or (McEvily and Chakravarthy, 2002).

Some of the early models, that study diffusion of innovation and knowledge flows,

are the so called epidemic diffusion models. This kind of models assume, that a given

number of potential adopters exists, which adopt a new innovation, or in more medical

terms are inflected by a new innovation due to external and internal influence. The

communality of these models is that the cumulative adoption follows a sigmoid pattern.

This corresponds to the idea, that adoption at the beginning is slow, then it is sharply

rising in the middle, followed by a slabbing adoption tendency at the end. Hence, this

2Refer to (Cohen and Levinthal, 1990) for this topic.

3



1 Knowledge in economics

model inherently acknowledges a certain kind of interpersonal communication within

the group of adopters and potential adopters, as mentioned right before. Thus, it is

necessary, that at least one member of the population has adopted the innovation. This

can be justified with the assumption that some members of the group exhibit innovators

behaviour and show search activity or other idiosyncratic features (Griliches, 1957),

which are closely related to innovators actions. This indemnifies that innovators have

adopted the new technology right from the beginning of the diffusion process.

Diffusion stops automatically, after an exogenous market saturation potential has

been equalized by the number of adopters and hence the number of potential adopters

tends to zero. In the beginning of the adoption process, diffusion is relatively slow,

because potential adopters wait until adopters have communicated them some charac-

teristics of the new knowledge. Through knowledge transfer, which is not a sufficient

condition of knowledge diffusion, diffusion can be accelerated. It is worth mentioning

that knowledge transfer means the technical transfer mechanism of knowledge via face

to face communication for example. Knowledge is diffused, if one can benefit from

using new knowledge, because she is able to understand it. Of course, the acceleration

depends positively on knowledge transfer possibilities. Right after the inflection point

of adoption has passed, acceleration of knowledge diffusion stagnates until market satu-

ration potential has reached, which implies that acceleration speed of diffusion becomes

zero. This scenario can be described as throwing a stone into water, and waiting until

the ripples have steadily spread over the entire surface.

Albeit that immagination of knowledge diffusion seems pretty easy. Researches

found, that adoption of innovation and knowledge over time can be accurately de-

scribed by an S-shaped pattern, as mentioned by (Hargadon, 1996). Over the years,

starting with (Bass, 1969), the S-shaped diffusion models have found wide acceptance

in economics, especially in economics of innovation and empirical marketing research.

(Rogers, 1983) provides a formidable review of the advancement of this type of dif-

fusion models. Some of the models explicitly abandon the assumption that adopters

are homogenous and introduce an innovators and imitators relations3. Others include

Bayesian learning such as (Oren and Schwartz, 1988) and (Chatterjee and Eliashberg,

1990).

Although, these types of diffusion models are heavily used in knowledge diffusion

application, they exclude relevant aspects of knowledge diffusion: the role of networks

for knowledge diffusion. As shown by (Hansen, 1999) strong network relations are

necessary to transfer complex knowledge from sender to receiver. The implication is

that networking and the ability of successful knowledge transfer are closely related.

3Refer to the models of (Tanny and Derzko, 1988) and (Van den Bulte and Joshi, 2007).
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1 Knowledge in economics

Another fact, which is of importance for knowledge diffusion and also related to

knowledge transfer, is the consideration of feedback loops which are predominant in

(knowledge) networks. But in this context it is assumed that knowledge transfer, if

it happens, happens without errors. Of course, this assumption neglects uncertainty

of knowledge transfer. From this point of view, knowledge transfer itself should be

treated as a trial-and-error process as noted by (Sorenson et al., 2005).

1.3 Knowledge diffusion and learning, firm size and

market structure

Diffusion of knowledge generally depends, as mentioned before, on communication

channels and social networks, but also on the personal ability to understand new

knowledge and thus on absorptive capacity of the adopters and potential adopters.

As mentioned by (Cohen and Levinthal, 1990), absorptive capacity is the ability to

identify, accumulate value, assimilate, transform, and exploit knowledge resources to

enable learning. (Arrow, 1962) noticed on page 156 that (technical) learning can be

seen as the result of experience engaging in a certain activity itself. He also stressed

the time aspect of learning, because undertaking learning activity leads to ”favourable

responses [which] are selected over time”4. In the relevant literature, the sigmoid curve

is the most used for modelling learning-curves5. The idea to model learning curves

particularly with sigmoid functions originally stems from psychology. There is a close

relationship between absorptive capacity, learning and knowledge diffusion. If an in-

dividual has reached the saturation level of learning curve, then individual absorptive

capacity should take the maximum level.

If learning effects are in place on firm level, this should yield a reduction of production

costs, using a new technology, which is based on a process innovation as explained

by (D’Aspremont and Jacquemin, 1988) and (Kamien et al., 1992). Closely related

to these before mentioned articles is the work of (Yildizoglu, 2002), who found that

learning effects in firms lead to more efficiency and finally to social welfare gains. In

consequence, the more learning curve effects can be exploited, the faster production

costs can be reduced.

Of course, learning in this sense has a strong normative attitude. A large bulk of

literature deals with the question, how knowledge can be retained in firms and how

4(Arrow, 1962), p. 156.
5Refer for example to (Young and Ord, 1989), (Gamerman and Migón, 1991), (Meade, 1988) and

(Meade and Islam, 1995).
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learning affects firm’s specific strategy and structure. The link between learning and

how it can affect firm structure is sketchy. This is owed to the fact, that learning new

knowledge cannot be observed directly, as mentioned above. From an empirical point

of view, R&D effort is often used as a proxy for knowledge accumulation as a result of

learning endeavour.6

The interaction between innovation of new technologies and competitiveness is es-

sential in evolutionary economics for discussing market structure development. The

link is straightforward: as mentioned above and further highlighted by (D’Aspremont

and Jacquemin, 1988) and (Kamien et al., 1992) cost reduction potential is gener-

ally linked with innovation activity. Going ahead, different cost potential in a given

economy should also affect firm structure and also market structure. Indeed, this pre-

supposes that firms are heterogeneous in terms of cost potentials. The question now

occurs, how firm heterogeneity, learning efforts, and market structure can be acknowl-

edged into a model frame. Replicator dynamics do a formidable job in this purpose.

The drawback of replicator dynamics models, which idea is based on natural selection

and mutation phenomena, is that they often cannot be solved analytically, but only

numerically on the basis of simulation studies.7 This is especially valid, if one assumes

that innovative activity is modeled explicitly as a trial- and -error-process.

Market structure can be described by the following different ”structural factors”,

as noted by (Malerba et al., 1997): concentration and asymmetries between inno-

vative firms, firm size, evolution of the ranking of innovative firms, and the impor-

tance of new innovations with respect to existing innovations. The first factors should

answer the question, if innovative activity is either concentrated on fewer firms or

equally distributed over the entire population of firms and whether small or large

firms are innovative drivers. These curled questions are closely related to the so called

Schumpeter-Mark-I and Schumpeter-Mark-II hypothesis, labeled by (Malerba et al.,

1997). As highlighted by (Schumpeter, 1912) creative destruction is particularly caused

by small and young firms which cause market instability. In the relevant literature this

scenario is labelled Schumpeter-Mark-I. On contrary to (Schumpeter, 1912), (Schum-

peter, 1942) singled out the importance of established large firms which dispose of an

own R&D division, for market stability. This scenario is labelled Schumpeter-Mark-

II. Therefore, the question arises, under which conditions market structure coincides

with Schumpeter-Mark-I or Schumpeter-Mark-II. (Arthur, 1989), (David, 1985) and

(Klepper, 1996) argue that dynamic increasing returns to scale create lock-in-dynamics

which allow firms to grow persistently more than for other firms in the same market.

6See (Geroski and Mazzucato, 2002) for this topic.
7See (Kwasnicki, 1996), (Kwasnicki and Kwasnicka, 1992) and (Saviotti and Mani, 1995).
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This success-breeds-success-scenario is closely related to Schumpeter-Mark-II scenario,

whereas Schumpeter-Mark-I is associated to decreasing returns to scale.

Empirically, there have been a large number of papers, which investigate the link be-

tween firm size, market structure and innovation activity. (Comanor, 1967) and (Dosi,

1984) found, that markets should tend to be much more concentrated in industries with

a low rate of innovative activity, or on a macro perspective and given the industry, that

countries are more innovative if they are innovative leaders. On contrary, (Audretsch,

1995), (Abernathy and Wayne, 1974), (Klein, 1977), (Tushman and Nadler, 1986),

(Markides, 1998) and (Christensen, 1997) found, that market share instabilities are

much more likely in markets in which small firms are more innovative than large firms.

(Dosi and Orsenigo, 1985) come to the conclusion that firm homogeneity goes in line

with less concentrated markets.

To sum up, the link between firm size, innovation and market structure is investigated

in several studies. Increasing returns to scale, caused by learning-by-doing for example,

are related to Schumpeter-Mark-II scenario, whereas decreasing returns to scale are

more appropriate for characterizing market structure in which small firms are dominant.

But although network effects and learning exhibit an impact on market structure8, these

elements are ignored so far in the relevant literature.

1.4 Knowledge diffusion, scale effects and spatial

proximity

Since Alfred Marshall, several economists are engaged to define the question what

diffusion of knowledge is. Marshall gave a new insight into this question. He noted

that ”[...]if one man starts a new idea, it is taken up by others and combined with

suggestion of their own; and thus it becomes the source of new ideas.”9 From this

cognition, Marshall concluded that firms should profit from densely populated areas.

Especially, regions which are endowed with a high qualified labour stock, which is often

called human capital, and a widely differentiated supply of highly specialized suppliers

in the region specific industries should provide a fruitful framework for knowledge

diffusion.

For this reason, Marshall can be named as the door opener of a new discipline which is

a valuable source of new insights into the topic knowledge diffusion: the new economic

geography, which development was mainly driven by (Krugman, 1991) and (Fujita

8Refer to (Campagni, 1991), (Best, 2001) and (Porter, 2000) for this topic.
9(Marshall, 1920), p. 225.
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and Thisse, 2002) and (Brakman et al., 2001), who found that uneven distribution of

economic development is mainly caused by agglomeration effects of mobile production

factors. Aboriginally, the new economic geography was mainly designed to explain

trade patterns within a country, e. g. between regions, or between countries, with

the focus on intra- and interindustrial trade flows. From this point of view, the new

economic geography logically expands the theoretical new trade perspective with an

empirical view. Particularly, this kind of econometric application should present a

comprehensive approach to identify spatial trade patterns within data. (Helpman and

Krugman, 1985) were the first, who introduced a growth model with a new economic

geography context.

Closely related to those models of the (Helpman and Krugman, 1985) type mentioned

before, in which trade costs play a crucial role, another focus on new growth theory

is, that production of knowledge generates positive external effects by assumption. Of

course, external effects can also be negative, such as pollution, but it is common to focus

on the positive side of externalities as mentioned before. Again, in general the generator

of new knowledge cannot entirely appropriate the new knowledge completely, but has

to worry about the fact that a third party can participate from this new knowledge

without costs. In an extreme case, where knowledge cannot be appropriated entirely,

knowledge has to be characterized as a public good. Generally, it can be assumed

that knowledge contains a specific public good item, but can be appropriated by the

knowledge generator10. The more knowledge has been accumulated in the past in this

way, the more current production is influenced. Thus, we have to label these effects as

dynamic positive externalities.

It depends on the space and on the kind of knowledge, whether such effects have

only a productivity increasing effect in the contiguous neighbourhood, which we can

label as a small cluster, or if such effects have sweeping effects in space. In the later

case we should expect wide cluster effects.

From this point of view, economic geography is not only relevant for explaining

growth effects of knowledge diffusion on macro level, but also on regional level. Despite

the blatantly relevance of the spatial effect of knowledge diffusion especially on regional

level, such effects have been neglected quite often in recent literature covering the topic

of knowledge diffusion.

One of the reasons why those spatial effects have played a minor role in economic

context could be, that different conceptions of knowledge diffusion are employed in the

relevant literature. On the one hand, so called ”cumulative-causation-models” assume

that technological know-how, and thus knowledge, which is often embodied through

10Refer to (Tirole, 1995).
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new technologies, is entirely immobile. This could be due to the fact, that knowledge,

such as experience is inherently tacit, which means that knowledge is linked to a human

being11. The implication of those models is, that knowledge spillovers are more or less

excluded. Tacit knowledge could be an explanation why the catching-up process of

regions is left out, by virtue of missing knowledge spillover processes.

On contrary, early approaches of neoclassical growth theory assume, that knowledge

transfer is a natural given phenomenon, which means that knowledge can be trans-

ferred immediately, without costs and any difficulties from the sender to receiver. In

this context, knowledge is disembodied, and spatial proximity to sender is not of impor-

tance. In this context, knowledge is, as mentioned before, more or less a public good.

As a consequence, those early neoclassical approaches fail to explain regional growth

and income disparities, which could be caused by regional knowledge and technology

differences.

(Romer, 1990), (Grossman and Helpman, 1991a), and (Aghion and Howitt, 1992) for

instance take explicitly R&D as profit-maximizing activities and technological progress

as the result of these activities into account. Particularly, (Romer, 1990) assumes

that researchers of a firm create a new kind of knowledge for the production of a

new homogeneous good, driven by monopoly profits from the final product sales of the

good. The key is, that although the production of these goods is monopolized, the stock

of knowledge created, can be accessed by the entire population in the economy and

researchers use them for free to generate new knowledge. The production of knowledge

is the key parameter of growth in this model context, by which the speed of innovation

is treated proportionally to the number of researchers in R&D. Hence, population size

produces positive effects on the the GDP per capita, because if population increases,

the speed of innovation becomes also faster and also does the growth rate of GDP per

capita.

If we take a look at post war data, there is minor support for the theoretical findings

of the (Romer, 1990) model. (Backus et al., 1992) have found for 57 countries during

1970-1985 that pure number of researches in R&D sector have not the expected effects

on the average growth rate of GDP per capita. (Jones, 1995b) has shown for US

data that the number of engineers and scientists engaged in R&D increased since

1954 from 237,000 to a million in 1995. Comparable observations have been conduced

for other industrialized countries, such as Germany, France and Japan for example.

Given the (Romer, 1990) model, this should lead to an increased GDP growth rate

per capita in the same time span. But the GDP growth rate for the United States of

America has been roughly constant at about 2% over the same time interval. As a

11Refer to (Myrdal, 1959) for this topic.
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consequence and on the basis of the finding of (Jones, 1995b), subsequent approaches

have tried to eliminate those scale effects. For instance (Jones, 1995b), (Kortum,

1997) and (Segerstrom, 1998) have assumed diminishing returns in the production of

new technological knowledge which results in a felicitously elimination of scale effects.

Thus, the development of new innovations becomes more difficult as the underlying

technology improves and more researchers are required to let the speed of innovation

unaffected. The implication is, first that scale effects appear in the level of per capita

income instead of its per capita growth rate. Second, research subsidies schemes only

affect level of income but not its long run growth rate.

(Aghion and Howitt, 1998) in chapter 12, (Dinopoulos and Thompson, 1998), (Peretto,

1998) and (Young, 1998) instead follow a new strategy to eliminate the scale effect by

considering two different types of R&D: innovation of new goods and improvement of

existing or quality goods. Hence a new dimension has been added into the models of

the (Romer, 1990), (Grossman and Helpman, 1991a) and (Aghion and Howitt, 1998)

type. The argumentation in this framework is that a growing population leads to

an increase in the number of goods, but does not affect the number of researches for

each specific good, because quality improvement instead of new good innovation is of

importance. But within these models, there remains still an inconsistency: although

population size does not affect GDP growth, the growth rate of population does. The

consequence is, that scale effects on levels occur within these models as pointed out by

(Jones, 1998). However, if we look at the data, there is no distinct relation between

the growth rate of population size and GDP per capita. On the one hand it is found

that scale effects on GDP level are not supported by post war data.12 But on the other

side, there is evidence, that in the long run history scale effects on economic growth

can be found (Kremer, 1993). This seems to be puzzling. One attempt to resolve this

puzzle is to accept the concept of international knowledge diffusion, which requires

open-economy models. (Todo, 2001) opens the (Romer, 1990) model in two aspects:

First he assumes that international knowledge diffusion is costly. Second, intranational

knowledge diffusion is treated as in the (Romer, 1990) model as a costless phenomenon.

In this context (Jaffe and Trajtenberg, 1996), (Jaffe and Trajtenberg, 1998), (Jaffe and

Fogarty, 2000), (Jaffe and Henderson, 1993) and (Brendstetter, 2001) have performed

studies regarding knowledge diffusion based on patent citations. The idea behind those

works is, that home country patents are cited with a higher probability by patents from

the home country, which implies that new knowledge is more or less country specific

and thus knowledge spillovers are spatial limited. There is some evidence that interna-

tional knowledge diffusion can reconcile the post war inconsistency of scale effects in

12Refer to (Todo, 2001).

10



1 Knowledge in economics

growth implied by the (Romer, 1990) model.

We conclude, that the early neoclassic assumption that knowledge diffusion can

be characterized by a process which is costless, spatially unlimited and possible in

every period of time is inconsistent with the data. From the discussion above we have

seen, that post war inconsistency can be at least partly resolved by the assumption

of international knowledge diffusion, which is done in several contributions in the new

growth literature and new economic geography, as mentioned above. Such scale effects

should be taken into account, as well as the economic role of space within the knowledge

diffusion process.

To sum up, we have to notice that neither the neoclassical approach nor the cumulative-

causation approach seems to be appropriate to explain knowledge diffusion. The reality

is stacked somewhere in the middle between these two approaches: Knowledge can dif-

fuse, but one has to keep in mind that knowledge diffusion is a function of the kind of

knowledge and of space. Although the last assumption follows from the scale effects

discussion within the new growth theory, the first is not well established in the strand

of research.

1.5 Knowledge diffusion and spatial econometrics

The transformation from an industrial to a more or less knowledge-based economy is

one of the key challenges for political institutions. ”To become the most competitive

and dynamic knowledge-based economy in the world, capable of sustainable economic

growth with more and better jobs and greater social cohesion”.13

From this excerpt one can easily conclude that, particularly the concept of learning

regions has been preached as a strategy for successful future development. Further, as

another implication of the above mentioned excerpt and as laid out before, learning

and knowledge diffusion are closely interlinked or more precisely, knowledge diffusion

and learning are reciprocally presupposed.

As a consequence, knowledge diffusion should be primarily seen not as a country

level, but as a supra-national or subnational entity phenomenon, which makes sense

mainly because of the following reason: knowledge diffusion is evolving not evenly in

space, by virtue of heterogeneous endowment of production factors. The implication

is, that policy should foster network effects, to create an environment for learning

regions. Especially, the European Union (EU) is championing the concept of learning

13Refer to (EU, 2004).
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regions, which aims to reduce interregional disparities. Within the ”learning regions”

or Regional networks of Life-Long-Learning (R3L) initiative launched in April 2003 the

EU14 is highlighting the importance of learning for regional economic growth.

(Florida, 1995) gave a very precise definition of what makes a region a learning region:

”The new age of capitalism requires a new kind of region. In effect, regions are increas-

ingly defined by the same criteria and elements which comprise a knowledge-intensive

firm-continuous improvement, new ideas, knowledge creation and organizational learn-

ing. Regions must adopt the principles of knowledge creation and continuous learning;

they must in effect become learning regions. Learning regions provide a series of related

infrastructures which can facilitate the flow of knowledge, ideas and learning.”15

From this point of view, the EU policy aims to create knowledge networks, from

which regions can benefit via knowledge spillovers which should in the long run lead

to cohesion of regions as highlighted by EU16. Hence, the concept of a learning region,

which implicitly fosters knowledge spillovers potential between regions, should incor-

porate not only innovation orientated approaches, which should foster the diffusion of

knowledge, but also a policy approach, which is focused on the sustainable creation of

networks of regions and of course a human capital element which is a precondition for

creating a knowledge base. Prima facie this seems to be reasonable.

But if we look again at the goals of the Lisbon Agenda, we can find that it bears

an inherent conflict of aims: It is not possible to foster economic growth, which goes

hand in hand with agglomeration tendencies, as mentioned above due to spillovers,

and cohesion on the other side. Thus, it is worth to ask the question, whether spatial

knowledge spillover exist, and if yes to which extent they can contribute to explain

growth effects. Are knowledge spillovers more or less local, or global regarding their

grasp? As a consequence, if knowledge spillovers are more local, then policy as the

Lisbon Agenda should set their key aspects of activities on local level. Therefore,

the question which one should primarily be focused is, how important are knowledge

spillovers in a spatial environment.

These questions, especially the last, can of course only be answered empirically. In

the past several studies have contributed to these questions, not only in the macroeco-

nomic sphere, but also on the microeconomic level. The macroeconomic method is to

measure knowledge spillovers via patent citations or R&D efforts, where the distance

of patentee and locations of patent’s citations is from relevance. On the microeconomic

sphere, firm level data could reveal spatial phenomena. For example location decisions

14Refer to (EU, 2003) for an overview.
15(Florida, 1995), p. 532.
16Refer to (EU, 2003).
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could depend on infrastructure and life quality of a region. With this approach, cluster

phenomena, for instance the greater Munich area, could be explained.

An attractive method to deal with spatial phenomena empirically is the employment

of spatial econometrics methods, which can be described as a sub discipline of new

economic geography. Because of the fact that spatial econometric tools primarily focus

on regional science application, this methods seem to be appropriate to deal with

spatial knowledge spillovers.

Spatial econometrics can be distinguished from traditional econometrics in two direc-

tions: the first view could be to argue, that all econometric models in regional science

fall automatically within the spatial econometric toolbox. This distinction seems to

be rather flippantly and therefore not appropriate. Instead, a second view focus on

the spatial characteristics of the data itself. If these data precludes the application

of traditional established methods in econometrics, due to spatial effects such as spa-

tial dependence and spatial heterogeneity, then those non standards methods can be

subsumed under the term spatial econometrics.17

Spatial dependence can be due to several reasons. The first reason why spatial

dependence could occur is misspecification. This is already known from traditional

econometric applications, in the context of time series analysis. Although on the first

sight, spatial dependence seems to be directly comparable to the phenomenon of auto-

correlation from time series context. This is only partly the case. Spatial dependence

occurs primarily in cross-section or panel applications, whereas autocorrelation is a

time series problem. Spatial spillovers do not have a clear directional development

towards time, in contrast to time series, but should be, instead of time series argumen-

tation, characterized with feedback effects. Although (Kmenta, 1971) has worked out

this problem as precisely as possible, until today, neither standard econometricians aca-

demic book, nor any standard econometricians toolboxes, such as EViews do provide

space for spatial applications. Hence, if the researcher tries to cope with this problem

he has to program its own spatial estimation routines employing GAUSS, Mathematica,

Matlab or R. Today, we find sporadically some application toolboxes for spatial model

estimation, the toolbox of LeSage designed for Matlab, the open source R-based pro-

gramme Geoda, the R-package spdep or the Stata toolbox spatreg. (Kmenta, 1971)

argues that ”In many circumstances the most questionable assumption [...] is that the

cross sectional units are mutually independent. For instance, when the cross-sectional

units are geographical regions with arbitrarily drawn boundaries-such as the states of

the United States - we would not expect this assumption to be well satisfied.”18

17Refer to (Anselin, 1988) for an introduction.
18(Kmenta, 1971), p. 512.
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On contrast to spatial dependence, the idea behind spatial heterogeneity is, that

spatial entities such as regions are not homogeneous. This phenomenon likely occurs

in cross-sectional application, when using dataset including both poor regions from

the South and rich regions from the North. More technically spoken, the assumption

of constant variance over space is not justified within such a setup. It is easy to

conclude that neglecting spatial heterogeneity although it matters leads to estimations

of parameters which violate the Gauss-Markov assumption. Sometimes it is difficult

to differentiate between spatial heterogeneity on the one hand, and spatial dependence

on the other hand, due to the fact, that often a combination of both effects occurs.

Independently, if spatial dependence or spatial heterogeneity is relevant, the model

itself can be estimated with conventional maximum likelihood methods. Additionally

to the before mentioned so called frequentest methods, so called Bayesian methods

have been prevailed and proved itself in spatial econometric application. The differ-

ence between both approaches is, that Bayesian methods treat the coefficient vector

of estimators itself as random, whereas frequentest say that the resulting estimates of

the coefficient vector is random. Bayesian methods hold a great deal for several rea-

sons: first it is possible to model hierarchy of places or regions, second a more or less

systematic change of variance over space, and thus spatial heterogeneity and third a

hierarchy of regions or places. Bayesian methods can incorporate these ideas because

of its underlying concept to employ prior information additionally to existent sample

data information, whereas frequentest methods can solely rely on the latter mentioned.

As mentioned before, although Bayesian methods seem to be very attractive, their us-

age in application is very limited. On the other side as mentioned above, frequentest

methods lead to insufficient parameter estimates, if spatial heterogeneity is neglected

and only for spatial dependence it is consistently controlled.

Closely related to the question of existence of spatial knowledge spillovers is the

question, to what distance does spatial proximity matter with respect to knowledge

spillovers. And if yes, is the relevance of influence of spillovers a constant or not a

non constant function of space, which implies that spatial strength of spatial influence

depends on contiguousness. Most of existing studies do not contribute to the question

how far knowledge spillovers reach. (Anselin et al., 1997), (Varga, 1998) and (Anselin

et al., 2000) are one of the few studies that have mentioned concrete numbers of

knowledge spillover scope. (Anselin et al., 1997), (Varga, 1998) and (Anselin et al.,

2000) found by investigating the influence of university related research and private

R&D effort on knowledge transfer that a significant positive effect can be detected

within a 50 mile radius of Metropolitan Statistical Areas (MSAs) only for the university

research. For private R&D such a significant effect could not be detected. (Varga,
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1998), with a similar setup as (Anselin et al., 1997) show, that not only spillovers within

MSA but also between MSA can be found. But also without exact geographical distance

measures, limited spatial influence can be measured. (Audretsch and Mahmood, 1994)

show on patent basis for 59 US metropolises, that knowledge spillovers are limited

towards the metropolis boarders. They come to this conclusion because they found that

only for research institutes which are settled within a metropolis, significant knowledge

spillovers can be detected, whereas for research institutes, settled in each metropolis

related country, no such effects could be found.

For Germany (Funke and Niebuhr, 2000) is one of the view studies, which directly

investigates the scope of knowledge spillovers, but only for West German data. They

use data of 75 so called ”Raumordnungsregionen”, and find that the half-life of knowl-

edge spillovers lies in a range between 23 km and 30 km, where agglomeration areas are

the source of knowledge diffusion. Similar results have been obtained by (Greif, 1998)

and (Frauenhofer, 2000). (Badinger and Tondl, 2002) found similar evidence for 159

EU regions. They have noted that capital, human capital and knowledge transfer play

decisive roles for regional growth. More general, (Bottazzi and Peri, 2003) concluded

that knowledge diffusion is significant within 300 km distance for European regions.

Common for all studies is that they neglect possible spatial heterogeneity, which should

not be excluded ex ante.

So far we know something about the spatial scope of knowledge spillovers. Closely

related to the scope of knowledge spillovers is, what type of knowledge is relevant

for explaining (regional) growth differentials. In related literature, there is made a

distinction between so called urbanisation externalities and location externalities. So

called MAR externalities, which follow the idea of (Marshall, 1920), (Arrow, 1962)

and (Romer, 1986), assume that knowledge transfer takes place between firms within a

branch. Hence, firms itself are assumed to be similar. In contrast to MAR externalities,

so called (Jacobs, 1970) externalities describe spillovers between different industries,

which lead to the exploitation of so called economics of scope potentials. Although the

empirical differentiation of knowledge spillovers seems to be plausible to some extent,

from empirical evidence we have to conclude that spillover effects in combination, hence

a combination of Jacobs and MAR externalities, are relevant for explaining economic

development, as concluded by (Forni and Paba, 2001).

In summary, spatial econometrics mostly deals with the treatment of spatial depen-

dence and spatial heterogeneity in both cross-sectional and panel data model contexts.

The focus on space, as an important economic dimension has not only gained attention

in theoretical growth model context, but also more or less recently in applied econo-

metrics context, albeit the focus of spatial econometricians application mainly lays on
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spatial dependence. The focus on spatial heterogeneity and the closely linked question

to what extent, regarding space, knowledge spillovers matter, are less acknowledged in

the relevant literature, for German regions.

1.6 Motivation for further research

From the discussion above, we can subsume, that knowledge diffusion plays a crucial

role, not only on a macro level growth context, but also on a more traditional micro

level. Knowledge and knowledge diffusion are important cornerstones and elements in

modern economics, as highlighted before. Although knowledge and with some cutbacks

also knowledge diffusion seem to be well established in economic theory and empirics,

there are more implications of knowledge diffusion which are not acknowledged in the

cited literature. Of course, the economic field of knowledge diffusion is broad, and

hence only some topics of the above mentioned fields can be deeper investigated in this

thesis. Therefore, three main topics have been distilled, from which two of them are

more theoretically based. These topics are motivated in this paragraph.

The second chapter of this thesis deals with the question, how knowledge transfer

affects knowledge diffusion. As mentioned above, diffusion process of knowledge on

a microeconomic level is often modeled as a sigmoid process of time. Although such

diffusion models have a long history and mushroomed over time, not only in economics,

but also in psychologies and medicine research, the seminal paper of (Bass, 1969) has

made this epidemic models quiet popular. This is particularly true for applied diffusion

research, as marketing or product related innovation of economics, because that type

of models is easy to translate and to embed into in an economic framework. However,

there are several drawbacks of this easy to implement and easy to use diffusion mod-

els, especially when employing these type of models in a knowledge diffusion context.

First of all, a large number of contributions have relaxed the strict assumption of ho-

mogeneous adopters, because for knowledge diffusion processes interactions between

innovators and imitators are from importance, as highlighted by (Tanny and Derzko,

1988) and (Van den Bulte and Joshi, 2007).

The model of (Tanny and Derzko, 1988), which is one of the first extension of the

(Bass, 1969) diffusion model, indeed incorporates innovators and imitators behaviour.

This type of model as many others, for instance (Easingwood et al., 1983), (Mahajan

and Peterson, 1985) and (Mahajan and Wind, 1986), p. xiii, is not eligible to replicate

bimodal adoption and patterns, although these seem relevant, as noted by (Moore,

2002). The exceptions are the recent contributions of (Goldenberg et al., 2006) and

(Van den Bulte and Joshi, 2007) which are able to replicate bimodal patterns.
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As laid out above, in relevant literature knowledge diffusion and knowledge transfer

are often treated as synonyms. Although, knowledge diffusion and knowledge transfer

are close related, in fact knowledge diffusion and knowledge transfer are two sides of a

coin, as mentioned above. Hence, the implication is, that knowledge transfer, if possible

can have a direct influence on knowledge diffusion via amplification and acceleration

effects. As shown by (Hansen, 1999) strong network relations are necessary to transfer

complex knowledge from sender to receiver. Thus, the implication is that knowledge

networks and the ability of successful knowledge transfer are closely related. If we

refer to the relevant literature, no recent work has examined the effects of knowledge

networks on knowledge diffusion.

Before mentioned works have in common that they are discussed in a deterministic

model frame. As noted by (Boswijk and Franses, 2005) and (Boswijk et al., 2006),

diffusion process of a technology should be better treated as a stochastic phenomenon,

because adoption is not certain. Further they assume that uncertainty of adoption

is not constant over time: at the beginning and at the end of the diffusion process

uncertainty regarding the adoption should tend to zero, while in the middle of the

diffusion process uncertainty of adoption is high. The drawback of the (Boswijk and

Franses, 2005) framework is, that it only replicates the (Bass, 1969) assumptions and

neglects network effects as well as it assumes homogeneous adopters. (Boswijk et al.,

2006) have extended (Boswijk and Franses, 2005) in a multivariate way, but in their

model context, network effects are not of direct importance.

Thus, the aim of the second chapter is to set up a model based on (Goldenberg

et al., 2006), (Van den Bulte and Joshi, 2007), (Boswijk and Franses, 2005) and

(Boswijk et al., 2006) which first, assumes heterogeneous adopters, second includes

knowledge networks and third is modeled in a stochastic framework. From this back-

ground the question, how knowledge networks do influence knowledge diffusion via

knowledge transfer between innovators and imitators is answered. Another appealing

feature of this model is, that it can be estimated directly.

It is shown that the shape of the adoption pattern depends on the fact, whether

knowledge diffusion occurs or not. If knowledge transfer occurs, the stronger network

effects, so called unimodal patterns are more probable, because right before innova-

tors have realized the inflection point, imitators have nearly reached themselves their

inflection point. In contrast, the longer the discrepancy between the realization of

the inflection point of innovators and the beginning of imitators adoption is, the less

important are network effects, the more probable are so called bimodal adoption phe-

nomena. Thus ”chasm” pattern of adoption curves occur if network effects are of less

importance. Further it has been shown, that uncertainty is largest around the inflec-
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tion point of the adoption curve. Finally, some econometric annotations regarding an

appropriate estimation scheme are given.

The third chapter of this work is devoted to the question how learning and knowl-

edge diffusion between heterogeneous firms, if small or large, affects market structure

development. To obtain an insight into these questions, an industrial dynamics model

based on the works of (Mazzucato, 1998) or (Cantner and Hanusch, 1998) has been

developed. The idea of (Mazzucato, 1998) or (Cantner and Hanusch, 1998) rest upon

the phenomenon of natural selection based on (Fisher, 1930). Within this approach

the survival of the fittest principle of Charles Darwin can be dispatched.

The basis to answer this question is a model which is set up on the model of (Maz-

zucato, 1998) or (Cantner and Hanusch, 1998) with some elements borrowed from

(Noailly et al., 2003). The model assumes that a given number of firms, which are

heterogeneous exists in a market. Heterogeneity is modeled via cost differentials in

production. In terms of the replicator dynamics approach, only those firms with low

costs compared to the others will survive. Production costs can be reduced over time

because of cost reduction innovation. It is further assumed that there is a negative rela-

tionship between market share and cost level. The fitness of a firm is replicated via its

market share. If we combine the fitness and heterogeneity of firms, then it is possible to

derive a replicator differential equation, which is responsible for the dynamic and thus

the selection competition in the system. Firm size in this context is introduced via the

so called Schumpeter-Mark-I and Schumpeter-Mark-II hypothesis. In literature this

scenario is labeled Schumpeter-Mark-I. On contrary to (Schumpeter, 1912), (Schum-

peter, 1942) singled out the importance of established large firms which disposed of

an own R&D division, for market stability. This scenario is labeled Schumpeter-Mark-

II. The question now arises, under which conditions market structure coincides with

Schumpeter-Mark-I or Schumpeter-Mark-II. (Arthur, 1989), (David, 1985) and (Klep-

per, 1996) argue that dynamic increasing returns to scale create lock-in-dynamics which

allow growing some firms persistently more than other firms in the same market. This

success-breeds-success-scenario is closely related to the Schumpeter-Mark-II scenario,

whereas Schumpeter Mark I is closely related to decreasing returns to scale. Because

of its inherent complexity these models cannot be solved analytically. The key finding

in a duopolistic simulation study is, that under constant and increasing returns to scale

only the more efficient and larger firm will survive. The large technological progress is,

which coincides with a fast rate of cost reduction, the more probable a monopolistic

market structure is. In contrast under the assumption of decreasing returns to scale,

and under a suitable parameter regime, it can be shown, that despite of turbulences

at the beginning, a coexistence of both firms will be the result, whereas the small firm
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becomes market leader. Although simulation results are more or less in line with em-

pirical observations and partly confirms the stylized fact regarding the observation of

early stage market turbulences19, as mentioned above the model itself has limitations.

(Mazzucato, 1998) and (Cantner and Hanusch, 1998) assume, that the ability of

firms to understand knowledge is treated as an exogenously given and constant over

time. The implication is, that learning effects are fixed which contradicts the learning

curve literature as mentioned above. Hence, the aim of this chapter is, to introduce a

model which is based on (Mazzucato, 1998), (Cantner and Hanusch, 1998) and (Noailly

et al., 2003) which incorporates learning curve effects. Learning curve effects are first

treated as deterministic but then a stochastic version of a sigmoid learning curve is

introduced. It is shown that introducing learning effects has an influence on market

structure. If learning curve effects exist, first endogenous learning has a positive effect

on inferior strategies for low values of the technological progress. For all given scenarios

of returns to scale it can be shown that even laggard firms remain in the market. This

is particularly true for the increasing returns to scale case, where small firms are at a

disadvantage to large firms. This observation coincides with the works of (Campagni,

1991), (Best, 2001), (Porter, 2000) and (Krugman, 1991) in a more spatial context,

which highlight that inter-firm cooperation based on knowledge sharing can explain

the predominance of small firms in the market. Also the new model confirms the

stylized fact of early market turbulence, but it is shown that learning effects exhibit a

smoothing effect on market turbulences.

The fourth chapter of this work is dedicated to the spatial dimension of knowledge

diffusion. Given we know the source of knowledge creation, how can we describe con-

cisely the way of how knowledge is transferred from sender to receiver? Is it always the

case, that knowledge finds a receiver or does it depend on where the receiver is located?

The question we have to ask is therefore, is it always true that knowledge creation is an

unlimited process regarding space? To give an answer, we first have to think about the

kind of knowledge we have in mind. For example, if knowledge is tacit than face-to-face

communication or spatial proximity is a necessary condition for knowledge diffusion.

On the other hand, if knowledge is codified, modern communication facilities can be

used to transfer knowledge from sender to receiver. Codified knowledge is less space

depended than tacit knowledge as highlighted by (Anselin et al., 1997). Therefore, we

should expect that tacit knowledge dissemination is different from explicit knowledge

dissemination with respect to time and space.

From this point of view, it is plausible to focus not only on time as done in the

preceding chapters, when integration knowledge diffusion in a growth model context,

19Please refer to (Mazzucato, 2000), p. 49 for an overview.
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but also to consider a possible space limitation of knowledge transfer. Empirically, we

find evidence for space limitation regarding knowledge diffusion, as mentioned above.

From a macroeconomic perspective the economic role of space should be taken under

consideration. The modeling of explicit space dependence is rather complex, because,

if we try to integrate the space in a growth model context, we have to acknowledge

heterogeneous regions, for which we have to consider both a vector of control variables

and a vector of state variables for each region. Due to its inherent complexity, such a

model can only be solved numerically. The aim of this chapter is, first to give a new

insight into the role of spatial dependence in a theoretical semi-endogenous growth

model, which core is based on the model of (Uzawa, 1965) and (Lucas, 1976). It is

assumed that, spatial spillovers are local and not constant over space which implies

that the tacit element in knowledge overwhelms the explicit element. With this model

it can be shown as noted by (Fujita and Thisse, 2002), that ”increasing returns to scale

(IRS) are essential for explaining geographical distributions of economic activities”20,

which is also known as the ”‘folk theorem of spatial economics”’. One key result of

the theoretic model is, that the disparity of income distribution is largest if the ”‘folk

theorem of spatial economics”’ matters. Further, higher order spatial influence has a

positive effect on income distribution in that sense that these effects reduce inequality,

because more regions benefits from knowledge spillovers.

In a further section, an econometric study has been performed to answer the ques-

tion, if knowledge spillovers are more global or local end and tries to find support

for the before developed spatial model. The study is based on a spatial cross section

production function approach, proposed by (Griliches, 1979) which should measure

the effects of innovativeness, represented by knowledge capital, such as human capital,

patents or R&D and spatial spillovers on output for German NUTS-2 regions. Because

spatial econometric model selection still is a highly disputed topic, a new model selec-

tion mechanism is proposed, which combines frequentest and Bayesian model selection

criteria. One key result is, that the assumption of spatial heterogeneity is appropriate

for explaining economic performance of German NUTS-2 regions. This last finding is

additionally supported by a conducted spatial filtering procedure. Another key result

is that, based on spatial weighting matrices, knowledge spillovers seems to be rather

local than global.

Chapter five summarizes the findings of the thesis and gives major conclusions.

Additionally, the role of knowledge diffusion for economics is stressed, particularly in

the light of findings which will be discussed in section four. Comments on further

research possibilities both on theoretical and empirical side are made with respect to

20(Fujita and Thisse, 2002), p. 342.
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the topics discussed in chapter two, three and four.
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2 Knowledge diffusion and the role of

knowledge transfer: a stochastic approach

2.1 Motivation

To know the way in which knowledge is technically produced and to understand its

diffusion path is from fundamental importance in the innovative process. But what is

knowledge? Knowledge itself can be embodied in new products, or can be approximated

by citation of scientific publications1, but loosely spoken there is no clear cut definition

what knowledge is. What we know first is, that technological knowledge is often not

transferred as itself, but within new technologies, via licensing, FDI or products for

instance. Thus if we talk about knowledge diffusion, it is either a direct transfer

or indirectly linked with the diffusion of new technologies, intermediate and capital

goods as (Rivera-Batiz and Romer, 1991) have argued. In this model direct knowledge

diffusion is assumed but with the annotation that with an empirical view, proxies of

knowledge diffusion as the above mentioned are required.

Second, we know, that knowledge adoption is no homogeneous process over potential

adopters. With diffusion one could associate the picture of dropping colour in a glass

of water and waiting until the colour has more or less uniformly distributed over time

and space within the glass. Such an imagination is of course too simple. It is, if any

appropriate for the ”homo economicus world”, in which everybody knows everything

right from the beginning or with a less strict assumption, everybody can learn every-

thing with probability one. In such a world, the question what kind of knowledge can

diffuse easily and what kind of knowledge can diffuse less easily is obviously obsolete.

Assuming that the world is not perfect with respect to learning abilities and infor-

mation potentials for instance, the question what kind of knowledge can easy diffuse

and what kind of knowledge is diffusible is from importance. (Polany, 1967) takes this

question seriously and separates implicit knowledge from explicit knowledge. The first

is labelled tacit the latter not, which means, explicit knowledge can be transferred

without any limits, tacit knowledge can not. For instance, assume that knowledge is

1Refer to (Fok and Franses, 2007) for instance.
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partly or completely tacit. Then knowledge diffusion is embedded in a community and

diffusion depends on the specific characteristics of that community. Thus, some people

are more in touch with new developments than others. This is especially the case for

two important groups of adopters, which play an important role within the diffusion

process: the innovators and imitators of new knowledge.

(Bass, 1969) in his seminal work and others such as (Easingwood et al., 1983),

(Mahajan and Peterson, 1985) and (Mahajan and Wind, 1986), p. xiii, for instance

mentioned, that innovators and imitators behaviour is different in diffusion process.

This assumption is reasonable, because it is comprehensible that each subgroup of

adopters, the innovators and imitators have different intentions to adopt. Common for

both groups instead is the assumption of S-shaped pattern diffusion process. Following

(Kalish, 1985) one can differentiate between so called ”search attributes” and ”experi-

ence attributes”. As a consequence, the innovators need only ”search” information to

adopt the new knowledge, while the latter imitators require ”experience” type infor-

mation before they adopt. As noted by (Gatignon and Robertson, 1985) and (Rogers,

1983) the speed of diffusion of knowledge depends on several characteristics, such as

complexity, relative advantage, status value and observability etc.. These character-

istics influence innovators and imitators in different ways. However most of previous

studies more or less failed to highlight the different behaviour of these two specific

groups.

Although (Schmalen, 1982) has mentioned that innovator’s and imitator’s behaviour

regarding their adoption decision differs, he does not capture this facts in a nota-

tional form. The famous so called ”two compartment model”, proposed by (Tanny

and Derzko, 1988) goes in line with the model of (Schmalen, 1982) but their defini-

tion of ”innovators” and ”imitators” seems not to be clear cut: ”innovators” adopt

because of learning effects driven by external information, whereas ”imitators” adopt

because of external knowledge by prior adopters. In this model it is hypothesized

that ”innovators” adopt because of ”search” information while imitators adopt due

to ”experience” but also due to ”knowledge transfer” which can be justified with the

existence of networks.

It is therefore assumed that the adoption decision is also influenced by networks

which are a necessary condition for knowledge transfer between both groups. But it is

worth to mention, that ”knowledge transfer” is not a sufficient condition for ”knowledge

diffusion”. If a dense network structure is available, ”knowledge transfer” is easier and

thus the imitator should adopt faster. On contrary, if networks do not exist, knowledge

transfer is excluded and thus adoption takes place later. The latter scenario often leads

to the so called ”chasm” pattern between early and late adoptions, which is extensively
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discussed in (Moore, 2002) and mentioned in diffusion related literature2.

Therefore, network effects should have also an influence regarding the shape of the

adoptions curve, which is in the latter case not necessarily unimodal but bimodal for

the entire market. The point is, that the introduced model treats the ”chasm” pattern

as endogenous, not as a given exogenous number. The literature is still silent about

this topic and only a few micro based paper take this network effects into account,

for instance (Van den Bulte and Lilien, 2001), (Van den Bulte and Joshi, 2007), (Hill

et al., 2006) and (Goldenberg et al., 2006).

The aim of this chapter can be layed out as follows: on the basis of (Goldenberg et al.,

2006), (Van den Bulte and Joshi, 2007), (Boswijk and Franses, 2005) and (Boswijk

et al., 2006) a knowledge diffusion model is set up, which includes ”innovators” and

”imitators” behaviour. Further this model is able to replicate both, unimodal and

bimodal adoption pattern. Which pattern occurs, depends on the fact if network

effects play a crucial role within the diffusion process. Additionally, the model will

be extended towards a stochastic knowledge diffusion model to capture the idea that

uncertainty of adoption is a function of time, which means at the beginning and at the

end of the diffusion process uncertainty regarding the adoption should tend to zero,

while in the middle of the diffusion process uncertainty of adoption is high. Another

feature of the proposed model is, that it can be applied directly empirically.

The chapter is structured as follows: in the second section, I start off with an intro-

duction and discussion of the (Bass, 1969) model. In the third section a deterministic

knowledge diffusion model is setup. After the solution of this model the solution’s

stability is discussed. The fourth section deals with the deterministic knowledge dif-

fusion model which is embedded into in a stochastic framework. In the fifth section a

simulation study of both, the deterministic and stochastic model is conducted. Before

giving some remarks in the seventh section, some econometric annotations regarding

the estimation of the stochastic knowledge diffusion model are given in section six.

2.2 The Bass diffusion model

The (Bass, 1969) model, loosely spoken, describes how a new product or technique

is adopted over time by interaction between potential and de facto adopters or users.

Adoption stops, if the market saturation level m has been reached, that means that

every potential adopter has become a de facto adopter. For each potential adopter the

time of adoption is random, that means ex ante the potential adopter does not know

2Refer to (Van den Bulte and Joshi, 2007) for instance.
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when he will adopt the product. In statistical terms, time of adoption is a random

variable with a distribution Function F (t) and the corresponding density f(t). The

(Bass, 1969) model assumes that the portion of potential adopters who adopt at time

t, given they have not adopted yet can be written as a linear function of adopters or

in mathematical terms:

f(t)

[1− F (t)]
= p+ qF (t). (2.1)

The left hand side of equation 2.1 can be also interpreted as the hazard rate of

potential adopters. The parameter p is the probability that a potential adopter adopts

at t influenced by external influence, such as word of mouth influence through the

adopters. On contrary q can be interpreted as the probability that a potential adopter

adopts at t for a given internal influence caused by the adopters. This covers the

intrinsic motivation of potential adopters that the product or technique generates some

utility.

Therefore, the diffusion process3 of the (Bass, 1969) model can be also written as

follows4

dF (t)

dt
= f(t) = [p+ qF (t)][1− F (t)], (2.2)

which can be interpreted as follows: on the left hand side of equation we can find

the rate of change with respect to time t of the cumulative number of adopters. This

is equal to the hazard rate p + qF (t) times the adopters which have not adopted in

t. Thus, [1 − F (t)] are the potential adopters. If p = 0 we obtain a diffusion process

which is completely driven by internal influence of adopters in t, whereas q = 0 the

diffusion process depends solely on external influence. In general, a mixture influence

model is assumed, that means that {p, q} ∈ (0, 1).

Labeling the cumulative number of adopters at t as N(t) = mF (t), the rate of change

of adopters is given by

3A mathematical diffusion function ca be expressed as the solution y = y(t) of a deterministic dif-
ferential equation dy

dt = f(y, t). f(·) describes the pattern of the diffusion path and y gives information
about the evolution of the diffusion process over time. Thus f(·) is a dependent function of y and
diffusion time t. This is the basic idea of modelling diffusion path.

4Refer to (Kalish and Sen, 1986) and (Mahajan et al., 1984) for instance.
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nt ≡
dN(t)

dt
= m

dF (t)

dt
= mf(t), (2.3)

or inserting 2.2 in 2.3 and noting that N(t) = mF (t) yields

nt ≡
dN(t)

dt
= m

{[
p+ q

N(t)

m

] [
1− N(t)

m

]}
, (2.4)

or

nt ≡
dN(t)

dt
=

[
p+ q

N(t)

m

]
[m−N(t)] = χ(t)[m−N(t)], (2.5)

with N(t) =
∫ t
t0
ntdt. The last derived so called Ricatti-differential equation with

constant coefficients can be interpreted as the rate of change with respect to time t

of the cumulative number of adopters which is equal to a time dependent variable

χ(t), which covers the mixture influence of adoption, given {p, q} ∈ (0, 1) times the

cumulative number of potential adopters in t given by [m−N(t)]. From equation 2.5

we can easily see, that change rate of cumulative adopters is zero, given the number

of potential adopters equals the number of cumulative adopters which is equal to the

postulation that [m−N(t)] = 0.

The solution of 2.5 for the cumulative number of adopters is given by:

Nt = mF (t) = m

[
1− exp{−(p+ q)t}
1 + q

p
exp{−(p+ q)t}

]
, (2.6)

and for the adoption in t:

nt = mf(t) = m

[
p(p+ q)2exp{−(p+ q)t}
(p+ qexp{−(p+ q)t})2

]
. (2.7)

The problem which now occurs is, how to translate this theoretical model in practical

application. The number of adopters are usually discrete values, whereas the above

derived diffusion equation 2.5 is written in continuous time. For this reason, (Bass,

1969) applied a simple Euler-discretization scheme to obtain the following discrete time

26



2 Knowledge diffusion and the role of knowledge transfer: a stochastic approach

difference equation of the continuous time differential equation 2.5:

Nt = Nt−1 +

[
p+ q

N(t− 1)

m

]
[m−N(t− 1)] . (2.8)

Due to its parsimonious specification, the (Bass, 1969) diffusion model and its ex-

tensions are so popular in diffusion research5. Besides, it should be mentioned that

from equation 2.8 it is quite clear that the (Bass, 1969) model is very attractive also

for empirical application, especially for out-of-sample forecasts6, because theoretically

equation 2.8 can be estimated without modifications7. Although, the (Bass, 1969)

model seems to be very intuitive and well established both in theoretical and empirical

application, there are several drawbacks.

(Bass, 1969) mentioned in his publication, that innovators and imitators behaviour

is different in diffusion process. This assumption is reasonable, because it is reasonable

that each subgroup of adopters, the innovators and imitators have different intentions

to adopt. Following (Kalish, 1985) one can differentiate between so called ”search at-

tributes” and ”experience attributes”. As a consequence of that the innovators need

only ”search” information to adopt knowledge, while the latter imitators require ”ex-

perience” type information before they adopt. As noted by (Rogers, 1983) for instance,

the speed of diffusion of knowledge depends on several characteristics, such as com-

plexity, relative advantage, status value and observability etc.. These characteristics

influence innovators and imitators in different ways.

Additionally, communication between those two types and thus network effects are

a second channel which influence imitators adoption decision.8 But within his mathe-

matical representation layed out above, for instance in 2.8 this fundamental assumption

is not reflected, although it is from central importance for knowledge diffusion.9

Another limitation of the (Bass, 1969) model is, that it also can reproduce a bell

shaped single peak adoption curve. (Kluyver, 1977) has pointed out, that ”one draw-

back of such models (diffusion type models) is that only unimodal phenomena can be

fitted”. If one refers to the empirical literature there is strong evidence that life cycle

of innovations fits to a more bimodal pattern10. This is due to the fact that in the early

5Refer to (Parker, 1994), (Mahajan et al., 1990), (Mahajan et al., 1993), (Sultan et al., 1990) and
(Mahajan et al., 2000) for an overview.

6For instance, refer to (Bass, 1993) and (Bass, 1995) for this topic.
7It should be mentioned that there is a large bulk of paper which discuss estimation strategies for

the Bass model. Refer to (Boswijk and Franses, 2005) for a discussion of that topic.
8Refer to (Gladwell, 2000), (Moore, 1995), (Rosen, 2000) and (Slywotzky and Shaprio, 1993).
9Already (Jeuland, 1981) has pointed out this fact.

10Refer to (Rink and Swan, 1979) and (Tellis and Crawford, 1981).
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stage of an innovation life cycle, a new product in which new knowledge is embodied,

innovators demand leads to an often sharp rise, then to a plateau or a fall in adoption,

followed by an imitators caused raise of adoptions, when network effects are in place.

A further interesting aspect, which is still not incorporated in innovation diffusion

models is the phenomenon of ”knowledge transfer”. To be precise, one has to dis-

tinguish between pure ”knowledge transfer”, which is for instance practiced via face-

to-face communication and ”knowledge diffusion”. ”Knowledge transfer” must not

necessarily influence the adoption decision but it can. In this context it is meant that

”knowledge transfer” is only possible if the knowledge is transferable, for instance via

face-to-face communication.

For this reason, in the next section a more general (Bass, 1969) type model is set up

which first includes a heterogeneous potential adopter group which is split in innovators

and imitators. Second, the new model formulation also includes network effects, which

are not symmetric: it is assumed that only imitators can benefit from information

about the adoption of knowledge from the innovators. This means, the often mentioned

effects of knowledge transfer via network effects and its effect on knowledge diffusion,

embodied by the adoption of a new knowledge are incorporated. In this manner, it is

possible both to replicate unimodal as well as bimodal shapes of the adoption curves.

The shape of the curve only depends on the fact if knowledge transfer is easy or totally

excluded. The easier knowledge transfer is, the faster knowledge diffusion should be,

the lesser the probability that bimodal adoption pattern occurs or so called ”chasm”

between early and the later parts of the adoption curve11.

2.3 Deterministic knowledge diffusion model

As mentioned before, innovators and imitators behaviour should be acknowledged when

talking about knowledge diffusion, because heterogeneous adopters could explain bi-

modal adoption shapes.

2.3.1 Setup

The group of adopters N(t) is separated in innovators and imitators N(t)k for k =

{1, 2}.12 k = 1 represents the subgroup of innovators, whereas k = 2 symbolizes the

group of imitators. Now, the key idea is, to incorporate a communication channel

11Refer to (Van den Bulte and Joshi, 2007).
12In the following time index t is only used if clarity demands it.
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between these two groups. In this way, an asymmetric communication flow is created,

because per definition the subgroup of innovators could not learn anything about the

subgroup of imitators regarding their adoption decision. Innovators, per definition are

the first, entering the market. Thus the model contains a communication parameter q12

which stands for the communication between the group of innovators and the group of

imitators. The diffusion process for innovators N(t)1 is similar to the above mentioned

Bass diffusion equation 2.5 and can be written as:

dN1

dt
=

[
p1 +

(
q1
N1

m1

)]
[m1 −N1] . (2.9)

The diffusion process for the imitators Nt,2 instead should be written as:

dN2

dt
=

[
p2 +

(
q2

N2

(m1 +m2)

)
+

(
q12

N1

(m1 +m2)

)]
[m2 −N2] , (2.10)

with q12 representing the ”knowledge transfer” probability. Therefore, the change

rate of cumulative group of imitators dN2

dt
, is also affected by network effects. If q12=0

then innovators and imitators adoption are independent from each other, but still not

symmetric, because even if q12 = 0 the entire market saturation level m1 +m2 is from

importance for the imitators.

These two model segments 2.9 and 2.10 can be stacked into a system of equations

as follows:

[
dN1

dt
dN2

dt

]
=

 [p1 +
(
q1

N1

m1

)]
0

0 p2 +
[(
q2

N2

(m1+m2)

)]  [
[m1 −N1]

[m2 −N2]

]
+

+

[
0 0

0
(
q12

N1

(m1+m2)

) ] ×

[
[m1 −N1]

[m2 −N2]

]
, (2.11)

or in compact form

Ṅ = Ξa+ Πb. (2.12)
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From 2.11 we can see that information flow is asymmetric, because the first diagonal

element of Π in 2.12 is zero.

2.3.2 Solution

Given N(0)1 = 0, the solution of our differential equation system for N(t)1 can be

written as before as:

N(t)1 = mF (t) = m

[
1− exp{−(p1 + q1)t}

1 + q1
p1
exp{−(p1 + q1)t}

]
. (2.13)

In contrast to the solution of N(t)1, the derivation of solution for N(t)2 is cumber-

some. Given N(0)2 = 0 it can be expressed as:

N(t)2 =
1

Θ

{
[m1(p2 + q12) +m2(p2 + q2)]×

[
−(exp(−(p1 + q1)t)

m1(p2+q12)+m2(p2+q2)
(m1+m2)(p1+q1) (m1 +m2)(p1 + q1)+

+m2(p1 + exp(−(p1 + q1)t)
m1q12

(m1+m2)q1 q2C

]
+

+(exp(−(p1+q1)t)
m1(p2+q12)+m2(p2+q2)

(m1+m2)(p1+q1) m2(m1+m2)(p1+q1)

(
1 +

exp(−(p1 + q1)t)q1

p1

) m1q12
(m1+m2)q1

×

q2H̃

[
m1(p2 + q12) +m2(p2 + q2)

(m1 +m2)(p1 + q1)
,

m1q12

(m1 +m2)q1

,Φ,−exp(−(p1 + q1)t)q1

p1

]

]}
(2.14)

with Θ defined as:

Θ ≡ q2

{
(p1 + exp(−(p1 + q1)t)q1)

m1q12
(m1+m2)q1 (m1(p2 + q12) +m2(p2 + q2))C+
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+(exp(−(p1+q1)t)
m1(p2+q12)+m2(p2+q2)

(m1+m2)(p1+q1) (m1+m2)(p1+q1)

(
1 +

exp(−(p1 + q1)t)q1

p1

) m1q12
(m1+m2)q1

×

×H̃
[
m1(p2 + q12) +m2(p2 + q2)

(m1 +m2)(p1 + q1)
,

m1q12

(m1 +m2)q1

,Φ,−exp(−(p1 + q1)t)q1

p1

]}
, (2.15)

with

Φ ≡ 1 + m1(p2+q12)+m2(p2+q2)
(m1+m2)(p1+q1)

,

and

C ≡ 1

m2q2[m1(p2 + q12) +m2(p2 + q2)]

[
(m1 +m2)(p1 + q1)

1− m1q12
(m1+m2)q1×

×(m1(p2 + q12) +m2(p2 + q2)−m2

(
p1 + q1

p1

)
q2×

×H̃
[
m1(p2 + q12) +m2(p2 + q2)

(m1 +m2)(p1 + q1)
,

m1q12

(m1 +m2)q1

,Φ,−exp(−(p1 + q1)t)q1

p1

]]
. (2.16)

Note, that H̃(·) is the hypergeometric function, which series expansion is given by

H̃ ≡2 F1(a, b, c, x) =
∞∑
w=0

(a)w(b)w
(c)w

xw

w!
=

= 1 +
abx

c1!
+
a(a+ 1)b(b+ 1)x2

c(c+ 1)2!
+
a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)x3

c(c+ 1)(c+ 1)3!
+ ..., (2.17)

where (i)w is the Pochhammer symbol which is defined as (i)0 = 1 and (i)w = i(i +

1)...(i+w−1) = Γ(i+w)
Γ(i)

for i = a, b, c where Γ(·) is called the Euler-Gamma function.13

Further note that H̃ has a branch cut discontinuity in the complex z plane from 1 to

13(Abramowitz and Stegun, 1972) p. 255.
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∞ and terminates if a and b are non positive integers. Of course, n(t)k = dN(t)k
dt

for

k = {1, 2}.

2.3.3 Stability

Before we proceed the equilibrium points of model 2.11 or 2.12 are identified and

additionally, the stability of them is proofed.

Proposition 1 : On behalf of the assumption that the partial derivatives of dN1

dt
,

and dN2

dt
exist and that dN1

dt
and dN2

dt
hold simultaneously ∀t, the system 2.11 has a

unique steady state vector S, which contains N∗1 and N∗2 in the long run.�

Proof 1 : An optimal steady state vector exists, if and only if dN1

dt
= dN2

dt
= 0 holds.

This is realized, if

[
0

0

]
=

 [
p1 +

(
q1

N1
m1

)]
0

0 p2 +
[(
q2

N2
(m1+m2)

)
+
(
q12

N1
(m1+m2)

)]  [
[m1 −N1]

[m2 −N2]

]
. (2.18)

To find the elements for the steady state vector the first equation from the derived

system 2.12 has been examined first. Given dN1

dt
= 0, this equation can be written as

follows:

[
p1 +

(
q1
N1

m1

)]
[m1 −N1] = 0. (2.19)

An equilibrium is found if dN1

dt
= 0 holds. Thus, if m1 = N∗1 , then dN1

dt
= 0. If

m1 = N∗1 then the number of innovators of new knowledge have realized their market

saturation level m1, which implies that every potential innovator has adopted new

knowledge.

Second, if

N∗1 =
−m1p1

q1

< 0, (2.20)

equation 2.19 is zero again and thus dN1

dt
= 0 also holds. Note that this equilibrium

can be ruled out because N1 > 0 per definition.

Now let us turn to the second equation of system 2.12, which can be written as

(m2 −N2)

[
p2 +

(
q2

N2

(m1 +m2)

)
+

(
q12

N1

(m1 +m2)

)]
= 0, (2.21)
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given dN2

dt
= 0.

Again, if m2 = N∗2 then dN2

dt
= 0, which implies again, that the number of imitators

reached their market saturation level m2. Additionally, if

N∗2 = − 1

q2

[p2m+ q12N
∗
1 ] < 0, (2.22)

then dN2

dt
= 0 holds. This equilibrium can be ruled out ex ante because N2 > 0 per

definition.

From this discussion it is possible to derive four long run equilibria: the first equi-

librium is given by

m1 = N∗1 andm2 = N∗2 . (2.23)

This is the case, when both, the innovators and imitators have reached their specific

market saturation levels.

The second equilibrium is obtained if

N∗1 =
−m1p1

q1

and m2 = N∗2 . (2.24)

The third equilibrium is characterized by

N∗1 =
−m1p1

q1

and N2 = − 1

q2

[p2m+ q12N
∗
1 ] . (2.25)

Noting the fact, thatN∗1 = −m1p1
q1

and inserting this expression inN2 = − 1
q2

[p2m+ q12N
∗
1 ]

yields N∗2 = m1(q12p1−p2q1)−p2m2q1
q2q1

.

Obviously, the sign of N∗2 is not clearly determined. For a given value of N∗1 , N∗2 can

be positive or negative. The last equilibrium is defined by

N∗1 = m1 and N∗2 = − 1

q2

[m1(p2 + q12) +m2p2] .� (2.26)

Next the system 2.12 is linearized around the steady state values to establish the

stability of obtained equilibria. After linearizing the entire system the Jacobian ma-

trix for each equilibrium of our system 2.12 has been evaluated. The following table

2.1 provides a summary of the obtained equilibria. Further the equilibrium specific

Eigenvalues with their corresponding signs are reported.

It is obvious, that the first equilibrium is a stable node. The stability of the remaining

equilibria is not from importance, because from an economical point of view only the
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Equilibrium Equilibrium conditions Signs of Eigenvalues

E1 N∗1 = m1 andN∗2 = m2 λ1 < 0, λ2 < 0

E2 N∗1 = −m1p1
q1

and N∗2 = m2 λ1 > 0, λ2 <> 0

E3 N∗1 = −m1p1
q1

and N∗2 = m1(q12p1−p2q1)−p2m2q1
q2q1

λ1 > 0, λ2 <> 0

E4 N∗1 = m1 and N∗2 = − 1
q2

[m1(p2 + q12) +m2p2] λ1 < 0, λ2 > 0

Table 2.1: Stability analysis of obtained equilibria from system 2.11 (I)

Equilibrium Imaginary part Stability

E1 no stable node
E2 no saddle path or unstable node
E3 no saddle path or unstable node
E4 no saddle path

Table 2.2: Stability analysis of obtained equilibria from system 2.11 (II)

first equilibrium ensures a plausible result, which means that both N∗1 and N∗2 are

positive, given the parameter definition above. These result can be fleshed out also

graphically in figure 2.1 for positive values for N∗1 = N∗2 > 0.

0
1

=N&

0
1

=N&

0
2

=N&

0
2

=N&

2
N

1
N

2
m

1
m

1
E

2
E

3
E

4
E

2

2

q

mp
−

12

2

q

mp
−

0

Figure 2.1: Phase plot of model 2.11 (I)

From figure 2.1 we can conclude that only for the first equilibrium an economic

interpretation is possible. In the long run, the market saturation level will be reached

for both groups of adopters. Moreover, this equilibrium is stable. The third equilibrium

is ex ante not clearly determined, because for a given parameter constellation, positive

as well as negative values for N2 are possible. Theoretically, the Ṅ2 = 0 straight line,

34



2 Knowledge diffusion and the role of knowledge transfer: a stochastic approach

which slope and location is determined by E3 and E4, can result in another feasible

solution. But if we take a closer look at our model we can rule out this possibility: If

we refer again to figure three we can see, that −p2m
q2

and −p2m2

q12
determine the location

of Ṅ2 = 0 straight line N2 = − q12
q2
N1 − p2m

q2
.

Of course, the maximum limit expression of Ṅ2 = 0 straight line is given by: N2 =
q12
q2
N1 which is graphically replicated by a green straight line through the origin, as can

be seen in figure 2.1. This is the maximum limit because, −p2m
q2

cannot be positive by

definition, as all parameter in expression p2m
q2

are positive. This is also true for −p2m2

q12
.

Note also, that the Ṅ2 = 0 straight line will not be translated parallel, because the

upper limit for N2 is given by Ñ2 = q12m1p1
q2q1

and hence the difference between the upper

limit of Ñ2 and N2 is given by ∆N2 = q1p2m1

q2q1
+ p2m2

q2
= q1p2m1

q2q1
+ ∆+N2 which is by

expression on modulus greater as ∆+N2 = p2m2

q2
if we refer to equilibrium four.

From this discussion it can be concluded that E3 cannot be a possible candidate for

a relevant economic equilibrium. Again, from an economic point of view we only focus

on the first equilibrium which is given by: N∗1 = m1 andN∗2 = m2. Thus from any given

and feasible starting point within the rectangular area bounded by the parallel Ṅ2 = 0

line to the hypotenuse and the parallel Ṅ1 = 0 line to the ordinate we can always

realize the equilibrium point E1 for given starting values N(0)1 ≥ 0 and N(0)2 ≥ 0.

Referring again to figure 2.1 the red line symbolizes the steady state path for given but

arbitrary starting values N(0)1 > 0 and N(0)2 > 0.

The so far derived model 2.11 has to be criticized as it assumes a short and long

run deterministic behaviour of the adoption process, which means that being on the

S-shaped diffusion path, no deviations from this path are possible, even in the short

run. The implication is, that uncertainty regarding the adoption process should not

be treated as constant over time, as the (Bass, 1969) model does. Especially, in the

middle of the diffusion process, say around the inflection point, uncertainty should be

much more higher than at the beginning or at the end, which implies that fluctuations

of the adoption curve should be largest around the inflection point. From this point

of view, a stochastic expansion of 2.11 is required which will be derived in the next

section.
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2.4 Stochastic knowledge diffusion model

2.4.1 Setup

In this section a stochastic expansion of system 2.11 will be derived. I follow (Boswijk

and Franses, 2005) and (Boswijk et al., 2006) who derived a stochastic ”counterpart”

of the (Bass, 1969) model by assuming short-run deviations from the deterministic

diffusion process. To arrive at our stochastic ”counterpart” of 2.11 it has to point

out first, that the cumulative number of innovators and imitators are both random

variables with

N̄(t)k = E[N(t)k] = mF (t), k = {1, 2}, (2.27)

where k = 1 stands for the innovators and k = 2 for imitators and t is measured still

in continuous time.

Defining dN(t)k
dt

= n(t) for k = {1, 2} we can theoretically derive two different systems:

the first system could assume that mean reverting takes place from the mean number

n̄(t) or from the actual alteration rate of adoptions ñ(t). The difference is, that the

mean alteration rate of adoptions n̄(t) is treated as an exogenous variable, whereas

ñ(t) is endogenous. For this reason, we should prefer to work with ñ(t).

Keeping this in mind the following stochastic expansion of system 2.11 is defined:

[
dn(t)1

dn(t)2

]
=

[
ζ[ñ(t)1 − n(t)1] dt

dW (t)1
+ σn(t)γ1 0

0 ζ[ñ(t)2 − n(t)2] dt
dW (t)2

+ σn(t)γ2

] [
dW (t)1

dW (t)2

]
,

(2.28)

where W (t)k is the standard Wiener process, ζ > 0 is the adjustment speed. Please

note, that W (t)1 and W (t)2 are eventually correlated. Further σ > 0 and γ ≥ 0.5.

Therefore, the speed of mean reversion depends on the value of ζ. This system 2.28 is

a generalized stochastic version of 2.11, because it contains an error term in continuous

time with a standard deviation which equals to σn(t)γk. As n(t)k → 0, the error term

σn(t)γk → 0 and thus it is guaranteed that n(t) takes non negative values. It should

be clear that 2.11 is obtained if ζ → ∞ and σ → 0. Because of the fact, that for

γ = 1 it can be shown that n(t)k is strictly positive. Hence, γ = 1 has been set. In

this work, the examination of system´s 2.28 dynamic behaviour is done on the basis

of simulation experiments. Alternatively, one can show formally, the existence and

solution of 2.28. One aspect which can be easily seen from 2.28 is that, given the

36



2 Knowledge diffusion and the role of knowledge transfer: a stochastic approach

starting value N(0)k = 0, N(t)k increases monotonically to N(t)k = m for t → for

large T . Please additionally note, that the speed of adjustment ζ is assumed to be the

same for both the innovators and imitators. That is also the case for σ.

Inserting model 2.11 in 2.28 yields the following system of stochastic differential

equations (sde):

[
dn(t)1

dn(t)2

]
=

[
A 0

0 B

] [
dW (t)1

dW (t)2

]
, (2.29)

with

A ≡ ζ {Θ1 − n(t)1}
dt

dW (t)1

+ σn(t)1, (2.30)

and

B ≡ ζ {Θ2 − n(t)2}
dt

dW (t)2

+ σn(t)2, (2.31)

and

Θ1 ≡
[
p1 +

(
q1
N(t)1

m1

)]
, (2.32)

and

Θ2 ≡ p2 +

[(
q2

N(t)2

(m1 +m2)

)
+

(
q12

N(t)1

(m1 +m2)

)]
. (2.33)

To simulate 2.28, the continuous time model has to be transformed into a time

discrete model with discrete observations Ni,k = N(ti)k for i = 1, 2, ..., T and k =

{1, 2}. Thus, adoption of new knowledge over the interval (ti−1,k, ti,k] is given by Ψ ≡
Ni,k −Ni−1,k.
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2.4.2 Euler-Maruyama approximation

The discretization model 2.29 is based on the so called Euler-Maruyama approxima-

tion14. On a given interval [t0, T ] and for a given discretization t0 < t1 < ... < ti <

... < tN = T of [t0, T ] an Euler-Maruyama approximation of an one dimensional Ito

sde dXt = f(Xt, θ) + g(Xt, θ)dWt is a so called time stochastic process which satisfies

the proposed iterative scheme

yi+1 = yi + hif(yi) + g(yn)∆Wi, (2.34)

with y0 = x0 for i = 0, 1, ..., N − 1, where yi = y(ti), ξi = [ti− ti−1] is the step size and

∆Wi = W (ti)−W (ti−1) ∼ N (0, ξi) with W (t0) = 0.

The last follows, because of the definition of a Wiener process we conclude that these

increments are independent Gaussian random variables with mean 0 and variance hi.

The increments ∆Wn can be computed as ∆W =
∫ ti+1

ti
dWt = W (ti+1) − W (ti). It

is straightforward that the proposed Euler-Maruyama approximation still holds for

systems, like 2.29. Please note again, that W (t)1 and W (t)2 are eventually correlated.

It is known that Euler-Maruyama method converges with strong order γ = 1 for

additive noise and for constant diffusion term g the Euler-Maruyama method should

provide a reasonable approximation.15 For other cases, however the method provides

eventually a poor estimate of the solution, especially if the coefficients of interest

have to be treated as non-linear, a fact, which is known from the deterministic Euler-

approximation. To get a higher accuracy of approximation higher order schemes, like

the Milstein scheme, should be consulted, because it has to be pointed out that as the

order of Euler-Maruyama is only satisfactory regarding approximation results if a fine

time span ξi = H
T

is used.16

Applying the Euler-Maruyama approximation for system 2.29, using n(ti)k−n(ti−1)k,

the following expression is obtained:

[
n(ti)1 − n(ti−1)1

n(ti)2 − n(ti−1)2

]
≈

[
ζ
{[
p1 +

(
q1
N(ti−1)1

m1

)]
− n(ti−1)1

}
ξ + ϑ1

ζ
{
p2 +

[(
q2

N(ti−1)2
(m1+m2)

)
+
(
q12

N(ti−1)1
(m1+m2)

)]
− n(ti−1)2

}
ξ + ϑ2

]
,

(2.35)

14Refer to for (Kloeden and Platen, 1992), p. 305 instance.
15On general, the Euler-Maruyama method has strong order of convergence γ = 0.5 and for weak

order of convergence γ = 1.
16Refer to (Kloeden and Platen, 1992), p. 345.
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with ξ = [ti − ti−1] and ϑk = σ[W (ti)k −W (ti−1)k] ∼ i.i.d.N (0, σ2ξ).

The approximation of adopting new knowledge Ψi,k over the time interval (ti−1, ti]

can be written as

Ψi,k = N(ti)k −N(ti−1)k =

∫ ti

ti−1

n(t)kdt ≈ n(ti)k(ti − ti−1) = n(ti)kξ. (2.36)

Thus the alteration rate of adopting new knowledge is given by ∆Ψi,k ≡ Ψi,k−Ψi−1,k,

or

∆Ψi,k ≡ Ψi,k −Ψi−1,k ≈ ξ[n(ti)k − n(ti−1)k]. (2.37)

Using 2.37 together with 2.28 and 2.12 or 2.29 we obtain

[
∆Ψi,1

∆Ψi,2

]
≈

[
ξζ
{[
p1 +

(
q1
N(ti−1)1

m1

)]
− Ψi−1,1

ξ

}
ξ + ξ

Ψi−1,1

ξ ϑi,1

ξζ
{[
p2 +

(
q2

N(ti−1)2
(m1+m2)

)
+
(
q12

N(ti−1)1
(m1+m2)

)]
− Ψi−1,2

ξ

}
ξ + ξ

Ψi−1,2

ξ ϑi,2

]
,

(2.38)

or

[
∆Ψi,1

∆Ψi,2

]
≈

≈
[

ζξ2p1(m1 −N(i−1),1) + ξ2 q1
m1

N(i−1),1(m1 −N(i−1),1)− ζξΨi−1,1 + Ψi−1,1ϑi,1

ζξ2p2(m2 −N(i−1),2) + ξ2 q2
(m1+m2)

N(i−1),2(m2 −N(i−1),2) + ς − ζξΨi−1,2 + Ψi−1,2ϑi,2

]
, (2.39)

with

ς ≡ ξ2ζ
q12

(m1 +m2)
N(i−1),2(m2 −N(i−1),2), (2.40)

or

[
∆Ψi,1

∆Ψi,2

]
≈
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≈
[

φ0,1 + φ1,1N(i−1),1 + φ2,1N2
(i−1),1

+ φ3,1Ψi−1,1 + Ψi,1ϑi,1

φ0,2 + φ1,2N(i−1),2 + φ2,2N2
(i−1),2

+ φ3,2N(i−1),1 + φ4,2N(i−1),1N(i−1),2 + φ5,2Ψi−1,2 + Ψi,2ϑi,2

]
, (2.41)

with ϑ ∼ i.i.d.N (0, σ2ξ) and

φ0,1 = p1m1ζξ
2, (2.42)

φ1,1 = ζξ2(q1 − p1), (2.43)

φ2,1 =
−q1ζξ

2

m1

, (2.44)

φ3,1 = −ζξ, (2.45)

φ0,2 = p2m2ζξ
2, (2.46)

φ1,2 = ζξ2[(
m2

m1 +m2

q1)− p2], (2.47)

φ2,2 =
−q2ζξ

2

m1 +m2

, (2.48)

φ3,2 =
m2

m1 +m2

ζξ2q12, (2.49)

φ4,2 =
−q12ζξ

2

m1 +m2

, (2.50)

φ5,1 = −ζξ. (2.51)

In this notational form we can interpret ς as the knowledge transfer parameter func-

tion, which depends among other values on q12, which is again the probability of knowl-

edge transfer. If q12 = 0 then ς = 0 and thus no knowledge transfer from the innovators

to the imitators takes place.

2.5 Simulation

2.5.1 Simulation of deterministic knowledge diffusion model

In this section the adoption curves of our model 2.11 are simulated. For simulation

purposes we first have to assign a set of parameters. The values of the external knowl-

edge transfer coefficients p1 and p2 are set to p1 = 0.13 and p2 = 0.01, which means

that the innovators are more influenced by external knowledge transfer as the imita-

tors. The value for the internal knowledge transfer coefficient q1 and q2 are determined

to q1 = 0.75 and q2 = 0.50, which means that internal knowledge transfer matters

more for the group of imitators. The knowledge transfer coefficient q12 is for now set to
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q = 0.07. Later on in this chapter a sensitivity analysis regarding q12 for the stochastic

knowledge diffusion model is performed to determine the effect on the overall adoption

curve for different parameter constellations of q12. Table 2.3 summarizes the calibrated

values for the simulation study.

Parameter Value
p1 0.13
p2 0.01
q1 0.75
q2 0.50
q12 0.07
m1 1.00
m2 1.00
ξ 0.05
ζ 5.00
σ 0.50

Table 2.3: Parameter values for system 2.11

The simulation of model 2.11 is done with Matlab 6.5.0 with cross checks conducted

with Mathematica 5.2.. Simulation results have been graphically represented in figure

2.3. In the left upper figure the adoption curves for N(t)1, N(t)2 and the overall market

N(t)all have been drawn in red, green and blue colour respectively. We can see, that the

knowledge diffusion process of the innovators comes to an end after around 6 periods,

because the entire population of innovators has adopted new knowledge, which means

that m1 = N(6)1 = 1 and thus Ṅ(t)1 = 0. On contrary, the knowledge diffusion process

of the imitator group stops after around 20 periods of time with m2 = N(20)2 = 1

and thus Ṅ(t)2 = 0. Using the results from our stability analysis, we have realized a

stable equilibrium at m∗1 = m∗2 = 1. Figure 2.2 gives a graphical representation of the

equilibrium path for the simulated model based on parameter values in table 2.3 and

with arbitrary starting values N(0)1 = N(0)2 = 0. Furthermore, figure 2.3 shows, that

the unique equilibrium m∗1 = m∗2 = 1 is stable.

The left lower graphic contains the same information as the left upper figure but in

relative numbers related to the market potential m1 and m2 respectively. The inflection

points of the innovators and imitators are realized at around 2 periods for the innovators

and at around 9 periods for the imitators. In the lower right panel you can find the

relative analogon of the upper right panel. It is easy to see, that for m1 = 1 and m2 = 1

the upper right and the lower right figure coincide.

What impression can we get from figure 2.3 regarding the overall diffusion process

n(t)all. First, the knowledge diffusion process does not exhibit a bell shaped pattern,
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Figure 2.2: Phase plot of model 2.11 (II)

as the original (Bass, 1969) model but is unimodal with dent towards right. This is

because the innovators still have adopted the entire knowledge and have realized the

inflection point, whereas the imitators just start to adopt. Please note, that we do not

observe the typically bimodal ”chasm” pattern because cross sectional external knowl-

edge transfer (q12 > 0) takes place. As shown later, the typically ”chasm” pattern17 of

the knowledge diffusion process is only realized if q12 = 0.

As mentioned before, one of the drawbacks of this model is that the adoption curves

N(t)1 and N(t)2 still both exhibit the typical S-shaped pattern, as one can see from the

upper left and lower left pictures of figure 2.3. This assumption seems to be to strict.

Thus, this strict pattern structure has been relaxed by assuming that the diffusion

process is a mean reverting event and hence, short term deviation from a deterministic

sigmoid adoption path, should be allowed. The simulation of model 2.29 is performed

in the next section.

2.5.2 Simulation of stochastic knowledge diffusion model

In this section a simulation study of model 2.29 is conducted. Inserting the calibrated

values from table 2.3 in 2.42 to 2.51 leads to

17Again, it is referred to (Van den Bulte and Joshi, 2007) for instance.
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Simulation szenario for q12=0.07 Simulation szenario for q12=0.07

Simulation szenario for q12=0.07 Simulation szenario for q12=0.07

Figure 2.3: Graphical representation of simulated model 2.11 with q12 = 0.07

φ0,1 = p1m1ζξ
2 = 1.625× 10−3, (2.52)

φ1,1 = ζξ2(q1 − p1) = 7.75× 10−3, (2.53)

φ2,1 =
−q1ζξ

2

m1

= −9.375× 10−3, (2.54)

φ3,1 = −ζξ = −0.25, (2.55)

φ0,2 = p2m2ζξ
2 = 1.625× 10−3, (2.56)

φ1,2 = ζξ2[(
m2

m1 +m2

q1)− p2] = 3× 10−3, (2.57)

φ2,2 =
−q2ζξ

2

m1 +m2

= −3.125× 10−3, (2.58)

φ3,2 =
m2

m1 +m2

ζξ2q12 = 4.375× 10−4, (2.59)

φ4,2 =
−q12ζξ

2

m1 +m2

= −4.375× 10−4, (2.60)

φ5,1 = −ζξ = −0.25. (2.61)
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2 Knowledge diffusion and the role of knowledge transfer: a stochastic approach

As mentioned above, the simulation of the system of stochastic differential equation

2.29 has been performed with Matlab 6.5.0. If we refer to 2.5 on the upper left figure

we can find the distribution functions F (t)1 and F (t)2 for the adoption process for

innovators and imitators. Additionally, one can find in the same figure the discrete

approximation of the distribution functions expressed by N(t)1
m1

for the innovators and
N(t)2
m2

for the imitators. The overall distribution function F (t)all exhibits a dint pattern

which commemorates slightly on a S-Shaped pattern. This is also the case for the

discrete approximation N(t)all
mall

in the same subpicture 2.5. We can find also the density

function f(t)1 and f(t)2 for the adoption process for innovators and imitators and the

corresponding approximations n(t)1
m1

and n(t)2
m2

. In the lower right figure additionally

the relative alteration rates for adopting new knowledge ∆Ψi,k ≡ Ψi,k − Ψi−1,k for

k = {1, 2} are drawn. Further, for the entire population N(t)all we observe a S-

shaped mean reverting behaviour with the largest deviation from the mean around

the inflection point, as we should expect. Additionally, overall adoptions Ψi,all exhibit

a mean reverting behaviour with the largest fluctuations around the peak both for

innovators and imitators.

Simulation szenario for q12=0.07 Simulation szenario for q12=0.07

Simulation szenario for q12=0.07

Figure 2.4: Graphical representation of simulated model 2.12 with q12 = 0.07

The interesting point is, how do changes of the knowledge transfer parameter q12

influence system 2.29 and how do variations of knowledge transfer affect the cumu-

lative and adoption curves of the model 2.29 for both groups. For this purpose a

sensitivity analysis for three scenarios has been performed: in the first scenario it is as-

sumed, that knowledge transfer from the group of innovators to the group of imitators

is prohibited. Please note again, that the knowledge transfer process is asymmetric,
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which means that knowledge transfer goes from the group of innovators to the group of

imitators and not vice versa. The second scenario is characterized by a limited knowl-

edge transfer, with q12 = 0.07 which corresponds to the already performed simulation.

The last scenario assumes nearly complete knowledge transfer, which implicitly means

that strong network effects are in place. For the simulation scenario, this means that

q12 = 0.99.

The simulation results for the first and last simulation scenarios are depicted in figure

2.5 and 2.6.

Simulation szenario for q12=0.00 Simulation szenario for q12=0.00

Simulation szenario for q12=0.00

Figure 2.5: Graphical representation of simulated model 2.12 with q12 = 0.00

If we compare the figures 2.4, 2.5, 2.6 we can conclude the following: the less im-

portant network effects are, which coincides with parameter value of q12 → 0 the more

realistic is the so called ”chasm” pattern. With other words: the longer the discrep-

ancy between the realization of the inflection point of innovators and the beginning of

imitator’s adoption is, the more realistic is a bimodal shape of the adoption curve. On

the other side, the stronger network effects are, the greater the parameter value of q12

is, the less realistic is the so called ”chasm” pattern, because right before innovators

have realized the inflection point imitators have nearly reached themselves their inflec-

tion point. In this way we can conclude that a bimodal pattern of overall knowledge

diffusion is more likely if network effects are from less importance, whereas unimodal

but not necessarily bell-shaped pattern in the sense of (Bass, 1969) of diffusion is more

likely if strong network effects are in place.
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Simulation szenario for q12=0.99 Simulation szenario for q12=0.99

Simulation szenario for q12=0.99

Figure 2.6: Graphical representation of simulated model 2.11 with q12 = 0.99

2.6 Econometric Annotations

The question which is unanswered is, how knowledge diffusion can be measured empiri-

cally, especially the parameter q12. First, one has to find suitable proxies for knowledge

diffusion. One possibility is to assume, that new knowledge is stored in scientist jour-

nals and citations of specific articles could be a proxy for diffusion of this new knowl-

edge. Citations typically often have similarities with the diffusion of new products. At

the beginning citations are low then they start growing and reach a peak before the

citations tend to zero.

As one can see, system 2.29 can be estimated directly. Obviously, a seemingly

unrelated regression (SUR) seems to be appropriated estimating system 2.29, because

2.29 is block recursive. Note, that this model assumes heteroscedastic errors because

of the term σn(t)γk 6= 0. This again reflects the idea, that diffusion is more certain at

the beginning and at the end of the diffusion process.

Before performing the SUR regression, the question to be answered is, whether the

estimated coefficients are consistent or not. (Boswijk and Franses, 2005) have shown

that the estimators do not exhibit the desired asymptotic normality behaviour by

estimating a stochastic version of the (Bass, 1969) model. More precisely, the authors

have shown that, even by increasing the sample period, the estimators φ ∈ Φ cannot

be estimated consistently at all. This result seems to be reasonable, because after

realizing the saturation level m1 or m2 respectively, information no longer increases

which is necessary to obtain consistent estimators of the parameter vector.
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Although the before mentioned authors have shown, that inconsistent parameter

estimates occur by estimating their stochastic version of the (Bass, 1969) model, they

also concluded on the basis of Monte Carlo simulations for different time spans H = ξT ,

that standard normal distribution can be consulted to approximate t-statistics of the

estimated parameter vector, provided the inflection point lies within the sample period.

But even if the estimators are asymptotically consistent, are they unbiased in small

samples, which are standard for econometric applications in this research field? This

topic is until today not addressed in literature.

2.7 Conclusion

In this chapter the link between knowledge transfer, knowledge diffusion and implicitly

network effects has been investigated. For this reason a new diffusion model was put

forward which focuses on those before mentioned aspects. The relevant literature has

payed less attention investigating the link between knowledge transfer and knowledge

diffusion. Particullarly, the question in which way knowledge transfer has an influ-

ence on the behavoiur of innovators and imitators within the adoption process is from

interest.

The basis for this stochastic differential equation (sde) model is the well known

(Bass, 1969) model. Although (Bass, 1969) mentioned that communication between

innovators and imitators is relevant for adoption decision, this fact is not reflected in

his mathematical derivations. Following (Kalish, 1985) and assuming that innovators

need only ”search” information to adopt new knowledge, while the latter imitators

require ”experience” type information before they adopt, a model which includes both

the adoption decision of innovators and imitators is set up. In this way, the group of

adopters has to be treated as heterogeneous. Further it was assumed, that information

flows only in one direction, from innovators to imitators. Thus, the information flow is

asymmetric.

After an appropriate discretization, in a simulation study it was shown, that the

shape of the adoption pattern depends on the fact, if knowledge diffusion occurs or

not. If knowledge transfer occurs, the stronger network effects are, so called unimodal

patterns are more probable, because right before innovators have realized the inflection

point, imitators have nearly reached themselves their inflection point. On contrary, the

longer the discrepancy between the realization of the inflection point of innovators and

the beginning of imitators adoption is, the less important network effects are, the

more probable the called bimodal adoption phenomena are. Thus ”chasm” patterns of

adoption curves occur if network effects are from less importance.
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The advantage of this new model is twofold: from a theoretical point of view, not only

so called unimodal diffusion phenomena can be modeled, but also bimodal diffusion

phenomena can occur. From an empirical point of view, the model which incorporates

heteroscedastic errors and mean reverting can be theoretically estimated directly with

a SUR approach.

So far this study suggests some avenues for further research. First of all and for now,

the assumption that the market saturation level is exogenous and constant over time

is very strict. Second, from a technical point of view, mean reverting is assumed to

be the same over the entire population. Thus another source of heterogeneity can be

introduced in the model by assuming different values for ζ. Third, after examining the

large and small sample properties of the derived model the forecasting ability should

be of interest.
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3 The impact of learning and knowledge

diffusion on industrial dynamics

3.1 Introduction

These days, firms R&D activities are mainly focused on the development of new pro-

cesses, products and services. In a globalised world it is more than ever from outstand-

ing importance to enhance the own firm competitiveness not only for present market

positioning but also for long term market survival. From this background, it is not

astonishing, as highlighted by (Clark and Fujimoto, 1991) and (Tushman and Nadler,

1986) for instance, that engagement into innovation activities cannot be considered as

a piece of work beyond the call of duty but rather than the crucial duty to ensure

firms future existence. Thus, innovation activities exert a direct influence on market

activity, and thus on market share development. Further it can be assumed that in-

novation activities are directly linked to firm size and thus firm size also influences

market activity.

From this background, the exploring of so called feedback processes between inno-

vation, market share and firm size has gained much attention during the last years.

For many years, the effects of innovation and firm size and the relationship between

market share evolution and innovation have been discussed in isolation.

As stated by (Cohen and Levinthal, 1989) on p. 1070, ”[a] methodological problem

common to almost all the studies of the relationship between size and innovation is

that they overlook the effect of innovation on firm growth (and hence, ultimately firm

size). It is curious that the endogeneity of firm size, central to Schumpeter’s notion

of creative destruction, has been neglected, while the simultaneity associated with

creative destruction has been recognized in some studies of the relationship between

innovation and market concentration. This lacuna probably reflects the profession’s

primitive understanding of the determination of the size and growth of firms, and area

of research that has just recently been revived.”

As mentioned before, there subsists a large body of literature covering the relation-

ship between firm size and innovation, which are primarily focused on manufacturing
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industries. These studies are heavily empirical based and are ambiguous with respect

to the effects of firm size on innovation. For instance, (Mansfield, 1968) and (Schmook-

ler, 1972) pointed out, that small firms tend to be more innovative than larger firms,

whereas (Fisher and Temin, 1973) and (Vernon, 1974) found the contrary. (Kumar and

Saqib, 1996) have found that the probability of engaging in R&D activities is positive

correlated with firm size up to a certain threshold. Beyond this threshold R&D activ-

ity is declining. On contrary, (Wakasugi and Koyata, 1997) found, that firm size and

innovation activity are not direct linked. They highlighted, that hence larger firms are

more aggressive to pursue their innovation efforts but the efficiency of innovation is not

necessarily enhanced by a growing firm size. (Cohen and Klepper, 1996) differentiates

between process innovation and product innovation and found that process innovation

increases with firm size.

If we now turn the focus on the effect of market structure on innovation, in principle

two different scenarios are cogitable: the first is, that a positive relationship between

monopoly power and innovative activity can be assumed, the second is, that innovative

activity suffers from monopoly power. The first as well as the second relationship is

from an empirical view documented in a voluminous literature.1 (Scherer, 1967) and

(Levin et al., 1985) for instance found an inverted U-pattern between market structure

and innovation. This reflects the fact, that insufficient market power hinders firms to

reduce so called up-front R&D effort, whereas an increasing market power reduces the

incentive to engage in further R&D effort.

The problem of the before mentioned empirical orientated branches of literature are,

that endogeneity problems occur, that means, ex ante it is not clear whether first the

innovative activity determines firm size or firm size determines activity and second,

the innovative activity determines market structure or market structure determines

innovative activity. The problem one is confronted with, are feedback processes not

only within the two branches, but also between the two branches.

Further, learning activities and knowledge diffusion play an important role when

exploring feedback processes between innovation, market share and firm size. As men-

tioned by (Campagni, 1991), (Best, 2001), (Porter, 2000) and (Krugman, 1991) in a

more spatial context, that inter-firm cooperation based on knowledge sharing can ex-

plain the predominance of small firms in the market. Learning can be described as a

cognitive process of attaining new capabilities, to cope with not only the economic but

also with the physical and social environment.2. Learning curves have both strategic

1See (Cohen and Levinthal, 1989) for a summary or more recently studies from (Nickell, 1996),
(Nickell et al., 1997) and (Blundell et al., 1995) for instance which show unambiguously negative
correlations between market structure and innovation.

2Refer to (Asheim, 1996).
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and competitive implications for firms as mentioned by (Spence, 1981) and a more

strategic dimension for planning decisions as highlighted by (Chand and Sethi, 1990).

Empirically, numerous studies have found that learning curves differ on the one hand

on an inter-industrial level and on the other hand on an intra-industrial level. 3 Because

innovations are produced by firms, knowledge is the presumption for this task. Thus

knowledge is generated and transmitted in firms and between firms by human being,

a micro view learning curve concept which is focused on personal learning seems to

be appropriate. (Anderson and Schooler, 1991) for instance showed in psychological

designed laboratory experiments that learning curves with diminishing returns are

consistent with hyperbolic, square root, exponential and power functions. It is assumed

that, knowledge generation depends first on not directly observable components such as

talent, which is a proxy for the apprehension and second on the historically given stock

of knowledge of an agent as highlighted by (Florida, 2002). Thus, knowledge generation

can be interpreted as a separate production process in firms with input factors talent,

grasp and of course time which is needed to accumulate knowledge. As mentioned

by (Machlup, 1980) the creation and diffusion of knowledge is a core element of the

production process and finally for the market structure in which the firm operates.

The aim of this study is to combine the effect of firm size, innovation and the

effect of market structure on innovation with the effects of knowledge diffusion and

learning. Thus this model is an extension of the work of (Mazzucato, 2000) in that

way, as it explicit introduces a channel of knowledge diffusion, which is endogenously

determined by learning activities. To integrate both aims, the so called replicator

dynamics approach is disposed. The tool itself stems from evolutionary economics

and is based on Darwin´s principle of natural selection. Particularly, on the basis of

simulation experiments it will be investigated how learning and knowledge diffusion

affect market structure. With this model it will be proofed whether and if yes learning

activities need a dilution of one of the stylized facts regarding firm size dynamics which

states, that early stages of an industry life cycle is characterized by instable market

patterns.

The reminder of this chapter is structured as follows: In the first section a replicator

dynamics model of market structure, innovation and firm size is introduced. After

simulating the model it is expanded by the aspect of learning and inter firm knowledge

transfer. Section four deals with the simulation of the before expanded model. In

section five a conclusion of the derived results is given.

3Refer for instance to this topic on (Hayes, 1986), (Dutton and Thomas, 1984) and (Pisano et al.,
2001).
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3.2 The basic model

3.2.1 Setup

In this section, a replicator dynamics model is introduced which is based on the works

of (Mazzucato, 2000), (Cantner and Hanusch, 1998), (Malerba and Orsenigo, 1993) and

(Noailly et al., 2003) for instance and the seminal work of (Dosi, 1982), who introduced

the so called paradigm-trajectory-approach and hereby identified stylized facts for the

evolution of an industry.

In the model economy, it is assumed that set of agents or firms B exist, who produce

under n strategies with i = {1, 2, ..., h−1, h, h+1, ..., j−1, j, j+1, ..., n−1, n}. To keep

the model simple, it is further assumed that every agent with strategy i produces with

a linear production technique with the only input Nt. Hereby Nt can be considered

as a regenerative but exhaustable resource4 which is growing with a certain exogenous

and time independent degree ξ in every period t, t ∈ T .

In contrast to the old neoclassical theory, it is not assumed a production technique

which uses input factors available ad infinitum in extremum. It is more realistic that

the production decision depends on scarce resources, especially in the short run.

The reason for this assumption is to endogenize the production decision which is

directly linked to the resource dynamics via the cost of production. It is referred later

to this point.

In this way, it is followed (Noailly et al., 2003), with the exception that we give a

wider definition of the evolution of the input factor Nt. It is worth mentioning that

one has to harvest the resource before using it as the input factor5.

For this reason, it is assumed that the agents harvest a specific stock Nt of a natural

resource in every period of time t. The maximum carrying capacity of our resource is

defined by M , which is obviously time independent and exogenously given. As usual

in resource economics, it is considered a logistic growth of the resource Nt:

dNt

dt
= ξNt

[
1− Nt

M

]
− ψE(Nt). (3.1)

Equation 3.1 is often called the ”Schaefer equation”, which is gathered from the

Gordon-Schaefer model (Gordon, 1954), which is often used to discuss issues stemming

4See for instance (Dasgupta and Heal, 1979).
5The cost of harvesting are not considered in this model.

52



3 The impact of learning and knowledge diffusion on industrial dynamics

from resource economics. As we can see from equation 3.1, it is proposed that a

fixed quantity of the natural resources is removed in every period of time, for example

in every year. Furthermore, ξ represents the exogenous growth rate of the resource

as mentioned before and E(Nt) represents the aggregate harvesting function, which

depends on the stock Nt. ψ represents the exogenous catchability coefficient, which is

of no further interest.

To make the discussion easier, in the following it is focused on the two strategy case

i = {h, j}. Hence, strategy i is associated with firm i. In this manner, a channel is

created to introduce agent specific heterogeneity (Noailly et al., 2003).

The two strategies can be formulated as follows: the first strategy h we label the

”green strategy”, which means that this strategy is less productive but less resource

intensive than the strategy j, h 6= j. The other strategy j is called the ”black strategy”,

because it is more resource intensive but more productive than the first one. Hence,

one can conclude that

E(·)hC(·)h > E(·)jC(·)j (3.2)

must hold. In equation 3.2, Ci stands for the cost of production and Ei stands for

the effort of strategy i, which is given exogenously.6

It is further implied that we can use the resource as input factor directly, which

means that we do not include an intermediate good production sector in the model.

The implication of this assumption is that the cost of production must include the

cost of harvesting and furthermore, the cost of harvesting must equalize with the cost

of production since no other costs of production are included in the analysis. Subse-

quently, in the following the terminology “cost of production” is used.

As mentioned before, we postulate a linear production function with input Nt. Thus,

one can write for the production in period t, ∀t:

Ft(Nt)
i = EiNt, i = {h, j} , ∀t (3.3)

As usual in resource economics, the costs per product are defined as cit(Nt) ≡ Cit
Nt+1

,

6Unless it is necessary, I leave the time index t for convenience.
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which implies the more resource intensive the production is, the more expensive is the

extraction of a fraction of the stock Nt in the next period. Therefore, an implicit for-

ward looking agents´ behavior is assumed. Of course, if Nt = 0, then Ci
t(0) = 0, ∀ t

per assumption. Consequently, Nt has to be treated as a necessary input factor for

production. Again the reader has to bear in mind that the only purpose of the above

mentioned assumption is to endogenize the production decision via endogenous cost of

production.

With the above mentioned assumption it is now possible to deduce the profit per

period t of the agents strategies i = {h, j} which depends exclusively on the stock of

the resource Nt, as one easily can derive from the next equation:

Πi
t ≡ EiNt(p− ci), i = {h, j}. (3.4)

From that equation it is easy to obtain the profit per unit of strategy i in period t

πit as follows:

πit ≡
[

Πi

F i
t

]
= p− ci, (3.5)

where p stands for the exogenous price level.

Additionally and similar to (Noailly et al., 2003) it is postulated that the aggregate

harvesting function is a convex combination of the single harvesting functions F i. If

we assume during a certain period of time a fraction β of the total population B , β ∈ B
explicitly decides to use the strategy i with

∑
i s
i = 1 we can formulate the aggregate

harvesting function as

E(Nt) =
∑
i

siβF i(Nt). (3.6)

si stands for the market share of using strategy i.7 With the last paragraph we have

described the production sector totally.

To sum up, the main purpose of this section is to describe the dependence of the

7One can set the B = 2 so that one strategy i corresponds to an agent i in the two strategy case
i = {h, j}.

54



3 The impact of learning and knowledge diffusion on industrial dynamics

evolution of the scarce resource N in the production sector and the influences of the

evolution of Nt on the cost of production Ci under usage of a certain strategy i from

a pool of strategies n. In the next section, I proceed with some comments concerning

the market evolution in the model.

3.2.1.1 Market share evolution

To expand the dynamic dimension in the model, it is presupposed that the market share

si under usage of strategy i will change over time. Therefore, we have to acknowledge

the time aspect in the expression of si. To model the dynamic dimension of si, we recur

to some facts from the field of population genetics, on which evolutionary economics

is mainly based.

In the year 1908, (Hardy, 1908) published a striking article, which can be treated

as a cornerstone for mathematical orientated population genetics. In this article it is

assumed that

• some genetic frequencies, which he labelled (q, p) of two allele of a certain gene

position have not to be unchanged by reproduction over the generations, belong

to a certain population. The implication of this assumption is that the possibility

of selection is excluded.

• the probabilities of belonging to a certain genotype (x, y, z) is exclusively defined

by the initial co-generation in the way that: x = p2, y = 2pq, z = q2.

(Fisher, 1930) formulated a general equation of population genetics which bases on

the ideas of (Hardy, 1908):8

ẋi = xj

(∑
i

ωijxj −
∑
r,s

ωr,sxrxs

)
, (3.7)

with
∑

i ω
ijxj as the fitness of reproduction of all genotypes AiAj, ω as the advantage

of survival and
∑

r,s ω
r,sxrxs as the average fitness for all other genotypes from Ar, As,∈

H, {r, s} 6= j. The expression
∑

j ω
ijxj−

∑
ωr,sxrxs can be interpreted as the advantage

of survival, as a consequence.

Next, the ideas of the (Fisher, 1930) equation on our problem of how to model the

market share evolution are adopted. From the above gained facts, we can conclude

that si depends solely on the comparison between the fitness f i and the average fitness

8In this equation i and j denote the generations of genotypes.
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f̄ of the chosen strategy i of an agent.

In general, fitness depends on a n-dimensional vector s which contains the relative

frequency of all possible replicators. Accordingly, one can write:

ṡi = si[f i(s)− f̄(s)]. (3.8)

Now we are able to adopt this general equation for our purpose. If we assume that

the rate of capacity enlargement gi corresponding to the usage of strategy i is positive

related to the profit per unit πit, we can write:

gi = γπi = γ(p− ci) = γ

[
p− Ci

N + 1

]
, (3.9)

with the reaction coefficient γ > 0.

Next the average costs per product are defined as c̄ =
∑

n s
ici, the average capacity

enlargement rate or the average growth rate of the population of firms using a profitable

strategy as ḡ =
∑

n s
igi and set f i(s) = gi(s). Together with the derived equation we

can write

ṡi = si(gi − ḡ). (3.10)

After doing some algebra, we can rewrite equation 3.10 together with equation 3.8

and equation 3.9 for strategy h for instance as follows:

ṡh = γsh(c̄− ch) = γsh
(
C̄ − Ch

N + 1

)
= (1− sh)

(
Cj − Ch

N + 1

)
sh, (3.11)

whereas in the last step γ = 1 is assumed. What can we gain from this last derived

equation? By a given stock of Nt the evolution of strategy si depends only on the

cost relation to a competing strategy j. If the cost difference ∆(C) ≡ Ch − Cj = 0,

then, the agents should be indifferent between these two strategies from the pool n by

a given level of Ei or the agents have no incentive to change their strategy. Otherwise
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we have a strictly dominating strategy sh � sj for ∆(C) ≡ Ch − Cj < 0 et vice versa.

Further, one can derive the following relationship of sh and Ch for a given stock of Nt:

∂ṡh

∂Ch
< 0 (3.12)

and

∂ṡh

∂Cj
> 0. (3.13)

Subsequently, for a steady state of sh, sh∗ (which means that ṡh = 0) we can conclude:

ṡh = 0⇔ sh∗ = 1 ∧ Ch∗ = Cj∗ for sh∗ ∈ (0, 1). (3.14)

Therefore, market survival depends on the fitness of a firm i which is exclusively

governed by the firms´s cost structure, as one can see from equation 3.11. The main

purpose of this section was to give a guess on how the evolution of the market share

si depends on the resource Nt and the cost of production Ci. Until now, we have

an idea about the market structure and the production sector. In the next section,

technological progress is introduced.

3.2.1.2 Technological progress and market selection

As mentioned before, agent specific heterogeneity via different cost regimes has been

modeled. It is plausible to assume that agents invest in a less cost intensive producing

technology.

In this way, a further dimension of what is called the structural dynamic aspect in

the model is highlighted. It is easy to see why. For a moment let us assume that an

agent uses a strategy h with cost of production tending zero in the long run. Compared

to a competing strategy j it is straightforward that this strategy j is ruled out of the

strategy field of all agents which are producing in the market if Cj 7→ C̄ > 0 for t 7→ ∞.

Hence, we have, looking at our previous results, a strictly dominating strategy h which

monopolized the market. Consequently, the market itself is monopolized because the

market share sh by using strategy h tends to the value 1 in the long run. That‘s ex-

actly the link between the existence of technology progress and how it influences the

market structure in the long run. Of course, in the short run one can imagine some

turbulences a propos the market evolution. This observation covers the industry life

cycle assumptions (Malerba and Orsenigo, 1993).
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Herewith, a direct link from the model to some ideas of Schumpeter on the sub-

ject of the dimension of structural dynamics and volatility is created. A wide known

thesis proposed by Schumpeter is that creative destruction is a necessary condition

for innovative firms. Of course, such firms have to dispose of financial potential to

invest in R&D. Schumpeter assumes that the financial potential of firms is positive

correlated to the market power of the firm. Thus, we realize a process of creative

destruction mainly driven by R&D investments of innovative firms. The implication is

that monopoly power is a necessary condition to create incentive for investments into a

technology which itself drives technological progress. (Neumann et al., 1982) conclude

“that larger firms ... acquire smaller firms in order to exploit the innovative potential

originated in these firms”9.

It is also obvious that a tradeoff between the static and dynamic characteristics of

competition exists. On the one hand one can realize extra rents from monopoly power

which ensure growth, on the other hand, we have to acknowledge an allocative loss of

efficiency. Consequently, the size of firms, the degree of concentration and innovative-

ness are positive correlated. From this follows that a higher degree of concentrated

industries must exhibit higher growth rates (Schumpeter, 1942). The ”Schumpeter-

Mark-II” is a major element in the frame work of the models of endogenous growth,

which are mainly promoted by (Aghion and Howitt, 1992).

On contrary, (Arrow, 1962) showed in his article that the incentive of investing in

R&D is negative correlated with the market power of an industry. He compares the

gain of a cost reduction process innovation in a competitive world with the additional

gain of cost reduction process innovation in a concentrated industry. He shows that

the increase of profit in a competitive world is larger than in a monopoly.

The implication of the above mentioned is that many small firms are more innovative

in a competitive world, while few but large firms are more innovative in a concentrated

world.10

It is short mentioned that a mass of literature exists which aims to test the Schum-

peter hypothesis empirically.11

The question arises how we can integrate some facts of the Schumpeter hypothesis in

9(Neumann et al., 1982), p. 135.
10Refer to (Acs and Audretsch, 1987).
11For the relationship between the size of firms, the degree of concentration and innovativeness refer

to (Cohen and Levinthal, 1989) and (Kamien and Schwartz, 1975) and for the relationship between
the firm size and innovativeness refer to (Frisch, 1993). For German data refer to (Neumann et al.,
1982), (Entorf, 1988), (Kraft, 1989), and to (Bertschek and Entorf, 1996) for Belgian, German and
French data.
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our model? If one recalls our formulation of equation 3.11, a direct link between market

share development and the degree of concentration can be derived. It is straightforward

that the higher the market share si is the more successful the strategy i must be. On

that account, we can suppose that the incentive to invest in a more successful strategy

i is higher compared to an inferior strategy j. It follows that the size of a firm and

the power of investment are striking factors for the market structure as well as for the

evolution of the market share si. Therefore, they both are positive correlated to the

success of a strategy i.

The implication is, if we follow (Phillips, 1971), that the positive correlation of the

firm size and the innovativeness follows a “success-breeds-success” hypothesis.12 This

implies that a positive dependence of successful innovation activity in the current period

and investment endeavours in the next periods exist. Following (Cantner and Hanusch,

1998) or (Malerba and Orsenigo, 1993) this interpretation is in line with the so called

”Schumpeter-Mark-II” hypothesis. On the other side, one could argue that smaller

firms are more innovative because their behaviour regarding to investment decisions is

more flexible (Malerba et al., 1997). This view is equivalent to the ”Schumpeter-Mark-

I” hypotheses.13

It is worth noting that the “Schumpeter-Mark-I” and the “Schumpeter-Mark-II”

hypothesis are common patterns which can occur both through the industry lifecycle,

whereas the early stage is characterized by the “Schumpeter-Mark-I” hypothesis, while

the later periods are more in line with “Schumpeter-Mark-II”. The implication is that

a ”Schumpeter-Mark-I” regime should be more volatile than a regime based on the

“Schumpeter-Mark-II” hypothesis. It is common measuring the stability with a so

called “instability index” 14 which is defined as:

= =
n∑
i

|ṡi|, (3.15)

with si as the market share of strategy i at time t.

To catch this interesting ideas, I follow (Malerba and Orsenigo, 1993), (Malerba et al.,

1997), (Mazzucato, 1998), (Mazzucato, 2000) and (Cantner and Hanusch, 1998) and

create a direct link from the “Schumpeter-Mark-I” hypothesis to increasing returns

12See for instance (Flaig and Stadler, 1994) who have found an empirical confirmation of the success-
breeds-success hypothesis for West-Germany using a German panel data set.

13For instance refer to (Acs and Audretsch, 1987), (Malerba and Orsenigo, 1993) and (Malerba
et al., 1997).

14This index was first introduced by (Hymer and Pashigan, 1962).
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of investing in a new, less cost intensive, technology. Instead of the “Schumpeter-

Mark-I” hypothesis, the “Schumpeter-Mark-II” hypothesis is directly associated with

the assumption of decreasing returns of investing in a new cost reduction technology.

Additionally, the case of constant returns to scale for the sake of completeness has been

incorporated. The latter case is extensively discussed by (Metcalfe, 1994).

Technological progress is reflected as intra-industry cost reduction over time. The

parameter θ ∈ (0, 1) denotes the speed of cost reduction. With respect to “Schumpeter-

Mark-I”, “Schumpeter-Mark-II” the cost evolution process can be separated in a dy-

namic constant return to scale case, dynamic increasing return to scale case and a

dynamic constant return to scale case. Hence, it is possible to write for Ċi:

Ċi =


−θCi

−θCisi

−θCi(1− si)
. (3.16)

As one can see from equation 3.16, the first line represents the case of constant

returns to scale, the second line the case of increasing returns to scale and the last line

the case of decreasing returns to scale. In the next chapter, the formulation of a model

of market selection which is driven by structural dynamics is given.

3.2.1.3 Summary

This section gives a summary of model elements. The model integrates the following

aspects:

1. Resource dynamics Nt, which influence

2. the selection of a producing strategy si via an endogenous cost structure Ci,

3. which is itself driven by technological progress θ in the cost structure.

These three points can be summarized in a more mathematical manner as follows:
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Ṅ = ξN
[
1− N

M

]
− ψβ

[∑
n s

hF h(N)
]

ṡh = sh(−ch + c̄)

Ċh =


−θCh

−θChsh

−θCh(1− sh)

Ċj =


−θCj

−θCjsj

−θCj(1− sj)

. (3.17)

Because of the fact, that the cost structure of firm h depends on the market share of

firm j et vice versa, we have to analyze a system of four non linear differential equations

for firm i.

Again, the first line of the system of equations 3.17 represents the evolution of the

resource Nt, the second equation gives an impression of how the market share si is

influenced by using strategy i. Whereas the last two line distinguishes between the

different kinds of returns to scale respective to the investment into a new cost reduction

technology.

The next step is to solve the model and examine its dynamic behaviour especially

in the short run. The emerging question is how to study the dynamics system 3.17.

As can be seen from above, we are confronted with a system containing non-linear

differential equations. Therefore, in the next section some comments with respect to

the dynamic behaviour are added.

3.2.2 Dynamic behaviour of the basic model

To discuss the dynamic behavior of our system, we have first to investigate, whether

a steady state in the sense of a long run equilibrium exists. This is equivalent to the

postulation that the partial derivatives over time of Ṅt, ṡt and Ċt must be zero. Hence,

we can formulate the following proposition:

Proposition 1 : On behalf of the assumption that the partial derivatives of Ṅt, ṡt

and Ċt exist and that Ṅt = 0, ṡt = 0 and Ċt = 0 hold simultaneously ∀t, the system

3.17 has a unique steady state vector S, which contains N∗, si∗ and Ci∗ in the long

run.�
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Next, I give a brief sketch of how to prove proposition 1.

Proof 1 : A steady state vector exists, if and only if Ṅ = ṡi = Ċi = 0 holds. This

is realized, if



ξN∗
[
1− N∗

M

]
= ψβ [

∑
n s

i∗F i(N∗)]

0 = si∗(−ci∗ + c̄)

0 =


−θCi∗

−θCi∗si∗

−θCi∗(1− si∗)

. (3.18)

As one can see from the system of equations 3.17, the equation for the evolution of

Ci is influenced only by si but not by N for the increasing and decreasing returns to

scale case each. For the constant returns to scale case the evolution of Ci is purely

autonomous in the sense that it is not influenced by Nt or si. As a consequence the

value of θ is an important determinant for the market structure evolution si. Thus, we

can find the following, which holds asymptotically:

1. Assume now, that a value of θ exists which is greater than a threshold value of

θ, θ̃ and near to a maximum value of θ, called θmax so that θmax > θ � θ̃ holds.

Then, speed of cost reduction is very fast and as a result after a short period

of time ṡi = 0. Additionally, from the second and third line of the steady state

system follows immediately that Ch∗ = Cj∗ = 0 and si∗ ∈ (0, 1), for every case

of returns to scale assumption. We obtain N∗ = M
[
1− ψβ[

∑
n E

isi∗]

γ

]
.

2. Further, assume that a smaller value of θ exists which is near to the minimum

value of θ, called θmin, and smaller than the threshold value θ̃. Then θ̃ � θ > θmin

holds, obviously. Accordingly, technological progress is very slow. For Ch(0) >

Cj(0)15 in t = 0 follows

a) for the constant returns of scale case: Ch∗ = Cj∗ = 0 which means that

sh∗ = 0. In addition, we obtain N∗ = M
[
1− ψβEj

γ

]
.

b) for the increasing returns to scale case: Ch∗ ∈ R+ ∧ Cj∗ = 0 which means

that sh∗ = 0. Once again, we obtain N∗ = M
[
1− ψβEj

γ

]
.

c) for the decreasing returns to scale case with the further assumption that a

ε 7→ 0 exists, for which one assume that ε < ε̃ ≡ |θ−θmin|: Cj∗ ∈ R+∧Ch∗ =

0 which means that sh∗ = 0. Once more, we obtain N∗ = M
[
1− ψβEj

γ

]
.

15Of course, one can assume Ch(0) < Cj(0). If Ch(0) = Cj(0) we cannot observe any dynamic of
si and Nt right from t = 0. Then si(0) = si∗ follows.
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From point 2 of proof 1 follows that θ̃ � ε� ε̃ must hold. For that reason,

we obtain N∗ = M
[
1− ψβ[

∑
n E

isi∗]

γ

]
for si∗ ∈ (0, 1).

3. If 1 or 2 of proof 1 holds, then ∃N∗ ∈ R+ \ {0}.

4. If one assumes N∗ = 0, then a set I of degenerated equilibria is realized for

si∗ ∈ (0, 1) and Ch∗ = 0 because one degree of freedom is left to set si∗.

�

Hence, a set of steady state values must be taken into account, which could all exist.

But what follows from proof 1 intuitively?

First, the dynamic is only driven by the parameter θ, which is purely exogenous per

assumption. Consequently, we obtain different scenarios regarding to our market struc-

ture depending only on the parameter of technological progress which is not explained

by our model.16

Second, if one sets θ = 0 we obtain a two-dimensional system consisting only in the

development of Nt and si.

Thus, this model can be described as a variant of the model of (Noailly et al., 2003).

On the other hand, if we handle Nt as constant Nt = N, ∀t, we obtain a market

structure model similar to (Cantner and Hanusch, 1998).

Now we will proceed with the stability analysis of the model.

3.2.3 Stability analysis of the basic model

As mentioned before, system 3.17 consists of four non-linear differential equations for

each firm i. To prove the local stability of system 3.17, we can linearize the system

around the steady states17. We can follow this way, because the Hartman-Grobman18

theorem states, that the behaviour of a non-linear dynamical system near a hyperbolic

equilibrium point is qualitatively the same as the behaviour of its linearization near

the origin. Further, an equilibrium is called non-hyperbolic if one of the Eigenvalues of

the linearized system 3.17 has a real part equal to zero. If this is the case, linearization

cannot be applied to proof local stability of system 3.17.

After the linearisation of system 3.17, the Jacobi-Matrix for the constant returns to

16Technological progress falls like “manna from heaven”. See for instance (Frenkel and Hemmer,
1999), p. 113.

17For this topic refer to appendix 1.
18Refer to (Guckenheimer and Holmes, 1983) for instance.
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scale reads as:

JacCRS ≡


∂Ṅ
∂N

∂Ṅ
∂sh

∂Ṅ
∂Ch

∂Ṅ
∂Cj

∂ṡh

∂N
∂ṡh

∂sh
∂ṡh

∂Ch
∂ṡh

∂Cj

∂Ċh

∂N
∂Ċh

∂sh
∂Ċh

∂Ch
∂Ċh

∂Cj

∂Ċj

∂N
∂Ċj

∂sh
∂Ċj

∂Ch
∂Ċj

∂Cj

 =

=


−γ(N

∗

M
) −ψβN∗(Eh − Ej) 0 0

−sh∗ (Ch∗−Cj)∗(sh∗−1)
(N∗+1)2

(Ch∗−Cj∗)(2sh∗−1)
N∗+1

[
sh∗−1
N∗+1

]
sh∗

[
sh∗

N∗+1

]
sj∗

0 0 −θ 0

0 0 0 −θ

 . (3.19)

Next, we have to evaluate the Jacobian at their steady state values for N∗, sh∗, Ch∗

and C2∗ for the constant returns to scale case. Refering to point 1 and 2a) of proof 119

we can conclude that we obtain two different versions of the Jacobian Jacuf
20 matrix:

JacCRS1 =


−γ(N

∗

M
) −ψβN∗(Eh − Ej) 0 0

0 0
[
sh∗−1
N∗+1

]
sh∗

[
sh∗

N∗+1

]
sj∗

0 0 −θ 0

0 0 0 −θ

 , (3.20)

JacCRS2a) =


−γ(N

∗

M
) −ψβN∗(Eh − Ej) 0 0

0 0 0 0

0 0 −θ 0

0 0 0 −θ

 . (3.21)

The corresponding Eigenvalues for Jacuf coincides for both fixed points and read as21:

ΨCRS
1,2a) ≡


λ1

λ2

λ3

λ4

 =


0

−γN∗
M

−θ
−θ

 .
19The degenerate case (point 4) of proof 1 has been neglected, because sustainability has been

assumed, which coincides with N > 0.
20The subscript f denotes to the numeration of proof 1, whereas the superscript u denotes to the

cases of returns to scale: CRS stands for the constant returns to scale case, IRS stands for the
increasing returns to scale case and DRS stands for the decreasing returns to scale case.

21For convenience, we stack the Eigenvalues in a vector Ψu
f each
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Obviously, the fixed points are non-hyperbolic.

Now, we proceed with the computation of the fixed points for the increasing returns

to scale case. The Jacobian now can be written as:

JacIRS ≡


∂Ṅ
∂N

∂Ṅ
∂sh

∂Ṅ
∂Ch

∂Ṅ
∂Cj

∂ṡh

∂N
∂ṡh

∂sh
∂ṡh

∂Ch
∂ṡh

∂Cj

∂Ċh

∂N
∂Ċh

∂sh
∂Ċh

∂Ch
∂Ċh

∂Cj

∂Ċj

∂N
∂Ċj

∂sh
∂Ċj

∂Ch
∂Ċj

∂Cj

 =

=


−γ(N

∗

M
) −ψβN∗(Eh − Ej) 0 0

−sh∗ (Ch∗−Cj)∗(sh∗−1)
(N∗+1)2

(Ch∗−Cj∗)(2sh∗−1)
N∗+1

[
sh∗−1
N∗+1

]
sh∗

[
sh∗

N∗+1

]
sj∗

0 −θCh −θsh∗ 0

0 0 0 −θsj∗

 . (3.22)

Evaluating the Jacobian at N∗, sh∗, Ch∗ and Cj∗ we obtain:

JacIRS1 =


−γ(N

∗

M
) −ψβN∗(Eh − Ej) 0 0

0 0
[
sh∗−1
N∗+1

]
sh∗

[
sh∗

N∗+1

]
sj∗

0 0 −θsh∗ 0

0 0 0 −θsj∗

 , (3.23)

JacIRS2a) =


−γ(N

∗

M
) −ψβN∗(Eh − Ej) 0 0

0 −Ch∗
1+N∗

0 0

0 −θCh 0 0

0 0 0 −θsj∗

 . (3.24)

Once more, we define a column vector Ψu
f which contains the Eigenvalues for the

first equilibrium as follows:

ΨIRS
1 ≡


λ1

λ2

λ3

λ4

 =


0

−γN∗
M

−sh∗θ
−sj∗θ

.

In the same way we stack the Eigenvalues for the second equilibrium in a column
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vector: ΨIRS
2b) ≡


λ1

λ2

λ3

λ4

 =


0

−γN∗
M

− Ch∗

1+N∗

−sj∗θ

 .

Finally, we compute the fixed points for the decreasing returns to scale case with the

corresponding Jacobian as:

JacDRS ≡


∂Ṅ
∂N

∂Ṅ
∂sh

∂Ṅ
∂Ch

∂Ṅ
∂Cj

∂ṡh

∂N
∂ṡh

∂sh
∂ṡh

∂Ch
∂ṡh

∂Cj

∂Ċh

∂N
∂Ċh

∂sh
∂Ċh

∂Ch
∂Ċh

∂Cj

∂Ċj

∂N
∂Ċj

∂sh
∂Ċj

∂Ch
∂Ċj

∂Cj

 =

=


−γ(N

∗

M
) −ψβN∗(Eh − Ej) 0 0

−sh∗ (Ch∗−Cj)∗(sh∗−1)
(N∗+1)2

(Ch∗−Cj∗)(2sh∗−1)
N∗+1

[
sh∗−1
N∗+1

]
sh∗

[
sh∗

N∗+1

]
sj∗

0 θCh −θ(1− sh∗) 0

0 0 0 −θ(1− sj∗)

 . (3.25)

The evaluation of the Jacobian at her steady state values for N∗, sh∗, Ch∗ and Cj∗

result in:

JacDRS1 =


−γ(N

∗

M
) −ψβN∗(Eh − Ej) 0 0

0 0
[
sh∗−1
N∗+1

]
sh∗

[
sh∗

N∗+1

]
sj∗

0 0 −θ(1− sh∗) 0

0 0 0 −θ(1− sj∗)

 , (3.26)

JacDRS2c) =


−γ(N

∗

M
) −ψβN∗(Eh − Ej) 0 0

0 Cj∗

1+N∗
0 0

0 0 −θ 0

0 0 0 0

 . (3.27)

We obtain two vectors Ψu
f containing the Eigenvalues of the two equilibria:
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ΨDRS
1 ≡


λ1

λ2

λ3

λ4

 =


0

−γ(N
∗

M
)

−(1− sh∗)θ
−(1− sj∗)θ

 ,

ΨDRS
2c) ≡


λ1

λ2

λ3

λ4

 =


0

−γ(N
∗

M
)

Cj∗

1+N∗

−θ

 .

As we have seen from the conducted Eigenvalue analysis, all fixed points are non-

hyperbolic. Therefore, the Hartman-Grobman theorem states, that we cannot rely on

the linearized system to prove local stability of system 3.17. More important than

the local stability analysis, is the proof of global stability. For a two-dimensional sys-

tem, several methods for the proof of global stability can be found in the literature22.

One often used method, providing sufficient conditions for the global stability of dif-

ferential systems, is Dulac’s criterion. Unfortunately, the application is restricted to

two-dimensional systems. However, there is a generalization of Dulac´s criterion to

three and higher dimensions in some special cases23. If possible, the dimension of the

dynamic system could be reduced to two dimensions. For system 3.17, this is only

the case if we assume CRS. Only for this case, the cost function can be described as

an autonomous differential equation. For the IRS and DRS case, a reduction could be

obtained by a possible aggregation of the cost and market structure. Consequently, the

real dynamics of the four-dimensional system is then a perturbation of the aggregated

model. If the aggregated model is structurally stable, then the dynamic behaviour of

the aggregated model provides a good impression of the behaviour of the trajectories

of model 3.1724. Hence, the perturbation method provides only an approximation of

the model dynamics. The major drawback applying the perturbation method is the

loss of the valuable feature of heterogeneity of model 3.17. To avoid this problem,

(Noailly, 2008) suggests simulation methods, which should be used to obtain an im-

pression of the long run behaviour of a complex system, due to the loss of the analytical

tractability of system 3.17. This method is conform to the tradition of evolutionary

economics. Therefore, in the next section, a simulation study will be conducted to

obtain an intuition of the long-run behaviour of system 3.17.

22Refer to (Strogatz, 1994) for example.
23Refer to (Li, 1996) for this topic. The drawback of applying Dulac´s criterion is to find an

appropriate Dulac function.
24Refer to (Mchich et al., 2007) for the application of this method for a predator-prey system.
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3.2.4 Simulation study of the basic model

This section provides a simulation study of the before introduced basic model 3.17.

The aim of this simulation study is to highlight market structure development, ap-

proximated via market share evolution which endogenously depends on firm size and

innovation. For this reason, three different scenarios are simulated with respect to

different returns to scale assumption. As mentioned before, decreasing returns to scale

are often associated with small firms, whereas increasing returns to scale are associ-

ated with large firms induced by learning-by-doing, which takes place within each firm.

For every scenario and with the exception of the decreasing returns to scale scenario,

three different technological progress regimes are proposed to represent firm specific

innovative activity which appears as a cost reduction technology. For an overview of

simulation scenarios refer to table 3.2 in appendix 2.

The model proposes heterogeneous firms or agents with respect to their innovative

activity. Hence, they are confronted with different cost regimes. To keep the simulation

study simple, the simulation is restricted to the duopoly case, thus only the market

share evolution of two firms, i = {1, 2} are investigated and reported following. It is

assumed that firm i = 1 is more efficient acquire new resources for production process

than firm i = 2, but this induces higher production costs for firm i = 1. The market

share at t = 0 is set to s1(0) = 0.6 for firm i = 1 and thus 1 − s1(0) = s2(0) = 0.4

for firm i = 2. The resource stock is set to M = 50 and the harvest at t = 0 is set to

N0 = 50.

Table 3.3 in appendix 3 provides an overview of parameter setting for simulation

purpose. The parameter values are chosen accordingly to the work of (Noailly et al.,

2003).

What can we expect intuitively regarding to our simulation study? Independently

of what returns to scale scenario is assumed, the firm that offers the lower cost regime

right from the beginning will remain in the market with certainty. The interesting

question is, what will happen with the firm, which offers a higher cost regime, with

respect to its market survival? Well, it depends on θ, which indicates the speed of

technological progress. The faster technological progress is, the faster costs fall, hence

the long run cost convergence overwhelms the feedback dynamics, which cannot deploy

its entire force which leads to an elimination of laggard firms. Thus, the probability to

obtain a monopoly scenario tends to one, if technological progress is very low.

But what changes, if different regimes of returns to scale are incorporated. As men-

tioned above, DRS are associated with the ”Schumpeter-Mark-I” hypothesis, IRS with

the ”Schumpeter-Mark-II” hypothesis. If IRS are assumed, than selection mechanism
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and innovative performance boost each other. This is due to the fact that learning-

by-doing within large firms leads to a shake out of laggard firms, which leads to a

monopoly structure. On contrast, if DRS are taken into consideration, then the se-

lection mechanism and innovative performance exhibits reverse effects, because of the

idea, that small firms are more innovative than large firms. Of course, this could lead

to some early market turbulences. For instance, if one firm gains a market share disad-

vantage its costs begin to fall at a faster rate, which leads to a market share advantage

compared to a firm which exhibits market share advantage at the same time. Thus an

overtaking occurs. This switching pattern behaviour with respect to market structure

can theoretically recur several times until a stable pattern appears in the long run.

Simulation has been conducted with Mathematica 5.2.0.0 and further with Anylogic

5.5 to robustify simulation results. Mathematica 5.2.0.0 offers a non linear solving

routine25, as well as Anylogic 5.526 does.

The figures 3.5, 3.6 and 3.7 in appendix 4 provide an overview of simulation results

for the CRS, IRS and DRS case each. For every returns to scale scenario, the impulse

responses for the market share si , per unit production costs ci and resource extraction

Nt for a low, middle and high technological progress regime are depicted. Firm i = 1

is characterized with a red colour, whereas for firm i = 2 green colour is alloted. A

summary of the results based on the simulation study are given below.

1. Increasing returns to scale

If we turn back to figure 3.6 we observe the following. As mentioned above, an

increase in market share of the leading firm leads to a further increase in cost

reduction, for instance by learning-by-doing. This ”success-breeds-success”27 sce-

nario is reflected also in figure 3.6. A slow economic progress causes the expected

monopoly scenario. Although the market share of firm i = 1 overwhelms right

at the beginning of the simulation the market share of i = 2, after a few periods

firm i = 2 will become monopolist, which induces that firm i = 1 has to leave

the market. The faster technological progress is, the more realistic is a duopoly

scenario. With other words, a fast rate of cost reduction outweights the posi-

tive feedback of leading firm and the cost convergence. This result confirms the

”Schumpeter-Mark-II” hypothesis. Further it confirms the empirical thesis, that

laggard industries tend to be more concentrated as mentioned by (Mazzucato,

2000).

2. Constant returns to scale

25Please refer to the Mathematica 5.2.0.0 package NDsolve.
26Euler, RK4, RK45, RADAUS etc. for differential equations.
27Refer to (Phillips, 1971).
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The case of CRS is also pictured in figure 3.5. As one can see, there are no new

insights compared to the IRS case. Hence, for the CRS, the implications derived

from the IRS case still holds.

3. Decreasing returns to scale

The DRS case is graphically replicated with figure 3.7. For a low value of tech-

nological progress, we again observe a monopoly tendency in the market. The

less cost efficient firm i = 1 is shaked out of the market. An intermediate level

of technological progress instead would lead to a coexistence scenario, whereas

the fittest firm is, as in the IRS and CRS case, the market leader. Therefore, the

higher θ is, the less concentrated is the market. But for a moderate level of tech-

nological progress, it can be shown, as done in figure 3.7, that market turbulence

cannot be ruled out in the case of DRS. Firms with higher market shares are

confronted with slower rates of cost reduction and thus they have been surpassed

by smaller firms in terms of cost efficiency. The switching behaviour lingers until

cost convergence has reached. The key point is, that instead of IRS and CRS

cases, the prediction of the so called final ranking of firms is no possible. The

latter unstable market structure observation, which replicates a stylized fact of

firm-size dynamics, has been empirically confirmed by a bulk of studies28.

3.3 Extension of the basic model: Learning and

Knowledge Diffusion

A certain limitation of the basic model is that it does not include the possibility of learn-

ing and knowledge diffusion. As mentioned above, by (Campagni, 1991) for instance,

inter-firm cooperation based on knowledge sharing can explain the predominance of

small firms in the market. One implication of the basic model is that small firms

will be shacked out of the market for certain parameter constellations, as seen above.

Hence, it seems to be logical, to incorporate the aspect of learning and knowledge

diffusion in the basic setup.

Learning in the model context is kept rather simple. It is assumed, that a firm i

which exhibits an inferior cost structure with respect to a firm j may benefit from

spillovers, which are send from the technological leading firm j. In the best case,

the underperforming firm i will benefit from the entire pool of spillover, generated by

firm j. If this rather old style neoclassical assumption is made, learning is more or

less senseless. For this reason, it is assumed that an underperforming region i has an

28Please refer to (Mazzucato, 2000), p. 49 for an overview.
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inherent incentive to learn, because knowledge is specific and cannot be understood

right from receiving. For this reason, spillovers have to be integrated in the model

before talking about how to model learning activities.

3.3.1 Integration of knowledge spillovers

To model the spillovers from using a strategy h, which is inferior in a strategy j to

certain period of time t, to a common notational form of the so called knowledge gab

literature is referred. To motivate the technological gap, it is assumed for the moment,

that a firm h has to choose from a given pool I a cost reduction technology. Hence,

every firm h can be described by a different level of technology T (h). The possible

spillover pool is then defined as the gap between different technological levels T (i).

Keeping this in mind, the spillover Γhj from h to j can be written as:

Γhj = ln

(
Th
Tj

)
(3.28)

or to get an impression regarding the evolution of the spillover:

Γ̇hj = T̂h − T̂j, (3.29)

with T̂i as the growth rate of technology T (i). As one can see from equation 3.28,

the greater Γij the greater is the technological heterogeneity which means the greater

the possible spillover pool which can be used by j et vice versa.

Next Γhj has to be specified. First, we have to think about an explicit specification

of T (i). T (i) in the basic model can be approximated with the cost structure. In the

easiest way, we can assume, that costs Ch compared to the higher costs in the market,

given by C̃ ≡ Cj + CMarket,fix defines the technological gap from which firm j may

benefit. Please note, that CMarket,fix cannot be reduced by innovative activity but it

is an exogenous number.

Second, we have to assume, that only a φ ∈ (0, 1) fraction of the spilloverpool Γhj can

be understood. One assumption could be, to say, that this fraction φ ∈ (0, 1) is constant

over time. This implies, that a firm cannot learn during its spillover benefiting phase.

Surely, this scenario is possible. But it should be treated as a special case of learning

behaviour instead of assuming, that this holds on general, as assumed by (Cantner and

Hanusch, 1998) for instance. Because of this reason, φht , ∈ (0, 1) is time dependent and

labeled as the degree competence, which can be influenced by learning activities. Thus

71



3 The impact of learning and knowledge diffusion on industrial dynamics

φht , ∈ (0, 1) itself is an endogenous number which influences the endogenous spillover

function Γhj.

Keeping this two aspects in mind, the spillover function Γhj can be rewritten as

follows:

Γhj =

{
0, Ch ≥ C̃

φjt ln(Ch
C̃

), Ch < C̃, φht ∈ [0, 1]
. (3.30)

Of course one can expand the formulation 3.30 in terms of integrating of so called

“absorptive capacities” as done by (Verspagen, 1992a) and (Verspagen, 1992b). The

next section deals with the specification of φht , ∈ (0, 1).

3.3.2 Integration of learning aspects

Learning aspects have been widely discussed in traditional learning curve literature

(Yelle, 1979) and were introduced by (Wright, 1936). To the best to my knowledge,

until today there is no formulation which combines aspects from the psychological

motivated learning curve literature and technology gap literature. From this point of

view this is rather remarkable because understanding knowledge requires the correct

cognitive structure to make sense of a particular piece of useful information29.

As mentioned above, the learning curve concept referred to in this context, is based

on the ideas of models of time allocation30, because competence evolvement and time

allocation are closely related.

From the relevant psychological studies, two learning curve concepts have been pre-

vailed. First, a concave learning curve which covers the fact of diminishing returns of

time investment for learning. Second, a learning curve, which is used in the theoretical

work of (Hull, 1943), (Van Gert, 1991) and (Newell et al., 2001) et al.. The latter con-

cept assumes a logistic learning curve. The idea behind the logistic learning curve is,

that learning at the beginning is slow, than the learning progress is increasing rapidly

in the middle and is slabbing at the end of the learning progress.

The question now is, which learning curve covers which learning behaviour? Logistic

or S-shaped learning curves are often used to map a complex skill learning event,

learning a language or complex avenues of approach for instance. Empirical evidence of

29Refer to (Nooteboom, 1992) and (Nooteboom, 1999).
30Refer to (Metcalfe, 2002), (Nelson and Narens, 1990) and (Nelson and Narens, 1994).
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S-Shaped learning curves are found by (Rice et al., 1998) who outlined that “inspection

of the individual curves shows slow growth at the beginning [...] followed by rapid

acceleration, and then a final period of leveling off”31. Additionally (Frey and Sears,

1978) have mentioned that curves in conditioning “are typically S-shaped, with a period

of positive acceleration followed by one of negative acceleration”32. An exponential or

concave learning curve is associated to a rather ideal learning process. Thus, under a

regime of an exponential learning curve the learning subject can be described as less

complex regarding to a regime of a S-shaped learning curve. In this work, the sigmoid

learning curve concept has been considered.

Figure 3.1 provides a sketch of the idea, which lies behind the sigmoid learning curve

concept. Consider for the moment A is constitute by a degree of competence cA and a

given time tA which denotes the time reaching the competence level cA. In this way a

higher degree of competence cA can be reached simply by allocate more time to learning

activities, because tA < tB.

A

B

tA tB

cA

cB

time

D
eg

re
e

o
f 

C
o
m

p
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en
ce

Figure 3.1: One-dimensional sigmoid learning curve

Of course this one-dimensional learning curve concept is too simple to cover the

complex aspect of learning. To give other facts which influence the learning activity

consideration, the aspect of talent is also included in the learning curve concept. But

aspects such as talent are rather difficult to implement directly in a learning curve

environment. For this reason, a proxy for the vector of unobservables characteristics is

required. The proxy should exhibit the feature that it replicates the fact that a person

31(Rice et al., 1998), p. 1425.
32(Frey and Sears, 1978), p. 324.
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should reach a higher degree of competence by spending the same time for learning

activity compared to another, perhaps the first is more talented than the latter.

Given, every firm i is endowed with a different knowledge stock χi and its unob-

servable learning characteristics are embodied by ιi, then the degree of competence φit

based on a sigmoid multidimensional learning curve can be written as:

φit ≡ $(χi, ιi, t) =
1

1 + exp[νi − ιit]
, (3.31)

with νi ≡ 1−χi
χi

.

Equation 3.31 exhibits moreover the desired attribute that a higher endowment χi

leads to an earlier start of the learning process. Thus, in terms of probabilities, we can

say that the probability, to reach a degree of competence of one is given by:

P [φit = 1] = $(χi, ιi, t) =
1

1 + exp[νi − ιit]
. (3.32)

Figure 3.2 provides a graphical representation of equation 3.31 for given χi, whereas

figure 3.3 represents 3.31 for a given value of ιi.
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Figure 3.2: P [φit = 1] expressed by ιi and t

Further, it is assumed that idosyncratic learning activities should be treated as a

stochastic event rather than to assume that learning endeavor is deterministic. In

this context, the idiosyncratic learning curves may fluctuate around the deterministic

learning curve. Hence, the stochastic version of 3.31 is given by:
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φit ≡ $(χi) =
1

1 + exp[νi − (ιi + ζi)t+ εi]
, εi ∼ (0, σ2

φ), ζi ∼ (0, σ2
ζ ), (3.33)

with νi ≡ 1−χi
χi

.

Figure 3.4 provides some realizations of the stochastic version of 3.31. As one can

see, the uncertainty of learning progress is largest around the inflection point of 3.31.
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Figure 3.4: Some realizations of the stochastic sigmoid learning curve

After motivating the learning curve concept, the basic model 3.17 can be expanded

as follows:
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Ṅ = γN
[
1− N

K

]
− qβ [

∑
N siFi(N)]

ṡi = si(ci − c̄)

Ċi =


−θCi − Γij

−θCisi − Γij

−θCi(1− si)− Γij

. (3.34)

As one can easily see, the extension of model 3.17 cannot be solved analytical.

Even, a conventional stability analysis cannot be conducted due to the inherently high

complexity of this model. But it is possible to derive a steady state condition for this

model.

Proposition 6 : Given proposition 1 holds than the partial derivatives of Ṅt, ṡt and

Ċt still exist. Provided Ṅt = ṡt = Ċt = 0 holds simultaneously than system 3.34 has

an unique steady state vector S which contains N∗, s∗i and C∗i in the long run. Thus



ξN∗
[
1− N∗

M

]
= ψβ [

∑
I s
∗
iFi(N

∗)]

0 = s∗i (c
∗
i − c̄)

0 =


−θC∗i − Γij

−θC∗i s∗i − Γij

−θC∗i (1− s∗i )− Γij

(3.35)

must hold.�

We know, that a steady state must exist. The steady state is reached, if cost conver-

gence of both firms has been occurred, thus Γij = 0 is realized. Then we are automat-

ically back to model 3.17, from which we know, that a steady state exists. The next

section deals with the simulation of the extended version of model 3.17, model 3.34.

3.3.3 Simulation study of the extended model

The simulation setup for model 3.34 is the same as for model 3.17. Thus, it is referred

to the same parameter setting as in the simulation of model 3.17. The learning curve

parameter have been chosen as follows:

The simulation study has been conducted with Anylogic. To avoid redundancies

with respect to simulation results discussion, in the following it is referred mainly on
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Parameter Value
χ 0.50
ι 0.50
σ2
ζ 1×10−6

σ2
ε 1×10−6

Table 3.1: Learning curve parameter setting

simulation meanderings induced by integration of learning aspects. As done before,

three simulation scenarios have been performed, for the DRS, CRS and the IRS case.

For the parameter setting of the technological progress it is therefore referred to table

3.2.

With respect to the DRS, CRS, and IRS the inclusion of learning aspects leads to

the following observations, based on the simulation study. Again, one can find the

impluse responses for the simulation of the extended model in appendix 5, 6 and 7.

The CRS case is depicted in appendix 7 in figures 3.15, 3.16 and 3.17. The IRS case

is graphically replicated in appendix 6 with the corresponding figures 3.12, 3.13 and

3.14, whereas the DRS case can be found in appendix 5 in figures 3.8, 3.9, 3.10 and

3.11.

1. Increasing returns to scale

As argued before, the feedback of market selection and the feedback of cost

convergence is weightout by inducing a high rate of technological progress with

respect to cost reduction. On the other side, the lower θ the more weight is laid to

the positive feedback of innovative activity and thus the more cost efficiency firm

is crowding out the laggard firm. Now we have to account for a third effect: the

positive spillover effect which is driven by learning activities for the laggard firm.

With respect to the simulation results, on the first sight, there is no significant

changing with respect to the simulation results based on model 3.17. But if we

look more closely, then we observe, that for no feasible parameter constellation of

θ the before mentioned monopoly scenario occurs. Soonest this is the case for a

small value of technological progress, because the herfindahl takes its largest value

for this case. Hence, the higher θ, the lower the herfindahl index HI33, and thus

the more realistic a coexistence of both firms is. For the case of θ = 0.5 a nearly

uniformly market segmentation is obtained with a corresponding herfindahl index

of HI = 0.50. An interesting results is obtained for a high speed of technological

progress, θ = 0.99. In this case without learning effects, the convergence effects

outweighs the selection effects, because technological progress is so fast that the

33The herfindahl index HI is defined as HI :=
∑
i s

2
i .
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lowest cost level is reached until selection effects or diseconomics of scale have

time to taken effect in the market. Finally, the less cost efficient firm i = 2

becomes market leader, because the high speed of technological progress leads to

a temporal cost leadership of firm i = 2 in a negative sense until cost convergence

has reached. Now positive learning effects from which exclusively the laggard

firms can benefit, lead to a more turbulent market evolution in the beginning of

the simulation study, as one can easily see from the stability index and herfindahl

index. But at the end no significant difference can be observed compared to the

”no learning” case. Hence, the inclusion of learning effects in the CRS scenario of

model 3.17 results in no significant changes regarding to the simulation results,

with the exception that no monopoly scenario occurs. This could be due to the

smoothing effects induced by the knowledge spillovers.

2. Constant returns to scale

As for the IRS case, learning effects to not exhibit a significant change on simu-

lation results, compared with the case of CRS for model 3.17. But, also for the

IRS case mentioned above, no smoothing effects of knowledge spillovers lead to

the exclusion of monopoly scenarios.

3. Decreasing returns to scale

For the DRS scenario, we do not observe any significant changes regarding to

the DRS case of model 3.17, with two exceptions. First, as mentioned before

for the IRS and CRS case respectively, no monopoly scenario occurs for any

reasonable value of θ. For any given parameter value of θ, firm i = 2 will remain

the market leader at the end. Second, and the more interesting is the special

case of θ = 0.02. As argued before, the weak negative feedback causes a slower

rate of cost reduction for the leading firm and thus will lead to a surpass by

smaller firms. Thus a switching occurs until cost convergence is realized. This

mentioned market instability leads to the conclusion, that a final ranking of firms

cannot be predicted. If we now integrate learning behaviour we still observe

market instability, which is distinct at most with respect to time. But again,

the smoothing effects of spillover lead to a more stable structure. No switching

phenomena is observed and thus and on contrary as before, the prediction of a

final firm ranking seems to be more feasible.

On summary, we can conclude, that integrating learning aspects leads to a more

stable market structure at all. Further, this model supports the empirical finding by

(Campagni, 1991), which states that inter-firm cooperation based on knowledge sharing

can explain the predominance of small firms in the market. This conclusion can be

drawn because of the fact that for no simulation scenario, a monopoly market structure
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occurs. It is worth to mention, that unreported simulation studies, which are based

on a ”constant learning” scenario, reveals that for low speed of technological progress

monopolistic market structures occur. Hence, only the inclusion of de facto learning

effects leads to an exclusion of monopoly market structures.

3.4 Summary

The early stages of an industry life cycle are characterized by instability and a relatively

competitive market environment. This awareness is also labeled in the relevant litera-

ture as a stylized fact regarding firm-size dynamics. (Mazzucato, 2000) has shown in

a simulation study, based on the replicator dynamics approach, that in fact the before

mentioned stylized fact can be replicated by the model assuming decreasing returns

to scale which corresponds to the ”Schumpeter-Mark-I”’ hypothesis. The argument of

this pretty simple and easy to retrace: firms with a high market share would expire a

slower rate of cost reduction potential and thus those firms will be lurched by smaller

firms. This process leads to a switching behaviour of market structure, particularly at

the beginning of the life cycle of an industry. For other parameter constellations, small

firms will be shaked out of the market, especially when increasing returns to scale are

assumed.

The lack of the model (Mazzucato, 2000) is that it is not able to cover the fact that

a high knowledge transfer intensity, for instance due to cooperations which are based

on knowledge transfer, enhances firm innovativeness and hence induces a feedback on

market structure. As mentioned by (Campagni, 1991), (Best, 2001), (Porter, 2000)

and (Krugman, 1991) in a more spatial context, the exchange of ideas and knowledge

lead to a predominance of small firms in the market. For this reason, the question

arises how affects learning behaviour the market structure.

For this reason, a model similar to the work of (Mazzucato, 2000) and (Noailly

et al., 2003) is setup which is able to replicate the before mentioned stylized fact.

After a simulation has been conducted the model was extended by learning effects and

knowledge diffusion. Knowledge diffusion in this context is treated as an endogenous

event, driven by psychologically motivated learning endeavours of firms. A further

simulation study of the extended model has shown, that for any degree of technological

progress small firms still remain in the market, also for the case of IRS, where large

firms are in advance. Hence, this model is able to replicate the fact, that small firms are

more likely to benefit from knowledge networks and thus from spillovers which define

a source of innovativeness, from which large firms cannot profit.
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Of course, there are several revenues for further research. For instance, it is planned

to embed this rather simple model in a spatial model framework to cover explicit cluster

effects of small firms.
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3.5 Appendix

3.5.1 Appendix 1

To linearize a non linear system, as a first step, it is common to write for a n-dimensional

non linear system in general:

ẋ = F (xt,vt). (3.36)

Hereby F(·) is a (n× 1)-dimensional vector containing n vectors fn(·) of non linear

functions, ẋ is a (n× 1)- dimensional vector which contains the partial derivatives of x

with respect to t and vt is a (n× 1)-vector of time dependent values. For our purpose

I set vt = 0 without loss of generality. Therefore, equation 3.36 can be rewritten and

thus one obtains34:
ẋ1

ẋ2

...

ẋn

 =


f1(x1, x2, ..., xn)

f2(x1, x2, ..., xn)
...

fn(x1, x2, ..., xn)

 . (3.37)

To discuss the dynamic behaviour of our system in a ε-neighbourhood of the steady

state values x∗ = [x∗1, x
∗
2, ..., x

∗
n]′, we have to linearize our system around its steady

state vector x∗ using a Taylor expansion or approximation, respectively.

The intuition behind a first order Taylor expansion is to express the deviations ∆ of

the variables of interest x from their steady state values x∗. Thus, we obtain:

ẋ1 = f 1(x∗) + f 1
x1

(x∗)(x1 − x∗1) + ...+ f 1
xn(x∗)(xn − x∗1) + ϑ1, (3.38)

...
...

...

ẋn = fn(x∗) + fnx1(x
∗)(xn − x∗1) + ...+ fnxn(x∗)(xn − x∗n) + ϑn.

If |x−x∗| → ε then ϑi = 0, i = {1, 2, ..., n}. The advantage of the Taylor approximation

in the neighbourhood of the steady state is that the first elements of every equation i

vanish because of the existence of a steady state. The implication is that ẋi = 0 ,∀ i.
34I set the subscripts t in notational form to indicate time dependent variables.
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In matrix algebra we can write:

∂∆x

∂t
= F (x∗ + ∆x). (3.39)

Or, if we apply the Taylor expansion on F (·) around the steady state values x∗, one

can derive:

∂∆x

∂t
= F (x∗) +

∂F (·)
∂x
|x=x∗ [x− x∗] + ϑ(∆x), (3.40)

whereas the residual vector ϑ(∆x) can be treated as a redundant variable, as men-

tioned before. It is easy to see that we have to compute n-partial derivatives for each

fi(·) such we get at all together n×n derivatives for the matrix F(f1, f2, ..., fn). Subse-

quently, we may concentrate our facts and write in matrix algebra in a more convenient

manner:

ẋ = Ax (3.41)

with x ≡ x− x∗. Here we define

A ≡
[
∂F (·)
∂x
|x=x∗

]
=


∂ẋ1
∂x1

∂ẋ1
∂x2

. . . ∂ẋ1
∂xn

∂ẋ2
∂x1

∂ẋ2
∂x2

. . . ∂ẋ2
∂xn

...
...

. . .
...

∂ẋn
∂x1

∂ẋn
∂x2

. . . ∂ẋn
∂xn

 . (3.42)

One can verify that in expression 3.42 A is called the Jacobian of the system. Here-

with, we have transformed a non linear system into a linearized non linear system,

which is not homogeneous.
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3.5.2 Appendix 2

Case I: constant returns to scale Value
1. case: low technological progress θ = 0.010
2. case: middle technological progress θ = 0.500
3. case: high technologcial progress θ = 0.999

Case II: increasing returns to scale Value
1. case: low technological progress θ = 0.010
2. case: middle technological progress θ = 0.500
3. case: high technological progress θ = 0.999

Case III: decreasing returns to scale Value
1. case: low technological progress θ = 0.0001
2. case: relative low technological progress θ = 0.0200
3. case: middle technologcial progress θ = 0.5000
4. case: high technologcial progress θ = 0.9999

Table 3.2: Returns to scale scenarios for basic model simulation

3.5.3 Appendix 3

Parameter Value
M 50

s1(0) 0.6
N(0) 50
E1 0.7
E2 0.2
C1 15
C2 10
β 10
q 1
ζ 8
ψ 8
γ 1

Table 3.3: Parameter setting for basic model simulation

3.5.4 Appendix 4

Please refer to the next pages.
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3.5.5 Appendix 5

Please refer to the next pages.
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Please refer to the next pages.
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4 The spatial dimension of knowledge

diffusion

4.1 Introduction

It is an undisputable fact that knowledge and technological change are the driving

forces for long run economic growth. Additionally, endogenous growth theory tells us

that knowledge spillovers are necessary for long term growth of high-income regions.

Several contributions regarding this topic have been published during the last years.

(Lucas, 1988), (Krugman, 1991) and (Romer, 1986), for instance have explicitly focused

on the accumulation of new knowledge in context of new growth theory. Their key

finding is, that endogenous accumulation of knowledge is the surety of per capita

income growth. These approaches have in common that they focus on convexities in

the production process1. For instance, convexities in production can arise from positive

externalities caused by learning-by-doing, human capital accumulation and the supply

of governmental goods.

As argued by (Keilbach, 2000), knowledge spillovers can be treated as a special type

of positive externalities and, moreover, is one motivation for positive returns to scale in

an aggregate production function approach which was first used by (Griliches, 1979).

At the latest as European leaders met in Lisbon 2003 and defined the goal of be-

coming ”the most dynamic and competitive knowledge-based economy in the world”

by 2010 the term it can be said without any limitations that the knowledge-based

economy has gained much attraction, not only in research but also in politics. Today,

the creation and diffusion process of knowledge is the focal point of research, because

”knowledge is the most important strategic resource and learning the most important

process”2. But what is knowledge? Well, the term knowledge is often used in scientific

publications, but it is sometimes confounded with the term ”information”. It must

be clear that knowledge comprises the individual specific abilities which can be used

to solve more or less strategic problems underpined with a pool of information. As

1Refer on (Krugman, 1991) for this topic for instance.
2(Morgan, 1997), p. 493.
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pointed out by (Krugman, 1991) ”[k]nowledge flows are invisible; they leave no paper

trail by which they may be measured and tracked[...]”. Information instead, is more or

less visible. It can interpreted as the collection of knowledge, for instance the collection

of data. Hence, when talking about knowledge, we often don’t know what we know.

Thus, knowledge cannot be measured directly, as other production inputs such as the

stock of capital, for instance. The consequence is, that we have to find proxies for

this knowledge, for instance human capital or data of patent citations. But doing so,

we have to macerate the strict distinction between information and knowledge. That

should be kept in mind when talking about the outstanding role of knowledge for eco-

nomic growth.

Additionally, it is difficult to extract the incentives and resources of knowledge cre-

ation and diffusion. As argued by (Rosenberg, 1982), the so called ”black box” of

innovation which can be described by inherent loops and feedback processes, is also

suitable to describe the difficulties of how to identify the source of knowledge creation

and dissemination. Given we know the source of knowledge creation, how can we de-

scribe concisely the way of how knowledge is transfered from sender to receiver? Is it

always the case, that transmitted knowledge can be interpreted correctly by the re-

ceiver and more important, is it possible at all to transfer knowledge? The questions

we have to ask are therefore, first, is it always true that knowledge diffusion is an un-

limited process regarding space, and second, does knowledge transmission depend also

on the kind of knowledge?

To answer these questions, we have to think about the kind of knowledge we are

talking about. For example, if knowledge is tacit than face-to-face communication or

spatial proximity is a necessary condition for knowledge diffusion. On the other hand,

if knowledge is codified, then modern communication facilities can be used to transfer

knowledge from sender to receiver. Thus codified knowledge is less space depended than

tacit knowledge as highlighted by (Anselin et al., 1997). Therefore, we should expect

that tacit knowledge dissemination is different from explicit knowledge dissemination

with respect to time and space. As mentioned by (Maskell and Malmberg, 1999) tacit

knowledge is a key factor for new innovations and thus spatial proximity, which is

closely related to tacit knowledge should be acknowledged.

From this point of view, it is plausible not only to focus on time and the kind

of knowledge, when integrating knowledge diffusion in a growth model context for

example, but also to consider a possible space limitation of knowledge transfer.

It is rather intuitive, that spatial barriers of knowledge diffusion can be used as an

argument for income and production differentials between regions. That should be
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considered as one reason why we observe cluster and agglomeration in economic long

run growth. Regions (take cities for example) which are more productive and sup-

ply a higher life quality are more attractive for innovative companies. Consequently,

these regions become more attractive again and this process leads to a more and more

decreasing productive differential. It is not a surprising fact, that economic growth

and agglomeration are positive correlated (Baldwin and Martin, 2003). Hence, growth

differentials are enforced by knowledge capital concentration. As mentioned by (Fujita

and Thisse, 2002), knowledge spillovers can be interpreted as a source for sustainable

regional growth, given decreasing returns of learning are excluded.

If we argue that spatial patterns are worth investigating, it is necessary to ask the

question how knowledge spillovers affect agglomeration. To answer this question we

could argue that cities or densely populated regions may have positive effects on their

productivity due to so called Marshallian externalities. (Marshall, 1920) mentioned,

that so called externalities are necessary for economic agglomeration and therefore

create a so called look-in effect3: ”When an industry has thus chosen a location for

itself, it is likely to stay there long: so great are the advantages which people following

the same skilled trade get from near neighbourhood to one another. The mysteries of

the trade become no mysteries; but are as it were in the air, and children learn many of

them unconsciously. Good work is rightly appreciated, inventions and improvements

in machinery, in processes and the general organization of the business have their

merits promptly discussed: if one man starts a new idea, it is taken up by others and

combined with suggestions of their own; and thus it becomes the source of further new

ideas.”4 Of course, the justification of agglomeration by Marshall is primarily based

on trade arguments but can easily be expanded to other factors, which influence the

decision of where to situate a location, as mentioned above. (Kahnert, 1998) found that

knowledge intensive processes are agglomerated in dense regions, while less knowledge

intensive processes are situated in more peripheral regions. Thus, knowledge spillovers

cause externalities and force agglomeration and as a consequence, as pointed out by

(Scotchmer and Thisse, 1992) leads to uneven geographical distribution of economic

activity.

Hence, from a theoretically driven view, increasing returns to scale, agglomeration

and distribution of economic numbers, for instance per capita productivity are closely

linked with space. Although, the link of technological innovations and knowledge

diffusion for technological growth is acknowledged in growth literature5, the role of

3(Fujita and Thisse, 2002), p. 7.
4(Marshall, 1920), p. 225.
5Refer to (Romer, 1986), (Romer, 1990) and (Krugman, 1991) for instance.
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knowledge diffusion is only partly considered. Some of the North-South trade literature

on diffusion and technological progress6 consider feedback effects between the North

and the South in the steady state, but an analysis of the transitional dynamics for

either region is missed. (Barro and Sala-I-Martin, 1997) indeed derived transitional

dynamics for the South but feedback effects are excluded due to the effect of no trade

of intermediate goods. Thus, a transition path for the North cannot be derived. The

communality of this strand of literature is only focused on two country or two region

models, which consists of a rich North and a poor South or a core and a peripheral

country. From this perspective, those types of models are less suitable to investigate

the link of increasing returns to scale, agglomeration and distribution of economic

numbers because of the simple reason: in a two country framework, it is not reasonable

to investigate agglomeration effects when referring to regions. One of the factors, why

multiple country or regional focused growth models are less attractive or gained less

attention could be the fact that such growth models become very complex and cannot

solved analytically and only numerically solutions remain.

For this reason, the relevant literature which investigates the link between increas-

ing returns to scale, agglomeration and distribution of economic numbers is heavily

empirical orientated and is sometimes more or less ad hoc. To investigate spatial ag-

glomeration effects empirically, one has to refer to tools from a toolbox which can be

summarized with ”spatial econometrics”, a term widely used in New Economic Ge-

ography (NEG)7. (Anselin, 1988)‘s book can be described as the first comprehensive

introduction to spatial econometrics. In contrast to spatial statisticians, where pure

data or data based approaches are in the front, the spatial econometricians deal with

model-funded approaches, based upon a theoretical model. However, the commonality

of the two perspectives is the acceptance of the existence of spatial stochastic processes.

Although, from an empirical view, there has been made much progress in explaining

the link between increasing returns to scale, agglomeration and distribution of economic

numbers. But there are still limitations especially when talking about the grasp of

knowledge spillovers and knowledge diffusion.

First, less attention is concentrated on the fact, that knowledge diffusion is not a

constant process over space. Often it is assumed that only the nearest neighbour has a

significant influence on economic growth, whereas farther away neighbours do not exert

any economic influence, or more technically spoken, often it is assumed that knowledge

diffusion follows a spatial AR(1) or spatial MA(1) process and second or higher order

effects or a combination of both are neglected. This assumption seems to be to strict.

6Refer to (Krugman, 1979), (Dollar, 1986), (Grossman and Helpman, 1991b), (Grossman and
Helpman, 1991a), (Rivera-Batiz and Romer, 1991), (Barro and Sala-I-Martin, 1997) and (Glass, 1997).

7For an overview of NEG refer to (Krugman, 1998a) and (Krugman, 1998b) for example.
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Instead of ignoring higher order effects of spatial influence, one should insert them

into a model framework, because neglecting them could lead to an underestimating of

spatial influence. Further, this second or higher order processes should not be treated

as a constant extrapolation, but rather as non constant function over space. Hence, it

is reasonable to assume that more contiguous neighbours have a direct and stronger

influence than less contiguous neighbours.

In most of the existing empirical studies the grasp of knowledge spillovers has only

gained limited attention. (Anselin et al., 1997) and (Anselin et al., 1997) are two of the

few studies how mentioned concrete numbers of knowledge spillover scope. (Anselin

et al., 1997) found by investigating the influence of university related research and

private research and development (R&D) effort on of knowledge transfer that a signif-

icant positive effect can be detected within a 50 mile radius of metropolitan statistical

areas (MSAs) only for the university research. For private R&D such an significant

effect could not be detected. (Anselin et al., 1997), with a similar setup as (Anselin

et al., 1997) additionally have shown, that not only spillovers within MSA but also

between MSA can be found. The key cognition of the latter mentioned study is, that

without exact geographical distance measures, it can be shown that spatial influence

is bounded locally. (Audretsch and Mahmood, 1994) have shown on patent basis for

59 US metropolises, that knowledge spillovers are limited towards the metropolises’

boarders. They come to this conclusion because they found that only for research in-

stitutes which are settled within a metropolis, significant knowledge spillovers can be

detected, whereas for research institutes, settled in each metropolis related country, no

such effects could be found.

Second, within the specification of spatial models, spatial heterogeneity is mostly

missed. It is sometimes ignored, that spatial effects can appear as two types: the

one type is spatial dependence, the other is spatial heterogeneity. Spatial dependence,

which is consistently assumed in the above mentioned studies, is mainly caused by

problems of measuring that are caused by spatial spillovers and spatial externalities.

In contrast to spatial dependence, spatial heterogeneity means that spatial effects are

not uniformly distributed across space and outliers could exist. From a standard econo-

metricians toolbox, this could be seen as a spatial kind of heteroscedasticity. Although

several arguments militate in favour that spatial heterogeneity matters8, this aspect is

not ”seen as a serious problem in spatial regression”9. One reason could be, that spatial

8(Anselin, 1988) for instance comment on page 13 with respect to importance of spatial hetero-
geneity in econometricians work, that ”several factors, such as central place hierarchies, the existence
of leading and lagging regions, vintage effects in urban growth [...] would argue for modeling strategies
that take into account the particular features of each location (or spatial unit).”

9(Keilbach, 2000), p. 122.
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econometrics, if we refer to theoretical econometrics, is still a developing discipline.

But what should be done, if spatial dependence, spatial heterogeneity or a combina-

tion of both types is relevant and further a set of possible AR(p), MA(q) or ARMA(p,q)

processes with order pand q respectively, are suitable in model context? Given, our

model is correctly specified, than standard econometrics tells us, that parameter es-

timates are inefficient if spatial heterogeneity is ignored, although it is relevant. But

given, the model is based on a wrong choice of AR(p), MA(q) or ARMA(p,q) terms,

then our model is wrong specified. Of course, the latter problem is the more serious

one.

Although, model selection should be taken seriously, we frequently find that empirical

based studies using tools from spatial econometrics, based on ex ante conceptions of a

spatial model. This means, a model selection is often defaulted or, if done, it is based

mainly on a limited class of spatial processes, which commonly include the decision of

relying on a spatial AR(1) or spatial MA(1) process based on the assumption of spatial

homogeneity. There are, to best of my knowledge only a few papers which cover the

aspect of spatial model choice.10

Thus, traditional or frequentest econometrics approach suffers for two reason in the

context of spatial econometrics: first, the models and the underlying estimation meth-

ods assume spatial homogeneity, and second, model selection is rather heuristic. For

these reasons, Bayesian methods have been prevailed and proved in spatial econometric

application. The key difference between frequentest and Bayesian methods are that the

latter treat the coefficient vector of estimators itself as random, whereas frequentest

say that the resulting estimates of the coefficient vector is random. Bayesian methods

hold a great deal for several reasons: for instance, first, it is possible to model hierar-

chy of place or regions, second, one can integrate a more or less systematic change of

variance over space, and thus spatial heterogeneity and third it is possible to acknowl-

edge a hierarchy of regions or places. Bayesian methods can incorporate these ideas

because of their underlying concept as prior information complements existent sample

data information, whereas frequentest methods can solely rely on latter mentioned. As

mentioned before, although Bayesian methods seem to be very attractive, their usage

in application is very limited. On the other side, frequentest methods are, if they only

limited to the spatial dependence case, and therefore assume spatial homogeneity, lead

to insufficient parameter estimates. Anyway, a more or less large research agenda for

both, spatial econometrics and spatial statistics remains.

From the discussion above, we see that two different arguments regarding productiv-

10For instance refer to (Hendry, 1979), (Florax et al., 2003) and (Hendry, 2006) for an intensive
discussion regarding model selection methods.
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ity growth are discussed in the relevant literature: on the one hand, the (theoretically)

role of technological innovations and knowledge diffusion for technological growth11,

and on the other hand the (empirical) role of spatial agglomeration on long run pro-

ductivity growth12. The point is, that the first mentioned strand does discuss growth

implications of knowledge diffusion in a less suitable frame when focusing on distri-

bution questions and agglomeration, while the latter strand suffers more or less from

theoretical fortification.

Hence, these two approaches are more or less discussed in isolation rather to be com-

bined and to investigate the relationship between knowledge diffusion, agglomeration

and growth. This topic has gained less attention in relevant literature, although (Fujita

and Thisse, 2002) mentioned that ”increasing returns to scale (IRS) are essential for

explaining geographical distributions of economic activities”13.

There is to best of my knowledge only one study, which tries to bridge the two ap-

proaches: (Keilbach, 2000) has investigated the role of knowledge for German ”Kreise”14

both empirically and theoretically within a (Romer, 1986) context. He found, that in-

creasing returns to scale lead to significant cluster effects. Further, he found on basis

of several production functions estimations, that spatial dependence has a significant

influence on labour productivity. But it has to be mentioned, that (Keilbach, 2000)

assumes explicitly spatial homogeneity and only first order spatial effects, both in his

theoretical and empirical studies. Further, using ”Kreise” as regions could lead to spa-

tial dependence per definition, due to the fact that ”Kreise” are the smallest entity

of regions for the case of Germany, and thus stream of commuters can lead to biased

estimations of spatial effects by construction.

Thus, one intention of this chapter is, to include the economic variable space in

a simple theoretical hybrid growth model, which core is based on to the model of

(Mulligan and Sala-I-Martin, 1993), (Uzawa, 1965) and (Lucas, 1988). The purpose of

the theoretically derived model is to derive a theoretical growth orientated justification

of the ”folk theorem of spatial economics”15, that ”increasing returns to scale (IRS)

are essential for explaining geographical distributions of economic activities”16.

In the theoretical model it is assumed that regions are learning regions which means

that low-income regions can catch up to high-income regions. This spatial catch up

process has not been acknowledged in growth theory so far. The implication is, that

11Refer to (Romer, 1986), (Romer, 1990) and (Krugman, 1991) for instance.
12Refer to (Keilbach, 2000), (Bottazzi and Peri, 2003), (Greif, 1998) and (Frauenhofer, 2000) for

instance.
13(Fujita and Thisse, 2002), p. 342.
14”Kreise” is a German administration unit which is equivalent to NUTS-3 level.
15Refer to (Scotchmer and Thisse, 1992).
16(Fujita and Thisse, 2002), p. 342.
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knowledge is not completely tacit but contains a certain public good character as high-

lighted by (Brezis and Krugman, 1993). On the other site, one has to acknowledge the

fact, that spatial influence is limited and not constant over space. This is a consequence

of the (Fujita and Thisse, 2002) thesis explaining economic clusters. Thus, the aim of

this chapter is first, to investigate the role of knowledge and agglomeration which is

a logical combination of the role of growth and knowledge and the role of growth and

agglomeration in a theoretical growth model context.

Second, on the basis of the developed theoretical model, it is investigated, given

spatial influence is limited and not constant over space, whether spatial spillovers are

more local or more global and thus, the ”folk theorem of spatial economics”17 can

be justified also empirically. If knowledge spillovers are more local, then this would

be an explanation of agglomeration or cluster effects and a confirmation of the ”folk

theorem of spatial economics”18. This empirical study is based on a spatial cross section

production function approach, proposed by (Griliches, 1979) which should measure

the effects of innovativeness, measured by knowledge capital, such as human capital,

patents or R&D and spatial spillovers on output for German NUTS-2 regions. NUTS-2

regions are used to exclude spatial dependence by construction.

Further, a new model choice mechanism is introduced which on the one hand is based

on traditional econometric tools and on the other hand integrates Bayesian model choice

criteria. This mechanism also controls for spatial heterogeneity. Finally, under the

condition that spatial processes can be detected in the data, a filter method is applied

to remove spatial influence and thus to identify own and neighbour productivity effects

of regions and to discuss political implications against the background of obtained

results.

4.2 Theoretical model

The aim of the theoretical model is to find support or not for the fact, that ”increasing

returns to scale (IRS) are essential for explaining geographical distributions of economic

activities”19 and thus to justify the ”folk theorem of spatial economics”20. The model

further assumes that spatial dependence over space is not constant. Because the model

could become very complex, a Cellular Automaton programming technique is consulted

to simulate spatial patterns. The next section deals with the empirical conversion of

17Refer to (Scotchmer and Thisse, 1992).
18Refer to (Scotchmer and Thisse, 1992).
19(Fujita and Thisse, 2002), p. 342.
20Refer to (Scotchmer and Thisse, 1992).
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the theoretical model context.

4.2.1 Setup

This section deals with the setup of a discrete spatial growth model, which links knowl-

edge creation, spatial knowledge diffusion and productivity to investigate the link of

knowledge, agglomeration and growth. For this purpose, a two sector model which is

similar to the model proposed by (Lucas, 1988) is set up and expanded in several ways

as laid out in the this section.

Assume a world of i = {1, 2, ..., Ni} regions which are distributed randomly over the

entire space of the world. Every region is heterogeneous in the sense that it can be

characterized by a specific labour productivity yi which is different in every region i.

Furthermore, every region i has different neighbours j = {1, ..., Nj}.

As mentioned above, two sectors are considered in the model. The first sector is

the knowledge production sector. This sector produces exclusively knowledge with a

specific neoclassical production technique Q. Moreover it is assumed, that every region

i produces its own knowledge stock W i. For the production technique we can write for

region i in t = {1, 2, 3, ..., T}

Qi
t(K

i
t ,W

i
t , L

i
t) = B[aKK

i
t ]
γ[aWW

i
t ]
φ[AitL

i
t]
κ, (4.1)

with W i
t as the knowledge stock, Ki

t as the capital stock and Lit as unskilled workforce

of region i. B > 0 is a global shift parameter and aK ∈ (0, 1) and aW ∈ (0, 1) stand

for the global fractions of capital and knowledge stock used for production of new

knowledge. γ ∈ (0, 1), κ ∈ (0, 1) and φ ∈ (0, 1) are the corresponding production

elasticities. Thus, every region i produces with the same production technique Qi
t in

the knowledge production sector. Ai is a time dependent shift parameter with constant

growth rate gia, so that Ait+1 = (1 + gia)A
i
t.

As one can easily see from equation 4.1 is that unskilled workforce is entirely used

in the sector of knowledge creation and cannot be used in the goods sector. This

assumption seems to be strict at first glance, but the focus on this model is to work

out the link of knowledge, agglomeration and growth. Of course, we can expand the

model in this sense, that a fraction, say aL can also be employed in the goods sector.

But the implications of this model remain unaffected by this modification.

The goods sector is formulated similarily to the knowledge producing sector with the
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exception that only knowledge and capital are needed to produce output Y i
t . For that

reason one can write the production function Y i
t as follows:

Y i
t (Ki

t ,W
i
t ) = [(1− aK)Ki

t ]
α[(1− aW )W i

t ]
β. (4.2)

Thus, every region i produces with the same production technique Y i
t in the goods

sector. As one can see from equation 4.2 the good is produced via ”transformed”

labour through knowledge capital generation and capital stock Kt. For the labour

productivity in efficiency units yit
21 we can write:

yit ≡
Y i
t

AitL
i
t

= [(1− aK)kit]
α[AitL

i
t]
α−1[(1− aW )W i

t ]
β, (4.3)

with kit =
Ki
t

AitL
i
t
. As usually, it is further assumed that labour is growing with constant

rate gin so that Lit+1 = (1 + gin)Lit.

In the next step we have to think about the integration of space in our model. This

is done in several ways. First we have to formulate a rule for the unskilled labour. It

is assumed that unskilled labour is not very mobile and mostly bounded to its origin

region due to social connections as family, friendship relations etc.. Labour from a

region i is only emigrating if it offers the lowest wage payed in the goods sector in

the set of neighbours. More technical, a fraction θLt will leave region i in t. On

contrary, if region i offers the highest wage in the set of neighbours, then labour force

from neighbouring regions is immigrating in region i. Again more technical, a fraction

θ
∑

j L
i
t will immigrate to region i. Otherwise due to strong social ties, no migration

movement occurs. Therefore we can formulate the following transition rule:

Lit+1 =


{
θ
∑

j L
j
t + Lit

}
(1 + gN) if wit = wmaxt

Lit(1− θ)(1 + gN) if wit = wmint

Lit(1 + gN) otherwise

. (4.4)

with wmaxt as the maximum wage payed in the set of neighbours and region i, and

with wint as the minimum wage payed in the set of neighbours and region i. Assumption

4.4 can also be interpreted as the fact that an unskilled worker is not perfectly informed

21In the following ”labour productivity” and ”labour productivity in efficiency units” are used as
synonyms.
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about wage conditions in the entire world but only within the neighbourhood of his

home region i. If the wage is situated between wmin and wmax, then there is no incentive

to leave the home region i. Of course, if θ = 0 no migration can be observed, the states

of the system are entirely absorptive with respect to space but not with respect to

time, because Lit is constant over space, but not over time. If gin is also set to zero, Lit

is constant over time and over space.

On contrary to the labour market which is more local, the capital market is organized

globally and capital is mobile over the entire space of our world. This means that an a

priori fraction of the investments ϕ from region i flows in that region j which exhibits

a higher net capital productivity rjt compared to the mean capital productivity r̄. The

fraction (1−ϕ) is invested in the region of origin. Although, the flow is not regionally

bounded, the factor ϕ ∈ [0, 1] weights the neighbouring investments sYiϕ of region i to

acknowledge possible capital transfer restrictions, which may be imposed by politics or

can be intrinsicly motivated. Thus, the transition rule for the capital is formulated as

follows:

Ki
t+1 =

{
s
[(∑

j Y
j
t ϕχi

)
+ (1− ϕ)Y i

t

]
+ (1− δK)Ki

t if rit > r̄

(1− ϕ)sY i
t + (1− δK)Ki

t if rit < r̄
, (4.5)

with ϕ ∈ [0, 1] as the fraction of investment which is made in neighbouring regions,

δ ∈ [0, 1] as the depreciation rate on capital and χit represents the weighting measure

for capital flows. To obtain a weighting measure of how much capital flows a priori to

neighbouring regions we construct an endogenous weighting measure which depends

on the relationship of own marginal product of capital and the sum of neighbouring

marginal products of capital. This can be transfered into the following equation:

χit =


rit∑
j r
j
t

if rit > r̄

0 if rit < r̄,
, (4.6)

which implies χit ∈ (0, 1). From equation 4.6 we can see that even if χ ∈ (0, 1) is

positive for a region i, capital restriction in other regions j may hinder the flow to the

own region i. For example, set ϕ = 0, then region i can reinvest only its own savings,

even if rit > r̄.

If we assume, that further increase of investment I it is associated with higher in-

vestment expenditures, we may have to think about capital costs φ
(
It
Kt

)
. A priori,
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capital costs should play a crucial role not only for home investments but also for

neighbhouring investments. For that reason, we formulate

φ

(
I it
Ki
t

)i
=


(

1
1−ζ

)(
s(
∑
j Y

j
t ϕχi+(1−ϕ)Y it )

Ki
t

)(1−ζ)

if rit > r̄(
1

1−ζ

)(
sY it (1−ϕ)

Ki
t

)(1−ζ)
if rit < r̄

, (4.7)

with ζ > 0. Thus for the transition rule of capital stock Ki
t we have to choose the

following notational form:

Ki
t+1 = φ

(
It
Ki
t

)
Ki
t + (1− δ)Ki

t . (4.8)

We have to note, that φ(·) is a concave and decreasing function its relevant argument

and if one sets φ
(
It
Kt

)
≡
(
s(
∑
j Y

j
t ϕχi+(1−ϕ)Y it )

Ki
t

)
or φ

(
It
Kt

)
≡
(
sY it (1−ϕ)

Ki
t

)
one obtains

equation 4.5 together with equation 4.8.

In the next step we have to create a direct link between knowledge spillovers and

labour productivity. For this scope, we assume that a region i will benefit from ”knowl-

edge creation” of other regions j. Hence, the knowledge stock W i
t+1 is determined by

the production of knowledge Qi
t and the weighted spillovers

∑
jW

j
t from neigbouring

regions j. Therefore, we can formulate a transition rule for the knowledge stock Wt+1:

W i
t+1 = Qi

t + ιti
∑
j

W j
t + (1− δW )W i

t , (4.9)

whereas ι ∈ [0, 1] is an endogenous measure of degree of spillovers and δW represents

the deprecation rate on knowledge. It is assumed that the degree of spillovers ιit can

be modeled as a function of the maximum stock of knowledge which is available in the

economy Wmax
t and the region specific knowledge stock W i

t . Thus, the spillover degree

is the greater the smaller the difference of Wmax
t and W i

t is. Accordingly, we can write

ιit = 1−
{
Wmax
t −W i

t

Wmax
t

}
, (4.10)

which is ∈ [0, 1]. If Wmax
t −W i

t = 0 then ιit takes its maximum level of one. On
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contrary, ιit = 0 if W t
i = 0.

Not only W i
t accounts for spillovers but also Y i

t itself. It is known from the conver-

gence debate that emerging countries should grow faster if they have not reached their

balanced growth path. If we define an endogenous technological gap as Θi
t =

Ȳt−Y it
Ȳt

,

then, in every period of time t a fraction of the technological gap Θi
t ∈ (0, 1) can be

reduced by ϑ ∈ (0, 1) if and only if the region i is innovative. Whether a region i is

innovative or not depends solely on a normal distributed random variable $ ∈ [0, 1]. If

this parameter $ ∈ [0, 1] exceeds a given threshold π ∈ [0, 1] then a region is innova-

tive. In this way the tacitness of knowledge has been integrated. Remember, if π → 1

then knowledge tends to be completely tacit and the probability of innovativeness is

very small. This scenario induces a kind of knowledge which is hard to understand

and therefore cannot be used with a high probability to reduce the technological gap.

Otherwise, if π → 0 the probability of tacit knowledge tends to zero and hence a

large proportion of regions is innovative. In notational form, we can write for the

technological gap Θi
t:

Θi
t :=

{
−Y it −Ȳt

Ȳt
if : Y i

t < Ȳt = 1
|H|
∑

j Y
j
t $ > π

0 otherwise.
(4.11)

Note that ϑ ∈ (0, 1) and $ ∈ [0, 1] are treated with this formulation as global

parameters. For the production of region i at the beginning of the next period t + 1

we can write Y i
t :

Y i
t+1 :=

{
Y i
t + ϑΘ if : Θ > 0,

Y i
t , otherwise.

(4.12)

In this section we have defined a hybrid spatial growth model which should give a

first hint of how knowledge creation, production and knowledge diffusion interact, not

only in time, but also in space. As one can see, due to its complexity, this model

cannot be solved analytically but numerically. The complexity stems particularly from

the fact, that knowledge diffusion can be characterized with feedback rules. In the next

section the simulation frame for the hybrid model is set up. Cellular Automaton (CA)

is very attractive for simulation spatial models owing due its construction.
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4.2.2 Cellular Automaton

A Cellular Automaton (CA) is a simple mathematical system, which shows highly com-

plex behavoir22. It consists, loosely spoken, of a number of cells. Every cell checks for

every period of time its own and its corresponding activities of their neighbours and

updates if necessary its state based on given rules. On general, a Cellular Automaton

consists of a d-dimensional grid D, cells and neighbourhoods of cells H and a transi-

tion rule κ. Usually, time is discrete and the transition rule is deterministic but may

be influenced by stochastic global and local parameters Γ and Φ, respectively. The

transition rule is responsible for the dynamic behaviour of the defined system.

The charme of the (CA) technique is that spatial effects or space itself can be mod-

eled in an explicit way, because region and neighbourhood structures can be modeled.

Another way of modeling space is referring on so called Agent-based modeling (ABM),

which has attracted significant attention in social science during the last years. Prima

vacie, (ABM) provides several advantages, such as controlling for heterogeneous en-

tities, it encounters in fact several seriously methodological problems, especially the

massive parameter space and the problem of validation. The implication of the first

problem is, that we do not know which parameter settings leads to the desired be-

haviour of our system. Parameter setting is heuristic and not based on selection mech-

anism. Further, it is not possible to exclude singularities and discontinuities in the

entire model space. Some regions could exhibit chaotic behaviour, whereas other re-

gions do not. The implication of the second problem is, that it is not possible to derive

an empirical model from the (ABM) structure. (CA) instead of (ABM) only provides

a (spatial) framework, in which model behaviour can be discussed. As seen below, also

(CA) is suitable to discuss heterogeneous phenomena.

Let us start with the definition of the dimension of (CA). It is a regular 2-dimensional

and quadratic n×m grid. Thus, we can write:

D := {(i, j)|i, j ∈ Z, 0 ≤ i < Ni, 0 ≤ j < Nj}. (4.13)

Next, we have to make some remarks regarding a given state Z of our model. At

first glance, we could think we could assume that the state vector Z is a τ -tupel and

can be formulated in general as

Zτ = {0, 1, 2, 3, ..., τ − 1}. (4.14)

But in the model context we identify several states for the variables L,K,W and Y

22For an overview of Cellular Automaton please refer to (Wolfram, 1994).
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due to the fact that Z ∈ R0
+.

In this model, agglomeration of labour productivity is in the focus of investigation.

Thus, if we consider a 2 dimensional grid, we can stack each region specific labour

productivity y in a n×m matrix D. In this way, it is possible to observe the evolution

of labour productivity over time t and over space which is defined via D. In this way,

in every time step t a Gini-coefficient with respect to y with respect to regions can be

computed. In addition, the evolution of spatial correlation of y can be measured 23.

Further, we have to consider the neighbour relationship of each cell i. Usually, refer-

ing on (CA) we distinguish between von-Neumann (vN) and Moore (M) non absorptive

but periodic neighbourship relations. Let us define a so called immediate neighbour

cell h which does not consider itself as a neighbour. Thus the neighbour relations for

a cell i located on the two dimensional grid with coordinates {a, b} ∈ D in t are:

ia,bt =
{

(i
(a−1,b−1)
t , i

(a−1,b)
t , i

(a−1,b+1)
t , i

(a,b−1)
t , i

(a,b+1)
t , i

(a+1,b)
t , i

(a−1,b−1)
t , i

(a+1,b+1)
t ) if (M),

(i
(a−1,b)
t , i

(a,b−1)
t , i

(a,b+1)
t , i

(a+1,b)
t ) if (vN).

. (4.15)

Thus, if one refers to (M), then a region i has 8 direct neighbours, whereas a (vN)

world implies 4 direct neighbours for a given region i under the condition r = 1.

These different kinds of first order neighbourships (r = 1) can also be graphically

demonstrated as in figure 4.1.

ia,b ia,b+1

ia+1,b

ia-1,b

ia,b-1

b

a

ia,b ia,b+1

ia+1,b

ia-1,b

ia,b-1

b

a

ia+1,b-1 ia+1,b+1

ia-1,b-1 ia-1,b+1

(vN) (M)

Figure 4.1: Representation of (vN) and (M) neighbourship relations with (r = 1)

In this model, we rely on the Moore (M) relationship. We can see, that the (M)

relationship builds a ”ring” of neighbours with radius r = 1 round the cell of interest

ia,b. At this point, it should be kept in mind, that we have to integrate assumption 4 in

our model, which means that we have to think about a more explicit space dependency.

The easiest way to do this, is to create a second ring round the neighbour cell ia,b with

23With Matlab 6.5.0 one can visualize this simulation experiment with spy(D) for instance.
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radius r = 2. Of course, one can go further to integrate higher degrees of r, but this

should be enough do see the difference if one acknowledges the so called ”neighbours

of neighbours” influence. On general, we can write for r = {1, 2, ..., R}:

ia,bt =


(i

(a−1,b−1)
t , i

(a−1,b)
t , i

(a−1,b+1)
t , i

(a,b−1)
t , i

(a,b+1)
t , i

(a+1,b)
t , i

(a−1,b−1)
t , i

(a+1,b+1)
t ) if r = 1,

(i
(a−1,b−1)
t , i

(a−1,b)
t , i

(a−1,b+1)
t , i
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(a,b+1)
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i
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t , i

(a+2,b)
t , i

(a−2,b−2)
t , i

(a+2,b+2)
t ) if r = 2,

.

.

.

(4.16)

Thus with this notation the (CA) represents an economy which is divided into several

regions and which allocates an identical number of neighbours to each region. We can

therefore represent the economy as a so called circular city.24

As mentioned, it is assumed that spillovers are not treated as constant over space and

further it is assumed that they are limited over space. More concrete a region i benefits

more from the nearest regions than from farther away regions regarding knowledge

spillovers. Thus we have to introduce a spatial weighting scheme of neighbourhood

potential regarding. Further, we have to acknowledge home effects of a given region i.

In this way, we have to discriminate region specific effects and neighbour effects which

affects a given knowledge specific economic variable Ṽ i
t ∈ R+

0 . Label V spill
t the spillover

potential of neighbourhood and V i
t the region specific economic variable then overall

effect can be written as

Ṽ i
t =

ξ1
∑
k∈N1

j

V k
t + ξ2

∑
k∈N2

j

V k
t + ...+ ξR

∑
k∈NR

j

V k
t

+ V i
t


=

[
V spill
t + V i

t

]
(4.17)

with ξ1 ≥ ξ1 ≥ ... ≥ ξR, and N r
i,j ⊂ Ni,j for r = {1, 2, ..., R} and ξr ∈ (0, 1) which act

as a weighting parameter for higher order neighbour influence. If r = 1 only nearest

neighbour relations matter. The latter assumption is the common assumption which

has been made in empirical literature when talking about spatial effects.

Now we are able to set up the dynamic behaviour of the CA. For that purpose, we

need a mapping scheme to integrate the dynamics into our system. Please note, that

a given variable Zt is endogenous because it is influenced through the neighbours Ht

and global and local parameters Φt and Ψt
25. Therefore, let us write Zt(Ht,Ψt,Φt)

26

24Refer to (Tirole, 1988), (Hotelling, 1929) and (Krugman, 1995).
25The vectors contain the depreciation rate, the saving rate etc..
26Φ and Ψ may be time variant or not.
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To map the dynamics a mapping function κ is required. This function reads as follows:

κ := ZHt
t → Zt+1. (4.18)

4.2.3 Model simulation

As easily can be seen from above, the model is not restricted to have constant returns

to scale, which means that α + β = 1 and γ + ψ + κ = 1. For instance, if the

goods sector exhibits increasing returns to scale α + β > 1 even in a competitive

environment, if knowledge spillovers are introduced as done by (Lucas, 1988). As

known, the results obtained in a competitive environment are generally not Pareto

optimal. In this case, governmental subsidize schemes have to be initialized to subsidize

activities with positive spillovers. Further it should be noted, that large spillovers could

create multiple equilibria which can be ranked by the Pareto criterion.27

As highlighted by (Lucas, 1988) knowledge spillovers lead to increasing returns to

scale in the goods sector. Of course, such a condition is compatible with endogenous

growth, but it is not a necessary condition. The model of (Lucas, 1988) can also gener-

ate endogenous growth without knowledge spillovers from knowledge sector. Although,

the focus on this analysis is not in first line tend to discuss the conditions of endogenous

growth in this model framework, this should fact should be kept in mind.

If we turn back to our simulation exercise and if we further follow (Eicher and

Turnovsky, 1999), three simulation scenarios are distinguished: first, both the goods

sector and the knowledge good sector exhibit increasing returns to scale, second, the

goods sector and the knowledge good sector exhibit constant returns to scale, and

third, both sectors exhibit decreasing returns to scale. All scenarios are run for first

order and second order spatial influence.

For the simulation study, it is assumed, that labour is mobile, which means that

θ > 0 and it is growing with a constant rate gL. Further it is assumed, that capital is

mobile and capital restrictions are close to zero (ϕ = 0.99). For the capital adjustment

costs a value of ρ = 0.5 has been chosen. The savings rate is set to s = 0.10 which

reflects a ten year average saving rate for Germany28. It is further assumed that in

every period the technological gap of a region i can be reduced by ϑ = 0.10. This is

a very small value, but it is in line with the assumption that knowledge is tacit which

means that π = 0.8. Furthermore, first order (r = 1) and second order influence of

neighbourhood (r = 2) is not constant over space but decreasing, hence we set ξ = 0.1.

27Refer to (Barro and Sala-I-Martin, 1995), p. 199.
28Refer to the homepage of ”Statistische Bundesamt”: http://www.destatis.de for further informa-

tion regarding the development of the German saving rate.
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Values for elasticities of production have been chosen according to the works of

(Lucas, 1988) and (Jones, 1995a). Data for depreciation rates both for human and

physical capital have been taken from (Kydland and Prescott, 1982). Table 4.1 provides

a summary of the parameter settings.

Sector Parameter CRS DRS IRS
Goods sector α 0.360 0.300 0.400
Goods sector β 0.640 0.500 0.700
Goods sector (1-aK) 0.500 0.500 0.500
Goods sector (1-aW ) 0.500 0.500 0.500
Goods sector ϑ 0.100 0.100 0.100
Goods sector π 0.800 0.800 0.800

Knowledge sector γ 0.100 0.100 0.100
Knowledge sector φ 0.300 0.200 0.400
Knowledge sector κ 0.600 0.200 0.600
Knowledge sector aK 0.500 0.500 0.500
Knowledge sector aW 0.500 0.500 0.500
Knowledge sector δW 0.005 0.005 0.005
Capital market δK 0.025 0.025 0.025
Capital market ζ 0.500 0.500 0.500
Capital market ϕ 0.990 0.990 0.990
Labour market θ 0.300 0.300 0.300
Labour market gA 0.001 0.001 0.001
Labour market gN 0.001 0.001 0.001

Neighbour relations ξ 0.100 0.100 0.100
Neighbour relations r 1/2 1/2 1/2

Table 4.1: Parameter setting

Further, one has to choose arbitrary starting values for the stock of knowledge, labour

and capital. With the exception of knowledge W0, which is random and distributed

uniformly in the interval [0, 0.5] all variables of interest are set to K0 = L0 = 1 for

all regions i. Thus, the regions differ only with their initial endowment of knowledge

W i
0 6= W j

0 .

4.2.4 Simulation results

This section provides an overview of the simulation results. Results are presented both

for first order (r = 1) and second order (r = 2) spatial influence. Simulations have

been performed using Matlab 6.5.0. 29

29The program is available on request.
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4.2.4.1 First order spatial influence

The first simulation has been run for the case of decreasing returns to scale (DRS)

scenario. As we can see from figure 4.2 we do not observe an agglomeration tendency

for this case after 200 periods.30 As a consequence of that, the Gini-coefficient as well

as the spatial concentration should be rather low for labour productivity, which can

be seen from figure 4.2. As a result, decreasing returns to scale do not display relevant

agglomeration tendencies within our framework.

Figure 4.2: Evolution of Gini-coefficient and spatial correlation of Y
AL

for DRS and
r = 1

For the second simulation (figure 4.3) we assume constant returns to scale (CRS).

On contrary to the before discussed case, we observe a spatial concentration of the per

capita income after 200 iteration steps. The Gini-coefficient exhibits a higher value on

average compared to the DRS scenario, which means that distribution of per capita

income tends to be more unequal as in the DRS scenario.

The last simulation (figure 4.4) has been done for the increasing returns to scale case

(IRS). The conspicuous fact is, that we can observe a strong agglomeration tendency

right from the beginning of the simulation. After 200 simulation runs we observe only

a few regions which exhibit a high per capita income relative to the rest of the world.

This is in line with the fact that the Gini-coefficient indicates a strong uneven income

per capita distribution.

30Spatial correlation is measured similarly to time series analysis context with the so called Moran’s-
I.
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Figure 4.3: Evolution of Gini-coefficient and spatial correlation of Y
AL

for CRS and
r = 1

Figure 4.4: Evolution of Gini-coefficient and spatial correlation of Y
AL

for IRS and r = 1

4.2.4.2 Second order spatial influence

In this section, we perform the same simulations as done before in the preceding section

with respect to the fact that second order neighbour influence matters. The intuition

is, that second order spatial influence leads to a stronger spatial correlation of per

capita income, because of the fact, that more regions benefits from knowledge spillovers.

Further, the Gini-coefficient should exhibit a more equal distribution, also due the fact,

that more regions can benefit from knowledge spillover pool. Simulation scenarios can

be found in figures 4.5, 4.6 and 4.7.

First, the simulation of the DRS case has been performed. Compared to DRS sce-

nario with r = 1, we observe, that spatial correlation is higher but at the same time

income per capita is more evenly distributed as for the case of first order spatial effects.
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Figure 4.5: Evolution of Gini-coefficient and spatial correlation of Y
AL

for DRS and
r = 2

Figure 4.6: Evolution of Gini-coefficient and spatial correlation of Y
AL

for CRS and
r = 2

Second, if we compare the CRS scenario for r = 1 with the CRS scenario with r = 2

we conclude, that income per capita distribution is more evenly distributed for the case

of second order spatial influence.

Third, only for the IRS case, we observe no relevant differences between the first

and second order spatial influence scenario. Although the obtained results are based

on one particular parameter constellation, unreported sensitivity analysis indicate that

the obtained results hold more generally.
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Figure 4.7: Evolution of Gini-coefficient and spatial correlation of Y
AL

for IRS and r = 2

4.2.5 Conclusion

The aim of the model derived above is to investigate the relationship between knowl-

edge diffusion, agglomeration and growth. From a theoretical growth literature view,

only the link of technological innovations and knowledge diffusion for technological

growth is widely discussed31, while the role of knowledge diffusion is only partly con-

sidered. Ex ante, the so called North-South trade model seems appropriate to cope

with this research question. Some of the North-South trade literature on diffusion and

technological progress32 consider feedback effects between the North and the South

in the steady state, but an analysis of the transitional dynamics for either region is

missing. (Barro and Sala-I-Martin, 1997) indeed derived transitional dynamics for the

South but feedback effects are excluded as there is no trade of intermediate goods.

Thus, a transition path for the North cannot be derived.

The communality of this strand of literature is only focused on two country or two

region models, which consist of a rich North and a poor South or a core and a peripheral

country. From this perspective, those type of models are less suitable to investigate the

link of increasing returns to scale, agglomeration and distribution of economic numbers

because in a two country framework, it is not reasonable for instance to investigate

agglomeration effects over regions. From this point of view, those North-South models

are not appropriate to give a justification of the ”folk theorem of spatial economics”

which states that increasing returns to scale are essential for explaining agglomeration

effects and thus uneven geographical distribution of economic numbers.

To investigate the relationship between knowledge diffusion, agglomeration and growth

31Refer to (Romer, 1986), (Romer, 1990) and (Krugman, 1991) for instance.
32Refer to (Krugman, 1979), (Dollar, 1986), (Grossman and Helpman, 1991b), (Grossman and

Helpman, 1991a), (Rivera-Batiz and Romer, 1991), (Barro and Sala-I-Martin, 1997) and (Glass, 1997).
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one has to refer to a multi country framework. One of the reasons, why multiple coun-

try or regional focused growth models are less attractive could be that such growth

models become very complex and cannot solved analytically. For computational rea-

son, a Cellular Automaton framework has been used to simulate the before established

model. This environment has been selected because of its ability to visualize spatial

effects.33.

The aim of the theoretically derived model, which is based on the works of (Uzawa,

1965) and (Lucas, 1988), is to derive a theoretical growth orientated justification of

the ”folk theorem of spatial economics”34, that ”increasing returns to scale (IRS) are

essential for explaining geographical distributions of economic activities”35. For this

reason, a world consisting of 100 regions has been simulated to study the effects of

decreasing returns to scale, constant returns to scale and increasing returns to scale,

both in the goods sector and in the R&D sector on the per capita production in each

region. To measure inequality over regions, we refer to the Gini-coefficient. Further

it was distinguished between first order and second order spatial effects to control for

different grasps of knowledge spillover.

After performing two simulation scenarios, it was found that productivity is more

evenly distributed the higher the degree of spatial effects is, et vice versa. Second,

spatial dependence is higher, the higher the degree of spatial effects is. Third, a strong

unevenly productivity distribution results only for the case of increasing returns to

scale, for any degree of spatial effects. Thus, the ”folk theorem of spatial economics”’

seems to be justified within this model framework.

Of course, there are various avenues for further research. One of the possible research

fields is, to embed the (CA) modelling technique in a general equilibrium framework.

Further, the question how (weak) scale effects in per capita production affects the

per capita production distribution of regions should be investigated deeper in further

research.

In the next section, an empirical model is set up which tries to identify spatial

agglomeration effect in German regions.

33Refer to (Keilbach, 2000).
34Refer to (Scotchmer and Thisse, 1992).
35(Fujita and Thisse, 2002), p. 342.
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4.3 Empirical model

In the foregoing section we have argued that spatial knowledge spillovers can explain

agglomeration phenomena in real economics. Increasing returns to scale play the key

role in explaining spatial concentration that we call cluster in general. The aim of this

chapter is to give an answer to the question, whether spatial spillovers can be identified

in the data and if spatial heterogeneity matters. Further the questions, how do these

knowledge spillovers, given they exist, affect labour productivity and are knowledge

spillovers more local or more global are, should be answered. Finally we want to filter

spatial effects, if necessary.

4.3.1 Motivation

The basic cross section regression model stems from a simple production function

approach and can be written as follows:

y = Xβ + ε, (4.19)

where y is a stochastic N ×1 vector of observation, X is a full rank N ×K matrix of

K non stochastic independent variables, β is a K × 1 vector of regression coefficients

and ε is treated as a normally and independently distributed N×1 vector of errors. The

drawback of a formulation like equation 4.19 is, that it does not acknowledge spatial

dependence. But if spatial dependence, especially spatial autocorrelation, exist in the

data, and if they are neglected within the estimation setup 4.19, an estimation based

on OLS may not be consistent36. This argumentation is familiar when talking about

estimation problems within a pure time series approach.

Therefore, equation 4.19 has to be altered and expanded for spatial processes. Gen-

erally, spatial events appear in three forms: first, spatial dependence is only observed

in the y vector. As a consequence of that, a spatial lag model or a spatial AR(1) model

has to be estimated. Second, spatial dependence is only observed in the error term

vector ε, which means that one has to model a spatial error or a spatial MA(1) model.

Or third, a combination of both spatial events occur in the data. Then a mixture of a

spatial lag and a spatial error model has to be used. Given the latter is true, then we

can rewrite equation 4.19 as a spatial ARMA(1,1) model as follows:

36Refer to (Anselin, 1988) and (Anselin and Rey, 1991) and appendix 1.
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y = ρWy +XβX + X̃βX̃ + λWε+ κ, (4.20)

withX = [x1, x2, ..., xK ], X̃ = [x̃1, x̃2, ..., x̃M ] and theK×1 vector βX = [βX1 , β
X
2 , ..., β

X
K ],

and the K × 1 vector βX̃ = [β1, β2, ..., βM ].

The parameter ρ is the so called spatial autoregression coefficient, W is a N × N

matrix containing spatial weights, and κ is a N × 1 vector containing errors. Often it

is assumed that M = K. Thus, a close relationship between time series and spatial

econometrics modeling can be observed. But it is worth to note, that the analogy

regarding the labeling of such a process to time series is misleading sometimes because

spatial spillovers are often described by feedback-processes, as mentioned before.

The N ×K matrix X contains non spatial exogenous variables, whereas the N ×M
matrix X̃ contains the spatial lagged exogenous variables. Of course we can write X̃ =

WX. Stacking Wy, X, X̃ and Wε in X̃+ = [Wy,X, X̃,Wε] and β̃ = [ρ, βX , βX̃ , λ]′

leads to

y = X̃+β̃ + κ. (4.21)

Although it is common to assume that κ ∼ N(0, σ2I), it is more plausible to assume

that κ ∼ N(0, σ2Ω) with σi = h̃(f ′iα) and h(·) > 0 as unknown, continuous function

which are treated as the diagonal elements of the error covariance matrix σ2Ω.

Although (Keilbach, 2000) and (Klotz, 1996) argue that spatial heterogeneity is not

seen as a serious problem in spatial econometrics context it should be in fact treated as

a serious problem ex ante. Remember for instance that some regions do not follow the

same spatial relationships as other regions. This ”enclave effects” or in an econometric

notation, these ”outliers” could cause severe problems such as fat-tailed errors which

are not normal of course. A t-distribution is more appropriate then. In such cases it

seems more appropriate to acknowledge these outliers and use Bayesian methods for

instance.

Only for the fact that h̃ = σ2 it follows that κ ∼ N(0, σ2I) which implies spatial

homogeneity. The big problem estimating a heterogeneous spatial model is that allow-

ing for heteroscedasticity we have to estimate N additional parameter for each σi. Of

course, this leads to the so called ”degree of freedom” problem, because we do not have

simply spoken enough observations to compute an estimate for every point located in

space. Therefore, we are confronted with a problem using the ”traditional” econometri-
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cians toolbox. One way to deal with this problem is to refer to Bayesian econometrics.

Bayesian methods in regression context do not encounter the similar degree of freedom

problems, because informative priors are available. As seen later, the prior distribution

for our N diagonal elements of Ω are independently χ2(s)
s

distributed. Note, that the

χ2-distribution is a single parameter distribution where we can represent this parame-

ter as s. This allows us to estimate N additional parameter of the diagonal elements

of Ω by adding a single parameter r to our regression procedure.

Hence, the estimation strategy is defined as follows: one should start with an esti-

mation of a spatial ARMA-model with homogeneous errors based on equation 4.20. Of

course, expression 4.20 can be considered also as a spatial ARIMA-model, if |ρ| = 1. If

we do observe a significant coefficient of ρ close to one37, one should estimate a spatial

ARIMA-model to avoid results based on spurious regressions. Equation 4.20 can be

consistently estimated via Maximum-Likelihood (ML) as mentioned by (Anselin and

Rey, 1991). Please note again, that (ML) based models are not suitable to model spatial

heterogeneity. For this reason, (ML) estimations implicitly assume spatial homogene-

ity. For this reason, Bayesian models with the additional assumption of heterogeneous

errors should be estimated. After performing model selection mechanism, a direct

model comparison of the (ML) based and the Bayesian model should be used, to find

the model which best fits to the data generating process. If one detects dissimilarities

between the two approaches, then one of course should rely on the Bayesian model

than on the (ML) approach.

4.3.2 Spatial weight

Until today, there is no theory about how to find the ”correct” spatial weight matrix

W . Therefore, the choice of the spatial weights should be done on the basis of the

specific research topic. The first question one has to ask is how to proxy spatial prox-

imity. One approach is to say, that spatial proximity is best proxied by geographical

distances. Another way is to say, that geographical boarders are less important for

spatial proximity and for this reason one should better rely on non geographical data,

such as trade shares38 or data on FDI39.

The latter strategy has two major drawbacks in this context: First, in this work, it is

primarily focused on knowledge diffusion. When talking about this issue it is rather not

intuitive to proxy spatial proximity by trade shares or FDI data for instance. Second,

37Naturally, ex ante it is difficult to decide, whether one is confronted with a highly persistent or
an unit root process with respect to space.

38Refer to (Coe and Helpman, 1995).
39Refer to (Lichtenberg and van Pottelsberghe de la Potterie, 1996).
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there is a methodological problem: using these weights it is very likely, that they can

be endogenous and therefore lead to biased estimators if not using an IV or GMM

approach.

Hence, the majority of the literature is refering to more geographical weights. It

is common using geographical distances (Keller, 2001) or more precisely using great

circle distances between regions’ centroids (Anselin, 1988). But this has the inherent

assumption that knowledge spillover sources are located in region´s centroids. Another

way, which is also consulted in this study, is simply to refer to binary weighting schemes
40. If a region i is a neighbour of another region j, then the i-th element of W , wij

takes a 1, otherwise a 0.

Thus, we can write for the symmetric N ×N matrix W with weights wij:

wij =

{
1, if i and j have a common border and i6=j

0 otherwise
. (4.22)

Often, this matrix is weighted or standardized because this facilitates the interpretation

of the estimated coefficients41 and guarantees that the Moran’s I is situated in the

interval [−1; 1]42. Using the weighting scheme, proposed by (Anselin, 1988), we write

for the standardized elements w+
ij of W+:

w+
ij =

wij∑Nj
j=1wij

. (4.23)

In this way we have created a row standardized spatial weighting matrix W+ which

is used in the preceding estimation exercise.

4.3.3 Higher order spatial influence specification

One major drawback of model 4.20 is, that higher order spatial dependencies are not

included. To obtain a higher order weighting matrix W+r for r = {1, ..., R} we should

increase the power of the simple contiguity matrix 43. Labelling the order of the spatial

dependency with r = {1, 2, 3, ..., R} then X̃ can be expanded as follows:

40Refer to (Tappeiner et al., 2008).
41(Anselin, 1988), p. 23.
42Refer to (Ord, 1975) and (Griffith, 1996).
43Refer to (Anselin, 1992).
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X̃++ =

 x̃111 x̃112 · · · x̃11M
x̃121 x̃122 · · · x̃12M
.
.
.

.

.

.
.
.
.

.

.

.

x̃1N1 x̃1N2 · · · x̃1NM

 , ...,

 x̃R11 x̃R12 · · · x̃R1M
x̃R21 x̃R22 · · · x̃R2M
.
.
.

.

.

.
.
.
.

.

.

.

x̃RN1 x̃RN2 · · · x̃RNM

 , (4.24)

or in short hand notation:

X̃++ = [X̃1, X̃2, ..., X̃R]. (4.25)

Defining P = [ρ1, ρ2, ..., ρR]′, ỹ = [W+1y, ...,W+Ry], Λ = [λ1, λ2, ..., λR]′ and over the

more ε̃ = [W+1ε, ...,W+Rε], and β++ = [βX̃
1
, βX̃

2
, ..., βX̃

R
]′ with βX̃

r
= [βX̃

r

1 , ..., βX̃
r

M ]

we can rewrite our model 4.20 as:

y = ỹP +XβX + X̃++β++ + ε̃Λ + κ (4.26)

with κ ∼ N(0, σ2Ω). For R = 1 model 4.20 follows directly. From the general

model 4.26 we can derive three major submodels for r = {1, ..., R}: the spatial lag

(SAR(r)) and spatial error (SEM(r)) and a spatial model with exogenous spatial vari-

ables (SEV(r)). For the (SAR(r)) we can write:

y = ỹP + κ (4.27)

with κ ∼ N(0, σ2Ω), for the (SEM(r)) we can write

y = XβX + ε̃Λ + κ (4.28)

with ε = ε̃Λ + κ and κ ∼ N(0, σ2Ω) and for the (SEV(r)) we notate:

y = XβX + X̃++β++ + κ (4.29)

with κ ∼ N(0, σ2Ω).

It has to be pointed out, that the estimation of 4.26 and its submodels 4.27, 4.28

and 4.29 could lead to biased and inconsistent OLS estimates. Take submodel 4.27 for

instance: P ỹ is correlated not only with κ but also with neighbourings κ. If all elements
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of ỹP are zero OLS estimates are unbiased but inefficient. If submodel 4.29 is chosen,

then the model contains only exogenous spatial lagged variables besides non spatial

lagged exogenous variables. In this case OLS is only BLUE if κ ∼ N(0, σ2I). OLS

is even more unbiased if estimating a spatial error model, thus referring on submodel

4.28.44

To test this spatial model, we regress the regional output, measured as gross value

added on regional R&D-effort, human capital, regional number of patent applications,

regional capital stock, regional number of low qualified labour force, regional infras-

tructure, spatial weighted gross value added, spatial weighted dependent variables and

a West-East dummy, which covers the fact that East German regions are less produc-

tive than West German regions. Additionally, the number of patent applications are

regressed on regional R&D output, as proposed by (Griliches, 1979). In this way it is

possible to cover “articulated knowledge” and “tacit knowledge”.45

The question which remained unanswered is, how to choose the order R. If one refers

to the literature there is no hint how to choose the order R. Regarding this subject,

(Anselin, 1992) argues that especially for small samples the order of the weighting

matrix W should be chosen small. As mentioned above, in this investigation we base

the order of R on the data, especially on Moran‘s I. But before checking the data

concerning spatial dependencies, we should throw a first glance at the data.

4.3.4 Data and variables

Before testing the model, which has been introduced in the preceding chapter, one

has to give a short description of the data. As mentioned before, NUTS-2 data for

all German regions for the year 2003 have been used. The reason why one should

decide to base the empirical study upon NUTS-2 data is, that referring on so called

“Kreisdaten” could result in spurious spatial dependence, which could be caused by

streams of commuters, for example.46 This problem is boosted by the empirical fact

of suburbanization, which has increasingly appeared in the last years.47 That is why

most similar research field studies refer to so called “land use planning units”, such as

NUTS-regions, particularly for European studies or “Arbeitsmarktregionen” for Ger-

man investigations. Whatever of the latter mentioned spatial unit one decides to

use, the worth mentioning communality is, that a “land use planning unit” subsumes

smaller subgroups, such as “Kreise”. Thus, referring to “land use planning units”, the

44Refer to appendix 1 for a proof.
45Refer to (Maurseth and Verspagen, 2002).
46(Keilbach, 2000), p. 120-121.
47Refer to (Kühn, 2001) and (Kaltenbrunner, 2003) for a discussion.
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spurious spatial dependence problem is from less importance or even canceled out. The

year 2003 was selected because of reliability and accessibility of European patent data.

Particularly the problem of missing data is serious for NUTS-2 data. Of course, if data

would have been available for a longer period of time, then regression based on time

averages would be the appropriate approach.

In the table 4.2 one finds listed the German NUTS-2 regions which are subject of this

investigation. I have decided to mark Berlin as a West German NUTS-2 region, be-

cause of its both historic and economic exceptional position. If we look at table 4.2

then 31 West German and 8 East German NUTS-2 regions have been detected in the

dataset.
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Code German NUTS-2 region Location

de11 Stuttgart West
de12 Karlsruhe West
de13 Freiburg West
de14 Tübingen West
de21 Oberbayern West
de22 Niederbayern West
de23 Oberpfalz West
de24 Oberfranken West
de25 Mittelfranken West
de26 Unterfranken West
de27 Schwaben West
de30 Berlin West
de41 Brandenburg-Nordost East
de42 Brandenburg-Südwest East
de50 Bremen West
de60 Hamburg West
de71 Darmstadt West
de72 Gießen West
de73 Kassel West
de80 Mecklenburg-Vorpommern East
de91 Braunschweig West
de92 Hannover West
de93 Lüneburg West
de94 Weser-Ems West
dea1 Düsseldorf West
dea2 Köln West
dea3 Münster West
dea4 Detmold West
dea5 Arnsberg West
deb1 Koblenz West
deb2 Trier West
deb3 Rheinhessen-Pfalz West
dec0 Saarland West
ded1 Chemnitz East
ded2 Dresden East
ded3 Leipzig East
dee Sachsen-Anhalt East
def0 Schleswig-Holstein West
deg0 Thüringen East

Table 4.2: List of German NUTS-2 regions
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The data stem from the online database provided by Eurostat, from the online

support of the German statistical office in Wiesbaden (genesis online), from the on-

line representation of the “Arbeitskreis “Volkswirtschaftliche Gesamtrechnungen der

Länder”” as well as from the INKAR-database CD-Rom published by the “Bundesamt

für Bauwesen und Raumordnung”.

In detail, the following variables are specified:

1. Output (Y) is approximated with Gross Value Added. The data are published

annually on the CD-Rom “Statistik regional” by the “Statistische Ämter des

Bundes und der Länder” and have been stated in Mio. Euros.

2. Human capital (H) is measured as the percentage of the employees on NUTS-

2 level, subject to social insurance contribution, who obtained a high level degree,

such as an university, a polytechnical or a technical college degree. With the ex-

ception of Sachsen-Anhalt, the data stem from the CD-Rom “Statistik regional”

edited by the “Statistische Ämter des Bundes und der Länder”.48 To exclude the

above mentioned commuter problem, the data correspond to the activity area,

not to the place of residence of the employees. Naturally, this assumption com-

prises that added value is created at the activity area. Unfortunately, the data

do not exhibit the desirable attribute that they are restricted to the employed

human capital in production sector. Hence, as mentioned by (Keilbach, 2000)

we have to bear in mind implicit spillovers of employed human capital from the

non-producing sectors.

3. Labour (L) is measured as number of employees in thousands on NUTS-2 level

subject to social insurance contribution less human capital, defined above. Data

have been obtained from the CD-Rom “Statistik regional” edited by the “Statis-

tische Ämter des Bundes und der Länder”.

4. Capital (K) stock construction for the regional NUTS-2 manufacturing sector

is a serious problem. By mischance, it is not possible to hark back to regional

disaggregated stock of capital data for NUTS-2 regions from the official statis-

tic suppliers. Only for the German “Bundesländer” the “Arbeitskreis “Volk-

swirtschaftliche Gesamtrechnungen der Länder”” offers capital stock data. Nat-

urally, on this rather aggregated level, capital stock estimation via the perpetual

inventory method (PIM) is rather easy to implement. The fundamental idea of

PIM is that different vintages of the stock of capital exhibit different efficiencies

48The data of Sachsen-Anhalt have been obtained directly from the “Statistisches Landesamt
Sachsen-Anhalt”.
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beeing used in the production process. This idea has to be acknowledged when

calculating the stock of capital. Therefore, one has first to determine the average

durability of an asset. Next, calculation of long term data regarding the annual

investments is needed to initialize PIM. Basically, it is common to refer to gross

fixed capital formation as a proxy, because PIM is nothing else than computing

an average weighted sum of past investments. Long term data are necessary,

especially in the case of Germany, because the cumulative investment data have

to be corrected using a survival function and depreciation function to obtain an

estimation for the capital stock. In the case of Germany the Gamma distribution

has to be consulted to get a measure for the mortality function from which the

depreciation function can be obtained directly49. Based on the gamma function,

it cannot be ruled out ex ante that the service life of an asset oscillates more than

twice of an average service life of an asset. That is exactly the reason why it is

strongly recommended to use long investment data50. In this way it is possible

to calculate the stock of capital K in period t using data of gross fixed capital

formation I from the period t + 1, a depreciation rate on stock of capital δ, ob-

tained from the depreciation function and an average growth rate ζ of gross fixed

capital formation. In a more formal manner the following relationship results51:

Kt = It

∞∑
κ=0

(
1− δ
1 + ζ

)κ
=

It+1

1 + ζ

1(
1−

(
1−δ
1+ζ

)) =
It+1

ζ + δ
. (4.30)

As mentioned above, long term data for the gross fixed capital formation are

needed to initialize PIM. Unfortunately, long term series of desired data are not

available for Germany on NUTS-2 level. EUROSTAT offers data for gross fixed

capital formation on NUTS-2 level for German regions only for the years 2002

and 2003.52 Concerning the above mentioned, it is not reasonable to rely on PIM

estimating the stock of capital for NUTS-2 regions.

Because of that reason, the estimation of the stock of capital is done with a

method similar to the shift analysis. The basic idea of the shift analysis is

to compute a so called structural factor and a location factor. The structural

factor should provide information about the capital intensity of branches and

49It is suitable to set the dilation parameter of the mortality function to the value p = 9.
50The starting date for series of gross fixed capital formation is 1799 for buildings, 1899 for machinery

and equipment and 1945 or later for intangible assets. For an deeper introduction of PIM, particularly
for Germany, consult (Schmalwasser and Schidlowski, 2006).

51Refer to appendix 2 for a deviation of expression 4.30.
52The Statistische Landesamt Baden-Wurttemberg offers data for the gross fixed capital formation

from 1998 onwards online.
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furthermore, should give a hint, whether capital intensive branches are over- or

underrepresented in a specific region. Assume for the moment53, that we have

i = {1, 2, ..., I} branches and h = {1, 2, ..., N} NUTS-2 regions in each of the

j = {1, 2, ...,M} states. It is worth mentioning, that a single NUTS-2 region

can represent an own state54. Due to the fact that we do not analyse specific

branches, we can set i = 1.

Hence, we can notate the structural factor SF for region h in a formal manner:

SF h
t =

∑
i gt−1,iI

M
t,i∑

i gt−1,iIMt−1,i

/

∑
i I

M
t,i∑

i I
M
t−1,i

, (4.31)

where IMt,i stands for the gross fixed capital formation in the state M in year t,

INt,i stands for the gross fixed capital formation in the NUTS-2 region N in year

t and gt,i ≡
INt,i
IMt,i

is the weight for region h. Of course,
∑

h gt,i = 1 and
∑

j

∑
h gt,i

must equal the number of the states M . In the case of Germany M = 16.

Instead of the structural factor, the location factor assumes implicitly, that a

specific region, which can be characterized by high investments in the past, must

exhibit a high stock of capital relative to other regions in the present. For the

location factor LOF one can write:

LOF h
t =

∑
i gt,iI

M
t,i∑

i gt−1,iIMt,i
. (4.32)

Multiplying the structural factor with the location factor one obtains the regional

factor. More formally spoken, we obtain the regional factor RF :

RF h
t =

∑
i I

N
t,i∑

i I
N
t−1,i

/

∑
i I

M
t,i∑

i I
M
t−1,i

=

∑
i gt,iI

M
t,i∑

i gt−1,iIMt−1,i

/

∑
i I

M
t,i∑

i I
M
t−1,i

. (4.33)

A value greater than one for the regional factor implies, that a specific region has

grown faster than the average, a value less one means, that a specific region has

grown less than the average.

To calculate the weights for RF h
t and LOF h

t for every region h we have to consult

data of gross fixed capital formation for 2003. After calculating the region specific

weights, the regional capital stocks for the German “Bundesländer” are weighted

53Please bear in mind that the national form is only valid for presentation of shift analysis.
54This is true for Hamburg, Bremen, Berlin, Mecklenburg-Vorpommern, Schleswig-Holstein, Saar-

land, Thüringen and Sachsen-Anhalt in the case of German “Bundesländer”.
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with these. In this way, we have estimated NUTS-2 specific stocks of capital in

Mio. Euros.

5. R&D (R&D) effort is expressed as the total R&D expenditure (GERD). The

expenditures include the business enterprise sector, the government sector, the

higher education sector as well as the private non-profit sector. Data have been

expressed in Mio. Euros and have been provided by EUROSTAT. Obviously,

relying on this data, we cannot exclude spillovers from the non-producing sector

to the producing sector. As mentioned by (Keilbach, 2000) this effect should be

neglectable. Although it would be reasonable on the first sight, we should not use

R&D employees as a proxy for R&D, because it is justified to assume that within

the R&D sector, more than in the manufacturing sector, the majority of offered

jobs requires a high skilled labour force, a subset of human capital, defined above.

6. Patent (P) applications to the European Patent Office (EPO) by priority year

at the regional level have been gathered from EUROSTAT. The priority starts

after the year filing the patent application. Data are expressed as total number

of patent applications in a specific NUTS-2 region.

7. Infrastructure (I): Since (Aschauer, 1989) there has been a intensively leading

debate about how to measure infrastructure and what effects public infrastruc-

ture has on output growth using a production function approach. In general, the

studies can be grouped in national level studies and regional or state level studies.

One traditional approach is to use information about undeveloped areas serving

for streets, railways or airways and traffic on waterways (Keilbach, 2000). Addi-

tionally, other factors, such as political interest, friendship ties, basic trust and

quality of life etc. should flow into the regression context. Regrettably, these data

are not available on NUTS-2 regions. Therefore, for this study on has to refer to

data on highway density per squared kilometre published by EUROSTAT.

8. Density (DEN) is measured as inhabitants per square kilometre. Data for the

average population for 2003 per NUTS-2 area as well as details for the NUTS-

2-areas in square kilometre have been obtained from the CD-Rom ”Statistik

regional”.

9. Dummy : The dummy covers East-Western productivity differences. It is de-

fined as follows:

d =

{
1 if region i belongs to the group of West German NUTS-2 regions

0 if region i belongs to the group of East German NUTS-2 regions
.

It is reasonable to include the dummy, because a bulk of papers have found em-

pirical evidence that a significant difference regarding the capital intensity still
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exists between East and West German region. After initial continuous progress

concerning the productivity of East German regions right after the German re-

unification and an observed stagnation in the years 1996 and 1997 this gap seems

to widen again in recent years.55 For instance (Smolny, 2003) has found that East

German capital intensity is 80% of corresponding West German capital intensity.

4.3.5 A first hint for spatial knowledge diffusion: a descriptive view

After describing the data set, this section should provide us a first guess concerning the

existence of knowledge diffusion phenomena in the data. The traditional way detecting

spatial phenomena in the data is to compute the so called Moran‘s I, which is defacto

”the” standard instrument in spatial econometrics for detecting spatial correlation56

coefficient.57

The interpretation of the spatial correlation coefficient based on Moran´s I is a priori

similar to time series analysis context. But it is not the same: Autocorrelation in time

series means proximity of variables in time. Autocorrelation in space instead means

geographic proximity of variables which is often two-dimensional. The important dif-

ference between the time series and the spatial econometric context is that spatial

correlation has the attribute that a spatial event can be described via feedback loops,

whereas time series correlation goes only in one direction, that is time. The interpreta-

tion of spatial correlation is quiet easy: if negative spatial correlation is observed, then

regions are dissimilar with respect to their economic performance, whereas if positive

spatial correlation is observed, then regions are similar with respect to their economic

performance. The aim of the Moran´s I analysis is to measure the strength of spatial

correlation and to find a hint how far spatial correlation spreads.

The Moran´s I is defined as follows:

I =
N

O

e′W+re

e′e
, (4.34)

with O as the sum over all elements in W+r and N as the number of observations.

Of course if N
O

= 1 we have a row standardized weighting scheme. e are the residuals

55For the convergence debate of East German regions refer to the empirical based analysis of (Bell-
mann and Brussig, 1998), (Almus and Czarnitzki, 2003), (Klodt, 2000), (Smolny, 2003), (Sinn, 2000)
and (Sachverständigenrat, 2005).

56Refer to (Moran, 1948) and (Moran, 1950).
57This is most used indice for detecting spatial phenomena. Despite Moran´s I, other indices such

as Geary´s C and Ripley´s K. But the two latter are seldomly used.
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obtained from an OLS estimation of a variable V on its spatial counterpart VW+r. To

center 4.34 around zero we follow (Ord, 1975) and standardize 4.34:

Ĩ =
I − E(I)√
V ar(I)

, (4.35)

with

E(I) =
N

O

tr(V ++W+r)

N −K
,

and

V ar(I) =

{
N

O

}2 {tr(V ++W+rV ++W+r ′) + tr(V ++W+r)2 + [tr(V ++W+r)]2}
(N −K)(N −K + 2)

−[E(I)]2,

with V ++ = I − V (V ′V )−1X ′ as the projection matrix. In this way Ĩ is normal

distributed.

Before computing Moran´s I for the desired variables, we should first have a look

at the data. As mentioned above, we try to estimate a standard production technique

to investigate the effects of spatial knowledge spillovers on labour productivity. Table

4.3 and 4.4 provide an overview of the data used in the analysis.

Y K L H

Mean 48795.52 266105.80 627841.30 8.49
Modus – – – –
Median 41022.01 228133.0 544004.00 8.38
Max 140902.40 895491.10 1603418.00 14.01
Min 9963.63 66538.54 135678.00 4.26
Std. Dev. 33057.33 177768.70 350356.20 2.66
Skewness 1.44 1.63 1.17 0.38
Kurtosis 4.23 5.66 3.62 2.15
Observations 39 39 39 39

Table 4.3: Table of descriptive statistics (I) of variables used for the analysis

From table 4.3 and 4.4 we can see that all variables exhibit positive skewness, what

means that the distribution has a long right tail. This is especially true for the variable

density (Den) but not astonishing, because we have a few high densely populated areas

such as Berlin, Hamburg and Bremen. Additionally the distributions are peaked, which

means they are leptokurtic relative to the normal distribution.

Additionally, we can see from table 4.5 the logarithmic variables which have been

used in the regression analysis. Please remember that lower letters denote logarithmic
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P I R&D Den Dummy

Mean 330.06 43891.18 1333.87 432.76 –
Modus – – – – 1.00
Median 223.28 43586.00 612.69 211.60 –
Max 1486.63 76028.00 7035.16 3803.00 1.00
Min 26.16 4785.00 67.64 74.99 0.00
Std. Dev. 352.11 17383.47 1592.97 698.53 –
Observations 39 39 39 39 39

Table 4.4: Table of descriptive statistics (II) of variables used for the analysis

values: v = ln(V ), where V = {Y,K,L,H, P,R&D, I,Den} and v = {y, k, l, h, p, r&d, i, den}
contains the corresponding logarithmic variables. As expected we find positive and high

correlation between gdp per head, labour force and capital and positive correlation be-

tween human capital, R&D, infrastructure and patents. Furthermore, we can see from

table 4.5 that the correlation between labour force and capital is nearly linear. Another

interesting observation is that the ratio of capital to output is roughly constant. This

observation reflects one of the Kaldor facts.

y k l h p i r&d

y 1.0000
(0.0000)�

k 0.9719 1.0000
(0.0000) (0.0000)

l 0.9711 0.9527 1.0000
(0.0000) (0.0000) (0.0000)

h 0.3519 0.3168 0.4006 1.0000
(0.0280) (0.0494) (0.0115) (0.0000)

p 0.8850 0.8840 0.8282 0.1944 1.0000
(0.0000) (0.0000) (0.0000) (0.2357) (0.0000)

i 0.1811 0.1172 0.0704 0.1204 0.1432 1.0000
(0.2700) (0.4774) (0.6701) (0.4653) (0.3047) (0.0000)

r&d 0.8359 0.8069 0.7945 0.5741 0.8128 0.1687 1.0000
(0.0000) (0.0000) (0.0000) (0.0001) (0.0000) (0.7247) (0.0000)

�Variables in () denote the p-values of a test H0 := ρ = 0. The p value is computed by a transformation
of the correlation creating a t-statistic with (N − 2) df, with N as the number of rows of a matrix X
containing the correlation coefficients.

Table 4.5: Variables scatter plot of correlation coefficients

From table 4.10 we find that the log values are rather normal distributed.

Cluster phenomena and spatial correlation are closely related. Therefore, coloured

map plots are used to identify similar regions and separate them from more dissimilar

regions. This is done also in this exercise. In upper left map of figure 4.8 we see some

evidence that a difference regarding labour productivity between West German and
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East German regions exist. But also West German regions itself are different from

each other. Some regions in West Germany perform better than other regions in West

Germany. Therefore, from an econometricians point of view it seems to be problematic

to control only for West-East German differences. The question, whether German

regions tend to converge or not is still unanswered. German research institutes found
58 that between 1993 and 1999 East German regions exhibit convergence tendencies,

while (Bohl, 1998) found on basis of a panel unit root test for West German regions,

that divergence cannot be ruled out. (Bröcker, 2002) concludes that the neoclassical

convergence hypothesis cannot be disproved empirically. If we take a closer look at

figure 4.8 we can find some high productivity clusters in the West and the South of

Germany.

ln (Y/L)

11,15 to 11,86  (8)
10,81 to 11,15  (3)
10,68 to 10,81  (7)
10,31 to 10,67  (7)
10,26 to 10,31  (3)
10,04 to 10,26  (6)
9,2  to 10,04  (7)

ln (K)

12,94 to 13,71  (5)
12,54 to 12,94  (7)
12,44 to 12,54  (4)
12,32 to 12,44  (6)
11,91 to 12,32  (7)
11,79 to 11,91  (6)
11,1  to 11,79  (6)

ln (L)

9,62 to 10,79  (4)
9,21 to 9,62  (7)
8,7  to 9,21  (5)
8,39 to 8,7   (6)
7,91 to 8,39  (4)
7,41 to 7,91  (8)
5,21 to 7,41  (7)

ln  (H )

2,44 to 2,65  (6)
2,34 to 2,44  (3)
2,18 to 2,34  (6)
2,11 to 2,18  (8)
1,94 to 2,11  (4)
1,73 to 1,94  (8)
1,45 to 1,73  (6)

Figure 4.8: Spatial distribution of V (I)

In figure 4.8 we see that West German regions provide a higher stock of physical

capital than East German regions. Again, some West German regions in the South

and in the West can be characterized by the highest stock of physical capital. Picture

4.8 visualizes the labour force endowment of German NUTS-2 regions. From this pic-

ture we observe a very heterogeneous labour force endowment across German regions

with a slight East-West differential. A rather astonishing and a priori contra intuitive

impression we obtain, if we look at the human capital distribution over German re-

58Between 1993 and 1994 several research institutes such as DIW, IWH, IAB, IfW and ZEW ob-
served convergence between East German neighhoured NUTS-3 regions or counties convergence at all.
For this topic refer to (DIW et al., 2002), p. 19.
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ln (R&D)

9,62 to 10,79  (4)
9,21 to 9,62  (7)
8,7  to 9,21  (5)
8,39 to 8,7   (6)
7,91 to 8,39  (4)
7,41 to 7,91  (8)
5,21 to 7,41  (7)

ln (P)

6,68 to 7,31  (4)
6,04 to 6,68  (7)
5,56 to 6,04  (5)
5,07 to 5,56  (7)
4,49 to 5,07  (5)
4,17 to 4,49  (6)
3,26 to 4,17  (7)

ln (I)

-0,08 to 0,3   (4)
-0,3  to -0,08  (7)
-0,47 to -0,3   (5)
-0,88 to -0,47  (5)
-0,99 to -0,88  (7)
-1,64 to -0,99  (7)
-2,65 to -1,64  (6)

Figure 4.9: Spatial distribution of V (II)

gions. Especially, East German regions have a priori a leading role regarding human

capital endowment. Some regions such as Thüringen and Sachsen for instance have a

considerably higher human capital endowment than some West German regions, such

as Saarland.59 Particularly, for the case of human capital, East German regions are

often confronted with a serious labour market mis match problem.60 This mis match

problem stems particularly from the R&D performance differential between West and

East German companies. Defaulted or to a less extent undertaken private financed

industrial research can be seen without any doubt as the central weakness of East

Germany’s research environment: only 4.4% of German R&D expenditures are alloted

to East German regions, although it has to be mentioned that governmental financed

R&D research tries to fill the gap. Regarding their total R&D reserach expenditures

with 360 EUR per head East German regions clearly lie behind their West German

neighbours with 659 EUR per head.61 This impression is amplified if one refers to

figure 4.9. Patents are often interpreted as a pre-stage for new products or new pro-

duction methods. It is an important and often used indicator measuring innovation

potential of regions. If we look at the upper right sub map of figure4.9 we observe

a remarkable under performance of most East German regions regarding their patent

activity. But this is also true for some North-West German regions. Only some regions

59Refer to an recent published study of (Hiero, 2008).
60Refer to (Kotschatzky et al., 2006), p. 15.
61Refer to (Pasternack, 2007).
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in Sachsen and Thüringen perform better than the average of East German regions.

As expected, we can conclude that this result correlates with the regional distribution

of R&D expenditures and with the effective use of human capital in the production

process. If we refer to infrastructure which is approximated by highway density, then

it is striking at first sight that East German regions perform better than West German

regions. But this is sophism. (Seidel, 2000) found that assets of East German roads,

including high ways, have only reached 49.3% of West German niveau in 2000. If we

look at the relationship between road density and road assets in East German regions,

this discrepancy is much more dramatic: East German assets reached only 25% of West

German assets. That makes clear, that East Germany has still a backlog with respect

to infrastructural endowment.

After describing the data we are now ready to compute the Moran I coefficient

for each variable to get an impression of what degree r regarding spatial knowledge

spillover exert an significant influence. Thus, the degree r should yield a proxy for

spatial distance with respect of knowledge spillovers.

y k l ih p

i

r&d

y

k

l

h

p

r&d

Figure 4.10: Scatter plot of variables used in the analysis

The computation of Moran‘s I for v = {y, h, p, r&d, i} is done with a program

written in R, version 2.6.2.62. After completing the computation with R, figure 4.11

and 4.12 gives a graphical interpretation of spatial dependence between the v and its

spatial lagged counterpart W+v. Note that the variables are mean standardized, as

mentioned before. Thus, besides a regression line the standardization allows us to plot

one and two standard deviations areas. The interpretation of figure 4.11 and figure

4.12 is as follows: every subgraph is divided into four areas: the first area is located

62The source code is available on request.
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in North-East direction, the second in North-West direction, the third in South-West

direction and the last in South-East. The first area contains positive standard deviation

from a region i and its corresponding neighbour j. On contrary the third area contains

negative standard deviation from region i and its corresponding neighbour j. All other

areas contain couples of negative standard deviation of region i and positive standard

deviation of region j and vice versa. Thus, we have a positive spatial correlation if

regions are located in the first and in the third area. Otherwise we have a negative

spatial correlation. With other words: If the slope in the scatter plot is negative that

means that we have a sort of checkerboard pattern or a sort of spatial competition

in which high standard deviation regions are clustered with low standard deviation

regions. Alternatively, if the slope is positive, we find the contrary.

If we now have a look at figure 4.11 we see first that positive spatial correlation is

significant on a 5% significance level for the output y and for the patents p. Despite the

fact that r&d, human capital h and infrastructre i exhibit positive spatial correlation

as expected, the Moran‘s I is not significant on a 10% significance niveau for r = 1.

Next, the degree of spillover is boosted to r = 2 and again the Moran‘s I coefficient

for each variable is computed.

On the next step we take the weighting scheme to the power of two and additionally

compute the Moran‘s I for every variable. The result of this computation can be found

in figure 4.12. The interpretation is equal to the preceding analysis.

If we look at the sub pictures of figure 4.12 we find that only the spatial correlation

of patents p is significant on a 10% significance niveau. All other variables do not

exhibit significant spatial correlation. Therefore, we have to conclude that knowledge

spillovers, proxied by p, h and r&d are limited regarding space and in consequence more

or less local and restricted to the nearest neighbours. Hence, we should acknowledge

first order and second order degree of knwoledge spillover in the regression analysis.

Additionally, we see some evidence from figures 4.11 and 4.12 that spatial outliers

exits63, which implies that spatial heterogeneity matters.

4.4 Spatial model estimation

In this section a spatial model estimation strategy is introduced, which is an expansion

of the proposed strategy by (Florax et al., 2003). Before introducing the new estimation

method, the classic method of (Florax et al., 2003) for cross section analysis is briefly

sketched. First, one has to start by estimating an initial model y = Xβ + ε. Second,

63Outliers are defined as data points which are situated outside the 2σ area.
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Figure 4.11: Computation of Moran‘s I with corresponding p-values for dependent and
independent variable for r = 1

on the basis of the estimated model, Lagrange Multiplier tests are used to test for

for spatial lag or spatial error model. If the null hypothesis is rejected, than spatial

dependence matters and an appropriate spatial error or spatial lag model should be

estimated. If we further acknowledge higher order spatial effects, the test statistic

under the null hypothesis H := ρr = 0, ∀r for LMρr can be written in the following

way r = {1, ..., R}:

LMρr =

(
e′W+re
s2

)2

T
, (4.36)

with T as the trace of (W+r ′ + W+r)W+r, e = My the residuals of regression, M =

I − X(X ′X)−1X ′ as the projection matrix and s2 = e′e
N

as the estimated variance of

the error term and N the number of observations. On contrary, the test statistic for
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Figure 4.12: Computation of Moran‘s I with corresponding p-values for dependent and
independent variable for r = 2

LMλr is, given r = {1, ..., R}, under H := λr = 0, ∀r can be written as:

LMλr =

(
e′W+ry
s2

)2

NJ
, (4.37)

with J = 1
Ns2

[(W+rXb+++)′M(W+rXb+++) + Ts2] and b+++ as the OLS estimator of

model 4.25.

Third, if for LMρr and LMλr each the null hypothesis cannot be rejected, then the

initial model should be used. Otherwise one should compare both test statistics. If

they are both significant, one has to compute additionally the robust versions of LMρr

and LMλr to come to a final decision. If only one test is significant, then one has to

adopt the initial model with respect to the significant test statistic.

The robust variant of LMρr read as:

˜LMρr =

(
e′W+ry − e′W+re

s2

)2

NJ − T
, (4.38)
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For the robust variant of LMλr we can write:

˜LMλr =

(
e′W+re
s2
− T (NJ)−1 e′W+ry

s2

)2

T [1− T (NJ)]−1
. (4.39)

If ˜LMρr > ˜LMλr , then one should decide to estimate a spatial lag model otherwise

if ˜LMρr < ˜LMλr then one should refer to a spatial error model. Given, only LMρr

is significant but LMε is not, then one should use a spatial lag model, otherwise, if

LMλr is significant, then a spatial error model should be chosen. Further, it should

be kept in mind, that experimental based simulations by (Anselin and Florax, 1995b)

and (Anselin et al., 1996) found evidence, that robust counterparts of the LM-tests

have more power in pointing out the appropriate alternative than the non robust LM
versions. But as shown by (Florax et al., 2003), the classical top down approach, that

means relying on the non robust LM test, outperforms the robust strategy in means

of performance and accuracy. Thus, the same authors emphasise, that one should

use the classic approach when testing for spatial effects. It should be further noted

that, although this strategy is not theoretically justified yet, it is the only systematic

approach of model selection in literature and used in empirical studies.64

The estimation strategy proposed by authors such as(Anselin, 2005) has three main

drawbacks: first, the strategy lacks regarding their underlying tests hypothesis. For

both tests, the LMρr and LMε or in their robust form ˜LMρr and ˜LMε the null

hypothesis is either H0 := ρr = 0 for LMρr or ˜LMρr and H0 := λr = 0 for LMλr or
˜LMλr . The null hypothesis H0 := λr = 0 is realized in presence of ρr for the spatial

error and H0 := ρr = 0 in presence of λr for the spatial lag model. Although, robust

LM tests are available, only one test is available, to compare the two models directly.

This test, developed by (Mur, 1999) and (Trivezg, 2004) allows us to differentiate

between spatial lag and spatial error models. But a drawback of the test proposed by

(Trivezg, 2004) is, that it is only applicable for small samples, because it requires the

computation of Eigenvalues and Eigenvectors of the underlying spatial weight matrix,

which is cumbersome or even not possible for large data sets as noted by (Kelejian and

Prucha, 1998).

Second, the strategy is exclusive in the way, that this strategy does not allow for

a ARMA(p,q) model specification, which is as mentioned above, a combination of

spatial lag and spatial error model. There is no reason, why one should exclude this

combination ex ante. This could create a serious problem, because even if λr differs

significant from zero but the robust LMρr test, which exceeds the value of the robust

64Refer to (Kim et al., 2003) for instance.
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LMλr statistic, suggests to model a spatial lag model, we should choose, going in line

with (Florax et al., 2003), a spatial lag model. It is obvious, that there is an inherent

potential of misspecification using the strategy proposed by (Florax et al., 2003).65

Third, both tests, if robust or not do not sufficiently control for heterogeneity of the

error term nor do they cover the aspect of outliers. In other words, this methods ne-

glect spatial heterogeneity entirely. Fortunately, spatial heterogeneity can be elegantly

considered in an Bayesian approach.

Until today, Bayesian model selection criteria are seldom used in empirical applica-

tions. This might be due to three reasons: first, normally, spatial Bayesian model tech-

niques are not included in standard econometricians tools, such as EViews. Second,

these methods require extended programming techniques. In addition, their use for

large sample applications is problematic, because then one is often confronted with nu-

merical problems, especially in calculating the determinant of spatial weight matrix66.

Third, Bayesian methods are often rejected or disregarded by the class of frequentest

or ”main stream” econometricians, mainly because of the Bayesian assumption that

the vector of coefficients is treated as random, whereas the frequentest treat the vector

of coefficients estimate as random.67

In this application, both views should be acknowledged, the frequentest based Maximum-

Likelihood estimation techniques and Bayesian methods. It should be clear that both

methods exhibit advantages and disadvantages, but to acknowledge them within the in-

terpretation the strategy should improve the strategy of (Anselin, 2005), because of the

above mentioned advantages of the Bayesian methods, especially their heteroscedastic

formulation. The strategy can be formulated as follow:

1. First, estimate the initial model via OLS.

2. Use Moran‘s I and LM-test for detecting potential spatial dependence. If the

proposed tests cannot reject the null hypothesis of no spatial correlation, then

select the model estimated via OLS in step 1. Otherwise, proceed with step 3.

3. If the null hypothesis of no spatial correlation is rejected, then expand the model

estimated in step 1 by adding spatial counterparts of the independent variables.

Perform an OLS estimation of this model.

4. Given the model setup in step 3, use Moran‘s I and LM-test for detecting po-

65For example, assume ˜LMρr statistic takes the significant value x and ˜LMλr statistic takes the
significant value x+ ε, with a very small but positive value ε > 0. In this case we conclude to use the
spatial error model, because ˜LMλr > ˜LMρr .

66To avoid this problem either rely on Bayesian methods or use the Monte Carlo based method
proposed by (Barry and Kelley, 1999).

67See (Koop, 2003) for an excellent introduction to Bayesian Econometrics.
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tential spatial dependence. If tests cannot reject the null hypothesis of no spatial

correlation, then select the model estimated via OLS in step 3. Otherwise, proceed

with step 5.

5. Expand the model of step 3 with spatial error and spatial lag components. Again,

Perform an OLS estimation of this model.

6. Use Moran‘s I and LM-test for detecting potential spatial dependence. If the

tests cannot reject the null hypothesis of no spatial correlation, then select the

model estimated via OLS in step 5. Otherwise, proceed with step 7.

7. Estimate a general spatial model (SAC) and separate spatial lag (SAR) and spa-

tial error models (SEM) with MLE. OLS would yield in this case inconsistent

parameter estimates even if spatial homogeneity is assumed.

8. Use the LM power comparison mentioned by (Florax et al., 2003) to select the

optimal model from the set of models estimated in step 7. Note, this model as-

sumes spatial homogeneity.

9. Given the optimal model found with step 8, estimate the Bayesian counterpart

of the optimal model selected in step 8 to control for spatial heterogeneity. If

both models exhibits similar results and spatial heterogeneity is rejected, then take

the optimal model found in step 8 as optimal. Otherwise, if spatial heterogeneity

matters, take the Bayesian model as the optimal one.

It is worth to mention, that Moran‘s I is valid, as long as heteroscedasticity is

not spatial correlated. This is a very new insight, but until today no appropriate

method is developed to test for spatial correlated heteroscedasticity. There is only

one test proposed by (Kelejian and Robinson, 2004), which cover the aspect of spatial

correlated heteroscedasticity, but it is only valid for large samples and small samples

properties are not known.

4.4.1 Initial model estimation

Let us start with the first step of the laid out strategy. First, we estimate the initial

model with ordinary least square procedure.68 The initial model, based on a per head

Cobb Douglas production technique, with ln
(
Y
L

)
as the dependent variable, can be

written in log-log form as follows:

ln(y) = βc + βk ln(K) + βl ln(L) + βh ln(H) + βp ln(P ) + βi ln(I) + dγ + κ (4.40)

68All estimations have been performed with Matlab on the basis of the package provided by LeSage
with some adoptions. LM program for spatial lags as other programs are available on request. If
appropriate, results have been checked with R 2.6.2 and EViews 5.0.
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or in a more compact manner as

y = XβX + dγ + κ (4.41)

with βX = [βc, βk, βl, βh, βp, βi] and X = [1, k, l, h, p, i] with κ ∼ (0, σ2Ω), σ2Ω 6=
σ2I, Ω = diag(v1, ..., vN) and d as West-East dummy. Two remarks regarding the

specification of equation 4.40 or equation 4.41: First, as usual, the coefficient vector βX

contains constant production elasticities of the respective values stacked in X. Because

we estimate a production technique per capita, the depended variable is y = ln
(
Y
L

)
.

Thus the elasticity of production for labour l in this context is defined as βl + 1.

Therefore, we expect a negative sign of βl . Second please note, that the inclusion

of both R&D expenditures and P leads to a serious endogenity problem, because

patents are produced with R&D expenditures or P = u(R&D) with u(·) as continuous

function. It is worth to mention that patents generally outperforms R&D expenditures

regarding their interpretation as a quality measure of innovativeness.69

In table 4.6 one can find four different specifications. For every specification LM
tests have been conducted, both for spatial lag and spatial error. Additionally, the

test statistics for first order and second order spatial influence have been computed.70

Further, Moran‘s I test has been performed, also for first and second order spatial

influence.

Column (1) of table 4.6 reports a simple estimation of y on k and l and a West-

East dummy d. The values of the elasticity of production for capital and labour

indicate the expected positive sign and have the expected dimension.71 and have the

correct dimension regarding their influence on per capita production. Furthermore,

the dummy is positive as expected and highly significant which indicates that West

German regions are more productive on average than East German regions. As we can

see from column (1) of 4.6, both Moran‘s I tests cannot reject the null hypothesis of

no spatial correlation. Also the LM lag for r = 1 and r = 2 are not significant. This

is again the case for the LM error test for r = 1. For r = 2 the LM error test of no

spatial correlation under the null hypothesis can be rejected at a 5% significance level.

Although, we find a contradiction regarding the evaluation of Moran‘s I for r = 2

and the LM error test for r = 2 with respect to spatial influence we should expand

the estimation and include the knowledge variables human capital h and patents p.

Further infrastructure i as additional regressor has been included. The estimation

69Refer (Lechevalier et al., 2007) for instance.
70For example LM2

λ stands for a test of no spatial correlation up to order r = 2 for spatial error
component.

71The value for the elasticity of production for labour is 1-0.19=0.81.
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results of this expanded specification can be found in column (2) of table 4.6. For all

three additional included coefficient regressors we should expect a positive sign. This

is true for the estimated coefficients of human capital and infrastructure, but not for

patents, which is contra intuitive at first glance. But looking at significance we find,

that patents are not significant, not even at a 10% significance level. This is also true

for infrastructure which is not significant at a 10% significance level. Additionally,

looking again on the coefficent for patents the influence of own patents on own labour

productivity is at least zero. Refering to the test statistics, it should be noted, that the

LM test for spatial lag is significant at a 5% significance level. Moran’s I for r = 1

suggests, that a spatial error model should be estimated which is underpined by the

siginifcant LM test for the spatial error component for r = 2.

Given our estimation strategy, we should expand our model by exogenous spatial

lagged variables. The advantage of this formulation is straightforward: the estimators

of this estimation are unbiased using OLS.72 Keeping in mind our results obtained from

picture 4.11 and 4.12 we include first order spatial lags of human capital ln(H+1), of

patents ln(P+1) and of infrastructure ln(I+1) and in addition the second order lag of

patents ln(P+2). Stacking this values in X̃1 = [h+1, p+1, i+1] and X̃2 = [p+2] defining

X̃++ := [X̃1, X̃2] and letting β++ = [βX̃
1
, βX̃

2
]′ with βX̃

1
= [βh

+1
, βp

+1
, βi

+1
] and

βX̃
2

= [βp
+1

], this leads to the following expansion of equation 4.40:

ln(y) = βc + βk ln(K) + βl ln(L) + βh ln(H) + βp ln(P ) + βi ln(I)+ (4.42)

+ ln(H+1)βH
+1

+ ln(P+1)βP
+1

+ ln(I+1)βI
+1

+ ln(P+2)βP
+2

+ dγ + κ,

or again in compact notation:

y = XβX + X̃++β++ + dγ + κ (4.43)

with βX = [βc, βk, βl, βh, βp, βi], d as West-East dummy and X = [1, k, l, h, p, i] with

κ ∼ (0, σ2I).

The estimation results for 4.43 can be found in table 4.6 in column (3). Once again,

we would expect positive effects from neighbouring regions. But with the exception

of patents, we find negative signs of coefficients for neighbouring human capital and

neighbouring infrastructure. Over the more the latter two coefficients are highly non

significant. The negative second order spillover coefficient of patents is highly insignif-

72Again, refer to appendix 1 for more details.
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icant, too. As the coefficient for the own patents, this second order coefficient of

neighbouring patents is close to zero. But what can we see is, that the first order

neighbouring patent activity has a significant positive effect on own productivity. If

we look at our test statistics in column (3) we find that the LM test for spatial lag is,

on contrary to column (2), not significant anymore. This could be due to the inclusion

of the spatial lagged patent activity. Furthermore, the second order LM error test is

still significant at a 10% significance level, whereas the first order LM error test is now

significant at a 5% significance level. Also the first order Moran‘s I test is significant at

a 5% significance level. This lead us to conclude that a first order spatial error model

should be modeled, because of the fact that LMλ1 > LMλ2 . The last column of table

4.6 shows the same regression as in column (3) but with the exclusion of the highly non

significant spatial second order patent activity. If we compare column (3) and column

(4) we can assert, that the exclusion of spatial second order patent activity does not

change the sign and significance of the regression. Therefore, we should proceed with

the specification which can be found in column (4) in 4.6.

In summary, we can conclude from 4.6 that spatial processes can be detected in the

data. In consequence, we have to acknowledge them in our regression equation and in

an adequate estimation procedure. From column (4) in table 4.6 we further know, that

spatial dependence in the error term should be acknowledged. What we do not know

up to this stage is, if spatial heterogeneity matters. This topic is treated in the next

section.
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dependent variable y: ln
(
Y
L

)
independent variables x ∈ X OLS OLS OLS OLS
Column (1) (2) (3) (4))
Constant 10.50177 10.72613 10.39325 10.38857

(0.0000)� (0.0000) (0.0000) (0.0000)
ln(K) 0.251596 0.237242 0.282934 0.282665

(0.0124) (0.0139) (0.0109) (0.0088)
ln(L) -0.193904 -0.219739 -0.243889 -0.243392

(0.0483) (0.0264) (0.0186) (0.0143)
ln(I) — 0.014814 0.016332 0.016466

(—) (0.5218) (0.4653) (0.4673)
ln(H) — 0.149377 0.161219 0.161679

(—) (0.0290) (0.0076) (0.0046)
ln(P) — -0.002382 -0.023189 -0.023487

(—) (0.9373) (0.5216) (0.5011)
ln(H+1) — — -0.066795 -0.066647

(—) (—) (0.6357) (0.6286)
ln(P+1) — — 0.054656 0.054706

(—) (—) (0.0453) (0.0391)
ln(I+1) — — -0.019147 -0.019317

(—) (—) (0.8033) (0.8022)
ln(P+2) — — -0.000197 —

(—) (—) (0.9726) (—)
d 0.218824 0.273835 0.226299 0.226651

(0.0000) (0.0002) (0.0061) (0.0056)
Moran-I1 0.96 2.34 3.19 3.29

(0.2506) (0.0253) (0.0024) (0.0018)
Moran-I2 -0.11 0.26 0.21 0.27

(0.3967) (0.3860) (3879) (0.3850)
LMλ1 0.21 2.42 4.90 4.89

(0.6483) (0.1201) (0.0268) (0.0270)
LMλ2 5.25 3.74 3.52 3.53

(0.0219) (0.0532) (0.0601) (0.0601)
LMρ1 1.21 5.58 1.82 1.81

(0.2800) (0.0184) (0.1775) (0.1782)
LMρ2 1.82 0.11 0.97 0.01

(0.1774) (0.7350) (0.3236) (0.9202)
Observations 39 39 39 39
adjusted R2 0.69 0.74 0.75 0.76

�White heteroscedasticity-consistent p-values in ().

Table 4.6: Results of OLS estimation for German NUTS-2 regions

150



4 The spatial dimension of knowledge diffusion

4.4.2 Expansion of the initial model

From the discussion before we know that we have to expand our regression equation in

4.6 by an spatial lagged error term. Therefore, we have to reformulate our regression

model 4.42 or 4.43 as a spatial error model (SEM). This is done with equation 4.44:

ln(y) = βc + βk ln(K) + βl ln(L) + βh ln(H) + βp ln(P ) + βi ln(I)+ (4.44)

+ ln(H+1)βH
+1

+ ln(P+1)βP
+1

+ ln(I+1)βI
+1

+ dγ + ε,

with ε = λ1W
+1ε+ κ or again in compact notation:

y = X+++β+++ + dγ + ε̃Λ + κ, (4.45)

with βX = [βc, βk, βl, βh, βp, βi], X = [1, k, l, h, p, i], Λ = [λ1], W++ = [W+1], X+++ =

[X, X̃], β+++ = [βX , β++], with κ ∼ (0, σ2I) and d as West-East dummy.

Model 4.45 should be estimated via two different ways:

• The first approach is to estimate this model with the assumption of σ2Ω = σ2I,

implying spatial homogeneity, which is a common assumption in the relevant

studies in this subject73. As mentioned above, model 4.44 should be estimated via

ML.

• The second approach is to estimate this model with the assumption of σ2Ω 6= σ2I,

implying spatial heterogeneity with a Bayesian approach which is laid out latter.

If we go back to the first approach, first we have to set up our Likelihood function.

This is:

L =

∣∣∣Ñ ∣∣∣
(2πσ2)

N
2

exp

{
1

2σ2
(y −X+++β+++)′Θ−1(y −X+++β+++)

}
, (4.46)

with Θ−1 = Ñ ′Ñ and |Θ|
1
2 = |Ñ | and N the numbers of observations.

The corresponding log-likelihood for 4.46 is

73Refer for instance to (Olejnik, 2008) or (Santolini, 2008).
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lnL = −N
2

ln 2π − N

2
(σ2) + ln |Ñ | − 1

2
ξ′ξ, (4.47)

with Ñ = (I−λ1W+1) and ξ = Ñ(y−X+++β+++). This expression 4.47 can be written

in concentrated form as

lnLc ∝ ln |Ñ | − N

2
ξ̃′ξ̃, (4.48)

with ξ̃ = 1
σ
Ñ(y−X+++β̃+++

ML ). The obtained Maximum-Likelihood based estimators

can be written as

β̃+++
ML = (X+++′Ñ ′ÑX+++)−1X+++′Ñ ′Ñy (4.49)

and

σ̂2
ML =

1

N
(ξ̃′ξ̃), (4.50)

obtained from maximizing 4.47. As we can see, equation 4.48 is highly non linear in

the parameter λ1. Because both β+++ and κ are a function of λ we should use an

iterative method to estimate λ1. An approach is to first, estimate β+++ via OLS,

then find with the associated estimated residuals a value of λ1 which maximizes the

concentrated likelihood function 4.48, third update the OLS values of β+++. With the

new updated values of β+++ then estimate new λ1, based on the updated estimated

residuals. Convergence is achieved, if values for both residuals and for β+++ do not

change anymore from one to the next iteration step, which means the difference between

β+++
t − β+++

t−1 < ϑ for a small value of ϑ near zero.74

It is worth to note, that refering on Maximum-Likelihood, we have to impose a

restriction on the parameter λ1. Referring to (Anselin and Florax, 1995a), p. 34, this

parameter takes on feasible parameter values in the range of:

1

λ̃1
min

< λ1 <
1

λ̃1
max

. (4.51)

λ̃1
min is the minimum Eigenvalue of the matrix W+r, whereas λ̃1

max represents the

maximum Eigenvalue of W+r. This suggest a constrained Maximum-Likelihood maxi-

mization. If W+r is row standardized, as it should be, then of course λ1
max = 1. Please

74In this application ϑ is set to ϑ = 1e-8. Further t is set to a maximum value of 500.
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note, that this procedure could become extremely laborouis with respect to compu-

tational issues. More precisely, the computational costs increase with the dimension

of the weighting scheme matrix W+r. Alternatively, one can set ex ante values for λ,

such as λ1 ∈ (0, 1) which implies only positive spatial error dependence. In this work

ex ante values for λ1 ranging from λ1 ∈ (−1, 1) have been imposed, although a direct

computation via Eigenvalues would be possible.

The second approach dealing with the estimation of model 4.45 is to refer on a

Bayesian approach but with the additional assumption of spatial heterogeneity, which

means that σ2Ω 6= σ2I. If the model yields the same results and spatial heterogeneity

is insignificant, we can conclude, that spatial heterogeneity can be ignored, otherwise,

there is at least little evidence that spatial heterogeneity a justified assumption and we

have to control for it.

Based on the likelihood function expressed by equation 4.46 a spatial Bayesian het-

eroscedastic model is set up. The core of Bayesian econometrics is the Theorem of

(Bayes, 1763) which is needed in this context for parameter estimation. Assume for

a moment that θ is a vector of unknown parameters which should be estimated. Be-

fore any data are observed, we have beliefs and some uncertainty with respect to our

vector of parameter θ. These beliefs are called ”a priori” probabilities which are fully

represented by the probability function p(θ). The entire probability model itself is to-

tally defined by the likelihood p(y |θ) . p(y |θ) can be described as the core of Bayesian

econometrics, because it contains the entire set of information from the data. Given,

we have observed y, then we should update our beliefs regarding θ. By using the the-

orem of Bayes we obtain the so called ”a posteriori” distribution of θ, given y, which

is

p(θ|y) =
p(y |θ)p(θ)

p(y)
, (4.52)

with p(y) = (y|θ)p(θ), defined by the law of total probability. Because p(y) do not

contain any information regarding θ and, over the more, we only interesting in θ, we

can ignore p(y). Thus the ”a posteriori” probability is proportional to the likelihood

times the ”a priori” probability:

p(θ|y) ∝ p(y |θ)p(θ). (4.53)

Although the dimensionality of p(θ|y) depends on the number of unknown param-
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eters, we can often focus on individual parameters such as θ1 ∈ θ by numerically or

analytically integrating out other components75. For instance we can write:

p(θ1|y) =

∫
p(θ|y)dθ2dθ3... (4.54)

The entire information needed for inference about θ1 is contained in the marginal

distribution of θ1. What we have to do now is to specify our exogenous given priors

and the likelihood function.

In this context, we assume normal priors for β+++ and a diffuse prior for σ. The

relative variance terms vi ∈ Ω are fixed but unknown and therefore we have to estimate

them. We have to treat the vi as informative priors. The distribution of all elements of

Ω are assumed to be independently χ2

s
distributed, with s ∼ Γ(a, b). As mentioned we

are confronted with a degree of freedom problem, if the number of estimated coefficients

exceeds the number of observations. Considering the fact, that the χ2 distribution is

a single parameter distribution we are able to compute N additional parameters vi by

adding only one single parameter s to our model. This idea goes back to (Geweke,

1993) who uses this type of prior to model heteroscedasticity and outliers in a linear

regression framework. The idea becomes more clear if one knows that the mean of this

priors is unity, whereas the variance of this prior is s
2
. Thus, if s takes a large value, then

all terms of Ω tend to unity, yielding a homoscedastic scenario, because σ is weighted

equally for every observation, hence we obtain a constant variance over space. An as-

sumption, which is made within the traditional spatial Maximum-Likelihood approach.

On contrary, small values of s lead to a skewed distribution. The role of vi therefore

is, as in a traditional GLS approach, to down weight observations with large variances.

For this reason, the degrees of freedom s plays a crucial role when robustifying against

outliers. For s → ∞ the limiting normal and therefore a homoscedastic ”scenario” is

realized. One option could be to assign a improper value to s. The other possibility is

to use a proper prior for s which is Gamma distributed:

s ∼ Γ(a, b), (4.55)

with hyperparameter a and b. It has to point out, that the virtue of the first option is

that less draws compared to the second option are required for parameter estimations

and moreover convergence is quicker.

If Γ(a = s
2
, b = 2) this is equivalent to χ2(s), hence we obtain a so called mixing

75Refer to (Geweke, 1993).
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distribution controlled by s. As shown by (Geweke, 1993) we can write

π

(
s

vi

)
∼ iid χ2(s), ∀ i, (4.56)

with π(·) denoting the prior from now. This implies, that the normal mixture model

with 4.56 is equivalent to a model based on independently distributed Student-t values

with s degrees of freedom, known as the (Theil and Goldberger, 1961) Model. The

spatial error parameter is assumed to follow an uniform, but proper distribution with

the range N̂ as π(λ1) = 1

N̂
= 1

λ̃1min<λ
1<λ̃1max

∼ U [−1, 1].

Let us summarize our assumptions regarding the priors as follows:

π(β+++) ∼ N (c, T ), (4.57)

π(
s

vi
) ∼ iid

χ2(s)

s
, (4.58)

π(λ1) ∼ U [−1, 1]. (4.59)

Given the priors defined above, we need the conditional posterior distributions for

each parameter β+++, σ, λ1,Ω to estimate them. Using the priors, assuming that they

are independent from each other, we can define the joint posterior as:

p(β, σ, λ1) = p(β)p(σ)p(λ1)

∝
∣∣I − λ1W+1

∣∣σ−Nexp{− 1

2σ2
(ξ′Ω−1ξ)

}
σ−1 exp

{
− 1

2σ2
(β − c)′T−1(β − c)

}
. (4.60)

From 4.60 the conditional distribution of β+++ is obtained from the standard non

spatial Bayesian GLS approach as:

p(β+++|λ1, σ,Ω, y) ∼ N [H(X+++ÑΩ−1Ñy + σ2T−1c, σ2H)], (4.61)

withH = (X+++′ÑΩ−1ÑX++++T−1)−1, Ñ = (I1
λW

+1), mean c and the corresponding

variance covariance matrix T .

The conditional distribution of σ is
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p(σ|λ1,Ω, β+++, y) ∝ σ−(N+1)exp

{
1

2σ2
ξ′Ω−1ξ

}
. (4.62)

Next the conditional distribution of every element vi of Ω is considered. (Geweke,

1993) shows, that the conditional distribution for vi ∈ Ω represents a χ2 distribution

with s+ 1 degrees of freedom:

p

([
(σ−2e2

i + s)

vi

]
|β+++, λ1, v−i, λ

1

)
∼ χ2(s+ 1), (4.63)

with v−i = {v1, ...vi−1, vi+1, ..., vN}.

Now consider the conditional distribution for the parameter σ assuming that we

already know the parameters, given we know β+++, λ1 and Ω. This distribution would

be:

p

[
N∑
i=1

e2
i

vi
/σ2|β+++, λ1,Ω

]
∼ χ2(N). (4.64)

With 4.64 we adjust estimated residuals ei with estimated weights or relative variance

terms vi. This approach corresponds to the simple weighted least square procedure

(WLS) known from basic econometricians toolbox.

Finally, the conditional posterior of λ1 is calculated as follows:

p(λ1|σ,Ω, β+++, y) ∝ |Ñ |exp
{

1

2σ2
ξ′Ω−1ξ

}
. (4.65)

With exception of 4.65, all other posterior distributions are standard and therefore

a Markov Chain Monte Carlo method (MCMC) can be applied to estimate parameters

β+++, λ1, σ2,Ω. Usually, a Gibbs sampling approach, which is based on the conditional

posterior densities is used.

We wish to make several draws to generate a large sample from which we can approx-

imate the posterior distributions of our parameters. Unfortunately, we cannot approx-

imate a posterior distribution for expression 4.65, because this type of distribution do

not correspond to any so called standard class of probability densities. For this reason,

Gibbs sampling cannot be readily used. Fortunately, a method called ”Metropolis-
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Hasting” sampling which is an additional sequence in Gibbs sampling procedure76,

allows us to approximate the posterior distribution for λ1.77 The only problem one

has to solve is to find a suitable proposal density. (LeSage, 2000) suggests to assume

a normal or Student t-distribution. Because of the fact, that λ1 has to be handled

as a restricted parameter, which is situated between minus one and one, the sampler

rejects values outside the interval (−1, 1) from the sample. This is called ”rejection

sampling”.78

The ”Metropolis-Within-Gibbs” sampling algorithm can be expressed as follows:

1. Set t=0.

2. Define a starting vector St=0 which contains the initial parameter of interest:

S0 = [β+++
0 , σ2

0, vi0, λ
1
i ].

3. Compute the mean and variance of β+++ using 4.61 conditional on all other

initial values stacked in S0.

4. Use the computed mean and variance of β+++ do draw from a multivariate normal

distribution a normal random vector β+++
1 .

5. Calculate 4.64 refering on β+++
1 from step 4 and use this expression in combina-

tion with χ2(N) random draw to determine σ2
1 for i = {1, 2, ..., N}.

6. Use β+++
1 and σ2

1 to calculate 4.63 and use this value together with a N-dimensional

vector of χ2(s+ 1) random draws to determine vi ∈ Ω for i = {1, 2, ..., N}.

7. Use metropolis within Gibbs sampling to calculate λ1 using values vi ∈ Ω for

i = {1, 2, ..., N}, β+++
1 and σ2

1.

8. Set t=t+1.

The question which remains is, how to select the correct Bayesian model. It is

sometimes the case that several competing models Mu with u = {1, 2, ..., U} exist.

Then usually posterior probabilities are computed which should give advice, which

model is the correct model in terms of probability. The posterior probability pposu for

model u is given by79:

76Because of this reason, the method is also called ”Metropolis-Within-Gibbs”.
77Refer to (Gelman et al., 1995).
78Refer to (Gelfand et al., 1990).
79Please refer to (Hepple, 2004), p. 105.
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pposu ≡ p(Mu|y) =
p(y|Mu)∑U
u=1 p(y|Mu)

. (4.66)

Bayesian model averaging suggests to weight all possible Bayesian models Mu with

u = {1, 2, ..., U} with their corresponding posterior probabilities. In terms of probabil-

ity this means:

p(y∗|y) =
U∑
u=1

p(y∗|y,Mu)p(Mu|y), (4.67)

with p(y∗|y) as the posterior, p(Mu|y) as the posterior model probability and p(y∗|y,Mu)

as the likelihood function of model Mu. The reason why model averaging should be

used is quite simple. The traditional approach is to choose the single best model based

on calculating posterior model probabilities with 4.66 for every model of interest.80 But

one has to remember that this rather excluding approach could be lead to wrong deci-

sions, because a researcher has to decide on the basis of model probabilities what is the

”good model” and what is the ”not so good model” from a sometimes large set of mod-

els. Additionally, only referring to the ”good model”’ ignores model uncertainty. In

this study, relying on model probabilities is not a good idea, because ”posterior model

probabilities cannot be meaningful calculated with improper non informative priors,”81

which are not common for all models. Therefore we refer to the MCMC literature to

compute a posteriori model probabilities. This so called MC3 approach, introduced by

(Madigan and York, 1995) is based on a stochastic Markov Chain process which moves

through the model space and samples those regions which have a high superior model

support. Thus this approach is very efficient because not the entire model space is of

interest.82

Knowing these facts, we are now able to interpret our estimation results for both

approaches, the Maximum-Likelihood and the Bayesian approach. The results for the

first approach can be found in column (1) and (2) of table 4.8. The first regression is

a mixture model of spatial lag and spatial error model, the so called spatial ARMA

model, which is in this case labeled as SEC(r,r) to avoid confusion with respect to time

80A large bulk of literature on Bayesian model averaging (BMA) over alternative linear regression
models containing differing explanatory variables exists. For instance refer to (Raferty et al., 1997),
(Fernandez et al., 2001b) and (Fernandez et al., 2001a). The MC3 approach, is set forth for in
(Madigan and York, 1995) for the SAR and SEM models.

81(Koop, 2003), p. 268.
82Refer to (LeSage and Parent, 2007) for an excellent contribution to this topic.
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Bayesin model (4)[SEM(1)] Model (4,1) Model(4,2) Model (4,3) Model(4,4)
Runs 10,000 10,000 100,000 100,000
Informative Priors No Yes No Yes
pposu 0.2770 0.2509 0.2374 0.2374

Table 4.7: MC3 a posteriori model probabilities pposu for variants of model (4)[SEM(1)]

series context.83 This regression is done to corroborate our model selection on inductive

statistics, done in the forgoing chapter. After estimation of all possible combinations

of first order and second order spatial models84, we have chosen the SEC(1,1) model

as the appropriate model on basis of the value of the log-likelihood. Leaving out the

insignificant parameter ρ1, estimating a pure spatial error model (column (2)) and

comparing this with column (1) we can see, that only minor changes of coefficient

values result. This is an indicator, that the spatial lag does not provide any further

information for our model. Thus, it is justified, to model a spatial SEM(1) model, which

is printed in column (2), because the spatial error coefficient λ1 is highly significant.

Comparing the SEM(1) model with the fourth column of 4.6 we can find moreover,

that the coefficient for ln(I+1) is not positive, but again highly non significant. All

other coefficient have, compared to (4) in table 4.6, roughly the same dimension, the

same sign and the same level of significance.

Additionally, the results for the second approach, an estimation of the Bayesian

counterpart of equation 4.45 can be found in column (3) of table 4.8. Before discussing

the results, we first should get an intuition of what is behind the Bayesian estimation

approach.

To obtain estimates from our Bayesian approach we have to simulate draws. To en-

sure stability of simulated results, one should do a simulation on non informative priors

and on informative priors, for which starting values are obtained from a corresponding

Maximum-Likelihood estimation with different draws. For this reason, two Bayesian

estimations, one with 10,000 draws and one with 100,000 draws, each with informative

and non informative priors have been conducted. At all we get 4 models, for each

number of draws one should estimate a model with informative and non informative

priors.85 The model probabilities pposu for the relevant models can be found in table

4.7.

Calculating this probabilities and comparing them with each other, we find, that the

83See appendix 3 for a deviation of the log-likelihood of the spatial ARMA model.
84See appendix 4 for a summary.
85Because of the fact, that the initial model estimation results on which Bayesian model specification

is based are drawn in column (4) of 4.8, we label variants of the Bayesian model as model (4,1), (4,2),
(4,3) and (4,4).
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first model (4, 1) has slightly a higher probability to be the correct model.

Furthermore, MCMC-convergence checks the four relevant models have been per-

formed.86 to ensure convergence of the sampler. If the means and variances for the

posterior estimates are similar from all runs, convergence seems ensured at all. The

convergence tests for all regressions show, that convergence of the sampler is guaran-

teed for all simulations. Therefore, we rely on model (4, 1) because it request fewer

draws. The estimation results for this model can be found in 4.8 in column (3).

If we now turn back to 4.8 and compare the heteroscedastic Bayesian counterpart in

column (3) with the homoscedastic Maximum-Likelihood based estimation in column

(2) then we can easily see, that estimation results do not differ dramatically. Picture

4.13 and picture 4.14 confirm this result. Again, the coefficient of ln(I+1) is positive but

not significant. On contrary, the heteroscedastic Bayesian approach estimates a lower

value for the spatial lag component λ1, as the homoscedastic Maximum-Likelihood

does. But again, the parameter range for λ1 is comparable between the two approaches

and both coefficient values are highly significant on a 1% significance level.

The last point we have to tackle is to ask, whether the spatial Bayesian estimation

provides us with some evidence of spatial heterogeneity. Picture 4.15 shows a plot of the

mean of the vi draws which should serve as an estimate of these relative variance terms.

We can see that one outlier is identified, irrespectively what model we choose. If spatial

homogeneity is observed, all elements of Ω should realize the value one. Obviously,

this is not the case for all four Bayesian models, as we can see from figure 4.15. From

this point of view, we should conclude, that spatial heterogeneity matters, although

Maximum-Likelihood and Bayesian estimates correspond each other with respect to

parameter estimates. Therefore, we should choose the Bayesian model represented

column (3) in table 4.8 as the optimal one, which delivers efficient parameter estimates.

86Please refer to appendix 5 for a short description of convergence criteria and appendix 6 for
convergence diagnostic of all selected models.
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dependent variable y: ln
(
Y
L

)
independent variables x ∈ X ML ML Bayes
Preferred Model (4)[SAC(1,1)] (4)[SEM(1)] (4)[SEM(1)]
Column (1) (2) (3)
Constant 8.531315 10.09034 10.07207

(0.0034)� (0.0000) (0.0000)
ln(K) 0.306738 0.303988 0.294401

(0.0000) (0.0000) (0.0019)
ln(L) -0.232205 -0.235542 -0.231121

(0.0004) (0.0003) (0.012526)
ln(I) 0.009437 0.011475 0.006971

(0.6514) (0.5828) (0.3904)
ln(H) 0.196265 0.183675 0.187209

(0.0006) (0.0003) (0.0024)
ln(P) -0.050593 -0.043691 -0.043108

(0.0847) (0.1101) (0.1145)
ln(H+1) -0.055016 -0.071008 -0.004407

(0.5594) (0.4149) (0.4871)
ln(P+1) 0.070208 0.083117 0.062044

(0.0477) (0.0008) (0.0164)
ln(I+1) 0.028737 0.035589 0.030584

(0.6262) (0.5416) (0.3233)
d 0.261555 0.252277 0.255723

(0.0000) (0.0000) (0.0005)
ρ1 0.132883 — —

(0.5905) (—) (—)
λ1 0.696998 0.710951 0.561134

(0.0000) (0.0000) (0.0081)
Observations 39 39 39
ln(L) 90.47 67.93 —
adjusted pseudo R2 0.83 0.83 0.81

Table 4.8: Estimation results for German NUTS-2 regions
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4 The spatial dimension of knowledge diffusion

Figure 4.14: Density plots of estimated λ1
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Mean of vi draws (Model (4,1)) Mean of vi draws (Model (4,2))

Mean of vi draws (Model (4,3)) Mean of vi draws (Model (4,4))

Figure 4.15: Computation of vi draws of Ω

4.4.3 Interpretation of obtained results

In this section we have tried to find out how regional labour productivity is affected by

spatial knowledge processes. We found, that first order neighbouring patent activity

influences the regions own labour productivity, while own patent activity does not

exhibit a significant influences on own labour productivity. Additionally, most of spatial

activity cannot be explained fully by exogenous spatial lagged knowledge. This is the

case, because the spatial error term is highly significant, even if one includes spatial

lagged counterparts of exogenous variables. Additionally, it was shown with a spatial

Bayesian analysis, that spatial heterogeneity is a reasonable assumption and neglecting

this issue would lead to inefficient parameter estimates.

The next step is to investigate further the impact of knowledge diffusion on German

NUTS-2 regions more systematically. So far, we only have obtained some evidence,

that the data generating process can be described also by spatial effects. The next

step is, to isolate the spatial neigbbouring influence from the data. In this way it is

possible, to distinguish between region specific or home effects and neighbour effects.

For instance, regions might have a high labour productivity compared to the average,
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4 The spatial dimension of knowledge diffusion

but this level of labour productivity might be influenced negatively by neighbouring

regions et vice versa. The goal is to identify strength and weakness of German NUTS-2

regions and derive implications for regional policy instruments.

4.5 Spatial filtering

In this section we try to isolate spatial spillover effects from region specific labour pro-

ductivity. In this way it is possible to create a strength and weakness profile of German

Nuts-2 regions. Particularly, one should be interested in answering the question which

regions have positive effects on neighbouring regions and which regions provide neg-

ative effects on neighbouring regions. This has also implications for an appropriate

regional policy. In this way we can say that labour productivity is a sum of own labour

productivity and spillovers from neighbouring regions which can be either positive or

negative. The question is, if the overall effect is positive or negative. We base the spa-

tial filtering procedure on the so far obtained results. Thus we set r = 1 and include

only patents p and human capital h as exogenous variables in our filter procedure.

4.5.1 Concept of the filtering approach

Spatial filtering is a well established analysis method in spatial econometrics appli-

cations. The idea is based on a two step estimation technique. In the first step we

have to filter every exogenous variable and in the second step we have to regress the

dependend endogenous variables on all spatial filtered exogenous variables.

The starting point of spatial filtering is the Morans‘s I. From equation 4.34 we know

that Moran‘s I for a standardized matrix W+1 can be computed as follows:

I =
e′W+1e

e′e
. (4.68)

This equation can be reformulated 87 as

I =
y′C+1y

e′e
, (4.69)

with

C+1 =

(
I − ιι′

N

)
W+1

(
I − ιι′

N

)
, (4.70)

87Refer to (Griffith, 2000), p. 145.
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with ι as a (N×1) vector of ones and I as the (N×N) identity matrix. In this way, the

Eigenvectors of Cr load every spatial effect. The first Eigenvalue contains the largest

Morans‘s I coefficient with a given standardized matrix W+r. The second Eigenvalue

contain the value, which leads to the maximal Morans‘s I given the second Eigenvalue

is not correlated with the first one, which is ensured, because W+r is standardized.

Because of missing degrees of freedom, one cannot use every Eigenvector for spatial

filtering 88. Therefore a rule of thumb for Eigenvector selection is needed. (Griffith,

2003) has proposed to use only those Eigenvectors which fulfill the following condition:

I > 0.25 Imax. (4.71)

Equation 4.71 provides us with an indicator regarding the maximum number of

Eigenvectors L which should be included into our regression framework. Based on a top

down procedure, one can eliminate all Eigenvectors which do not provide a substantial

potential of explanation. Given we have identified the relevant Eigenvectors, we can

proceed with the filtering scheme. On the first step we filter the vector of independent

variables X by running the following regression:

xk = γ0 +
L∑
l=1

γlv̂l + εk, (4.72)

with ε ∼ (0, σ2Ω), vl the lth Eigenvector and xk the kth exogenous variable.

It is clear that the estimated residual vector ε̂k contains the spatial filtered counter-

part of the not filtered variable xk. The second step is to regress y on spatial filtered

variables and on Eigenvectors vl. In this equation every variable is spatial filtered and

therefore OLS estimation is unbiased. The corresponding regression on the second step

can be written as:

y = γ0 +
L∑
l=1

γlv̂l +
K∑
k=1

γlε̂k + κ, (4.73)

with κ ∼ (0, σ2Ω), vl the lth Eigenvector and xk the kth exogenous variable. Of course

equation 4.73 can be consistently estimated with OLS.

88Refer to (Griffith, 2003), p. 107.
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4.5.2 Eigenvector computation

From matrix C of equation 4.70 one can derive the Eigenvectors and compute Moran’s-

I with 4.34. This can be done using Matlab for instance. For every Eigenvector vl the

corresponding Moran I coefficient was computed. As one can see from picture 4.16

only 10 of 39 Eigenvalues meet 4.71. The second Eigenvector leads to Imax which takes

the value Imax = 0.97437.
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Figure 4.16: Eigenvector selection

4.5.3 Spatial filtering estimation

First we estimated separately 4.34 for k, l, h and p.89 The results of these regressions,

corresponding to equation 4.72 can be found in table 4.9.

As we can see from figure 4.17, we cannot observe a clear spatial pattern, represented

by the Eigenvectors v6 and v7, labeled as (a) and (b). On contrary, in figure 4.18 the

Eigenvector v1, labeled as (c), the Eigenvector v2, labeled as (d) and the Eigenvector

v3, labeled as (e) show a clear spatial pattern. The first Eigenvector v1, labeled as (c)

is declining from North to South, the second Eigenvector, the Eigenvector v2, labeled

as (d) exhibit a significant declining West-East pattern, whereas the third Eigenvector

v3, labeled as (e) is affected by low values in North-West and South-East of Germany.

89Based on Wald-tests, we should not include i and p both. As argued above again, a Wald-test
based on ML estimation ignoring spatial dependence in the data is not valid. Because of the fact that
we want to include possible knowledge spillover variables, we only eliminated i. From table 4.8 we
see, that neither i nor the spatial lagged counterpart of i are significant, whereas the spatial lagged
counterpart of p is significant.
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dependend variable y: ln
(
Y
L

)
estimation method OLS OLS OLS OLS
dependent variables x ∈ X l k h p
Constant 13.21070 12.30990 2.090592 5.293690

(0.0000)� (0.0000) (0.0000) (0.0000)
v1 — — — -3.049842

(—) (—) (—) (0.0019)
v3 — — 0.623305 —

(—) (—) (0.0755) (—)
v6 -1.259430 -1.229270 — -1.816913

(0.0084) (0.0424) (—) (0.0287)
v7 0.950438 — — 1.500619

(0.0176) (—) (—) (0.0961)
Observations 39 39 39 39
adjustedR2 0.16 0.08 0.07 0.26

Table 4.9: Spatial filtering of exogenous variables X

0,157 to 0,405   (4)
0,094 to 0,157   (7)
0,032 to 0,094   (5)

-0 ,015 to 0,032   (7)
-0 ,068 to -0 ,015   (6)
-0 ,162 to -0 ,068   (6)
-0 ,374 to -0 ,162   (6)

0,18  to 0,21   (5)
0,11  to 0,18   (7)
0,03  to 0,11   (6)
0  to 0,03   (5)

-0 ,02  to 0   (3)
-0 ,19  to -0 ,02   (7)
-2 ,1  to -0 ,19   (8)

(a) (b)

Figure 4.17: Graphical representation of Eigenvectors (I)

After filtering the exogenous variables, the next step is estimating 4.73. Therefore,

a stepwise estimating procedure of labour productivity on Eigenvectors and spatial fil-

tered variables is employed. In the regression context, no dummy variable for West-East

differences is included, because the dummy would filter spatial information potential

and could lead to a biased regression in this context. The results of this estimation

can be found in table 4.10. We find, that the first three Eigenvectors, which cover spa-

tial effects, determine a considerable amount of labour productivity. This leads us to

conclude, that labour productivity of a given region is not only determined by its own

economic potential, but also by neighbouring labour productivity. This implies, that

network effects play an important role and should be considered within the embodi-

ment of regional policy. We can therefore conclude, that patents p and human capital

h are mainly affected by spatial effects. The latter is only partial true for capital k and
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dependent variable y: ln
(
Y
L

)
estimation method OLS

Constant 11.21121
(0.0000)�

ε̂l -0.358058
(0.0031)

ε̂k 0.261464
(0.0183)

ε̂h 0.136156
(0.0747)

ε̂p 0.075354
(0.1114)

v1 -0.421669
(0.0002)

v2 0.211905
(0.0323)

v3 -0.305651
(0.0225)

Observations 39
adjustedR2 0.66

Table 4.10: Spatial filtering of labour productivity y

labour l.

As we can see from 4.10, the results for the constant estimated labour elasticity

l, the constant estimated capital elasticity k, the constant estimated human capital

elasticity h and the constant estimated patent elasticity p have all positive signs and

have been, with respect to their dimension correct estimated. With the exception of

p, all estimated coefficients are significant on a 5% or 10% level.

Now we are prepared to decompose labour productivity in home effects and neighbour

effects. The residual of this simple decomposition cannot be returned neither to home

effects, nor to neighbour effects and therefore they are treated as not systematic. Noting

the fact, that both, Eigenvectors and spatial filtered variables exhibit a mean of zero,

we can conclude that the constant term contains the mean of labour productivity. If

we subtract the mean ȳ from equation 4.73 we obtain:

y̆ ≡ y − ȳ = γ0 +
L∑
l=1

γlvl +
K∑
k=1

γlε̂k − ȳ + κ, (4.74)

with κ ∼ (0, σ2Ω), vl the l-th Eigenvector and xk the k − th exogenous variable. The

term γ0 +
∑K

k=1 γlε̂k − ȳ can be defined as the own region effect, whereas the term∑L
l=1 γlvl represents the neighbour effects. The term κ represents the unsystematic

component. Because of the fact, that all effects are centered around zero, we can
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0,256 to 0,308  (5)
0,116 to 0,256  (5)
0,004 to 0,116  (7)

-0,068 to 0,004  (6)
-0,107 to -0,068  (6)
-0,159 to -0,107  (6)
-0,229 to -0,159  (6)

0,187 to 0,329  (6)
0,1  to 0,187  (5)
0,039 to 0,1   (7)

-0,017 to 0,039  (5)
-0,076 to -0,017  (5)
-0,172 to -0,076  (7)
-0,296 to -0,172  (6)

0,179 to 0,237  (5)
0,133 to 0,179  (7)
0,098 to 0,133  (3)
0,021 to 0,098  (7)

-0,069 to 0,021  (6)
-0,225 to -0,069  (6)
-0,285 to -0,225  (7)

(c) (d)

(e)

Figure 4.18: Graphical representation of Eigenvectors (II)

interpret equation 4.74 as a deviation from the mean specification. For instance, if

y̆ > 0, which means that a region exhibits a superior labour productivity, this can

be due to home effects or due to neighbouring effects. Even if a region has a superior

home effect, a negative neighbour effect could lead to a negative overall effect regarding

labour productivity, et vice versa.90

4.5.4 Interpretation of simulation results

The next two figures in 4.19give an impression of the results of labour productivity

simulation, based on equation 4.74. First, we should investigate own regions effects

regarding labour productivity, which are separated from regions neighbour effects. The

labour productivity effects are deviations from the mean which is, as mentioned above,

centered around zero. As we can see with respect to the own region effect (RE) in

the left hand map, especially some East German regions, such as ”Süd Brandenburg”,

”Sachsen” and ”Berlin” would exhibit a relative high labour productivity if we only

apply for own region effects. But with respect to the overall effect (OE), which is

90From equation 4.74 we see, that an inclusion of a dummy variable as done before, would bias
within the regression context. Even more, a spatial filtering of a dummy is by definition not plausible.
Besides that and give, we include the dummy we cannot rule out that these variable also contains
spatial information.
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plotted in the right hand map, some negative influence from neighbouring regions

leads to a reduction of labour productivity in those regions. On the other side, the

region ”Oberfranken” benefits for the most part from neighbouring effects.

0,095 to 0,191  (4)
0,054 to 0,095  (7)
0,023 to 0,054  (6)

-0,028 to 0,023  (6)
-0,047 to -0,028  (5)
-0,087 to -0,047  (7)
-0,226 to -0,087  (6)

1,4 to 52,1  (8)
1  to 1,4  (1)
0,9 to 1   (1)
0,6 to 0,9  (8)
0,3 to 0,6  (9)

-1,1 to 0,3  (7)
-4,9 to -1,1  (7)

(RE) (RE/OE)

Figure 4.19: Absolute and relative regional effects

Now we turn our attention to the neighbouring effects. These are visualized in figure

4.20. First, we find in the map on the left hand side a rather impressive confirmation

that especially South German regions and with some cut backs also West German

regions, settled in the ”Rhein-Main -Gebiet” and the ”Ruhrgebiet”, are the source

of knowledge spillovers. On contrary, we find maximum negative neighbour influence

throughout East German regions. With respect to the overall effect (OE), we find in

the map on the right hand side some dramatic changes. The effects for South German

regions, some regions of the ”Rhein-Main-Area” and some regions of the ”Ruhrgebiet”

are rather low. Thus, only a little fraction of the superior labour productivity of these

regions are due to neighbouring effects.

Finally, we can categorize the regions in a strength-weakness profile, both for the

own region and neighbouring region effects.

Regions which are settled in the top right corner of figure 4.21 can be characterized

by a superior labour productivity. For those regions, positive or negative neighbouring

effects play only a minor role. In these regions, with the exception of ”Hamburg”, which

is top leader with respect to own and overall effects and ”Schleswig-Holstein”, you can

find mainly South German regions, such as ”Oberbayern”, ”Stuttgart”, ”Tübingen”

etc. and West German regions, such as ”Düsseldorf”, ”Köln” etc. situated in this area.

These findings supports the findings of (Eckey et al., 2007) for German labour market

regions.

Regions which can be found in the down right corner of figure 4.21 exhibit a positive
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0,094 to 0,122  (6)
0,034 to 0,094  (5)
0,024 to 0,034  (4)
0,009 to 0,024  (8)

-0,029 to 0,009  (5)
-0,108 to -0,029  (7)
-0,179 to -0,108  (6)

1,5 to 14,2   (9)
0,8 to 1,5   (6)
0,5 to 0,8   (3)
0,4 to 0,5   (4)
0,3 to 0,4   (2)

-0,4 to 0,3  (10)
-27,1 to -0,4   (7)

(NE) (NE/OE)

Figure 4.20: Absolute and relative neighbour effects

over all effect, because of the positive neighbouring effects. But, without these effects,

a negative overall effect would occur. In this area you can find mainly West German

regions, which profit from spillover regions, situated in the upper right regions. This is

especially true for some Bavarian regions, such as ”Schwaben”, ”Oberpfalz”, ”Nieder-

bayern” who profit mainly from ”Oberbayern” spillover centers like ”Greater Munich

area”.

Regions in top left exhibit a negative overall effect, despite the fact, that the home

effect is positive. In other words, if negative neighbouring effects did not affect those

regions, those regions could be associated with a superior labour productivity. In this

region you find primarily East German regions, which are compared to other East

German regions are relative prosperous with respect to their economic development.

This is especially the case for ”Dresden”, ”Süd-Brandenburg”. But also ”Berlin” and

”Braunschweig” can be found in this area.

Regions in the down left regions can be characterized as regions which require eco-

nomical and political support and should therefore be in the focus of political debate

when talking about the allocation of supranational grants. Neither their own labour

productivity is superior, nor they can benefit from positive knowledge spillovers from

neighbouring regions. Again, in this region we can find by majority East German

regions. But, in contrast to East German regions which are settled in the upper

left, those regions suffer from structural weaknesses. This is especially the case for

”Nord-Brandenburg” but also for West German regions, such as ”Saarland” and ”Ober-

franken”. In this picture we can see that when talking about economic performance

of German regions, the entity ”Bundesländer” is to crude. For instance, it is not as

easy as it seems ex ante to get a correct impression of the economic performance of

”Sachsen”. For NUTS-2 case Dresden performs rather well, whereas ”Chemnitz” and
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Figure 4.21: Regional and overall effect

”Leipzig” perform bad. This is also true for West German regions, especially ”Bayern”,

which seems to be more heterogeneous than ”Baden-Württenberg”.

Figure 4.22, which has at the ordinate the neighbour effects and at the abscissa the

overall effect has to be interpreted analogously as figure 4.21 and provides an alternative

view on the same results obtained before. Again, some regions would exhibit a positive

overall effect, unless negative neighbour effects are taken into consideration. Again, this

is especially true for ”Berlin”, ”Brandenburg-Südwest” and ”Dresden” for instance.

4.6 Policy implications

The purpose of this section is to derive some implications for regional policy, based on

simulation results which have been obtained in the last section. The core of regional pol-

icy since 1969, coordinated by German administration is the so called ”Bund-Länder-

Gemeinschaftsaufgabe ”Verbesserung der regionalen Wirtschaftsstruktur”” (GA). Re-

gional policy in the German sense is a cooperation of the German countries and the

Federal Republic of Germany which is controlled by Art. 91.a in the German consti-

tution. But (GA) is not only a traditional funding instrument. (GA) is the framework

of strategy, regulation and coordination of regional policy, also for EU related founds.

If we have again a look at figure 4.21, and more precisely, if we again take the upper

left region. Then from a policy maker’s view it should be clear that policy instruments

are required which take into account that a comprehensive regional approach goes into
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Figure 4.22: Neighbour and overall effect

the wrong direction. For those regions a mixture of traditional structural sponsorship

should be supplemented by appropriate public-private-partnerships. Especially for East

German regions regional policy has focused instruments which should hinder the Brain

drain towards West German regions. Since 2005 the German economic department

programme ”Kooperationsnetzwerke und Clustermanagement” supports regional and

national cooperation between companies, scientific and economy as well as between

local administration to strength the network abilities and competitiveness of regions.

This seems an appropriate policy instrument for those mentioned regions. For regions

in the down left area in figure 4.21, traditional regional policy arrangements seem to be

appropriated. Additionally, as mentioned by (Moll, 2000) EU region wide cooperations

between country such as Germany and France near the German-French boarder or with

Czech Republic to promote former so called borderlands or with Poland to promote

close to boarder regions of ”Mecklenburg” have been aspired. Thus, EU as German

funding instruments includes a prominent regional component which aims to support

the creation of regional clusters.
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4.7 Conclusion

The aim of this chapter is, to give an alternative insight into the role of spatial de-

pendence, not only in a theoretical spatial hybrid growth model context, but also in

an empirical way. The main purpose of the theoretical model is to investigate the

role of technological innovations and agglomeration which is a logical combination of

the role of growth and innovativeness and the role of growth and agglomeration with

respect to space. Space is an economic sphere which has been paid, without any ex-

ceptions, rather few attention in literature so far. To combine these aspects spatial

knowledge spillovers are necessary. Particularly, within the theoretical model context

it is assumed that spatial influence is not constant over space, an assumption which is

not considered in the literature so far. After simulating the model, confirmation of the

”‘folk theorem of spatial economics”’ has been found, that ”increasing returns to scale

(IRS) are essential for explaining geographical distributions of economic activities”.

To test the implications of the derived theoretic model, we refer to a cross section

production function approach, proposed by (Griliches, 1979), which should measure

the effects of innovativeness, measured by knowledge capital, such as human capital,

patents or R&D and spatial spillovers on output. This is done for German NUTS-2

regions. These administration level has been selected due to the fact, that referring on

NUTS-3 regions could lead to spatial dependence by ”construction” caused by streams

of commuters for instance. Spatial econometricians methods have been employed to

measure the before mentioned effects. Spatial heterogeneity is mostly neglected in

hitherto empirical studies. Thus, employing a new model selection mechanism, which

accounts for spatial heterogeneity and which is based both on Maximum-Likelihood and

Bayesian methods, one can find that significant spatial knowledge spillovers exist in

the data, even though they are small. Especially, patents spillovers have been detected

as the driving forces of economic performance. Further, the selected model found

that spatial heterogeneity matters. Controlling for spatial heterogeneity is important

because neglecting it could lead to insufficient estimates. Until today, the majority of

existing studies assume ex ante spatial homogeneity. This could be due to the fact, that

Maximum-Likelihood methods are very clumsy for spatial model estimation. Coevally,

Bayesian methods are still on the fringes, especially in spatial econometrics, although

the conceptual idea of Bayesian methods are more eligible to cover spatial model design

than Maximum- Likelihood methods so far. Hence, it can be expected that in the next

years some improvements of Maximum-Likelihood methods will be made in terms of

efficient spatial model estimation.

Another way to investigate spatial data, is to employ spatial filter methods. This
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method should be used, if spatial effects should be removed from data. In this context

it is obvious to ask the question if regions specific economic strength benefits from

economic activity from their neighbours or not. The filtering method is easy to imple-

ment and can be conducted with a traditional two step OLS procedure. One of the key

findings is, that economic performance differs not primarily between East and West

German regions, but is more complex. Especially for East German regions we find, that

some well performing regions suffers in great extent from negative neighbour influence.

This is also true for some West German regions but plays a minor role. Against this

background it is rather logical, that cluster phenomena are suitable for explaining the

distribution of economic activity of German NUTS-2 regions over space.

This cluster phenomena can be graphically replicated with a weakness-strength pro-

file. To obtain this, on the basis of the employed filter method a simulation of labour

productivity has been conducted. Using the simulated data it is found that especially,

South German regions, such as ”Bayern” and ”Baden-Württemberg” and regions in

the ”Ruhr-Gebiet” perform well, due to their inherent economic strength. These re-

gions do not rely on positive neighbour effects to beef up their economic performance.

Therefore, these regions can be labeled as knowledge generation areas. On contrary,

some regions would perform significantly better, if negative spillover from neighbour-

ing regions could be eliminated. This is particularly true for ”Brandenburg-Süd” and

”Dresden”.

What are the political implications? As mentioned above, EU has launched several

economic policy programmes to foster regional economic performance. Most of the EU

related programmes have recognized the outstanding role of knowledge and economic

clusters for regional development. Knowledge spillovers, generated by knowledge gen-

eration areas, such as ”Munich Greater Area”’ should contribute to boost neighbouring

regions, which suffer from insufficient knowledge generating potential. Hence, regional

politics is on the right track, but should provide further incentives for strengthen re-

gional knowledge networks.
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4.8 Appendix

4.8.1 Appendix 1

Proposition : An OLS estimation of a spatial lag model would yield inconsistent

and thus biased estimators. An OLS estimation of a spatial error model would yield

inefficient but unbiased OLS estimators. An OLS regression of a spatial model with

exogenous spatial lagged variables is unbiased but only blue if spatial homogeneity is

assumed. �

Let us start with

y = ỹP +X+++β+++ + ε̃Λ + κ, (4.75)

or with the familiar notation from expression 4.26:

y = ỹP +XβX + X̃++β++ + ε̃Λ + κ (4.76)

with

X+++ = [X, X̃++] and β+++ = [βX , β++]. Labeling parts of 4.26 with I, II, III, IV ,

this yields:

y = ỹP︸︷︷︸
(I)

+XβX︸ ︷︷ ︸
(II)

+ X̃++β++︸ ︷︷ ︸
(III)

+ ε̃Λ︸︷︷︸
(IV )

+κ. (4.77)

1. Assume, that I=II=IV=0.

This yields

y = X̃++β++ + κ, (4.78)

with κ ∼ (0, σ2Ω) with Ω 6= σ2I. From equation 4.78 we can obtain an OLS

estimator b++ = (X̃++′X̃++)−1X̃++′y. This estimator is unbiased if E[X̃++′κ] =

0 because:

E[b++] = β++ + E[(X̃++′X̃++)−1X̃++′κ] = β++. (4.79)

177



4 The spatial dimension of knowledge diffusion

The estimated variance covariance matrix of V [b++] is

V [b++] = E[(b++ − β++)(b++ − β++)′] = (4.80)

= E[(X̃++′X̃++)−1X̃++′κκ′X̃++(X̃++′X̃++)−1], (4.81)

or

V [b++] = [(X̃++′X̃++)−1X̃++′ΣX̃++(X̃++′X̃++)−1] 6= σ2(X̃++′X̃++)−1, (4.82)

with Σ = σ2Ω. Thus, OLS is unbiased but only BLUE if σ2Ω = σ2I, thus if

spatial homogeneity is assumed. �

2. Assume, that III=IV=0.

This yields

y = ỹP +XβX + κ, (4.83)

with κ ∼ (0, σ2Ω) with Ω 6= σ2I. An OLS estimation of 4.83 would yield, under

neglecting an element of ỹP :

bX = (X ′X)−1X ′y. (4.84)

After inserting y this yields the estimator bX of βX :

bX = (X ′X)−1X ′(ρrW+ry +XβX + κ). (4.85)

Taking the expectation of 4.85 this yields

E[bX ] = E[(X ′X)−1X ′(ρrW+ry) + βX ] 6= βX . (4.86)

Thus, the bias can be expressed as

E[bX − βX ] = E[(X ′X)−1X ′(ρrW+ry)] = ρrβl. (4.87)

The expression can be interpreted as ρr times the regression of X against (ρrW+ry)

with the corresponding βl which is equal to the expected value of the regression (W+ry)

on X. Hence, OLS is biased if only one component of ỹP is neglected in the regression.

�
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3. Assume, that II=III=IV=0

In this case we obtain

y = ỹP + κ, (4.88)

with κ ∼ (0, σ2Ω) with Ω 6= σ2I. An OLS-estimator of one element ρr of P would

yield:

ρ̂r = [(W+ry)′(W+ry)]−1(W+ry)′y, (4.89)

or inserting 4.88 in 4.89

ρ̂r = ρr + [(W+ry)′(W+ry)]−1(W+ry)′κ. (4.90)

The estimator ρ̂ is not consistent because

ρ̂
p→ ρ+ plim

(
1

N
(W+ry)′W+ry

)−1

plim

(
1

N
(W+r)′κ

)
,

ρ̂
p→ ρ+ S−1

(W+ry)′W+ry plim

(
1

N
κ′W+r(I − ρrW+r)−1κ

)
. (4.91)

The expression plim
(

1
N

(W+ry)′W+ry
)

converges to a regular and finite matrix S(W+ry)′W+ry.

The second term plim
(

1
N

(W+r)′κ
)

however converges to an expression which is quadratic

in the errors, unless ρr = 0. Hence, estimating a spatial lag parameter ρr via OLS is

biased and inconsistent. �

4. Assume, that I=III=0

Now it results

y = XβX + ε, (4.92)

with ε = εΛ + κ and κ ∼ (0,Ω) with Ω = σ2I. An OLS estimation of βX would be

unbiased, because

E[bX − βX ] = E[(X ′X)−1X ′κ] = 0, (4.93)

but βX is not efficient because for a given λr from Λ we get for the estimated variance

covariance matrix

V [b++] = [(X ′X)−1X ′εε′X(X ′X)−1X], (4.94)
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which is

V [b++] = σ2[(X ′X)−1X ′[(I − λrW+r)′(I − λrW+r)]−1X(X ′X)−1X]. (4.95)

In consequence, OLS estimator of bX is unbiased but inefficient for a given λr from Λ.

�

4.8.2 Appendix 2

Using PIM, the capital stock Kt can be computed as

Kt = ι0It + ι1It−1 + ...+ ιT It−T , (4.96)

with It as investment in new capital Kt. It is common to set ι0 = 1 and ιt = (1 − δ)t

for t > 0. Using a Koyck transformation we get from equation 4.96

Kt = It + (1− δ)Kt−1, (4.97)

with δ = ιT−1−ιt
ιT−1

. To obtain expression 4.30 we assume that investment It in stock of

capital Kt is growing from t = 0 with constant rate ζ. Therefore we can write:

It = (1 + ζ)It−1 = (1 + ζ)(1 + ζ)It−2 = ... = (1 + ζ)∞
+

It−∞+ . (4.98)

Further it is assumed that devaluation of capital Kt follows a geometric series:

Kt = It + (1− δ)It−1 + (1− δ)2It−2 + ...+ (1− δ)∞+

It−∞+ . (4.99)

Using 4.98 and 4.99 leads to

Kt = It+

(
1− δ
1 + ζ

)
It+

(
1− δ
1 + ζ

)2

It+ ...+

(
1− δ
1 + ζ

)∞+

It = It

∞+∑
κ=0

(
1− δ
1 + ζ

)κ
. (4.100)

Rearranging equation 4.100 by writing:(
1−

(
1− δ
1 + ζ

))
Kt = It

(
1−

(
1− δ
1 + ζ

)κ+1
)

(4.101)

and letting κ→∞ leads to
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Kt = It
1(

1−
(

1−δ
1+ζ

)) , (4.102)

because of
(

1−δ
1+ζ

)
< 1. Noting, that It+1 = It(1 + ζ) yields

Kt =
It+1

1 + ζ

1(
1−

(
1−δ
1+ζ

)) . (4.103)

4.8.3 Appendix 3

The log-likelihood function for the spatial variant of a ARMA(1,1), SAC(1,1) can be

derived as follows.91

y = ρ1W+1y +X+++β+++ + ε, (4.104)

with

ε = λ1W+1ε+ κ, (4.105)

with κ ∼ (0, σ2I) can be written as

ξ =
1

σ
(I − λ1W+1)−1[(I − ρ1W+1)y −X+++β+++] (4.106)

with ξ ∼ N(0, I). The corresponding determinant of the Jacobian J ≡ det ∂ξ
∂y

can be

rewritten as

J ≡ det
∂ξ

∂y
= | 1

σ
[I − λ1W+1] || [I − ρ1W+1]|. (4.107)

Employing the fact that ξ ∼ N(0, I) we can write the log-likelihood for the joint

distribution as

91The proof is based on (Anselin, 1988), p. 74 with some minor adjustments.
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lnL = −N
2

ln 2π − N

2
(σ2) + ln |Ñ |+ ln |[I − ρ1W+1]| − 1

2
ξ′ξ, (4.108)

If ρ1 = 0 then the log-likelihood 4.47 results.

4.8.4 Appendix 4

Dependent variable y: ln
(
Y
L

)
Independent variables x ∈ X

Preferred model Number of parameters ln(L) ρ̂ λ̂
Model 4 [SAC(1,1)] 12 90.47 0.133 0.697\

Model 4 [SAC(1,2)] 12 88.55 0.284 -0.989
Model 4 [SAC(2,1)] 12 90.28 -0.000 0.722\

Model 4 [SAC(2,2)] 12 87.74 -0.000 -0.987
Model 4 [SEM(1)] 11 67.93 — 0.711\

� Selected model. † indicates 10% significance. ‡ indicates 5% significance. \ indicates 1% significance

Table 4.11: Comparison of selected models

4.8.5 Appendix 5

In the relevant literature, there are some convergence checks for convergence of MCMC

based samplers for linear models. In this section there is given a short motivation

of some convergence checks instruments. All below mentioned diagnostic tools are

implemented in the Matlab function ”coda”.

4.8.5.1 Autocorrelation estimates

From time series it is known that if ρ is a stationary correlated process, then ρ̂ =
1
N

∑N
i=1 ρi is a consistent estimate of E(ρ). Therefore it is allowed to simulate some

correlated draws from our posterior distribution to get a hint how many draws we need

for uncorrelated draws for our Gibbs sampler. A high degree of correlation should

cause someone to carry out more draws which should result in a sample which allows

to draw correct posterior estimates.

4.8.5.2 Raftery-Lewis diagnostics

(Raftery and Lewis, 1992b), (Raftery and Lewis, 1992a) and (Raftery and Lewis, 1995)

have suggested a set of diagnostic tools which they have first implemented in FORTRAN
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4 The spatial dimension of knowledge diffusion

named ”Gibbsit”. This function was converted in Matlab and called ”raftery”. (Raftery

and Lewis, 1992b), (Raftery and Lewis, 1992a) and (Raftery and Lewis, 1995) have

focused on the quantiles of the marginal posterior. The diagnostic itself is based on

the properties of a two state Markov-Chain, because for a given quantile the chain is

dichotomized using a binary time series that is unity, if ρi ≤ qquant and zero otherwise,

where qquant denotes the quantile which has to be chosen from the researcher ex ante.

For an independent chain, the zeros and ones should be appear randomly. The ”coda”

function prints the so called thinning-ratio, which is an indicator of autocorrelation

in the draws. ”Thinning” means, that only every third, fifth,... draw for instance are

saved for inference, because the draws from a Markov Chain are not independent. Ad-

ditionally, the number ”burn-in-draws” are reported. The number of ”burn-in-draws”

are excluded from sampling based on inference. Finally, the I-statistic is reported which

is the ratio of the number of total draws and the minimum number of draws to ensure

an i.i.d. chain, represented by the draws. (Raftery and Lewis, 1992b), (Raftery and

Lewis, 1992a) and (Raftery and Lewis, 1995) indicate that values larger than 5 exhibit

convergence problems of the sampler and therefore, more draws should be carried out.

4.8.5.3 Geweke diagnostics

The Matlab function ”coda” additionally estimates the numerical standard errors and

relative numerical standard errors based on the work of (Geweke, 1992). The code can

be found at http://www.biz.uiowa.edu/cbes/code.htm, which is based on BACC. The

BACC code itself as Matlab, R and S-Plus routines can be found at

http://www2.cirano.qc.ca/ bacc/bacc2003/index.html. This diagnostics are based on

elements of spectral analysis. From time series analysis we know, that an estimate of

variance of ρ is based on V ar[ρ̂i] = ∆(0)
k

with ∆0 as the spectral density of ρi evaluated

at ω0 of ∆(ω). The question is, how to approximate ∆(ω). For this reason, alternative

tapering of the spectral window should be used. Using numerical standard errors and

relative numerical i.i.d. standard errors and compare them with numerical standard

errors and relative numerical standard errors from the tapered version. If the relative

numerical standard error of the tapered version is close to one, then convergence seems

to be ensured.

4.8.5.4 Geweke-χ2 test

Geweke’s-χ2 test is based on the intuition that sufficiently large draws have been taken,

estimation based on the draws should rather identical, provided the Markov chain has

reached an equilibrium state. This test is a simple comparison of the means for each
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4 The spatial dimension of knowledge diffusion

split of the draws. In this work, the χ2 test, based on the null hypothesis of equality

of the means of splits is carried out for each tapered case.

It should be mentioned that the diagnostic tools introduced here are not foolproof

and sometimes MCMC diagnostic tools lead to misleading decisions.92

4.8.6 Appendix 6

For appendix 6, please refer to the following pages.

92Refer for this topic to (Koop, 2003), p. 66.
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5 Conclusions

The aim of this chapter is to draw some major conclusions from the previous chapters of

this thesis. The first section gives a summary of the contents of the thesis. Particularly,

it focuses on the results obtained. The second section provides an overview of possible

revenues for further research.

5.1 Summary

In the introductory chapter it has been laid out, that knowledge as an input factor

of production exhibits a strong influence on economic development. The increasing

knowledge intensity in the globalised economy needs to focus on the determinants of

the ”knowledge based society”. Two major determinants on which the ”knowledge

based society” and its economic analogon the ”knowledge based economy” rely, are

the creation and the diffusion of knowledge. The main motivation for this thesis stems

exactly from the importance of knowledge and ”knowledge diffusion” for the ”knowl-

edge based economy” and finally for the modern economic theory and empirics. As

mentioned in the first chapter of this thesis, knowledge diffusion topics are not only con-

sidered as a cornerstone of modern growth literature and of new economic geography

but is also important for microeconomic related fields, such as dynamic applications

of industrial organization. As mentioned in the introduction, the economic field of

”knowledge diffusion” literature is widespread and many applications which cover the

topic ”knowledge diffusion” can be found in literature which are on the one hand, mi-

croeconomic based but on the other hand knowledge diffusion is also a relevant topic in

macroeconomics, especially in (regional) growth theory. As a consequence, only some

recent topics of ”knowledge diffusion” literature have been outlined in this thesis. As

mentioned in the introduction of this thesis, particularly knowledge diffusion in the

context of dynamic industrial organization and knowledge diffusion in the context of

new economic geography are currently discussed in the relevant literature but also gen-

erates revenues for further research. That defines the field where the contributions of

this thesis set in.

The first two chapters after the introduction are direct applications from dynamic in-
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5 Conclusions

dustrial organization. The first chapter deals with the question how knowledge transfer

affects knowledge diffusion, whereas the second chapter tackles the relationship between

firm size, innovation, market structure and learning.

Knowledge transfer and knowledge diffusion are two sides of one medal. Knowledge

transfer is defined as the pure exchange process of knowledge between sender to receiver.

Particularly, knowledge networks can be considered as the ideal environment in which

sender and receiver of knowledge come together. But as mentioned in this chapter,

knowledge transfer is not a sufficient condition for knowledge diffusion. Knowledge

diffusion is completed if transferred knowledge can be understood and used by the

receiver. Thus, it is worth to integrate both aspects, knowledge transfer and knowledge

diffusion in a comprehensive knowledge framework of industrial organization. The so

called (Bass, 1969) model which is referred to in this chapter stems originally from

product diffusion literature and is very popular in applied diffusion research and some

disciplines of business administration such as marketing. The idea of the (Bass, 1969)

model is pretty simple. The before mentioned contribution assumes, that two groups

of adopters, so called innovators and imitators have to decide when they should adopt

a certain technology or product. The adoption decision is influenced by external and

internal factors, such as marketing effort and communication between these groups.

But this model has some limitations. One major drawback of this model is that (Bass,

1969) does not replicate the behaviour of these subgroups of adopters in a notational

form. In the recent years several extensions of the (Bass, 1969) model have been

proposed. But these models are all less suitable to cover the aspect of knowledge

diffusion and knowledge transfer. Therefore the aim of this chapter was to setup a

model which first, integrates innovators and imitators as well as their specific adoption

decision of new knowledge. Thereby, so called network effects have been acknowledged.

According to the network structure, knowledge transfer is easier or more difficult. If

a dense network structure is available, ”knowledge transfer” is easier and thus the

imitator should adopt faster. On contrary, if networks do not exist, knowledge transfer

is excluded and thus adoption takes place later. The latter scenario often leads to

the so called ”chasm” pattern between early and late adoptions, which is extensively

discussed in diffusion related literature. In consequence, network effects should also

have an influence on the shape of the adoption curve, which is in the latter case

not necessarily unimodal but bimodal for the entire market. The point is, that the

introduced model treats the ”chasm” pattern as endogenous, not as a given exogenous

number. The literature is still silent on this topic and only a few micro based paper

take these network effects into account. Additionally, the model was extended towards

a stochastic knowledge diffusion model to capture the idea that uncertainty of adoption

is a function of time, which means at the beginning and at the end of the diffusion
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process uncertainty regarding the adoption should tend to zero, while in the middle of

the diffusion process uncertainty of adoption is high. Another feature of the proposed

model is, that it can be adopted directly to empirical research.

In a simulation study it was shown, that the shape of the adoption pattern depends

on, whether knowledge diffusion occurs or not. If knowledge transfer occurs and the

stronger network effects are, so called unimodal patterns are more probable, because

right before innovators have realized the inflection point, imitators have nearly reached

their respective inflection point. On the contrary, the longer the discrepancy between

the realization of the in inflection point of innovators and the beginning of imitators

adoption is, the less important network effects are, the more probable the so called

bimodal adoption phenomena are. Thus ”chasm” patterns of adoption curves occur if

network effects are from less importance.

As laid out in the end of the second chapter, the advantage of this new model

is twofold: from a theoretical point of view, not only the so called unimodal diffu-

sion phenomena in an uncertain environment can be replicated, but also the bimodal

diffusion phenomena can occur. From an empirical point of view, the model which

incorporates heteroscedastic errors and mean reverting can be theoretically estimated

directly with a SUR approach.

Thematically closely related to the second chapter is the third chapter, with the

explicit focus laying on firm level size. The exploring of so called feedback processes

between innovation, market share and firm size has gained much attention in recent

years. For many years, the effects of innovation and firm size and the relationship

between market share evolution and innovation have been discussed isolated. As men-

tioned in this chapter, there subsists a large body of literature covering the relationship

between firm size and innovation, which are primarily focused on manufacturing indus-

tries. The majority of the relevant literature is heavily empirical based and is somehow

ambiguous with respect to the effects of firm size on innovation. Regarding to to firm

size there is no clear evidence, whether small or large firms are more innovative.

If we now turn the focus on the effect of market structure on innovation, in principle

two different scenarios are imaginable: the first is, that a positive relationship between

monopoly power and innovative activity can be assumed, the second is, that innovative

activity suffers from monopoly power. The first as well as the second relationship are

empirically documented in a voluminous literature. Again, in the relevant literature

we find no clear effect of market structure on innovation. Some studies found nega-

tive correlations between market structure and innovation whereas other detected an

inverted U-pattern between market structure and innovation. The latter reflects the

fact, that insufficient market power hinders firms to reduce so called up-front R&D
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effort, whereas an increasing market power reduces the incentive to engage in further

R&D effort.

Within an evolutionary framework and with the support of replicator dynamics stud-

ies it was found, that small firms benefit from decreasing returns to scale, while large

firms can use learning-by-doing activities to tighten their market dominance. The lat-

ter is based on the assumption of increasing returns to scale, which coincides with the

”Schumpeter-Mark-II” hypothesis. As a result, small firms will be swamped out off

the market if technological progress is not too fast for any case of returns to scale. On

the other side, several authors highlighted the fact, that inter-firm cooperation, based

on knowledge sharing which is boosted up itself by learning activities can explain the

predominance of small firms in the market. Hence, learning activities and knowledge

diffusion play an important role when exploring feedback processes between innovation,

market share and firm size. The latter fact cannot be replicated by the model proposed

by (Mazzucato, 2000).

Therefore, the aim of this study is to work out the reciprocal dependences of firm

size, innovation, market structure, knowledge diffusion and learning. Learning effects

are covered by psychologically motivated learning curve aspects and are endogenously

driven by agent specific characteristics, such as talent and a historically given stock

of knowledge. This model constitutes an extension of the work of (Mazzucato, 2000)

that it explicitly introduces a channel of knowledge diffusion, which is endogenously

determined by learning activities, which are themselves endogenously influenced. To

integrate both aims, the so called replicator dynamics approach is disposed. The

employed tool stems from evolutionary economics and is based on Darwin´s principle

of natural selection. Particularly, on the basis of simulation experiments it will be

investigated how learning and knowledge diffusion affect market structure. Further,

with this model it can be proofed whether learning activities need a dilution of one

of the stylized facts regarding firm size dynamics which states, that early stages of an

industry life cycle are characterized by instable market patterns. This is the first time

that a replicator dynamics approach is combined with psychological motivated learning

curves, which seems appropriate to cover knowledge based learning effects.

On the basis of a conducted simulation study it is shown that for any degree of

technological progress, small firms still remain in the market, also for the case of

increasing returns to scale (IRS), where large firms are in advance. Hence, this model

is able to replicate the fact, that small firms are more likely to benefit from knowledge

networks and thus from spillovers which define a source of innovativeness, from which

large firms cannot profit. But integrating (dynamic) learning effects leads to a damping

of market fluctuations.
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In contrast to the second and the third chapter which fit closer to the dynamic

industrial organization literature, the fourth chapter deals with the spatial dimension

of knowledge diffusion, which is quite popular. Nowadays, space as an economic number

has gained much attention, after it has been neglected or even ignored for a long time.

Since the rising popularity of the new trade theory, which is basically designed to

explain trade patterns between countries or regions the question arises, what is the

role of space within an economic system. The new economic geography, which goes

a step further than the new trade theory, mainly focuses on the explanation of trade

patterns and on the location decisions of firms. Both aspects can only be answered

superficially without explicitly acknowledging the economic role of space.

Until today, new economic geography applications, which cover knowledge diffusion

topics are mainly empirically orientated and suffer from theoretical justification. We

have a relative precise understanding about the grasp of knowledge diffusion but this

aspect is not treated in regional growth literature. Thus, the first aim of the fourth

chapter was to integrate the so called ”folk theorem of spatial economics”, which states

that increasing returns to scale are essential for understanding the geographical dis-

tributions of economic activity, in a hybrid two sectoral regional growth model with

an explicit focus on different grasps of knowledge diffusion. Although the model setup

is deliberately kept simple, it becomes complex if integrating the aspect of knowledge

diffusion with an explicit spatial focus. Knowledge diffusion exhibits feedback loops

and this has to be acknowledged further in the model setup. Consequently, a solu-

tion by hand cannot be derived anymore and numerically simulation methods have to

be employed. With the focus on space, it was decided to refer to cellular automaton

programming technique because it is ideally designed to cover spatial phenomena. Af-

ter performing several simulation studies for different grasps of knowledge diffusion as

main results it can be concluded that first, for increasing returns to scale the model

exhibits large spatial concentration and further exhibits an uneven distribution of per

capita production. This is only partly the case of constant returns to scale but entirely

not for decreasing returns to scale. As a main result, the model seems to justify the

”folk theorem of spatial economics”.

As mentioned above, the majority of economic applications treating knowledge dif-

fusion topics is empirically based. In recent years, a new discipline, so called spatial

econometrics, which can be labeled as a pendant to spatial economics, has emerged

and has been established rather broadly in econometric society. Of course, this disci-

pline is developing with respect to new estimation methods. Particularly, it seems that

Bayesian methods are very attractive because of their inherent conception of allowing

for priors. Moreover, Bayesian methods do a great job within spatial econometrics,
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particularly when talking about spatial heterogeneity, which means that variances of

observations are not constant over space, or outliers exist. The classic or frequentist

methods today are not able to deal sufficiently with the phenomena of spatial hetero-

geneity. From this point it is rather astonishing, that most of spatial econometrics

applications are still based only on the frequentist methods, despite their inherent

limitations.

The second aim of this chapter is to find out on the basis of a conducted cross section

analysis, to what extent knowledge spillovers do contribute to regional growth. For this

purpose it has been referred to German NUTS-2 regions. Data for human capital and

patents are used to proxy regional specific knowledge stock. Further it has been referred

on data for labour and regional specific capital stock to explain regional specific labour

productivity. For this purpose spillover variables have to be employed to account for

spatial knowledge spillover. It was shown that knowledge spillovers are more local than

global and hence only first order neighbour effects have been included in the regression

context. The estimation has been first performed with the frequentist methods with

the assumption of spatial homogeneity and further it was conducted with a Bayesian

approach which explicitly controlls for spatial heterogeneity. As a main result, labour

productivity can be described at best with a spatial moving average process. Further

it has been shown, that spatial heterogeneity matters and ignoring them would lead

to insufficient parameter estimates. Additionally it results, that neighbourhood‘s first

order patent activity has a significant influence on own labour productivity.

Until now, we only know, that spatial phenomena matter. But we do not know, to

what extent regions benefit or suffer from spatial neighbouring effects. Because of this

fact, as a next step a filtering procedure was employed to remove spatial effects from

regional per capita production. For this reason first regional explanatory variables have

been filtered and second, regions specific labour productivity has been further corrected

for spatial neighbouring effects. The aim of this filtering procedure is to create a

strength weakness profile in which German NUTS-2 regions are embedded. As a main

conclusion it has been shown, that mainly East-German but also some West-German

regions suffer more than benefit from spatial neighbouring effects. Particularly, some

South-German regions such as ”Oberbayern” or ”Stuttgart” do not rely on spatial

effects from the neighbourhood, because these regions benefit mostly from their own

innovative potential. Therefore, these regions can be described as knowledge creation

centers. Hence, we can see that German NUTS-2 regions are very heterogeneous with

respect to their economic performance and only focusing on East-West differentials

seems to be hasty. From this background, it seems plausible that economic policy

regarding to knowledge diffusion should have not only a national but also a regional
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focus.

The following section will allude some revenues for further research, which are based

on the previous chapters of this thesis.

5.2 Prospects for future research

As mentioned before in this section, the thesis contributes to some specific topics of

knowledge diffusion. Taking the obtained results into consideration, there are several

avenues for further research. In this section some ideas for further research are given,

which could extent the level of knowledge derived from this thesis.

The model proposed in chapter two is very strict with respect to the assumption that

the market saturation level is exogenous and constant over time. Therefore, an attempt

to extent this model could be to endogenize the market saturation level. Second, from

a technical point of view, mean reverting is assumed to be the same over the entire

population. Thus, a further source of heterogeneity could be introduced in the model

by assuming different values for ζ. Third, after examining the large and small sample

properties via a Monte-Carlos-Simulation of the derived model the forecasting ability

should be of major interest.

One interesting extension of the derived model in chapter three would be to integrate

location decision of firms in this model setup. With this extension it will be possible

to cover explicit cluster effects of firms and further controll for large and small firms.

Also the derived results of chapter three should be tested empirically on the basis of an

industry level dataset. Particularly, it can be tested to what extent firm productivity

growth can contribute to explain aggregate productivity over all industries. Further one

can ask the question, to what extent do location decisions change the results. Hence,

one possible research question could be whether a significant relationship of location

decision and industry specific productivity growth can be detected.

The proposed hybrid regional growth model can be expanded in several ways. On

principle, every semi-endogenous or endogenous growth model could be embedded into

a cellular automaton frame to controll explicitly for spatial dependence. With respect

to the proposed model, a next step could be trying to embed this model in a general

equilibrium environment. Further a convergence study could be conducted on the

proposed model to answer the question whether regions exhibits convergence. This

is an important question with respect to the mentioned aim of regional coherence

formulated within the Lisbon strategy supported by the EU.

With respect to the proposed spatial econometric model there are many aspects
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which could be included. First of all, the cross-section analysis should be expanded by

a spatial panel-data analysis, based on GMM to obtain a deeper insight into spatial

knowledge spillover and its effects on regional economic performance. It has to be

mentioned that spatial panel-data methods which were limited to a balanced panel

application are recently expanded towards an unbalanced panel approach. Although

there has been made much progress in the development of spatial panel-data during the

last four years, literature is still silent to the question, whether GMM based fixed effects

or random effects estimation is still valid even if spatially lagged endogenous variables

are taken into account. From a non-spatial-panel-data perspective this is definitely not

the case. Another innovative idea for further research relates to the assumption that

spatial heteroscedasticity is itself spatially correlated. Particularly for this interesting

topic, until today the relevant literature has not found an appropriate answer. This

is also true for spatial unit roots, whose existence is mostly excluded ex ante. This

procedure is from an econometricians point of view not convincing and therefore future

research should be focused on the development of analytical instruments coping with

particularly spurious spatial phenomena.
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von ost- und westdeutschen Betrieben. Eine Analyse auf der Grundlage des Be-

triebspanels. In: Mitteilungen aus der Arbeitsmarkt- und Berufsforschung, 31, pp.

648-660.

Bertschek, I. and Entorf, H. (1996). On Nonparametric Estimation of the Schumpete-

rian Link between Innovation and Firm Size: Evidence from Belgium, France and

Germany. In: Empirical Economics, 21, pp. 401-426.

Best, M. H. (2001). The New Competitive Advantage: The Renewal of American

Industry. Oxford.

Blundell, R., Griffith, R., and Reeenen, J. V. (1995). Dynamic Count Data Models

of Technological Innovation. In: Economic Journal, 105, pp. 333-344.

Bohl, M. T. (1998). Konvergenz westdeutscher Regionen? Neue empirische Ergebnisse

auf der Basis von Panle-Einheitswurzeltests. In: Konjunkturpolitik, 44, pp. 82-99.

Boswijk, H. P. and Franses, P. H. (2005). On the Econometrics of the Bass Diffusion

Model. In: Journal of Business & Economic Statistics, 23, pp. 255-268.

Boswijk, P., Fok, D., and Franses, P. H. (2006). A New Multivariate Product Growth

Model. In: Tinbergen Institute Discussion Paper No. 06-027/4.

Bottazzi, L. and Peri, G. (2003). Innovation and spillovers in regions: evidence from

European patent data. In: European Economic Review, 47, pp. 687-710.

Brakman, S., Garretsen, H., and Marrewijk, C. (2001). An Introduction to Geograph-

ical Economics. Cambridge.



Bibliography
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tionalökonomie und Statistik, 223, pp. 239-254.

Sorenson, O., Rivkin, J. W., and Flemming, L. (2005). Informational Complexity

and the Flow of Knowledge across social boundaries. In: Discussion Papers in

Evolutionary Economic Geography (PEEG), 0511, Utrecht University.

Spence, A. M. (1981). The Learning Curve and Competition. In: Bell Journal of

Economics, 12, pp. 49-70.

Strogatz, S. (1994). Nonlinear dynamics and chaos: With applications to physics,

biology, chemistry, and engineering. Reading.

Sultan, F., Farley, J. U., and Lehmann, D. R. (1990). A meta-analysis of applications

of diffusion models. In: Journal of Marketing Research, 27, pp. 70-77.



Bibliography

Tanny, S. M. and Derzko, N. A. (1988). Innovators and imitators in innovation

diffusion modelling. In: Journal of Forecasting, 7, pp. 225-234.

Tappeiner, G., Hauser, C., and Walde, J. (2008). Regional knowledge spillover: Fact

or artifact? In: Research Policy, 37, pp. 861-874.

Teece, D. J. (1998). Research directions for knowledge management. In: California

Management Review, 40, pp. 289-292.

Tellis, G. J. and Crawford, C. M. (1981). An evolutionary approach to product growth

theory. In: Journal of Marketing, 45, pp. 125-134.

Theil, H. and Goldberger, A. S. (1961). On pure and mixed statistical estimation in

economics. In: International Economic Review, 2, pp. 65-78.

Tirole, J. (1988). The Theory of Industrial Organization. Cambridge.

Tirole, J. (1995). Industrieökonomik. München.

Todo, Y. (2001). Growth, Population, and Knowledge Diffusion. In: Knowledge,

Technology, and Policy, 13, pp. 94-113.

Trivezg, F. J., M. J. (2004). Some proposals for discriminating between spatial process.

In: Getis A., Mur J. and Zoller H. G. (eds). Spatial Econometrics and Spatial

Statistics, pp. 150-175.

Tushman, M. and Nadler, D. (1986). Organzing for Innovation. In: California Man-

agement Review, 28, pp. 74-92.

Uzawa, H. (1965). Optimum Technical Change in an Aggregative Model of Economic

Growth. In: International Economic Review, 6, pp. 18-31.

Van den Bulte, C. and Joshi, Y. V. (2007). New Product Diffusion with Influentials

and Imitators. In: Marketing Science, 26, pp. 400-421.

Van den Bulte, C. and Lilien, G. L. (2001). Medical Innovation Revisited: Social

Contagion Versus Marketing Effort. In: American Journal of Sociology, 106, pp.

1409-1435.

Van Gert, P. (1991). A dynamic system model of cognitive and language growth. In:

Psychlological Review, 98, pp. 3-53.

Varga, A. (1998). Local Academic Knowledge Spillovers and the Concentration of

Economic Activity. in: Regional Research Institute, West Virginia University,

Research Paper No. 9803, Morgantown.

Vernon, J. M., G. P. (1974). Technical Change and Firm Size: The Pharmaceutical

Industry. In: Review of Economics and Statistics, 56, pp. 294-302.



Bibliography

Verspagen, B. (1992a). Localized technological change, factor substitution and the

productivity slowdown. In: Freeman C., Soete, L (eds). New Explorations in the

Economics of Technological Change, pp. 193-221, London.

Verspagen, B. (1992b). Uneven Growth between Interdependent Economics. Maas-

tricht.

Wakasugi, R. and Koyata, F. (1997). Are Japanese Firm Efficient in Product Devel-

opment. In: Journal of Product Innovation Management, 14, pp. 383-392.

Wolfram, S. (1994). Cellular Automata and Complexity. Reading.

Wright, T. (1936). Factors Affecting the Cost of Airplanes. In: Journal of Aeronautical

Science, 4, pp. 122-128.

Yelle, L. E. (1979). The Learning Curve: Historical Review and Comprehensive

Survey. In: Decision Sciences, 10, pp. 302-328.

Yildizoglu, M. (2002). Competing R&D Strategies in an Evolutionary Industry Model.

In: Computational Economics, 19, pp. 51-65.

Young, A. (1998). Growth without scale effects. In: Journal of Political Economy,

106, pp. 41-63.

Young, P. and Ord, J. (1989). Model Selection and Estimation for Technological

Growth Curves. In: International Journal of Forecasting, 5, pp. 501-513.


