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Chapter 1

Introduction

Since the size of software systems is increasing—just think of database sys-
tems used by search engines—it is desirable to develop these systems on the
basis of smaller subsystems. These subsystems are more manageable and eas-
ier to maintain than the whole system. As an approach to reach this goal, the
concept of product families, stemming from hardware industry, was adopted
for software development by Parnas [14]. Products of such families are built
up from features. This kind of software delopment is called feature oriented
software development (FOSD). Over the past years, quite a lot of informal
definitions of what a feature is, or what it represents, have been given. Among
these informal definitions we prefer the one from Kang et al. [10]:

“features are distinctively identifiable functional abstractions that
must be implemented, tested, delivered, and maintained”.

Other definitions can be found in [2].

Further research and development of the concepts of products and fea-
tures led to the feature-oriented domain analysis (FODA) [9]. In FODA fea-
tures are linked to each other with so called feature trees, a special kind of
OR/AND trees. These trees can be used to express optional and mandatory
presence of features in a product.

Since the terms features, products and product families lack formal defi-
nitions, Hofner et al. [1] developed an algebra in 2006. Further research led
to a “product family algebra” [0]. This algebra is based on the well-known
concept of semirings and gives mathematical precise definitions of the above
terms. Furthermore it provides mechanisms to solve important task of FOSD,
e.g. finding common features of several product.

Another concept based on solid mathematical foundations is the B-Method
(B). It is a formal method of software development which was introduced by
Abrial [1]. The basic concept of B is the specification of abstract machines
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written in the specification language Abstract Machine Notation (AMN). The
intentions behind B can be compared to the ones that led to product family
algebra. While the latter stems form a lack of a mathematical precise base
of FOSD, the former was developed to offer a formal method to specify and
verify software on a solid mathematical foundation. Since the B-Method is
tool-supported it not only aroused interest in academia, but also in indus-
try [12].

The goal of this thesis is to underlay the formal product family alge-
bra with the semantics of abstract machines. To reach this goal, we develop
a formal product family algebra for abstract machines and investigate the
properties of this algebra. Afterwards we present a model of this algebra.
In this model we can compose families of machines to build larger ones in
an incremental way. We then compare the development of a system using
B, to the development of this system using the presented algebraic model.
Furthermore we briefly discuss how rules for correct machines given in B can
be expressed in this model.

This thesis is organized as follows. In Chapter 2, we present the basics
of product family algebra and discuss a standard model of the algebra. In
Chapter 3, we give a brief overview of the B-Method and discuss abstract
machines in detail. Afterwards we develop a calculator system using B. In
Chapter 4, we give the mathematical basics of product families for abstract
machines, discuss a model for abstract machines and revisit the calculator
system. In Chapter 5 we show how requirements of the B-Method can be
expressed in the algebra for abstract machines. In Chapter 6, we present a
conclusion and give an outlook on future research. Finally Appendix A and
Appendix B present deferred abstract machines and automatically generated
source code for the developed calculator systems.



Chapter 2

Product Family Algebra

In this chapter we present the basics of product family algebra. This concept
was introduced by Hofner et al. in [0], where a more detailed discussion can
be found. As a motivation we give an example that informally introduces
features, products and product families.

] Product family H Mandatory \ Optional \ Commonalities ‘
MP3 Player — Play MP3 files | — Record MP3
files ~LCD
Video Player — MP3 Player — E-Book Reader Display
— Play video — Games
files ~USB
E-Book Reader | —Show E-Books | — Play MP3 files Connector
— Games
Mediaplayer — MP3 Player
— Video Player
— E-Book Reader

Table 2.1: Product families of a consumer electronics company

Assume a consumer electronics company which assembles several differ-
ent media players. Table 2.1 shows all possible devices the company may
produce. For example, the company offers two different MP3 players. One
that can only play MP3 files and one that can record MP3 files addition-
ally. These products are summarized in the MP3 Player product family. More
precisely the table states which functionalities a product of a certain prod-
uct family must have (columns “Mandatory” and “Commonalities”), which
it may have (column “Optional”) and which it has in common with other
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products (column “Commonalities”). The terms given in these columns are
called features. Features that each product has, are called common features.

To shorten the upcoming calculations, we declare the following abbrevi-
ations:

Play MPS3 files p-mp3
Record MPS3 files r mp3
Play video files v_alg
Show E-Books e-book
Games games
Display lcd
USB connector usb

These expressions are the (basic) features from which the products are
built. We want to express the products and product families described in
the table algebraically. For Example, the MP3 Player product family can be
written as

mp3_player = pmp3-1lcd-usb + pmp3-rmp3-lcd-usb.

The operation + means choice between two products and - means (manda-
tory) presence of a feature within a product. This kind of structure is offered
by semirings. Therefore we want to present these first.

2.1 Semirings

Semirings are an algebraic structure that have been investigated quite well.
They are based on the combination of two monoids. Thus we will give a
definition of monoids first.

Definition 2.1.1 A monoid is a triple M = (5,-,1) with a set S, an inner
operation - : S x S — S, which is associative, i.e.;:

Va,b,ce S:(a-b)-c=a-(b-c),
and an identity (or neutral element) 1, i.e.;:
YVaoeS:a-1=a=1-a.

Since we will use a special kind of monoids later on, we will give another
definition.
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Definition 2.1.2 A monoid M = (S, -, 1) has an irreducible identity iff the
following holds:

Va,be S:a-b=1=a=b=1.
It is commutative iff the following holds:
VYa,be S:a-b=b-a .
It is idempotent iff the following holds:
YaeS:a-a=a.

Example 2.1.3 An example of an idempotent and commutative monoid
with irreducible identity is M = (R(S), U, 0), where £(S) is the power set over
an arbitrary set S. It is easy to check that M is idempotent and commutative.
To show that () is irreducible we use contradiction. Let A, B € £(S) be two
arbitrary sets. Assume that at least one set is non-empty. Then AU B is also
non-empty. Thus AU B # () holds.

The set of all n x n matrices over R with the matrix multiplication as
operation and the identity matrix I,, as neutral element forms the monoid
(R™™ . I,). This monoid is neither commutative nor idempotent nor has it
an irreducible identity.

Consider the 2 x 2 matrices I, = [(1) (1)] A = [? (1)] and B = [8 (1)}

Then A - A = I, holds, but A # I, which violates the properties irreducible
identity and idempotence. Furthermore A - B # B - A holds which violates
commutativity. O

Let us now define a semiring.
Definition 2.1.4 A semiring is a quintuple (S, +,0, -, 1) such that
(1) (S,+,0) is a commutative monoid with identity element 0 ,
(2) (S,-,1) is a monoid with identity element 1 |

(3) - distributes over +, i.e., Va,b,c € S: (a+b)-c=a-c+b-c
as well as Va,b,ce S:c-(a+b)=c-a+c-b,

(4) 0is an annihilator, i.e.,Vae S:0-a=0=a-0.

The semiring is commutative iff - is commutative and it is idempotent iff 4
is idempotent. An idempotent semiring is called i-semiring. In an i-semiring
the relation a < b <=4 a + b = b is a partial order, i.e., a reflexive,
antisymmetric and transitive relation, called the natural order on S. It has 0
as its least element. Moreover, 4+ and - are isotone with respect to <.
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Example 2.1.5 A commutative semiring is (IN,+,-,0,1) where IN is the
natural numbers set with the usual addition and multiplication as operations.
Any Kleene algebra is an i-semiring [3]. O

Most often + can be seen as a choice between elements and - as their
composition. We will now characterize special elements of a commutative
i-semiring, which we call products and features.

Definition 2.1.6 Assume a commutative i-semiring A. An element a € A
is called a product if a = 1 or if it satisfies the following laws:

VbeA:b<a = (b=0Vb=a), (2.1)
Vbce Ata<b+ec = (a<bVa<ec). (2.2)

A product a is proper if a # 0.

Having product families, and + as the choice between them in mind (see
Table 2.1), Implication (2.1) states, that products cannot be decomposed
w.r.t. +. This fits well with the fact that a product does not offer a choice
between alternatives, only product families can do. Implication (2.2) states
that if a is included, w.r.t. <, in the sum of the elements b and ¢, it has
to be included in b or ¢ already. In other words, a has not been formed by
summing up b and c. Again this fits well with the interpretation that the
addition offers a choice between products and not a kind of mixture of them.

Since we want to build products from features, we define features as a
special kind of products.

Definition 2.1.7 An element a is called a feature if it is a proper product
different from 1 satisfying the following laws:

Vb:bla = b=1Vb=a, (2.3)
Vb,c:al(b-¢c) = (a|lbValc), (2.4)

where the divisibility relation | is given by z |y <=4 J2:y =z 2.

The definition of features is quite similar to the one of products. Im-
plication (2.3) states, that features cannot be decomposed regarding to the
semiring operation - and | (apart from the trivial decomposition into the
neutral element and the element itself). Implication (2.4) states, that if a
feature a splits an element b- ¢, it also has to divide b or c¢. That means a has
to be included in b or ¢ regarding - and |. In other words features cannot be
generated by multiplying one feature by another one.

Mathematically products are irreducible regarding + and < and features
are irreducible regarding - and |. A discussion of these properties is given
the Appendix of [5].
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2.2 Product Family Algebra

Having a mathematical precise definition for products and features, we can
now specify an algebra that deals with these elements. The algebra is called
product family algebra.

Definition 2.2.1 A product family algebra is a commutative i-semiring in
which 1 is a product. Its elements are called product families or families for
short. A family g is a subfamily of family f iff ¢ < f, where < is the natural
semiring order.

In the context of product family algebra we will interpret addition +
as choice between families and multiplication - as composition of families.
In a product family algebra, products are made up of features, by compos-
ing them, and families are made up of products, by adding them. As seen
in Table 2.1 product families can have common features. This leads to the
following definition.

Definition 2.2.2 Assume a product family algebra. A feature c is called a
common feature of the product families a and b iff the following holds:

dr,y:a=c-c ANb=c-y.

In the remainder we will only discuss product family algebras made up
from a (finite) set of features. Formally they are defined as follows.

Definition 2.2.3 A product family algebra is feature-generated iff every ele-
ment is a finite sum of finite products of features, where a product of features
is a composition f;--- f,, of features that itself is a product, and the set of
products is closed under multiplication. In this case, single features are the
“smallest” components from which products and product families are made.

The relation between feature diagrams (OR/AND trees), mentioned in
Section 1, is given in Section 3 of [0]. In short, every algebraic term of a
product family algebra, i.e., every family, can be translated into an OR/AND
tree and vice versa.

2.3 The Set Model

As an example of a feature-generated product family algebra, we will present
the so called set model. In this model families are sets of products, and
products are sets of features. This model originates from [0], where a more
detailed discussion is given.
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Definition 2.3.1 Let IF be a finite set of arbitrary elements that we call
features. Then we call a collection (set) of features a product. The set of all
possible products is IP =4 £(IF), the power set or set of all subsets of IF. A
collection of products (an element of £(IP)) is called product family. A special
family is 1 = {0} consisting just of the empty product that has no features.

Based on £(IP) we define two operations to link up families. The operation -
is intended to compose families:

P(IP) x P(IP) — P(IP)
P-Q =4 {pUq:pePqge@}.

The operation + is intended to offer a choice between families:

+ 1 P(IP) x P(IP) — P(IP)
P+Q =4 PUQ.

It is easily checked that with these definitions the structure
IPFS —df (P(]P), =+, (Da ) {(Z)})

forms a product family algebra, called the set model over IF. It does not allow
multiple occurrences of the same feature in a product nor does it enforce
products of the same family to have common features. In the set model a
product is a singleton set and a feature is a singleton set which only element
is a singleton set again. To make things clearer and to show the use of these
operations we will have a closer look at the media player product families
from Table 2.1.

Example 2.3.2 Let IF = {pmp3,r mp3,v_alg, e-book, games, 1cd, usb} be
the set of all features/function given in Table 2.1. Then we can formal-
ize the media player product families in the set model IPFS. Elements of
IPFS are sets. Thus the MP3 Player product family looks like mp3_player =
{{pmp3, 1cd, usb}, {p-mp3, r mp3, 1cd,usb}}. It consists of the two products
{{pmp3, rmp3,1cd,usb}} and {{pmp3,r.mp3,1cd,usb}}. A feature, e.g., is
{{pmp3}}. As explained after the Definitions 2.1.6 and 2.1.7, products can-
not be decomposed regarding + and features cannot be decomposed regard-
ing -. Thus, and for better readability, we will omit set parentheses and
will denote () by 0 and {()} by 1. Expressions involving + describe prod-
uct families. The MP3 Player product families can therefore be expressed as
mp3_player = pmp3:1lcd-usb + pmp3:rmp3-lcd- usb in this model.
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The expressions for every product family described in Table 2.1 are given by

mp3_player
v_player

e-b_reader

media_player

= pmp3-1lcd-usb + pmp3-rmp3-lcd-usb,

= mp3_player
+ mp3_player
+ mp3_player
+ mp3_player
= e-book -
+ e-book -
+ e-book -
+ e-book -

usb
usb
usb

usb

-v_,alg-lcd-usb
-v_alg-lcd-usb-e-book
-v_alg-lcd - usb - games

-v_alg - lcd-usb-e-book - games ,
lcd-
lcd-
lcd-
lcd-

- games
- p-mp3
- p-mp3 - games

= mp3_player + v_player + e-b_reader .

Now we have a look at one of the main tasks of FOSD, that is “Determine
common features”. In a product family algebra we can perform this task by
expanding the expressions describing the families, summing them up and us-
ing distributivity afterwards. For example, we will analyze which features the
families mp3_player and v_player have in common—if any. Since the “Com-
monalities” column is nonempty, it is clear that the families share features,
but are there other ones?” The MP3 Player expression is already expanded,
the video player is given by

v_player = mp3_p
+ mp3_p
+ mp3_p
+ mp3_p

= p.mp3 -
+ p-mp3 -
+ pmp3 -
+ p-mp3 -
+ pmp3 -
+ pmp3 -
+ pmp3 -
+ pmp3 -

layer -v_alg -
layer -v_alg -
layer -v_alg-
layer -v_alg -

lcd-
lcd-
lcd-
lcd-
lcd-usb-v_,alg-1lcd-usb

usb
usb - e-book
usb - games

usb - e-book - games

rmp3-lcd-usb-v_alg-lcd-usb

lcd-usb -v_alg-1lcd-usb-e-book
rmp3-lcd-usb-v_alg-1lcd-usb-e-book
lcd-usb -v_,alg-1lcd-usb- games
rmp3-1lcd-usb-v_alg-lcd- usb- games
lcd-usb-v_alg-1lcd- usb-e-book - games
rmp3-lcd-usb-v_alg-1lcd-usb-e-book- games .

Now we can add the MP3 Player family and use the distributivity laws to
“sort” the common parts. As mentioned above, in the set model a feature
cannot occur multiply in a product since - is idempotent in this model. Thus
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we will simplify the expressions with the use of the equation lcd - usb- 1lcd -
usb = 1lcd - usb and commutativity in one step.

mp3_player+v_player
= (1 +rmp3 +v._alg + rmp3-v_alg
+ v_alg-e-book + rmp3-v_alg-e-book
+ v.alg-games +rmp3-v_alg - games
+ v_alg-e-book - games + r mp3 - v_alg - e-book - games)
- pmp3 - 1lcd-usb

The product families have the features p_mp3,1cd and usb in common. Look-
ing at Table 2.1 this is maybe unsurprising, since the MP3 Player family is
stated as mandatory for the video player family. But note that r_mp3 is not
a common feature which is not easy to catch from the table. This is because
we are interested in features which every product of the corresponding fam-
ily has. Furthermore what we also recognize is that a video player needs no
“new” LCD display nor a “new” USB connector, since the ones from the
MP3 Player are already present and can be reused. With the same method
we can also determine the common parts within one product family, e.g. the
e-book reader family:

e-b_reader = e-book-lcd-usb- (1 + pmp3)- (1 + games) .

In this form we see that the features e-book, 1cd and usb are mandatory for
an e-book reader, whereas p_mp3 and games are optional. O

Looking at Example 2.3.2 we see that, even if there is quite a small amount
of features and we omitted some steps, calculating common features can
become pretty complicated. This is one of the scenarios where an algebraic
approach shows its strengths. Due to its mathematical foundation FOSD
tasks can easily be done by software tools. Especially the task presented
above can be efficiently solved. Hofner states in [6] that finding the common
features can be replaced by finding the greatest common divisor (ged) which
can be efficiently solved [3] if we identify features with prime numbers. To
“Determine new products” we can build all possible combinations of the given
features. This approach may also generate products we are not interested in
or we even want to avoid for some reasons, e.g. security concerns. This leads
us to the task “Avoid unwanted feature combinations”. We can solve this
problem by stating equations of the form a - b = 0 as axioms, where a, b are
features. This implies that any product in which both features occur are equal
to the empty product 0. Algebraically this works because of commutativity
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and 0 being an annihilator. To make things clearer assume a product p of
a feature-generated algebra consisting of the features fi,..., f, (n > 2) and
an axiom fy - f; =0 (w.lo.g. £ <1[). Then we can conclude:

p

= fioofurfioe fo

= { commutativity [}
oS S fa

= {axiom fy- fi=0]
fie 0 fo

= {{ 0 is an annihilator [}
0

“Build new product families” can be achieved by adding or composing fam-
ilies. Furthermore we can add/remove features from certain products within
a family or remove a whole product from a family.

2.4 Refinement

As mentioned above we can generate new product families in certain ways,
e.g. by adding features. Since the new and the old family correlate, we can
compare them. To cover this in the algebra we introduce the refinement
relation.

Definition 2.4.1 The refinement relation is defined as
alb <¢ dc:a<b-c;
it is a preorder.

Informally, @ C b means that every product in a has (at least) all the features
of some product in b The refinement relation is related with the divisibility
relation in the following ways.

Lemma 2.4.2 Let a,b, p be elements of a product family algebra A, than di-
vistbility implies refinement:
bla = aCbh.

If A is feature-generated and p a product, then refinement and divisibility
coincide, i.e., a T p < pla .

A proof can be found in [6]. In feature-generated algebras a C p means that
a includes the product p .
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Example 2.4.3 Looking at the consumer electronic company and Exam-
ple 2.3.2 we see that the video player family refines the MP3 Player family,
i.e., v.player C mp3_player. That is since each product of the video player
family “includes” one product of the MP3 Player family. An element ¢ as
required in Definition 2.4.1, is v_player, since v_player - mp3_player =
v_player (idempotence of - in the set model) and therefore v_player +
(v_player - mp3_player) = (v_player - mp3_player). In other words, each
product of the video player family has every feature of one product of the
MP3 Player family, which are p_.mp3,1cd,usb and p_mp3, r mp3,1lcd, usb re-
spectively. It is not necessary that every product has all features occurring
in the refined family. The symmetric relation mp3_player T v_player does
not hold since every video player product includes the v_alg feature, as seen
in Example 2.3.2.

Another refinement is given by v_player C pmp3 - lcd - usb, since p-mp3 -
lcd - usb is a product and pmp3 - 1lcd - usb|v_player (have a look at the
expanded v_player family in Example 2.3.2).

But also discarding a feature or product can refine a family. Assume
that the company makes the decision to discontinue the production of an
MP3 player which can record MP3 files. The new product family is then
mp3_player new = pmp3 - 1lcd - usb. Now the new family refines the old one:
mp3_player new L mp3_player .

O

2.5 Requirements

In Section 2.3 we have seen that we can avoid unwanted feature combinations
by introducing equations of the form a-b = 0. In this section we will present
another way to reach this goal as well as a way to express requirements.
Hofner et al. state the goals in [0] informally as:

“If a member of a product family has property p;
it must also have property ps” or
“If a member of a product family has property p;

it must not have property p,”.
Formally the relation is defined as follows.

Definition 2.5.1 Assume a feature-generated algebra. For elements a, b, ¢, d
and a product p we define the requirement relation ~ by

ab <=4 (PCa = pCh),

0 b ar ai>b/\ai>b.
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For example, the requirement that in the MP3 Player family every product
that includes the feature r mp3 needs also p_mp3 can be expressed by

mp3_player
rmp3 — p-mp3 .

Feature exclusion can be reached by expressions of the form
a-b—0,

where a, b are features and c is a family. This means, that in the family c every
product must not contain both features a and b together. When comparing
the two possibilities providing feature exclusion, there is a big difference.
Equations of the form a - b = 0 apply in all families of the domain. This
yields that a and b are mutual exclusive in every possible product. Whereas
a-b 5 0 only applies within the family c. This allows a more fine granular
use of feature exclusion.

We will now present a lemma, which states some useful properties of the
requirement relation. It deals with the requirement relation in connection
with choice (4) and composition () respectively. The proofs are given in
Appendix A of [6], from where it is adopted.

Lemma 2.5.2 Let a,b,c,d, p be elements of a feature-generated algebra.
(a) b b+c.
(b) b-c—b.
()
(a)
(e) Ifp is a product, then b2 ¢ = b+d D c+d.

f)aSsbAcSd = a-cS3bANa-c>d.
)

(8) a+bSc <= aScAbSc.



Chapter 3

Abstract Machines

In this chapter we present abstract machines. The concept of abstract ma-
chines was introduced by Abrial. It is the basic mechanism in the B-Method
(B) [1]. The intention of B is to specify and verify software on a solid mathe-
matical foundation. Therefore it is mainly used for the development of safety-
critical systems. We give a short overview of the B-method. Afterwards we
discuss abstract machines in detail.

3.1 B-Method

The B-Method is a formal method for software development, also called B.
It covers mathematical techniques to specify, design and implement software
systems. For each step mathematical proofs are mandatory. Thus the result
of each phase of the development cycle is guaranteed to be correct.

The specification phase is done with the help of abstract machines. Ab-
stract machines can be compared to the concept of classes or modules in
various programming languages. In this phase elements identified in the re-
quirements analysis (not part of the method) are formalized by abstract ma-
chines written in a kind of pseudo-code notation. The consistency of these
machines is verified by proof obligations, e.g. the variables have to fulfill a
certain invariant formalized as part of the machine. In Section 3.2 we discuss
abstract machines in detail. As a result of this phase a formal specification
is produced.

In the design step abstract machines can be decomposed into smaller ones
if necessary. Basically the machines are transformed by several refinement
steps towards executable modules. All refinements are checked to be correct
and to satisfy the specification of the refined abstract machine by generating
again proof obligations. In this phase a formal design is produced.
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The last phase consists of two steps. First the refinements are transformed
into implementations which are very close to low-level, executable modules.
Again, these implementations are proved to be correct. Secondly, and thus
in the last step of the B-Method, code is generated, Abrial [I, p. xvii] calls
this “the ultimate refinement of a machine”. The B-Method offers a way to
translate the implementations into imperative programming languages.

All these steps may yield iterations in the process. For example, in the
design phase it may be useful to decompose the system into subsystems
and therefore to adjust the specification. Proof attempts of a refinement
can also reveal errors in the specification of the refined machines. Every
development step has its own kind of machine. Abstract machines are used
for specifications, refinement machines for the design/refinement step and
implementation machines for the implementation step. They are all written
in the Abstract Machine Notation (AMN) that we present in Section 3.2.
However, some constructs are not available in every type of machine. For
example, recursive operations are only allowed in implementation machines
and therefore at code level. Since abstract machines are the main objects we
discuss, we concentrate on the part of the notation used for them.

The B-Method features commercial and non-commercial tool support,
e.g. the “B-Toolkit”! or “Atelier B”?. Atelier B has been used in various
industrial and academic projects, mainly security related ones, e.g. smart
card development [12].

3.2 Abstract Machine Notation

Abstract machines are the main components of the B-Method. In [1], Abrial
states that an abstract machine can informally be seen as a calculator. A
calculator has an internal memory and buttons to manipulate this memory.
Using the buttons is the only way to modify the state of the calculator.
This behavior is one of the principles known as information hiding stated
by Parnas [13]. Abstract machines are used to specify software systems or
more precisely, modules of a software system. They describe only what mod-
ules/system have to be developed but not how—implementations are respon-
sible for this. Abstract machines are written in the Abstract Machine Notation
(AMN) that we introduce in this section. For a comprehensive description of
AMN and B we refer to [1].

Formally an abstract machine consists of different clauses. We discuss only
those clauses we need later on, in fact there are some more. An overview

Isee http://www.b-core.com/btoolkit.html
2 Atelier B can be obtained at http://www.bmethod . com
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of all possible clauses is given in Appendix B of [I]. The clauses dealing
with predicates are constituted by the use of the Predicate Calculus and
Set Theory. The initialization and the operations are declared by the use of
generalized substitutions. A detailed description and theoretical discussion is
given in [1].
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’ Syntax | Semantic
MACHINE Machine header
Name (parameters)
The parameters are a list of scalars or fi-
INCLUSION CLAUSES | nite, non-empty sets offering instantiation.
Inclusion clauses may be listed here.
Static data
CONSTRAINTS
Predicate The CONSTRAINTS predicate is used to
SETS restrict the machine parameters.
Sets
CONSTANTS The PROPERTIES clause is given as
Constants a predicate involving CONSTANTS and
PROPERTIES SETS.
Predicate
State
VARIABLES
Variables The VARIABLES are initialized by the
INVARIANT INITIALIZATION clause. They must sat-
Predicate isfy the INVARIANT predicate during the
INITIALIZATION whole lifetime of the machine.
Substitution
Dynamics
OPERATIONS
Operations OPERATIONS are responsible for in-
put/output tasks as well as for modifying
the VARIABLES.

Table 3.1: Structure of an abstract machine

An abstract machine can, roughly spoken, be described by four parts:
machine header, static data, state and dynamics. Each part consists of one
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or more clauses. The clauses are given in Table 3.1. They are all optional,
except the MACHINE clause. However, there are certain dependences be-
tween them. We give the dependences when we discuss the clauses in the
following subsections.

To type or restrict parameters, constants, sets and variables some con-
stants and sets are predefined in AMN.

NATURAL N
INTEGER Z
maxint : NATURAL maxint € N
maxint : INTEGER minint € Z

NAT = minint..maxint | INT={z€ N : 0 <z <maxint}
NAT1 = minint..maxint | INT={z€Z : 1 <2z < maxint}
INT = minint. .maxint INT = {z €7 : minint < z < maxint}

INT1 = INT - NAT INT1 =Z\N
CHAR = 0..255 CHAR={z e N : 0 <z <255}
BOOL = TRUE, FALSE BOOL = {0, 1}

Table 3.2: Predefined constants of AMN

Table 3.2 gives the predefined constants and sets in the ASCII compat-
ible AMN and in the corresponding mathematical notation. The constants
minint and maxint depend on the architecture of the target platform.

3.2.1 Machine Header

The machine header consists of the mandatory MACHINE clause and the
optional inclusion clauses. In the MACHINE clause the name of the machine
is given. If necessary, a list of parameters can be declared. Parameters are
intended to offer instantiation by other machines. Therefore using parameters
produces a set of machines rather than just one. Parameters are given as a
comma-separated list of identifiers surrounded by brackets directly after the
machine name. Only numeric data types, called scalars, and sets are allowed
as parameters. By convention scalars are denoted in lower case and sets in
upper case. The various inclusion clauses relate data from different machines
to each other. Therefore we present this data first. Afterwards we discuss the
inclusion clauses in Subsection 3.2.5.
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3.2.2 Static Data

The static data of an abstract machine consists of the data which cannot be
modified within the machine. In particular this data is given in the clauses:

e CONSTRAINTS
o SETS

e CONSTANTS

e PROPERTIES

The optional CONSTRAINTS clause is associated with the parameters.
It consists of a number of predicate conjunctions. These constraints allow to
determine the type of a scalar parameter or to state that it is a member of a
parameter set. Further properties, like the cardinality of sets or a maximum
value of a scalar can also be stated here. However, parameter sets cannot be
“typed” in terms of being a subset of another set. Therefore they are called
independent types. If no constraint is given for a particular parameter, it is
assumed to be a scalar or a non-empty set.

Example 3.2.1 For example have a look at the following abstract machine.

MACHINE
Params(scalar_a, scalar_b, SET_A)

CONSTRAINTS
scalar_a : NAT &
scalar_a < 100 &
card(SET_A) < 10

The abstract machine Params has two scalar parameters and one set
parameter. The parameter scalar_a is not only typed as a natural number,
but also enforced to be less than 100. Whereas for scalar b no predicate
occurs in the CONSTRAINTS clause. Thus, scalar_b is implicitly typed
as being an integer. Furthermore the cardinality (number of elements) of the
set parameter SET_A is restricted to 10. O

The SETS clause allows us to define given sets, and therefore own types,
within an abstract machine. There are two kinds of sets, namely enumerated
sets and deferred sets. Enumerated sets are sets whose elements are given
explicitly. They must have distinct elements. If no members are specified a
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set is called deferred set. Deferred sets are implicitly assumed to be finite and
non-empty. Like parameter sets, deferred sets are independent types. A set
is declared by an upper case identifier, optionally followed by an enumeration
of its members in curly braces. We give an example of this clause at the end
of this subsection.

The CONSTANTS clause consists of an identifier list. If constants are
given, they must be typed in the PROPERTIES clause. However, they do
not necessarily have a (explicit) value. This is since abstract machines are
used for specification.

The PROPERTIES clause can be compared to the CONSTRAINTS
clause and the later mentioned INVARIANT clause but with respect to
constants and sets. All constants have to be typed in this clause and further
restrictions can be given. This is done by stating a conjunction of predicates
involving the constants. Possible types of constants are scalar constants of
sets, a total function from a set to a set or a subset of a scalar set. Since
functions are relations, they are also sets. However, sets must not have a
related predicate stated in the PROPERTIES clause. Furthermore no values
can be assigned to deferred sets. They may be valued in the last refinement
step which is an IMPLEMENTATION machine.

We now give an example of the just discussed clauses.

Example 3.2.2

MACHINE
Bool_Ar
SETS
INDEX_SET;

WEEK_DAYS = { Mon, Tue, Wed, Thu, Fri, Sat, Sun }

CONSTANTS

const_a, func

PROPERTIES
const_a : INDEX_SET &
func : INDEX_SET --> BOOL

The abstract machine Bool_Ar has two constants and two sets. The set
INDEX_SET is a deferred set; it is not further restricted in the PROPERTIES
clause. The set WEEK_DAYS is an enumerated set. The constant const_a is
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typed as a member of the set INDEX_SET and the func constant is typed as
a total function from INDEX SET to the (predefined) set of Boolean values
BOOL. Without going into detail, we give a possible implementation of this
machine.

IMPLEMENTATION
Bool_Ar_i
REFINES
Bool_Ar
VALUES
const_a = 1;
INDEX_SET = 0..2;
func = { 0 |-> TRUE, 1 |-> FALSE, 2 |-> TRUE }

The VALUES clause can only appear in an implementation machine.
It is used to assign values to given constants and sets. We see that the
enumerated set WEEK_DAYS does not occur in the VALUES clause. This is
because it can be translated directly into a programming language construct,
e.g. enum WEEK DAYS{Mon, Tue, Wed, Thu, Fri, Sat, Sun}in C. The set
INDEX SET is mapped to the integer interval 0. .2. Since func was declared
as a total function in the specification machine, a mapping for each value of
the domain (INDEX_SET) to a value of the codomain (BOOL) must be specified.
Using a B to C translator, it may become a constant bool array, e.g. const
bool func[3] = {true, false, true}. O

3.2.3 The State of an Abstract Machine

The state of an abstract machine consists of the clauses
e VARIABLES,
e INVARIANT,
e INITIALIZATION.

The main components are the variables that are listed in the VARIABLES
clause. They can be compared to fields, or class variables, in programming
languages such as Java. If a VARIABLES clause is given, the INVARIANT
and INITTALIZATION clauses are mandatory.
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The INITTALIZATION clause is used to assign initial values to the given
variables. This is done by a combination of substitutions, each dealing with
exactly one variable, called multiple substitution. Substitutions are discussed
in Subsection 3.2.4.

The INVARIANT clause fixes the boundaries in which the variables can
be modified. More precisely, the variables must fulfill the predicate stated in
the INVARIANT clause during the whole “lifetime” of the abstract machine.
This means that the invariant must hold after they got their initial values
(INITIALIZATION) and also after they got new values. The latter is done
by operations. Operations must also preserve the invariant in terms of: “If
the invariant holds before the execution of the operation, it must also hold
afterwards”. From outside the machine, the state cannot be changed directly.
But one might call internal operations the machine offers to modify the state.
This is due to the hiding principle mentioned in Section 3.2. In Java this can
be simulated by declaring all fields private. The INVARIANT clause is
stated by a conjunction of predicates. For each variable at least a typing
predicate has to be given; further restrictions are optional.

We give an abstract machine containing the presented clauses as an ex-
ample.

Example 3.2.3

MACHINE

Var (max_index)

CONSTRAINTS
max_index : NAT

SETS

INDEX_SET;

WEEK_DAY = { Mon, Tue, Wed, Thu, Fri, Sat, Sun }
VARIABLES

key, ind, day, sub, pair
INVARIANT

key : NAT

& key <= max_index

& ind : INDEX_SET

& day : WEEK_DAY

& sub <: INDEX_SET

& pair : (INT <-> INT)
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& ({0,99} <| pair) = {}

INITIALIZATION
key := 0
|| ind :: INDEX_SET
|| day := Mon
Il sub := {}

[l pair := {(1|->2)}

The given abstract machine Var contains five different variables. The vari-
able key is typed as a natural number, restricted to be less than or equal to
the machine parameter max_index and initialized with 0. The variable ind
is declared as a member of the set INDEX_SET. Since INDEX SET is a deferred
set which is not typed—the type of its members is unknown—we cannot
assign a specific value to ind. Therefore we state in the clause INITIAL-
IZATION that ind “becomes a member of” INDEX_SET by the substitution
ind ::INDEX_SET. The variable day has the type WEEK_DAY and is initialized
with the enumerated set element Mon.

The variable pair represents a relation as an example for specifying com-
plex data types. It is initialized by pair := {(1|->2)}, i.e., by the rela-
tion containing the tuple (1,2). In the INVARIANT clause the predicate
({0,99} <| pair) = {} restricts this relation. The symbol <| here means
domain restriction which is mathematically defined by S<1R = {(a, b)|(a,b) €
R A a € S} for an arbitrary set S and an arbitrary relation R. Thus, the given
predicate states that the relation pair must not contain any tuple where the
first component is 0 or 99. This is equivalent to dom(pair)/\{0,99}= {3}
where dom(pair) is the domain of pair and /\ is the usual set intersection.

Sets stated in the parameters can be used for typing variables also. In
this, they are treated in the same way as deferred sets (e.g. INDEX_SET). O

3.2.4 Operations

The operations of an abstract machine are intended to handle the modifica-
tion of the machine state. Because of the hiding principle [13] this modifica-
tion cannot be done directly from “outside”, but only within the machine.
This principle is very important for the B-Method, since it allows a refine-
ment from an abstract machine towards an implementation. During these
refinement steps the change of variables and operation bodies is usually nec-
essary while the operation signatures remain constant. Thus the operations
are a kind of figurehead for an abstract machine. Their role is to specify a pos-
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sibility to modify and inquiry data of the abstract machine from the outside.
Since abstract machines are used in the specification phase, we do not have
to worry about poor performance or how the operations are implemented in
detail.

All modifications of the machine state have to preserve the invariant men-
tioned above. For this purpose we have to state a proof obligation for each
operation and prove them afterwards. These proof obligations can be gener-
ated by a B toolkit. The toolkit also tries to prove them automatically. We
give an example of such a proof after discussing the structure of operations.

Table 3.3 shows the structure of an abstract machine operation. It consists
of an operation header followed by a substitution. There are four different
types of operation headers. The most general operation header is
Id_list <-- Identifier(Id_list); it offers a list of input parameters and
a list of output parameters. The other types can be derived by omitting one
or both parameter list, which corresponds to stating an empty list.

Operation declaration Operation_header = Substitution

Operation_header Id_list <-- Identifier(Id_list)
Identifier(Id_list)

Id_1list <-- Identifier
Identifier

Table 3.3: Structure of an abstract machine operation

The “body” of an operation is a generalized substitution, which is an ex-
tension of simple substitutions. The notion of substitution is formally defined
as follows. Let x be a variable, E be an expression and F' be a Formula, then
the simple substitution

denotes the Formula obtained by replacing all free occurrences of x in F
by E. To substitute more than one variable at once, a parallel or multiple
substitution can be stated by

[z,y :== C,D]F .
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It is defined by

[,y := C, D|F &4z := D]z := Clly := 2| F
if x\z and z\(z,y,C, D, F) ,

where x,y, z are pairwise distinct variables, C, D expressions, F' a formula
and \ denotes non-freeness, e.g. z\F means that z does not occur in F
without being bound by an quantifier. The definitions are adopted from [1],
where a detailed discussion of substitutions is given. In AMN the parallel
substitution can be written in one of the following equivalent forms:

x,y :=C,D
=
r:=Clly:=D.

As mentioned above, every abstract machine operation must fulfill the
invariant. This is one of the proof obligations to be proved when verifying
an abstract machine. If I denotes the invariant and S is a substitution, this
proof obligation can be stated by

I=[S|I.

This can be read as “If the invariant I holds then the substitution §
establishes the predicate/invariant I”. If this implication can be proved, then
the operation or, more precisely the substitution is guaranteed to correctly
modify the machine state.

We give an example of an abstract machine that offers two operations,
one to decrement an internal variable and one to increment it.

MACHINE

Counter

VARIABLES

count

INVARIANT
count : NATURAL

INITIALIZATION
count := 0

OPERATIONS
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increment =
count := count + 1;
decrement =
count := count - 1;
The term count := count + 1 is a (simple) substitution of the form
Variable := Expression that substitutes the expression on the right-hand

side for the variable on the left-hand side. The proof obligation for the oper-
ation increment is:

count € N = [count := count + 1](count € N) .

That means if count is a natural number, it is still a natural number
after increasing it by 1. After replacing all free occurrences of count in the
predicate (count € N), we get:

count € N = count +1 € N |

which clearly holds. Thus increment preserves the invariant.
If we transform the proof obligation for decrement we get:

count € N = count —1 € N .

This statement is obviously not valid if count is equal to 0. Therefore
this operation breaks the invariant and may lead to a system crash in a
final implementation. One solution is to introduce a pre-condition to the
substitution. This yields generalized substitutions, cf. Table 3.4.

Substitution Variable list := Expression_list
skip

Predicate | Substitution
Substitution []J Substitution
Predicate ==> Substitution
@Variable .Substitution

Table 3.4: Structure of a generalized substitution
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We will discuss them one by one, starting with the substitution
Predicate | Substitution . Let P, R be predicates and .S, T, U be substi-
tutions from now on. This substitution is called pre-conditioned substitution
and denoted by

P|S,
with the property
[P|S|[R< P A [S|R .

It is pronounced “P pre S” and is valid iff P is valid and S establishes R.
P and R are called pre-condition and post-condition respectively. Note that
if the substitution is executed even though the pre-condition is not valid, the
substitution may lead to an undefined state. In AMN it is stated by

PRE P THEN S END .

The pre-condition P indicates exactly those cases where the substitution
S takes place. As mentioned above, we can “fix” the operation decrement
by this kind of substitution. Therefore we modify the operation as follows.

decrement =
PRE
0 < count
THEN
count := count - 1
END

The proof obligation for this version is
(count € N A 0 < count) = [0 < count | count := count — 1](count € N) .
This can be simplified to
(count € N A 0 < count) = [count := count — 1|(count € N) .

This statement clearly holds. For the goal of a valid machine we can also
use a conditional substitution which is a combination of a guarded substitution
and a bounded choice substitution. The guarded substitution

P=5,
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pronounced “P guards S”, is defined by
[P = S|R< (P =[S|R) .

Informally P = S reads as: “S is performed under the assumption P”.
Note that there is a difference between “P pre S” and “P guards S”. If we
want to prove that in the former case S establishes a post-condition, we first
have to check if P holds. If P does not hold, S is said to “abort”. In the latter
case P can be assumed to hold (implication) for proving that S establishes
a post-condition. If P does not hold, S may establish anything.

The next substitution we present, is the bounded choice substitution

S[|T.
It is pronounced “S choice T”and is defined by
S TIR< ([SIR A [S]T) .
In AMN it is written as
CHOICE S or T"or --- or U END .

It offers a choice between two or more substitutions and therefore in-
troduces a kind of non-determinism. It is meant to allow specifications of
alternative behavior rather than letting the implemented operation decide
which statement will be executed. In order to establish the post-condition
any substitution of the choice has to establish it.

Having “P guards S” and “S choice 7”7 we can define a conditional sub-
stitution by

(P=S)](—-P=1T).

In AMN it is written as

IF P THEN S ELSE T END
and has the property
[IF P THEN S ELSE T END|R < (P = [S|R) A (=P = [T|R) .

Another useful substitution is skip with the property [skip|R < R. In
other words skip does nothing. Using skip, a “short” conditional substitu-
tion is give by

IF P THEN S END =4 IF P THEN S ELSE skip END .
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It has the property
[IF P THEN S END|R < (P = [S]R) A (-P = R) .

This is neither equivalent to the pre-conditioned substitution nor to the
guarded substitution presented earlier, since IF P THEN S END performs an
“identity substitution” if P does not hold. This means that all variables are
substituted for themselves. Therefore this substitution has a deterministic
behavior.

The short conditional version of decrement looks like this:

decrement =
IF
count > O
THEN
count := count - 1
END

In this version no pre-condition has to be proved as it was necessary for
the “P pre S” version.

A situation in which a pre-condition must be stated is given if an opera-
tion has input parameters. Consider the following operation increase which
increases the counter by a given value.

increase(value) =
count :

count + value;

When no type is given for the parameter value it is neither possible to
check if the given invariant count : NAT is preserved nor whether the ad-
dition is defined at all. For example, the invariant is violated if value <
—counter. That is because the result of the addition is lesser than zero in
this case. Therefore input parameters have to be typed in the pre-condition
at least. Additional restrictions can be stated. A correct specification of
increase is
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increase(value) =
PRE

value : INT & value > O
THEN

count := count + value
END

The pre-condition states, that increase can only be called with an integer
input parameter which is greater than zero.

The last remaining generalized substitution from Table 3.4 is the so called
unbounded choice substitution

@z .9,

where z is a variable which does not appear in the invariant. It defines all
possible substitutions S, whatever the value of z is. Therefore it is pronounced
“any z S”. Establishing a post-condition is defined by

[@z .S|R < V2.[S|R .

In AMN this substitution is combined with the guarded substitution and is
used in two shapes. The first one is

ANY z WHERE P THEN S END ,
with the formal definition
Qz (P=9).
The second one is
[
It is an abbreviation of
ANY z WHERE z : E THEN z := F END ,

where z and z are variables and F is a set. The operator :: is pronounced
“becomes a member of”, since it means that an arbitrary element of E should
be substituted for x.

The usage of operations is restricted as follows. It is forbidden to spec-
ify a recursive operation in an abstract machine. However this is possible
in an implementation machine. It is not allowed to call an operation of the
same abstract machine within an operation. Furthermore it is not allowed
to call two or more operations of an included machine within a parallel sub-
stitutions, since it may break the invariant. Such inclusions are discussed in
Subsection 3.2.5, where we given an example for such a situation.
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3.2.5 Inclusion Clauses

In this subsection we introduce the inclusion clauses used in an abstract ma-
chine. These clauses are located in the machine header and can be compared
to import statements in Java or header files in C. They are used to structure
the development of a system. In an abstract machine the following clauses
are possible:

e SEES
e USES

INCLUDES

EXTENDS

e PROMOTES

These clauses consist of a (distinct) list of machine names. The main
differences between them are which components of the listed machines can
be used by the abstract machine stating the specific clause and how the
components can be used. We will briefly outline the use of the clauses. Assume
three abstract machines My, M,y and Ms.

If My SEES M, the constants and sets of M, are visible in M;; variables
of My are only visible as read-only in the operations of My, i.e., they cannot
be modified in M;. Operations and parameters are not visible.

If M; USES M, the constants and sets of My are visible in M;; variables
and parameters of My are visible in the invariant and in the operations of
My; variables are read-only in operations. Operations are not visible.

If M; INCLUDES M, the constants and sets of My are visible in Mj;
variables of M, are visible in the invariant and in the operations of M;;
variables are read only in operations. Parameters are invisible, since they
have been instantiated in M;. Operations of M, are visible in operations of
M, but do not become operations of M, i.e., they are invisible for machines
which lists M; in any of the inclusion clause.

The PROMOTES clause requires the INCLUDES clause, since it enlists
operations (by name) of an included machine. The listed operations become
part of the including machine.

The EXTENDS clause is a combination of the clauses INCLUDES and
PROMOTES. If M; extends Ms, it includes M, and promotes all operations
of M.

SEES and USES are used to support shared access to read-only variables,
common types and constants, but not operations, between abstract machines.
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Both clauses are intransitive, i.e., if M; sees/uses My and M, sees/uses M;
then M; does not have access to data of Ms;. Whereas INCLUDES and
EXTENDS are used for exclusive access, since a particular machine can be
included/extended only by one abstract machine in a coherent system. This
is due to transitivity of these clauses, i.e., if M; includes/extends My and Mo
includes/extends M3 then M; implicitly includes/extends also M;.

As mentioned in Subsection 3.2.4 an including machine must not call two
operations of an included machine within one parallel substitution. Other-
wise, the associated operation might break the invariant. We give an example
of such a situation, adopted from [1].

Example 3.2.4 Assume the following abstract machine providing two pre-
conditioned substitutions.

MACHINE
M2

VARIABLES

V,W

INVARIANT
v : NAT & w & NAT & v <= w

INITIALIZATION
v:=0|] w:=0

OPERATIONS
increment =
PRE v < w THEN v := v + 1;
decrement =
PRE v < w THEN w := w - 1;

Let the following machine include the machine M2 now.

MACHINE
M1

INCLUDES
M2
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OPERATIONS
inc_decr=
PRE v < w THEN increment || decrement END

The operation inc_decr violates the invariant v <= w if w is equal to v+1.
Even though each of the pre-conditions stated in M2 hold, v is equal to w+1
after the parallel substitution inc_decr is performed. O

3.3 A Basic Calculator

In this section we develop a core system for a basic calculator using the B-
Method. The development steps, especially the proofs, are done with Atelier
B. The automated translation from implementation machines to C source
code is done by the “ComenC”? translator. This translator can automatically
generate C code from a subset of the B language called B0. Implementations
written in B0 are subject to restrictions. For example, machine parameters
and renaming of machines are not allowed. Therefore we avoid these concepts,
although they might be useful.

In the requirements analysis the following requirements for the core sys-
tem were identified:

1. The system has to offer integer arithmetic. Now overflow can occur.
2. Basic operations are: addition, subtraction, multiplication and division.

3. Since the display can show at most eight symbols, the operations have
to indicate unrepresentable results.

4. Modular structure of the system to allow a possible reuse.
5. The system has to provide a possibility to recall the last valid result.

In the design phase we determined the structure of the calculator core
system as given in Figure 3.1. The required machines are given in boxes. The
labeled arrows indicate the inclusion relations between them.

3ComenC can be obtained at http://www.comenc.eu
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EXTENDS EXTENDS
Calculator
EXTEND/ NXTENDS
Y Y
Add Sub Mult Div
INCLUDES
SEES SEES
\
» Calculator_ctx <€
SEES SEES

Figure 3.1: Architecture of a basic calculator core system

The calculator core system consists of six machines. The abstract ma-
chines Add, Sub, Mult and Div deal with the arithmetics as well as error
indication. Additionally they store the last valid result calculated by their
operations.

The abstract machine Calculator_ctx is responsible for the distribu-
tion of contextual information. Therefore, every other machine SEES this
machine. The provided information covers the minimal/maximal value the
display can show, as well as the error codes. This way each machine can use
the same codes to indicate an error.

The abstract machine Calculator acts as a facade, or interface, to the
“outside”, e.g. another machine dealing with input/output tasks. There-
fore it bundles the abstract machines Add, Sub, Mult and Div by extending
them. Since the later given IMPLEMENTATION Calculator_i will im-
port Calculator_ctx, the abstract machine Calculator has to include this
machine.

In the remainder of this section, we present that part of the system,
that consists of the machines Calculator, Add and Calculator_ctx. The
remaining machines are very similar to Add. Furthermore we omit the header
of the generated files in this section. The full specification, its implementation
and the generated code is given in Appendix A.



3.3 A Basic Calculator 35

SEES
Y
EXTENDS INCLUDES
Add < Calculator »| Calculator_ctx
IMPLEMENTS
IMPLEMENTS IMPLEMENTS
Y EXTENDS \ 4 IMPORTS Y
Add_i Calculator_i Calculator_ctx_i
SEES

Figure 3.2: The calculator machines and their IMPLEMENTATIONS

Figure 3.2 shows the abstract machines and their implementations of the
subsystem we consider. Each of the abstract machines is refined by their
IMPLEMENTATION denoted by Calculator_i, Calculator _ctx_ i and
Add_i respectively. The dependences between them are illustrated by labeled
arrows. Next, we present the machines shown in Figure 3.2 in detail.

MACHINE

Calculator_ctx

SETS
STATE = { ok, overflow, underflow, div_by_zero }

CONSTANTS

min_dsp_number, max_dsp_number

PROPERTIES
min_dsp_number : INT
& min_dsp_number < 0O
& max_dsp_number : NAT

The “ComenC” translator cannot handle formal parameters, therefore the
abstract machine Calculator_ctx contains two constants min _dsp number
and max_dsp number representing the minimum and the maximum number
the display can show. One constant is not sufficient, since the display has
also to show the sign of negative numbers. Thus for negative numbers there
are only seven digits available. With respect to the reusability requirement
(4.) from the listing above, it is not a good idea to “hard-code” these values
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into the arithmetic machines—it is usually a bad idea to do so, anyway. A
benefit of this approach is, if the properties of the display change, e.g. in
new calculator generation, the minimal/maximal representable value has to
be modified only in the Calculator_ctx machine.

Furthermore the machine contains an enumerated set STATE. Its elements
are the error-codes intended to indicate the validity of an operation result.
We can refine this machine directly by an implementation machine.

IMPLEMENTATION
Calculator_ctx_i

REFINES

Calculator_ctx

VALUES
max_dsp_number = 99999999;
min_dsp_number = -9999999

In the implementation the final values are assigned to the constants. For
a description of the VALUES clause see Example 3.2.2. The enumerated set
STATE needs not to be valued, since it can be translated into a enum directly.

#include <stdbool.h>
#include "Calculator_ctx.h"

void Calculator_ctx__INITIALISATION(void) {
}

Listing 3.1: Generated source file for the context machine

#ifndef _Calculator_ctx_h
#define _Calculator_ctx_h
e i
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#include <stdbool.h>
Y e e ettt bR

SETS Clause: enumerated sets

typedef enum {
Calculator_ctx__ok,
Calculator_ctx__overflow,
Calculator_ctx__underflow,
Calculator_ctx__div_by_zero
} Calculator_ctx__STATE;

CONCRETE_CONSTANTS Clause: scalars and arrays

const int Calculator_ctx__max_dsp_number = 99999999;
const int Calculator_ctx__min_dsp_number -9999999;

extern void Calculator_ctx__INITIALISATION(void);

#endif

Listing 3.2: Generated header file for the context machine

The automatically generated C source file as well as the corresponding
header file for the IMPLEMANTAION Calculator_ctx_i is given in Listing 3.2
and Listing 3.1 respectively. As expected the constants have been translated
into const int types. The set STATE has been translated into an enum of the
type Calculator_ctx__STATE.

Next we present the abstract machine Add and afterwards its implemen-
tation Add_i.

MACHINE
Add

SEES

Calculator_ctx

VARIABLES
last_result, status

INVARIANT
last_result : INT & status : STATE
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INITIALIZATION
last_result := 0 || status := ok
OPERATIONS
result <-- add(opl, op2) =
PRE
opl : INT & op2 : INT & (opl + op2) : INT
THEN
IF
(opl + op2) <= max_dsp_number
& (opl + op2) >= min_dsp_number
THEN
status := ok || last_result := opl + op2
|| result := opl + op2
ELSE
status :: STATE - ok || result := 0
END
END;

last_res <-- ans =
last_res := last_result

ret_status <-- get_status =
ret_status := status

The abstract machine Add lists the machine Calculator_ctx in its SEES
clause. Hence it can read the data stated there. The operation add has a
pre-condition that states that the calculation of the sum does not cause an
over /-underflow. This is derived from Requirement 3.; specifying an overflow
detection is not in the scope of this thesis. In the operation add the two
constants min/max _dsp _number are used to decide whether the sum of the
operand can be displayed or not. If it can be displayed, the variable status
is replaced by ok and the result, as well as the last_result, is reaplaced by
the sum of op1 and op2. If not, the variable status is replaced by an element
of (STATE - {ok}) where - is the usual set difference. This is an example
of the unbounded choice substitution. We leave it to the implementer to set
the appropriate status. The variable result is set to be zero. Note that the
variable last_result is not modified in this case, since we want to store only
“valid”, in terms of representable, results.

Next, we present the implementation machine Add_i which implements
its specification Add. In an implementation machine only concrete variables
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are allowed, since these are meant to be translated (directly) into variables of
a programming language without being refined first. Furthermore operations
have to be stated by sequenced substitutions; parallel substitutions as in
abstract machines are not allowed. Sequencing is denoted by a semicolon.

IMPLEMENTATION
Add_i

REFINES
Add

SEES

Calculator_ctx

CONCRETE_VARIABLES
last_result, status

INITIALIZATION
status := ok ;
last_result :

I
o

OPERATIONS
last_res <-- ans =
BEGIN
last_res := last_result
END;

ret_status <-- get_status =
BEGIN

ret_status := status
END;

result <-- add ( opl , op2 ) =
BEGIN
VAR temp IN
temp := opl + op2;
IF temp <= max_dsp_number
& temp >= min_dsp_number

THEN
status := ok;
result := temp;
last_result := result

ELSE
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IF
temp < min_dsp_number
THEN
result := O;
status := underflow
ELSE
result := O;
status := overflow
END
END
END
END

In the refined operation add the former unbounded choice substitution
status :: STATE - {ok} is now given by a conditional substitution. This
determines the status variable more precisely. The files generated with the
“ComenC” translator are given in Appendix A.

The last machines we present are Calculator and its implementation
Calculator_i. As mentioned above the machines are reduced by the parts
dealing with the abstract machines Sub, Mult, Div.

MACHINE

Calculator

EXTENDS
Add/* ,Sub,Mult,Div */ /* cf. Appendix A */

INCLUDES
Calculator_ctx

VARIABLES

answer, state

INVARIANT
answer : INT & state : STATE

INITIALIZATION
answer := 0 || state := ok

OPERATIONS
last_res <-- get_answer =
last_res := answer;
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res <-- addition(opl,op2)=
PRE opl :INT & op2 :INT & opl+op2 :INT
THEN
res <-- add(opl,op2) || answer :: INT || state :: STATE
END;
/* for the operations sub, mult, div cf. Appendix A */

The variable answer is used to store the last valid result of an operation;
here only of the operation addition. The variable state indicates whether
the last operation was successful or not; successful in terms of representable
by the display. The values of answer and state are determined during the
execution of add. Since sequencing is not allowed in an abstract machine
we use the unbounded choice substitution “becomes a member”. This sub-
stitution states that the variables may get modified by the operation. The
operation get_answer allows the user to “ask” for the value of answer. The
IMPLEMENTATION is given by

IMPLEMENTATION

Calculator_i

REFINES

Calculator

EXTENDS
Add/* ,Sub,Mult,Div */ / *cf. Appendix A */

IMPORTS

Calculator_ctx

CONCRETE_VARIABLES

answer, state

INITIALIZATION
answer := 0; state := ok
INVARIANT

answer : INT & state : STATE

OPERATIONS
last_res <-- get_answer =
last_res := answer;
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res <-- addition(opl,op2)=
BEGIN
res <-- add(opl,o0p2);
state <-- get_status;
IF state = ok
THEN
answer := res
END
END

/* for the operations sub, mult, div cf. Appendix A */

According to [1] a seen abstract machine should be imported (only once)
somewhere in the system by an IMPLEMENTATION. In the calculator system
this is done by Calculator_i because it extends all other machines. Since
basic substitutions are linked by sequencing in an implementation, we can
now assign the correct values to the variables answer and state. The variable
answer is only modified if the state of the calculation performed before, is
valued by ok. Thus answer always stores the last representable result. We
given an excerpt of the generated source code; full details can be found in

Appendix A.

int Calculator__answer;
Calculator__STATE Calculator__state;

R m e e e e
INITIALISATION Clause
———————————————————————— *x/

void Calculator__INITIALISATION(void) {
Calculator__answer = 0;
Calculator__state = Calculator__ok;

}

[k —m -~

void Calculator__get_answer(
int *Calculator__last_res) {
*Calculator__last_res = Calculator__answer;
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void Calculator__addition (

int Calculator__opl,

int Calculator__op2,

int *Calculator__res) {

Calculator__add (Calculator
Calculator__op2,
Calculator__res);

Calculator__get_status (&Calculator__state);

if (Calculator__state ==
Calculator__ok)

opl,

{

Calculator__answer = *Calculator__res;

}




Chapter 4

Product Families for Abstract
Machine

In Chapter 2 we have presented an algebra that deals with product fami-
lies. This algebra has been used to precisely define notions around product
families,e.g. features.

In chapter 3, we have discussed abstract machines. Abstract machines
are used for mathematical based specification and verification of software
systems. The goal of chapter thesis is to underlay the formal product fam-
ily algebra with the semantic of abstract machines. Therefore we develop a
semiring abstract machines first, and present a model of this algebra after-
wards.

4.1 A Semiring for Abstract Machines

In this section our goal is to establish the basis for a product family algebra
that is, according to Chapter 2, a commutative idempotent semiring. We will
form this semiring on the power set over a direct product of monoids.

Definition 4.1.1 Let ((M;,+;,1;))ier be a finite family of monoids, indexed
by I = {1,2,...,n}, and (M,-,1) = (X,;e; M;,-,(11,...,1,)) their direct

product, where - is a componentwise operation. We define a lifted operation

o:
o: P(M) x P(M) — (M)
AoB =4 {a-b : ac Abe B}

Remark 4.1.2 By the HSP-theorem, e.g. [16], (M, -, 1) is again a monoid.

Therefore the operation - is totally defined and o in turn too. O
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Lemma 4.1.3 The operation o is associative; it is commutative if - is. Mul-
tiplication - in turn is commutative if every monoid is.

Proof Assume A, B,C € £(M), then we can conclude:

Commutativity:
Since the operation - is defined componentwise, it inherits the properties of
-; in the corresponding component. Therefore, if every -; is commutative, - is
obviously too. Regarding o we assume - being commutative and conclude:

AoB

= { definition of o |}
{a-b:acAbe B}

= { commutativity of - }
{b-a :aecAbeB}

= { definition of o [}
BoA

Associativity can be shown similarly and straight forwardly. O

Lemma 4.1.4 Let ((M;,-;,1;))ier be a finite family of monoids with irre-
ducible identities, indexed by I = {1,2,...,n}. Then (P(M),U, 0,0, 1) with

1 =4 {(11,...,1,)} is an idempotent semiring, called Cartesian i-semiring.
The Cartesian i-semiring is commutative if every monoid is.

Using monoids with irreducible identity elements is important later in
this chapter.

Proof According to the definition of an i-semiring, we need to check that

(1) (P(M),U,0) is an idempotent and commutative monoid with identity
element (),

(2) (P(M),o0,1) is a monoid with identity element 1,
(3) o distributes over U,
(4) 0 is an annihilator, i.e., VA€ P(M) : o A=0= A0o0.

Part (1) needs no further review as this structure is well known.
Lemma 4.1.3 yields the associativity of o. Now we show that 1 is an identity
element, assume A € P(M):
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1oA
= { definition of 1 [}
{(11,1n)}0./4
= { definition of o [}
{(11,.. ., 1) - (a1,...,an) = (a1,...,a,) € A}
= { definition of - }
{1y qa1,..., 1, nay) : (a1,...,a,) € A}
= { 1; is the identity element regarding to -;,i =1...n |}
{(ar,...,a,) : (a1,...,a,) € A}
= A
The equation A o1 = A can be shown similarly. Thus Part (2) holds.
To show Part (3) we choose three arbitrary elements A, B,C € £(M) and
conclude:

(AUB)oC
= { definition of U [}

{r :z€e AVvareB}ol
= { definition of o |}

{r-c: (reAVreB)ANcel}
= { distributivity of A over V [}

{r-c: (zeANcel)V (xeBANcel)}
= { definition of U [}

{r-c: (zeANcel)}U{z-c: (xeB ANcel)}
= { definition of o |}

(AoC)U (BoC()

We can show the dual distributivity law, i.e., Ao(BUC) = (AoB)U(AoC),
similar to the former proof. We see the correctness of Part (4) almost directly.
Assume A € £(M):

oA
= { definition of o [}
{x-a:2zednacA}
= { definition of ) [}
0
= { definition of 0 [}
{a-z :ac ANz}
= { definition of o [}
Aol
The commutativity of o, in the case of the commutativity of every monoid,

follows directly from Lemma 4.1.3.
g
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Remark 4.1.5 The case that n = 1, i.e., the family of monoids consists
of only one monoid, is considered in Chapter 2. We will omit the indices of
neutral elements 1; and operations -; of the monoids M; for better readability,
whenever possible. O

We give a short example of a Cartesian i-semiring basing on two monoids.

Example 4.1.6 Assume a programming language having a class String
with a string field str, an integer field len to store the length of str and
a method to concatenate another string to str. We choose the two monoids
INT = (N, +,0) and STR = (S,, ). Here S is the set of all finite strings,
juxtaposition the common string concatenation and A the empty string "".
Then (RP(M),U, 0,0, 1), with M = INT x STR, forms a non-commutative
Cartesian i-semiring. Now it is possible to concatenate two strings or combine
two sets of strings with each other and update their length at the same
time. Assume S = {(1," ")}, A = {(5,"hello")}, B = {(5,"world")}, C =
{(13,"federal state"),(7,"federal")} and
D = {(10,"government"), (3,"1law")}. Then we can combine these elements
in the following way, e.g. :
AoSoB={(6,"hello ")} o {(5,"world")} = {(11,"hello world")},
CoS0oD=
{(24,"federal state government"), (17,"federal state law"),
(11,"federal law"),(18,"federal government")} .

g

Often it is necessary to get certain components from tuples belonging to
an element of a Cartesian i-semiring. In relational algebra this concept is well
known as projection, see e.g. [15]. We give a slightly different definition of
the unary operation projection as the one in relational algebra.

Definition 4.1.7 Assume a Cartesian i-semiring (£(M), U, 0,0, 1), an ele-
ment B € (M) and an element a € M. We define the projection m;(a) by

mi(a) = mi((ar, .- ai, . an)) = a; . (4.1)
In the same way we define the projection m;(B) by

which maps its elements (tuples) to a set of their i-th components. Corre-
spondingly we define the inverse mapping for b; € M; and B by

7 (b, B) ={z €B : m(x)=b}. (4.3)
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Furthermore we define a substitution of the i-th component of a by z, by

ali = ] = (ay, ..., 41, T,Qir1, .-, 0y) (4.4)
(@), ifj 4
ie., m(afi > a]) = {” @), 57
x, if j =1

Example 4.1.8 For the element C oS o D from the example above the pro-
jection to its first components is 71 (C o S o D) = {11, 17,18,24}. An example
for the substitution of a component is given by

(5,”world”)[2 + "Peter”| = (5, Peter”). 0

We now give some useful properties of the projections and the substitution
that we will use later.

Lemma 4.1.9 Assume a Cartesian i-semiring (P(M),U, 0,0, 1). For ele-
ments A, B € P(M) and elements a,b € M the following holds:

(@-b)li = z-y] =ali— a]- bli = y] (4.5)

a=0b= m(a) =m(b) (4.6)

mi(a - b) = mi(a) - m(b) (4.7)

(AU B) = m(A) Um(B) (4.8)

U =, A)=A (4.9)
a;€m;(A)

Proof We only show the Equations (4.5) and (4.9). The other properties can
be checked easily.

Equation (4.5) :

Assume two elements a,b € M, then we conclude:

ali — x| - b[i — y]
— { Definition 4.1.7, Part (4.4) }

(a17 ey A1, Xy Qg 1y e 7an) : (b17 BRI bi—laya bi+17 s 7bn)
= { Definition of multiplication [}
(CLl 'bl,...,ai,l -bi,l,x~y,ai+1 'biJrl,...,CLn bn)

- { Definition 4.1.7, Part (4.4) |}
(a-b)[i — x-y]

Equation (4.9) :
Assume an element A € (M), then we conclude:
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Usiem ™ (@, A4)
= { Definition 4.1.7, Part (4.3) |}
Uaiem(A){x e A m(x)=a;}
= { Set theory [}
{reA : mx)em(A}
= { Tautology [}
{z € A}
= A

4.2 Products and Features

Before presenting a concrete model of a product family algebra based on
a Cartesian i-semiring we can generally characterize products and features.
Having a look at Definition 2.1.6, the structure of products in such a semiring
is easy to see.

Corollary 4.2.1 An element A of a Cartesian i-semiring is a product iff it
15 a singleton set.

Definition 2.1.7 yields that a feature is a product with special properties.
Looking at Implication (2.3) of Definition 2.1.7 we can determine the struc-
ture of a feature in a Cartesian i-semiring more precisely. In preparation for
the next theorem we will first give a definition for special elements of the
underlying monoids which is quite similar to the definition of a feature in
an i-semiring. Since there is only one operation in monoids, a distinction
between products and feature makes no sense. But since these elements are
pre-stages of features, in some degree, we call them prefeatures.

Definition 4.2.2 Assume a monoid (M, -, 1). An element a is called a prefea-
ture iff it is different from 1 satisfying the following laws:

Vb:bla = b=1Vb=a, (4.10)
Vb,c:al(b-c) = (a|bV alc), (4.11)

where the divisibility relation | is given by z |y <=4 J2z:y = x- 2.

As done in Corollary 4.2.1 for products, we want to identify features in a
Cartesian i-semiring. Therefore we need, additionally to prefeatures, a lemma
dealing with the divisibility relation and the case that the involved elements
are of a special structure.
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Lemma 4.2.3 Assume a Cartesian i-semiring S = (£(M),U,0,0,1) and
P,B,C € S. Furthermore let j € {1,...,n} be a fized index and P = {p}
a product where m;(p) = 1 Vi # j, m;(p) = p; and p; a prefeature, then the
following holds:

P|B < VbeB:p|b <= Vb €mj(B):p;|b;, (4.12)

Vbj € mi(B),c; € m(C) : pj | (bj - ;) = (4.13)
(Vbj € Fj(B) ipj |bj\/
\V/Cj < Wj(C) 1 Dj |Cj) .

Proof Note that because of the given properties of P, we can write P also
as {1[j — p;]}. By Definition 4.1.1, 1 is the neutral element of (M, -, 1) and
1 = {1}. We will prove the Equivalences (4.12) in three steps:

(1) P|B = VYbeB:p|b

(2) VbeB:p|b = Vb € m;j(B) :p;|b;
(3) Vb; € m(B) : pj|b; = P|B

Step (1):

P|B
< { Definition of | }
D :PoD=2B8
< { P is aproduct and definition of o [}
dD:{p-d : deD}=2B
= { set identity [}
VbeB:3deD:p-d=b
= {{DcM}
VbeB:ddeM:p-d=1»
= { definition of | in M [}
VbeB:plb

Step (2):
Assume b; € 7;(B), we have to show p; | b;.

b; € m;(B)

= {{Vbe B:p|band 7 (b, B) C B by Equation (4.9) J}
Vb e 7rj_1(bj,15’) :p|b

= { Definition of | in M [}
Vben; ' (bj,B)3deM:p-d=b
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= { Implication (4.6) [}
Vben; (b, B) 3d € M : m;(p - d) = m;(b)
= { Equation (4.7) [}
Vbe ;' (b;,B) 3d € M : m;(p) - m;(d) = m;(b)
= { Logic [}
deEMj ij'dj:bj
= { Definition of | in M; |}
P lb;
Step (3):
By definition P | B iff there is a D : P o D = B. Therefore we choose D =
U {blj = dj] : bem;'(bj,B) A p;-d; =b;} and show that it suffices
bjem;(B)
the requirement.
Note that because of the premise Vb; € 7;(B) : pj | b; there is a d; € M; with
pj - d;j = bj. We now calculate P o D:

PoD
= {P={1]j = pj]} and definition of o [}
U li=pl-oli=d] : ben'(b,B) Ap;-dj = b}
bjem;(B)
=  { Equation (4.5) and 1-b =10 |}
U i—=pi-d] : ben (b;,B8) Ap;-d;=b;}
bjem;(B)
= {[p]dj:bjandb[jr—)b]]:b]}
U o :ben'4;,B) Ap;-d;=1b;}
bjem;(B)
= { Equation (4.9) [}
B

Implication (4.13) can be shown by contradiction:

~(Vbj € mi(B) :pj[b; V Ve; €mi(C) i pjley)
& Fbjem(B):pith A Je em(C):pite
& 3bj € mi(B),c; € m(C) i pj by A pjfcy
= { p; is a prefeature and negation of (4.11) |}
3b; € mi(B),c; € mi(C) : p; 1 (b) - ¢5)
& (Vb € mi(B),¢; € mi(C) i pj | (b - ¢;))
0

Theorem 4.2.4 Assume a commutative Cartesian i-semiring S. An element
A e S is a feature iff A = {1[j — a;]} and a; is a prefeature in the corre-
sponding monoid.
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Proof
(=) We will prove the first implication by contradiction. Assume A is a
feature and one of the following conditions hold:

(a) A#{1[j = al} ;
(b) a; is not a prefeature.

Since A is a feature, and therefore a product, it is a singleton set by Corol-
lary 4.2.1. Thus we can write A as {a}.

In Case (a) there are two possible structures of A. The first one is, that all
components are 1, i.e., A = {1} = 1. But by Definition 2.1.7 1 is not a
feature. The second one is, that at least two components, assume a; and a; (
w.lo.g., k <), of a are not equal to 1. But then we can decompose A = {a}
into two elements B = {a[l — 1]} (Note that B # 1 since mg(a[l — 1]) # 1)
and C = {1[l — ]} with B,C # 1 and B,C # A:

BoC
= {all = 1]} o {1l = ]}
= { definition of o }
{a[l = 1] - 1[l = a;]}
= {a[l = a]}
= {all—=al=a]
A

This clearly violates Implication (2.3) from Definition 2.1.7, i.e., A is not
a feature.

Case (b) : If a; is not a prefeature there are elements b;,c; € M; with
mj(a) =bj-¢c; N bj,c; #1 N bj,c; # mi(a). Hence we can again decompose
A = {a} into two elements {a[j — b;]} and {1[j — ¢;]}, both unequal to 1
and unequal to A, no matter how the other components look like:

{a}

= {alj = b]-1[j = ¢}

= { definition of o }
{alj = bj]} o {1[j = ¢}

Similar to Case (a) this shows that A is not a feature.

(<) Assume A = {1[j — q;]} and qa; is a prefeature. We have to show
that A satisfies Definition 2.1.7. A is different from 1 since a; is a prefeature.
To show Implication (2.3) we assume B € S with B|.A. Now we conclude:



4.3 An Algebraic Model for Abstract Machines 53

B|A
< { Definition of | [}
AC:BoC=A
& 3C:Bol ={1]j— a|}
& I (VbeB,ceC:b-c=1[j — aj])
= { all monoids M; have a irreducible identity [}
AC: (Vbe B,ceC:1[j — b;] - 1[j — ¢;] = 1[j — a;])
< { Equation (4.5) [}
E'CI(VbGB,CGCI1[j|—>bj'0j]:1[jl—>aj]
= {bjc¢; =a; and q; is a prefeature [}
IC: (VbeB,ceC:([j— bj-cj] =1[j — aj]
ANbj=1ANcj=uaj)V (bj=a; N c;=1))
=3C:(B={1j—1}=1AC=A)
VB={1j—a}=ANC=1)

We will show Implication (2.4) with the help of Lemma 4.2.3.

Al (BoC)
=  { Lemma 4.2.3 (4.12) |}
V(b-c)e(BolC):al(b-c)
= { definition of o [}
VbeB,ceC:al(b-c)
=  { Lemma 4.2.3 (4.12) |}
Vb; € mi(B),c; € mi(C) - a;| (b - ¢;)
=  { Lemma 4.2.3 (4.13) |}
Vbj € Tj(B) . aj | b]' V VCJ' < 7T]'(C) . CLJ' ’Cj
=  { Lemma 4.2.3 (4.12) |}
A|B vV A|C
a
Theorem 4.2.4 states that, in such semirings, features are exactly those
elements, which are singleton sets with a specific element. This element is a
tuple whose components are all equal to the identity element from the corre-
sponding monoid, expect one. Furthermore, this component is a prefeature,
i.e., it is irreducible.

4.3 An Algebraic Model for
Abstract Machines

In this section we present an algebraic model for abstract machines based on
the semiring discussed in Section 4.1.
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Looking at Table 3.1, we see that abstract machines examined by us can
be decomposed into nine clauses. We will describe these parts algebraically
and combine them afterwards. In fact, there are eighteen clauses a machine
can consist of. For example, we omit the inclusion clauses, described in Sub-
section 3.2.5, in the presented model. The model can easily be extended by
the remaining nine clauses by adding their corresponding monoids to the
direct product defined in Definition 4.3.1.

abstract machine clause | Monoid
parameter (Sia, U, 0)
CONSTRAINTS (P, A\, true)
SETS (Ss,U,0)
CONSTANTS (Sia, U, 0)
PROPERTIES (P, A\, true)
VARIABLES (Sia, U, 0)
INVARIANT (P, A\, true)
INITIALIZATION (S1,U,0)
OPERATIONS (So,U, 0)

Table 4.1: abstract machine clauses and their appropriate monoid

Table 4.1 shows the mapping between the abstract machine clauses and
their algebraic counterparts. S;q, P, Sg, St and Sp are sets of all allowed ex-
pressions for the corresponding machine clause as defined in [1].

For example, S;; is the power set of all possible identifiers. Identifiers are
built up from ASCII letters, lower or upper case, numbers and the underscore
character. They have to be at least two characters long and start with a let-
ter. More precisely the language L(identifier) of identifiers is specified by the
regular expression identifier = (a|...|z|A|...|Z)"(Jal...|z|4]...|Z]0]...]9)*.
Thus S;4 is equal to £(L(id)). In combination with the usual set union U and
the empty set ), Siy builds the monoid (S;q, U, 0).

By convention only upper case identifiers are allowed for sets. Therefore
Sg is defined similarly to S;q, but without lower case letters. (P, A, true) is
a monoid over the set P of all possible predicates of the Abstract Machine
Notation. Predicates are based on the predicate calculus and set theory, which
are discussed in Section 1.3 and Section 2.1 of [1]. By Remark 4.1.2 we can
combine these monoids to a new monoid.
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Definition 4.3.1 The monoid (AM, -, 1), where AM = S, x P X Sg X S¢ X
P xSy x PxS;xSoand1=(0,true,(, 0, true, (), true, ), () is called ab-
stract machine monoid. The componentwise multiplication - is called abstract
machine composition.

It is now possible to write an abstract machine as a nine-tuple of its
clauses.

Remark 4.3.2 Identifiers are treated as GUIDs (globally unique identifiers).
This fits well with the chosen monoid of identifiers, especially the operation
U, see Table 4.1. This means if we compose two or more abstract machines
having common identifiers they are treated as being identical not only syn-
tactically but also semantically. If this is not intended the identifier under
consideration can be renamed, e.g. by prefixing the machine name it belongs
to. Furthermore operation overloading (same name, different signature and
body) is forbidden, therefore we can abbreviate operations by their names.
O

We give an example of the abstract machine composition of two machines
with common identifiers.

Example 4.3.3 Suppose the following abstract machine.

MACHINE

Square

VARIABLES
area, length

INVARIANT
area : NATURAL & length : NATURAL
& area = lengthx*2

INITIALIZATION
area := 0 || length := 0

OPERATIONS
set_length(len) =
PRE len : NATURAL
THEN
length := len || area := len¥*2
END
out <-- get_area =
out := area
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The machine Square represents a (geometrical) square. If the side of
the square is updated, its (new) area is stored in the variable area. In the
algebraic context of the monoid (AM] -, 1) this abstract machine is the tuple

Square = (0, true, ), (), true, {area, length},
area : NATURAL A length : NATURAL
N area = length * %2,
{area := 0, length := 0},
{set_length, get_area}) .

Now assume another machine Rectangle which represents a (geometrical)
rectangle.

MACHINE
Rectangle

VARIABLES
area, length, width

INVARIANT
area : NATURAL & length : NATURAL & width : NATURAL
& area = length * width

INITIALIZATION
area := 0 || length := 0 || width := 0

OPERATIONS
set_1_w(len, wid) =
PRE len : NATURAL & wid : NATURAL
THEN
length := len || width := wid
| larea := lenx*wid
END;
out <-- get_area =
out := area
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The corresponding element in AM is

Rectangle = (), true, (), ), true, {area, length, width},
area : NATURAL A length : NATURAL
A width : NATURAL A area = length * width,
{area := 0, length := 0, width := 0},
{set_1.w,get_area}) .

We may want to combine all abstract machine dealing with geometric
objects by the use of abstract machine composition. The composition of
Square and Rectangle is then given by

Square - Rectangle = (), true, (), ), true, {area, length},
area : NATURAL A length : NATURAL
N area = length * %2,
{area := 0, length := 0},
{set_length, get_area})

(0, true, (), D, true, {area, length, width},

area : NATURAL A length : NATURAL

A width : NATURAL A area = length * width,
{area := 0, length := 0, width := 0},
{set_1.w,get area})

(0, true, D, D, true, {area, length, width},
area : NATURAL A length : NATURAL
A area = length x *2 A width : NATURAL
N area = length x width,
{area := 0, length := 0, width := 0},
{set_length,set 1 w,get area}) .

For a better overview we translate it back into an abstract machine.
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MACHINE
Square_Rectangle

VARIABLES
area, length, width

INVARIANT
area : NATURAL & length : NATURAL & width :
& area = length **2 & area = length * width

INITIALIZATION
area := 0 || length := 0 || width := 0

OPERATIONS
set_length(len) =
PRE len : NATURAL
THEN
length := len || area := len*x2
END;

set_l_w(len, wid) =
PRE len : NATURAL & wid : NATURAL

THEN
length := len || width := wid
| larea := lenx*wid
END;
out <-- get_area =
out := area

NATURAL

The abstract machine Square Rectangle is syntactically correct, type
checking is not a problem and the initialization preserves the invariant. But
there are some problems. First both operations do not preserve the invariant
in general; they only do if length = width holds. Secondly, assume that
we had omitted the formula(s) of the area(s) in the invariant. Then both
operations do preserve the invariant. However, they modify the area of the
square and the area of the rectangle. This is not the intention. Thirdly, if

another machine (or the user) calls the operation get_area it is not possible

to determine which area it returns.

O
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We do not want to restrict the use of abstract machine composition to ma-
chines with distinct identifiers. This is since the formal correctness of the
resulting machine has to be checked by proof obligations anyway. But from
a semantical point of view it is always up to the one who states an abstract
machine to guarantee that this machine fulfills the intended needs. In Sec-
tion 4.4 we present a situation in which it is intended that several machines
have common identifiers.

We can use the abstract machine composition not only to merge “full-
blown” machines, but also to add a certain operation to a machine. The
abstract machine monoid can be seen as a kind of a library providing ev-
ery possible machine. Therefore we know that there is at least one machine
offering a special modification for a given variable. We give an example.

Example 4.3.4 Assume that we want to add a possibility to scale the vari-
able area of the abstract machine Rectangle from Example 4.3.3. This can
be achieved by multiplying Rectangle by an appropriate machine. So we
may have the following operation.

OPERATIONS
scale_area(factor) =
PRE factor : NATURAL
THEN
length := length*factor || width := width*factor
| larea := areaxfactor*factor
END;

Note that this machine is not correct in terms of proof obligations, since
the variables length, width and area have neither been declared nor typed.
In our monoid, this machine is given by the element:

scale_area_m = (), true, D, ), true, ), true, (), {scale area}) .
Or even more compact:

scale_area_t = 1[9 — {scale_area}] .
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Thus the composition is given by

Rectangle - scale_area_t = Rectangle - 1[9 — {scale_area}]
= ((), true, ), ), true, {area, length, width},
area : NATURAL A length : NATURAL
A width : NATURAL A area = length x width,
{area := 0, length := 0, width := 0},

{set_1.w,get_area, scale area}) .

O

Since all monoids given in Table 4.1 are commutative and have irreducible
identities, we can build a product family algebra from the monoid (AM, -, 1).
The structure (£(M), U, o,(, 1), with o as in Definition 4.1.1, is a commuta-
tive i-semiring by Lemma 4.1.4. Furthermore it is a product family algebra
since 1 = {(0, true, D, (), true, (), true, D, ()} is a product by Corollary 4.2.1.

Definition 4.3.5 The product family algebra (£(AM),U, 0,0, 1) is called
product family algebra for abstract machines . Elements of (AM) are called
abstract machine families or famuilies for short. The operation o is called
abstract machine families composition or family composition for short. The
operation U is called abstract machine families union or family union for
short.

Having a product family algebra for abstract machines, all algebraic laws
given in Chapter 2, Section 4.1 and Section 4.2 can be applied to abstract
machine families.

In the remainder, we denote elements of a family, i.e., tuples, by their
corresponding machine name followed by _t, e.g. Square_t. This way we can
abbreviate tuples and have a distinction for families and tuples simultane-
ously.

In Section 3.3 we have presented the machines Add, Calculator_ctx and
Calculator. For the abstract machines Sub, Mult and Div we refer to Ap-
pendix A. Because of the limitations of the translator, we have named all
identifiers of the given machines differently. From now, all identifiers are
shortened by the suffix derived from their related machine. Furthermore, all
inclusion clauses are omitted, since they are not available in this model.

We give an example of determining the common parts of two families.
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Example 4.3.6 First of all we present a mapping between the old and new
identifier names.

old identifier name new identifier name

last_result_sub
last_result_mult last_result

last_result_div

status_sub
status_mult status

status_div

ans_sub
ans_mult ans

ans_div

get_status_sub
get_status_mult get_status

get_status_div

Table 4.2: Mapping between old and new identifier names
Compared to Example 4.3.3 we now have sets instead of tuples. Therefore
the abstract machine add is the element
add_prod = {(@, true, ), (), true, {last_result, status},

last_result : INT A status : STATE,
{last_result := 0, status := ok},

{add, ans, get,status})} :
The machine Sub is the family

sub_prod = {(@, true, ), (), true, {last_result, status},

last_result : INT A status : STATE,
{last_result := 0, status := ok},

sub, ans, get_status .
g

Since these families cannot be decomposed w.r.t. family union, they are
products in our algebraic context. Therefore we suffixed “_prod”. Whenever
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possible we will abbreviate the tuples, as mentioned above. We can offer a
choice between the two families by applying family union to them. We denote
the resulting family by little_calcs_fam:

little_cales_fam = add_prod U sub_prod = {add_t, sub_t} .

The commonalities of the two elements from the product family little_calcs
can be determined by calculating their greatest common divisor (cf. Sec-
tion 2.3). As a result, we have the rearranged family

little_cales_fam = ({1[9 — {add}]} U {1[9 — {sub}]})
o {(@, true, (), (), true, {last_result, status},
last_result : INT A status : STATE,
{last_result := 0, status := ok},

{ans, get,status})}

We see that the two families have quite a lot in common. In particular,
they have the same static data and the same state (cf. Subsections 3.2.2
and 3.2.3). They only differ in their OPERATIONS part. We will use this fact
in Section 4.4. ad

As stated in Theorem 4.2.4, features are exactly those elements in a Carte-
sian i-semiring which are irreducible with respect to o. In case of the product
family algebra for abstract machines these are elements whose correspond-
ing abstract machine consists at most of one nonempty clause. Therefore the
families {1[9 — {add}]} and {1[9 — {sub}|} are abstract machine features,
or features for short.

We give a short example in which we list all features of the product
add_prod, cf. Example 4.3.6.

Example 4.3.7 The element add_prod is a product and not a feature. It is
built up from the features

f-add_var_last_result ={1[6 — {last_result}]},
f-add_var_status ={1[6 — {status}|},

f-add_inv_last_result ={1[7 — {last_result : INT}|},
f-add_inv_status ={1[7 — {status : STATE}|},

f-add_init_last_result ={1[8 — {last_result := 0}]},
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f-add_init_status ={1[8 — {status := ok}|},
f-add_op_ans ={1]9 — {ans}|},
f-add_op_get_status ={1[9 — {get_status}|},
f-add_op_add ={1]9 — {add}]} .

The product add_prod can be completely decomposed into nine parts:

add_prod =f_add_var_last_result o f_add_var_status
o f_addanv_last_result o f_add_inv_status
o f_add_init_last_result o f_add_init_status
o f_add_op_ans o f_add_op_get_status o f_add_op_add .

O

If we add features to a family, it may happen that the result is not correct
w.r.t the B-Method, cf. Example 4.3.4. We present an approach to weaken
this effect in Chapter 5.

4.4 A Basic Calculator Revisited

In Section 3.3 we have developed a basic calculator using the B-Method. In
this section we discuss how we can “build” this calculator with the help of
the product family algebra for abstract machines.

The Calculator_ctx machine is mapped to the element calculator_ctx_t
of the the abstract machine monoid. It is given by

calculator ctx_t =
(0, true, {STATE ={ok, overflow, underflow,div_by zero}},
{min_dsp number, max_dsp_number},
min_dsp_number : INT A min_dsp_number < 0
A max_dsp_number : NAT, (), true, (),() .

For the whole system we use the following products:

calculator_ctx_prod = {calculator_ctx_t}
add_prod = {add_t}
sub_prod = {sub_t}
mult_prod = {mult_t}
div_prod = {div_t} .
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The products add_prod and sub_prod have been defined in Example 4.3.6.
The products mult_prod and div_prod are defined similarly. Their corre-
sponding abstract machines, w.r.t. Table 4.2, are given in Appendix A. Note
that there is no family for the abstract machine Calculator. We give the
reason for this later.

Now we combine these products using family composition. As result we
get the product calc_prod:

calc_prod = calculator_ctx_prod o add_prod

o sub_prod o mult_prod o div_prod
= {calculator,ctx,t -add_t - sub_t - mult_t - div,t} .

After performing the machine composition

calc_prod = (0,
true,
{STATE ={ok, overflow,underflow,div by zero}},
{min_dsp number, max_dsp_number},
min dsp_number : INT A min_dsp_number < 0
A max_dsp_number : NAT,
{last_result, status},
last_result : INT A status : STATE,
{last_result := 0, status := ok},
{Add, Sub, Mult,Div}) ,

we translate the expression back into an abstract machine. Since the
translation is basically done by string-concatenation, it can be easily au-
tomated by a simple tool. The complete machine is given in Appendix B;
here we skip most of the bodies of the operations.

MACHINE
calc_prod

SETS
STATE = { ok, overflow, underflow, div_by_zero }

CONSTANTS
min_dsp_number, max_dsp_number
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PROPERTIES
min_dsp_number : INT
& min_dsp_number < 0O
& max_dsp_number : NAT

VARIABLES
last_result,
status

INVARIANT
last_result : INT &
status : STATE

INITTALTISATION
last_result := 0 || status := ok
OPERATIONS
result <-- add(opl, op2) =
PRE
opl : INT & op2 : INT & (opl + op2) : INT
THEN
IF
(opl + op2) <= max_dsp_number
& (opl + op2) >= min_dsp_number
THEN
status := ok || last_result := opl + op2
|| result := opl + op2
ELSE
status :: STATE - ok || result := 0
END
END;

result <-- sub(opl, op2) = /* operation body */
result <-- mult(opl, op2) = /* operation body */
result <-- div(opl, op2) = /* operation body */

last_res <-- ans =
last_res := last_result;

ret_status <-- get_status =
ret_status := status
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All proof obligations for this abstract machine can be proved without any
problems. For example the operation add preserves the typing invariant for
the variable state. This means, that state is an element of the set STATE
before and after the “execution” of add.

This is an example for a situation in which common identifiers are quite
useful. Each of the arithmetic machines fulfills every requirement listed in
Section 3.3—except Requirement 2., of course. Therefore we can develop each
machine separately and “link” them afterwards, just as we did in Section 3.3.
But there is one major difference between the B-Method approach and the
algebraic approach. Using the B-Method we had to introduce an additional
abstract machine Calculator for this “linking”. Whereas using the algebraic
approach this kind of machine is not necessary.

Let us explain why this is necessary in the B-Method approach. Assume
that the Calculator does not provide any operation itself. Furthermore as-
sume a machine, which is responsible for 1/O tasks, that EXTENDS the
Calculator. Then all operations specified by the arithmetic machines can
be called directly. Now a user may call the operation add. Next he/she clears
the display of the calculator for some reason. Afterwards he/she wants to
recall the last calculated result. Since the last called operation cannot be
determined, it is ambiguous which of the operations ans, ans_sub, ans mult,
ans_div is responsible for this task. Therefore the last result cannot pre-
sented to the user. This problem can be solved in two ways. The machine
Calculator stores either the last called operation or the last (valid) result.
For both solutions a new variable has to be specified. To assign the correct
values to this variable, some kind of wrapping operations are necessary. We
used the second solution in Section 3.3.

For the algebraic approach the machine Calculator is redundant. This
is since we allow the composition of machines with identical identifiers. The
“linking”, mentioned above, is done (automatically) by machine composition.
From the machine calc_prod the last valid result can be directly retrieved
by the operation ans. This works because we are not interested in the last
valid result of a specific operation, but in the result of the last successful
operation. This algebraic approach slenderizes the core system compared to
the B-Method approach. Furthermore, all requirements have been met, es-
pecially the modularized design which allows a reuse of parts of the system.
If we want to extend the core system later by new arithmetic operations,
we can simply add them by using family composition. In contrast to that,
the B-Method would have to modify the machine Calculator by adding the
corresponding wrapping operations. This leads to even more duplicated code.
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Furthermore the machine Calculator cannot be reused, since this recurring
changes. In our model all elements can be used.

So far, we extended only products, but we can also extend a family which
offers a choice of products using family composition. By this we can add an
extension to each product of the family.

Example 4.4.1 Assume the family calculators give by
calculators = calc_prod U calc_prod_ext |

where calc_prod_ext is an extension of the product calc_prod given above. For
example, it may have an additional operation to calculate the square root
of a given number. The family calculators offers a choice between the basic
calculator and the extended one. Furthermore the product memory is given

by
memory = {(@, true, ), (), true, {memory}, memory : INTEGER,
{memory := 0}, {memory_save, memory _recall,
memory_add, memory,clear})} .
This product provides the possibility to save and recall a given number.
Furthermore the memorized number can be deleted or a given value can be

added to it. To add this product to both products of the calculators family,
we simply use family composition:

calculatorsomemory = (calc_prod U calc_prod_ext) o memory

= (calc_prod o memory) U (calc_prod_ext o memory) .



Chapter 5

Extensions

In this chapter we present further properties of the product family algebra
for abstract machines (cf. Chapter 4). Furthermore we investigate the rela-
tion between the abstract machine clause EXTENDS and algebraic family
composition. When combining families it may happen that the result is not
correct w.r.t. the B-Method. In Section 5.3 we present an approach to avoid
at least syntactical incorrectness.

This chapter is not intended to cover all possible extensions of the alge-
braic approach for abstract machines. It is intended as a proof of feasibility;
we are convinced that the algebraic approach will yield further improvements.
However, for doing so one has to model/research things like Requirements
and the clause EXTENDS in much more detail. This is left for further re-
search.

5.1 Requirements

In Section 2.5 we have presented the so called requirement relation. This
relation makes it possible to express requirements for product families. For
example, we can postulate that each product of a product family must have
a certain feature or that two features are mutually exclusive. To express the
mandatory presence of a family A in a family B we can state

1554

in the algebra for abstract machines.
Requirements occur naturally during the development of a software sys-
tem. For example these requirements can be feature requests, safety require-
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ments or technical requirements. We have seen such requirements in Sec-
tion 3.3 and 4.4, where we have developed a calculator core system.
To show how the requirement relation can be used, we give an example.

Example 5.1.1 For a better overview we repeat the requirements for the
calculator core system.

1. The system has to offer integer arithmetic. Now overflow can occur.
2. Basic operations are: addition, subtraction, multiplication and division.

3. Since the display can show at most eight symbols, the operations have
to indicate unrepresentable results.

4. Modular structure of the system to allow a possible reuse.
5. The system has to provide a possibility to recall the last valid result.

We have identified the following machines the system consists of:

e The arithmetic machines Add, sub, Mult and Div

e The Calculator_ctx to provide contextual informations

The machines have been mapped to the products add_prod, sub_prod,
mult_prod, div_prod and calculator_ctx_prod. With the requirement relation
we can state that these products are mandatory for the product calc_prod:

calc_prod

1 — add_prod

calc_prod

1 — sub_prod ,

calc_prod

1T — mult_prod ,

calc_prod

1 — div_prod ,

calc_prod

1 —— calculator_ctx_prod .
a

Requirements like the ones of Example 5.1.1 help to guarantee that all re-
quired components have been included into a system. This can be particularly
useful in larger systems.

To express mutual exclusion of a family 4 and a family B in a family C

we can state
(AoB) -5 0

in our algebra.
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Example 5.1.2 Assume that we have a family crypto which offers a choice
between various cryptographic products. Most of these products have a fea-
ture f_var_key = {1[6 — {key}|}. The variable key represents a secret key
used for encryption tasks. Needless to say, it should not be possible to re-
trieve this key from outside. By convention the names of inquiry operations
are formed by get_ followed by the variable name. The inquiry operation for
the variable key is then get_key and the corresponding feature f_ops_get_key.
Since we want to prevent a disclosure of the key, we state :

crypto

(fvar_key o f_ops_get_key) —— 0 .

5.2 EXTENDS and Machine Composition

In this section we investigate if there is a relation between the EXTENDS
clause (cf. Subsection 3.2.5) and the machine composition (cf. Definition 4.3.1).
Let us explain why we compare these two mechanisms.

Any attempt to express an inclusion clause, different from EXTENDS,
by machine composition is foredoomed to fail. This is since the resulting ma-
chine of a composition effectively consists of the objects from the composed
machines. For example, each operation stemming from one of the composed
machines, can be called from outside. The only inclusion clause that offers
this, is EXTENDS.

Therefore we compare the clause EXTENDS with abstract machine com-
position in this section. The main difference between these concepts are visi-
bility rules regarding objects of the involved machines. An overview of these
visibility rules is given in Appendix D of [I]. We give a short repetition of
the properties of EXTENDS.

The EXTENDS clause is a combination of the INCLUDES clause and
a PROMOTES clause that lists every operation of the included machine.
All identifiers of the involved machines have to be distinct. Furthermore, the
following visibility rules between objects/identifiers of the included machine
and clauses of the including machine apply.

e Parameters are invisible.
e Constants and sets are visible in every clause, but read-only.

e Variables are visible in the INVARIANT clause and read-only in the
INITIALISATION and OPERATIONS clauses.
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e Operations are visible in the clause OPERATIONS.

In our algebraic model for abstract machines we have explicitly allowed
the composition of machines with identical identifiers. We have discussed
the reasons in Section 4.3. Therefore it is obvious that the extension of a
machine by another one is not equivalent in general to the composition of
corresponding elements in our algebraic model. Even if we consider distinct
identifiers, different visibility rules apply for a composed machine and an
extending machine. This is because the objects of the composed machines
become genuine objects of the resulting machine. Whereas the objects of an
extended machine do not become a “physical” part of the extending. The
visibility rules for a machine w.r.t. to its own objects are:

e Parameters are visible in each clause, except in the PROPERTIES
clause.

e Constants and sets are visible in every clause, except in the CON-
STRAINTS clause.

e Variables are visible in the INVARIANT, INITIALISATION and
OPERATIONS clause.

e Operations are invisible.

For example, the visibility regarding operations differs. Operations of an
included machine can be called within an operation of the including machine,
whereas an operation of the same machine cannot be called.

However, if certain conditions hold, the resulting machines of the two
mechanisms can be “used equivalently”, e.g. by another machine. By “used
equivalently” we mean, that both machines provide the same facility, e.g.
operations.

Conjecture 5.2.1 Let M1, M2, M3 be machines and m1_t, m2_t, m3_t the cor-
responding elements in the abstract machine monoid. Furthermore, assume
that M1 (exclusively) lists M2 in its EXTENDS clause and M3 is the machine
which results from a back translation of m3_t = m1.t-m2_t. Then M1 and M3
can be “used equivalently”, if the following conditions hold:

1. M1 and M2 are are correct w.r.t. the B-Method.
2. No parameters are given in M2.

3. No operation of M1 calls an operation of M2.
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Note that the back translation of m1_t is not equal to M1, since m1_t has
no component to “store” names of extended machines.

Condition 1. guarantees, among other things, that all identifiers of M1 and
M2 are distinct and that M2 does not use any identifier of M1. The latter is
possible in our algebra, but not in the B-Method. The former is mandatory
for the use of the EXTENDS clause. The reason for Condition 2. is, that
parameters of an extended machine have to be instantiated in the extending
machine. In M3 an instantiation of (its own) parameters is not possible. Con-
dition 3. guarantees that in M3 no operation call of an own operation occurs,
which is forbidden.

We give an example that suggests Conjecture 5.2.1.

Example 5.2.2 Assume the machine M_1.

MACHINE
M1

INCLUDES
M2

OPERATIONS
out <--incr(in)=
PRE in : INTEGER THEN out := in + 1 END

END

Assume that machine M1 EXTENDS a machine M2 given by

MACHINE
M2

OPERATIONS
out <--decr(in)=

PRE in : INTEGER THEN out := in - 1 END

END

Let the back translation of the composition of the related monoid elements
be the machine M1_M2 given by



5.3 Proper Machines 73

MACHINE
M1_M2

OPERATIONS

out <--incr(in)=

PRE in : INTEGER THEN out := in + 1 END
out <--decr(in)=
PRE in : INTEGER THEN out := in - 1 END
END
Then M1 and M1_M2 provide the same operations to the outside. O

5.3 Proper Machines

Families of the product family algebra for abstract machines are built up from
a set of features. Since these features correspond to an abstract machine that
consists of just a single clause, a feature most likely not forms a valid machine
w.r.t B. The B-Method states several requirements that a machine has to
meet to be valid. One of these is that a machine has to fulfill dependency
requirements w.r.t. abstract machine clauses. In this section we map these
requirements to our algebra.

Each of the clauses we presented in Section 3.2 is optional in principle.
However, some of them require the presence of another one. The dependency
requirements are the following ones:

1. Parameters require a CONSTRAINTS clause and vice-versa.

2. a CONSTANTS clause requires a PROPERTIES clause and vice-
versa.

3. a VARIABLES clause requires an INVARIANT clause and vice-
versa.

4. a VARIABLES clause requires an INITIALIZATION clause and
vice-versa.

5. a VARIABLES clause requires an OPERATIONS clause. Not vice-
versa.
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We have adopted this listing in a slightly expanded form from [1]. When using
family composition it happens that these requirements are not fulfilled.

Example 5.3.1 Assume the two features of Example 4.3.7:

f-add_var_last_result ={1[6 — {last_result}|}
f-add_op_get_status ={1[9 — {get_status}|} .

The composition of them yields

comp = f_add_var_last_result o f_add_op_get_status =

{(@, true, ), (), true, {last_result},
true, (), {get,status})} :

The result comp does not meet the dependences regarding variables. For
example, although comp has the variable last_result, it does not have an
invariant for this particular variable. O

Of course, there are further requirements regarding the correctness of an
abstract machine, e.g. each variable has to be typed in the INVARIANT
clause. In this section the goal is only to map the dependences from the listing
above. This can be seen as pre-stage to the mapping of other correctness
requirements.

To give an idea of how we can achieved that an element of the abstract
machine monoid fulfills the dependency requirements, we give an short ex-
ample.

Example 5.3.2 Assume the machine M2 from Example 5.2.2. The element
m2 € AM that is related to M2 is given by

m2 = 19 — {decr}|
g

We see from the example above, that the OPERATIONS clause yields
the non-empty set {decr} in the ninth component of m2. We will take ad-
vantage of this fact, since this applies to every clause of an abstract machine.
To enforce that a family A fulfills the dependences given above, we state an
appropriate predicate for every element of this family. These predicates have
the form

m(a) # 1< ma) #1,
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where a is an element of the considered family. For example, the above pred-
icate maps the first dependency from the above listing. Just a reminder: 1
is the identity of the related monoid and we omit the index, since it is clear
from the projection which identity is meant.

Definition 5.3.3 A family A fulfills the dependency requirements iff the
following holds:



Chapter 6

Conclusion and Outlook

In this thesis we have equipped the formal product family algebra with the
semantics of abstract machines. This approach combines the advantages of
both techniques. Abstract machines are used for the specification and the
verification of software systems. They are the main concept of the formal
B-Method. Product family algebra focuses on FOSD. Problems like finding
common features or the expression of dependences between families are major
tasks. This algebra bases on the well-known concept of semirings. By the use
of a product family algebra for abstract machines, software specification with
abstract machines gains the advantages of this algebra.

In this thesis we have presented product family algebra first and discussed
how goals of FOSD can be achieved using this mathematical approach. Then
we have discussed abstract machines in detail and presented a development
of a small calculator system using the B-Method. The main work has been
done in the investigation of an appropriate algebraic structure for abstract
machines. It turns out that the structure which fits best is a monoid for ab-
stract machines. Since the elements of this monoid are tuples, an abstract
machine can be directly mapped to an element of this monoid, and vice-
versa. Fach component of an element represents one of the abstract ma-
chine clauses. To compose these elements a componentwise operation has
been defined. With respect to B, this operation basically joins the machine
clauses. To deal with families of algebraically represented abstract machines,
we have defined a product family algebra for abstract machines. This alge-
bra is based on a Cartesian i-semiring. We precisely stated the structure of
products and features in this semiring. Afterwards we revisited the calcu-
lator system, showed how it could be developed with product families and
discussed the differences to the B-Method approach.

At the end of the thesis we pointed at some possibilities future work
can yield. We have sketched how requirements can be modeled. Using the
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requirement relation one can for example guarantee that a family does not
lack certain features.

Moreover we described conditions that have to be met in order that family
composition is equivalent to extending a machine. Finally we gave a predi-
cate that maps the dependences which hold between machine clauses to the
presented algebra.

All these topics need certainly further research. Moreover, the treatment
of operations in the algebra needs to be extended. For now, operations with
the same name are considered to be identical. However it might be useful to
allow a kind of update. From an algebraic point of view update has already
been modeled, e.g. [7, 11]. However updating yields often non-commutative
operations, e.g. simple overriding. Since commutativity of multiplication is
one of the basic concepts in product family algebra, one might change the un-
derlying algebraic structure. In case of abstract machines this change might
be avoidable. Since abstract machine operations are based on generalized
substitution it is conceivable to use parallel substitution or bounded choice
substitution for an update. These substitutions preserve the commutativity
of product family algebra. Furthermore it is of interest to investigate how to
integrate the requirements that the B-Method states for a correct abstract
machine in the algebra for abstract machines.

Acknowledgments [ am deeply grateful to P. Hofner for his superior
supervision. He has the patience of a saint.



Appendix A

Deferred Files for the
Calculator from Section 3.3

Appendix A and Appendix B give deferred abstract machines and generated
source code for the developed calculator systems.

A.1 Abstract Machines and their Implemen-
tations

In this section we present the deferred abstract machines from Section 3.3
where we developed a calculator system using B-Method.

MACHINE
Sub

SEES
Calculator_ctx

VARIABLES
last_result_sub,
status_sub

INVARIANT
last_result_sub : INT &
status_sub : STATE

INITIALISATION
last_result_sub := 0 || status_sub := ok
OPERATIONS
result <-- sub(opl, op2) =
PRE
opl : INT & op2 : INT & (opl - op2) : INT
THEN
IF

(opl - op2) <= max_dsp_number
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& (opl - op2) >= min_dsp_number

THEN
status_sub := ok || last_result_sub := opl - op2
|l result := opl - op2

ELSE
status_sub :: STATE - ok || result := 0

END

END;

last_res <-- ans_sub =
last_res := last_result_sub;

ret_status <-- get_status_sub =

ret_status := status_sub
END
IMPLEMENTATION
Sub_i
REFINES
Sub
SEES

Calculator_ctx

CONCRETE_VARIABLES
last_result_sub, status_sub

INITIALISATION
status_sub := ok;
last_result_sub := 0

OPERATIONS
last_res <-- ans_sub =
BEGIN
last_res := last_result_sub
END;

ret_status <-- get_status_sub =
BEGIN

ret_status := status_sub
END;

result <-- sub(opl , op2) =
BEGIN
VAR temp IN
temp := opl - op2;
IF temp <= max_dsp_number
& temp >= min_dsp_number

THEN
status_sub := ok;
result := temp;
last_result_sub := result
ELSE
IF
temp < min_dsp_number
THEN
result := 0;

status_sub := underflow
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ELSE
result := 0;
status_sub := overflow
END
END
END
END
END
MACHINE
Mult
SEES

Calculator_ctx

VARIABLES
last_result_mult,
status_mult

INVARIANT
last_result_mult : INT &
status_mult : STATE

INITIALISATION
last_result_mult := O || status_mult := ok
OPERATIONS
result <-- mult(opl, op2) =
PRE
opl : INT & op2 : INT & (opl * op2) : INT
THEN
IF
(opl * op2) <= max_dsp_number
& (opl * op2) >= min_dsp_number
THEN
status_mult := ok
| lresult := opl*op2
| |last_result_mult := opl*op2
ELSE
status_mult :: STATE - ok || result := 0
END
END;

last_res <-- ans_mult =
last_res := last_result_mult;

ret_status <-- get_status_mult =
ret_status := status_mult

END

IMPLEMENTATION
Mult_i

REFINES
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Mult

SEES
Calculator_ctx

CONCRETE_VARIABLES
last_result_mult, status_mult

INITIALISATION
status_mult := ok;
last_result_mult := 0

OPERATIONS
last_res <-- ans_mult =
BEGIN
last_res := last_result_mult
END;

ret_status <-- get_status_mult =
BEGIN

ret_status := status_mult
END;

result <-- mult(opl , op2) =

BEGIN
VAR temp IN
temp := opl * op2;
IF temp <= max_dsp_number
& temp >= min_dsp_number
THEN
status_mult := ok;
result := temp;
last_result_mult := result
ELSE
IF
temp < min_dsp_number
THEN
result := 0;
status_mult := underflow
ELSE
result := 0;
status_mult := overflow
END
END
END
END
END
MACHINE
Div
SEES

Calculator_ctx

VARIABLES
last_result_div,
status_div

INVARIANT
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last_result_div : INT &
status_div : STATE

INITIALISATION
last_result_div := 0 || status_div := ok
OPERATIONS
result <-- div(opl, op2) =
PRE
opl : INT & op2 : INT & (opl / op2) : INT
THEN
IF
op2 = 0
THEN
status_div := div_by_zero || result := 0
ELSE
status_div := ok || result:= opl/op2
| |last_result_div := opl/op2
END
END;

last_res <-- ans_div =
last_res := last_result_div;

ret_status <-- get_status_div =

ret_status := status_div
END
IMPLEMENTATION
Div_i
REFINES
Div
SEES

Calculator_ctx

CONCRETE_VARIABLES
last_result_div,
status_div

INITIALISATION
last_result_div := 0;
status_div := ok

OPERATIONS
last_res <-- ans_div =
BEGIN
last_res := last_result_div
END;

ret_status <-- get_status_div =
BEGIN

ret_status := status_div
END;

result <-- div ( opl , op2 ) =
BEGIN

IF op2 = 0

THEN
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status_div := div_by_zero;
result := 0

ELSE

status_div := ok;

result := opl/op2;
last_result_div := result

END

END
END

A.2 Generated Source Files

In this section we present the generated source files for the calculator system

we developed in Section 3.3 using B-Method.

/% 5k %k 5k 5k %k ok sk %k ok ok %k 3k ok 3k %k 5k 3k % ok 3k % 5k 3k %k 5k 3k % 5k 3k %k 5k 3k %k 5k 3k % 5k >k % >k > % >k >k % *k >k % *k
File Name : Calculator.c
ok ok oK K ok K K ok ok K K ok ok K ok ok K K 3k ok K K 3 ok oK K ok ok K K ok ok K % ok ok Kk K ok K K %k k /

—————————————————————————— */

#include <stdbool.h>

#include "Calculator.h"

[k mm e -
IMPORTS Clause
————————————————— *x/

#include "Calculator_ctx.h"

[k mm e -
EXTENDS Clause
————————————————— *x/

#include "Add.h"

#include "Div.h"

#include "Mult.h"

#include "Sub.h"

R mmm e e e
CONCRETE_VARIABLES Clause
———————————————————————————— */

int Calculator__answer;
Calculator__STATE Calculator__state;

K mmmmmm e m e
INITIALISATION Clause
———————————————————————— *x/

void Calculator__INITIALISATION(void) {
Calculator__answer = 0;
Calculator__state = Calculator__ok;

}

R e

void Calculator__get_answer (
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int *Calculator__last_res) {
*Calculator__last_res = Calculator__answer;

}

void Calculator__addition(
int Calculator__opil,
int Calculator__op2,
int *Calculator__res) {
Calculator__add (Calculator__opl,

Calculator__op2,

Calculator__res);
Calculator__get_status (&Calculator__state);
if (Calculator__state ==

Calculator__ok)

{

Calculator__answer = *Calculator__res;

}
}

void Calculator__subtraction (
int Calculator__opl,
int Calculator__op2,
int *xCalculator__res) {
Calculator__sub (Calculator
Calculator__op2,
Calculator__res);
Calculator__get_status_sub (&Calculator__state);
if (Calculator__state ==
Calculator__ok)

opl,

{
Calculator__answer = *Calculator__res;
}
}

void Calculator__multiplication(
int Calculator__opil,
int Calculator__op2,
int *Calculator__res) {
Calculator__mult (Calculator__opl,

Calculator__op2,

Calculator__res);
Calculator__get_status_mult (&Calculator__state);
if (Calculator__state ==

Calculator__ok)

{

Calculator__answer = *Calculator__res;

}
}

void Calculator__division(
int Calculator__opl,
int Calculator__op2,
int *Calculator__res) {
Calculator__div (Calculator__opl,

Calculator__op2,

Calculator__res);
Calculator__get_status_div (&Calculator__state);
if (Calculator__state ==

Calculator__ok)

{
Calculator__answer = *Calculator__res;

}
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/% % 5k oK ok oK oK K K oK K oK oK K oK oK K oK oK K oK oK K oK oK K oK oK K oK oK K oK ok K oK ok K oK ok K oK ok K K kK K
File Name : Calculator.h
**************************************************/
#ifndef _Calculator_h

#define _Calculator_h

K mmmm e e e

[k mm e~

#include "Calculator_ctx.h"

#include "Add.h"
#include "Div.h"
#include "Mult.h"
#include "Sub.h"

SETS Clause: enumerated sets

#define Calculator__STATE Calculator_ctx__STATE

#define Calculator_ctx__ok Calculator_ctx__ok

#define Calculator_ctx__overflow Calculator_ctx__overflow
#define Calculator_ctx__underflow Calculator_ctx__underflow
#define Calculator_ctx__div_by_zero Calculator_ctx__div_by_zero

CONCRETE_CONSTANTS Clause: scalars and arrays

#define Calculator__max_dsp_number Calculator_ctx__max_dsp_number
#define Calculator__min_dsp_number Calculator_ctx__min_dsp_number

extern int Calculator__answer;
extern Calculator__STATE Calculator__state;

#define Calculator__add Add__add

#define Calculator__ans Add__ans

#define Calculator__ans_div Div__ans_div
#define Calculator__ans_mult Mult__ans_mult
#define Calculator__ans_sub Sub__ans_sub

#define Calculator__div Div__div
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#define
#define
#define
#define
#define
#define

extern
int
int
int
extern
int
int
int
extern
int
extern
int
int
int
extern
int
int
int

#endif

Calculator__get_status Add__get_status
Calculator__get_status_div Div__get_status_div
Calculator__get_status_mult Mult__get_status_mult
Calculator__get_status_sub Sub__get_status_sub
Calculator__mult Mult__mult

Calculator__sub Sub__sub

void Calculator__addition (
Calculator__opl,
Calculator__op2,
*Calculator__res);

void Calculator__division(
Calculator__opl,
Calculator__op2,
*Calculator__res);

void Calculator__get_answer (
*Calculator__last_res);

void Calculator__multiplication(
Calculator__opl,
Calculator__op2,
*Calculator__res);

void Calculator__subtraction(
Calculator__opl,
Calculator__op2,
*Calculator__res);

/% K K K ok kK kK Kk kK ok ok ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K KKK K K Kk ok ok ok ok
File Name : Sub.h

K KK Kk ok ok ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K K K K Kk Kk ok ok ok ok ok ok ok ok ok ok ok /

#ifndef _Sub_h

#define _Sub_h

[k mm e e e e -
Added by the Tramnslator
—————————————————————————— *x/

#include <stdbool.h>

[Kkmmm - -
SEES Clause
—————————————— */

#include "Calculator_ctx.h"

[k mm e e
CONCRETE_VARIABLES Clause
———————————————————————————— *x/

extern
extern

extern

int Sub__last_result_sub;
Calculator_ctx__STATE Sub__status_sub;

void Sub__ans_sub(
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int *Sub__last_res);
extern void Sub__get_status_sub(
Calculator_ctx__STATE *Sub__ret_status);
extern void Sub__sub(
int Sub__opl,
int Sub__op2,
int *Sub__result);

#endif

/**************************************************

File Name : Sub.c
K K K K Kk ko ok ok ok ok ok ok ok ok ok ok ok ok K K K K K K K K K K K K K Kk k k ok ok ok ok ok ok ok ok ok ok /

#include <stdbool.h>

#include "Sub.h"

#include "Calculator_ctx.h"

int Sub__last_result_sub;
Calculator_ctx__STATE Sub__status_sub;

K mmmm e e
INITIALISATION Clause
———————————————————————— */
void Sub__INITIALISATION(void) {
Sub__status_sub = Calculator_ctx__ok;
Sub__last_result_sub = 0;
}
e bt
OPERATIONS Clause
———————————————————— *x/
void Sub__ans_sub(
int *Sub__last_res) {
*Sub__last_res = Sub__last_result_sub;

}

void Sub__get_status_sub(
Calculator_ctx__STATE *Sub__ret_status) {
*Sub__ret_status = Sub__status_sub;

}

void Sub__sub(
int Sub__opl,
int Sub__op2,
int *Sub__result) {
{
int Sub__temp;

Sub__op2;

Sub__temp = Sub__opl -
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if ((Sub__temp <=
Calculator_ctx__max_dsp_number) &&
(Sub__temp >=
Calculator_ctx__min_dsp_number))

{
Sub__status_sub = Calculator_ctx__ok;
*Sub__result = Sub__temp;
Sub__last_result_sub = *Sub__result;
¥
else {
if (Sub__temp <
Calculator_ctx__min_dsp_number)
{
*Sub__result = 0;
Sub__status_sub = Calculator_ctx__underflow;
}
else {
*Sub__result = 0;
Sub__status_sub = Calculator_ctx__overflow;
}
¥

/% %5k K ok ok K ok K ok K K oK K K K K KK K K K K K K K KK K K K K K K K KOk K K R K K KK Kk K K
File Name : Mult.h

oK K K oK K K KK K K K K K K K K K K K K KK K K K K K K K KOk K KR KK R R Kk KKk Kk R Rk %/

#ifndef _Mult_h

#define _Mult_h

[k mm e -

Y R

#include "Calculator_ctx.h"

extern int Mult__last_result_mult;
extern Calculator_ctx__STATE Mult__status_mult;

extern void Mult__ans_mult (
int *Mult__last_res);
extern void Mult__get_status_mult (
Calculator_ctx__STATE *Mult__ret_status);
extern void Mult__mult(
int Mult__opl,
int Mult__op2,
int *Mult__result);
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#endif

/**************************************************

File Name : Mult.c
s ok ok ok %k 5k %k sk ok % ok % ok % 5k % sk K 3 ok % ok % 5k % sk %k % ok % >k % >k % >k % % >k % >k % >k % k Kk Kk *kk k /
[k mm e e -

#include <stdbool.h>
#include "Mult.h"

#include "Calculator_ctx.h"

int Mult__last_result_mult;
Calculator_ctx__STATE Mult__status_mult;

void Mult__INITIALISATION((void) {
Mult__status_mult = Calculator_ctx__ok;
Mult__last_result_mult = O0;

void Mult__ans_mult (

int *Mult__last_res) {

*Mult__last_res = Mult__last_result_mult;
}

void Mult__get_status_mult(
Calculator_ctx__STATE *Mult__ret_status) {
*Mult__ret_status = Mult__status_mult;

}

void Mult__mult(
int Mult__opl,
int Mult__op2,
int *Mult__result) {
{
int Mult__temp;

Mult__temp = Mult__opl *
Mult__op2;

if ((Mult__temp <=
Calculator_ctx__max_dsp_number) &&
(Mult__temp >=
Calculator_ctx

_min_dsp_number))

Mult__status_mult = Calculator_ctx__ok;
*Mult__result = Mult__temp;



A .2 Generated Source Files 90

Mult__last_result_mult = *Mult__result;
¥
else {
if (Mult__temp <
Calculator_ctx__min_dsp_number)
{
*Mult__result = 0;
Mult__status_mult = Calculator_ctx__underflow;
}
else {
*Mult__result = 0;
Mult__status_mult = Calculator_ctx__overflow;
}
}

/% 3 ok ok %k %k %k %k K K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K K K K K K K % % % K K K K K ok ok ok ok ok k
File Name : Div.h

sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K K %k % %k % %k %k 3 K K K ok ok ok ok ok ok ok ok ok ok ok ok ok ok k /

#ifndef _Div_h

#define _Div_h

[k mm e -

—————————————————————————— *x/
#include <stdbool.h>
Y
SEES Clause
—————————————— */
#include "Calculator_ctx.h"
[k mm e e
CONCRETE_VARIABLES Clause
———————————————————————————— */

extern int Div__last_result_div;
extern Calculator_ctx__STATE Div__status_div;

extern void Div__ans_div(
int *Div__last_res);
extern void Div__div(
int Div__opl,
int Div__op2,
int *Div__result);
extern void Div__get_status_div(
Calculator_ctx__STATE *Div__ret_status);

#endif

/3 3 s ok sk ok %k 5k %k 5k % sk ok % ok % 5k % 5k % 3k K % ok 3 >k % 5k % 5 %k % 5k 3 >k % >k % > %k % >k % >k % >k % % *k k
File Name : Div.c
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**************************************************/

#include <stdbool.h>

#include "Div.h"

#include "Calculator_ctx.h"

int Div__last_result_div;
Calculator_ctx__STATE Div__status_div;

K mmmm e m e
INITIALISATION Clause
———————————————————————— *x/
void Div__INITIALISATION(void) {
Div__last_result_div = 0;
Div__status_div = Calculator_ctx__ok;
}
e et
OPERATIONS Clause
———————————————————— */
void Div__ans_div(
int *Div__last_res) {
*Div__last_res = Div__last_result_div;

}

void Div__get_status_div(
Calculator_ctx__STATE *Div__ret_status) {
*Div__ret_status = Div__status_div;

}

void Div__div(
int Div__opl,
int Div__op2,
int *Div__result) {
if (Div__op2 ==

0)
{
Div__status_div = Calculator_ctx__div_by_zero;
*Div__result = 0;
}
else {
Div__status_div = Calculator_ctx__ok;
*Div__result = Div__opl /
Div__op2;
Div__last_result_div = *Div__result;
}
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Deferred Files for the
Calculator from Section 4.4

B.1 Abstract Machines and their Implemen-
tations

In this section we present the deferred abstract machines from Section 4.4
where we developed a calculator system using product family algebra for
abstract machines.

MACHINE
calc_prod

SETS
STATE = ok, overflow, underflow, div_by_zero

CONSTANTS
min_dsp_number, max_dsp_number

PROPERTIES
min_dsp_number : INT
& min_dsp_number < O
& max_dsp_number : NAT

VARIABLES
last_result,
status

INVARIANT
last_result : INT &
status : STATE

INITIALISATION
last_result := 0 || status := ok

OPERATIONS
result <-- add(opl, op2) =
PRE
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opl : INT & op2 : INT & (opl + op2) : INT
THEN
IF
(opl + op2) <= max_dsp_number
& (opl + op2) >= min_dsp_number
THEN
status := ok || last_result := opl + op2
|| result := opl + op2
ELSE
status :: STATE - ok || result := 0O
END
END;

result <-- sub(opl, op2) =
PRE
opl : INT & op2 : INT & (opl - op2) : INT
THEN
IF
(opl - op2) <= max_dsp_number
& (opl - op2) >= min_dsp_number
THEN
status := ok || last_result := opl - op2
|l result := opl - op2
ELSE
status :: STATE - ok || result := 0
END
END;

result <-- mult(opl, op2) =
PRE
opl : INT & op2 : INT & (opl * op2) : INT
THEN
IF
(opl * op2) <= max_dsp_number
& (opl * op2) >= min_dsp_number
THEN
status := ok
| lresult := opl*op2
| |last_result := opl*op2
ELSE
status :: STATE - ok || result := 0O
END
END;

result <-- div(opl, op2) =
PRE
opl : INT & op2 : INT & (opl / op2) : INT
THEN
IF
op2 =0
THEN
status := div_by_zero
|| result := 0
ELSE
status := ok
| |lresult:= opl/op2
| |last_result := opl/op2

END
END;

last_res <-- ans =
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last_res := last_result;

ret_status <-- get_status =
ret_status := status
END

IMPLEMENTATION
calc_prod_i

REFINES
calc_prod

VALUES
max_dsp_number = 99999999;
min_dsp_number = -9999999

CONCRETE_VARIABLES
last_result ,
status

INITIALISATION
last_result := 0;
status := ok

OPERATIONS
last_res <-- ans =
BEGIN
last_res := last_result
END;

ret_status <-- get_status
BEGIN

ret_status := status
END;

result <-- add(opl , op2)
BEGIN
VAR temp IN
temp := opl + op2;
IF temp <= max_dsp_number
& temp >= min_dsp_number
THEN
status := ok ;
result := temp ;
last_result := temp
ELSE
IF
temp < min_dsp_number
THEN
result := 0;
status underflow
ELSE
result := 0;
status overflow

END
END
END
END;

result <-- sub(opl , op2) =
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BEGIN
VAR temp IN
temp := opl - op2;
IF temp <= max_dsp_number
& temp >= min_dsp_number
THEN
status := ok;
result := temp;
last_result := result
ELSE
IF
temp < min_dsp_number
THEN
result := 0;
status underflow
ELSE
result := 0;
status overflow
END

END
END
END;

result <-- mult(opl , op2) =
BEGIN
VAR temp IN
temp := opl * op2;
IF temp <= max_dsp_number
& temp >= min_dsp_number
THEN
status := ok;
result := temp;
last_result := result
ELSE
IF
temp < min_dsp_number
THEN
result := 0;
status underflow
ELSE
result := 0;
status overflow
END

END
END
END;

result <-- div ( opl , op2 ) =

BEGIN
IF op2 = 0
THEN
status := div_by_zero;
result := 0
ELSE
status := ok;
result := opl/op2;
last_result := result
END
END

END
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B.2 Generated Source Files

In this section we present the generated source files for the calculator system
we developed in Section 4.4 using product family algebra for abstract ma-
chines.

/% ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok o ok o ok K ok K ok K ok K ok ok ok K ok K ok K oK ok koK
File Name : calc_prod.h

o ok oK K K K K K oK K oK K K K KK oK oK K KR KK ok K ok K KK ok K ok K ok K ok ok ok K ok K ok K ok K ok k /

#ifndef _calc_prod_h

#define _calc_prod_h

Y e it e T

#include <stdbool.h>
K mmmm e e

SETS Clause: enumerated sets

typedef enum {
calc_prod__ok,
calc_prod__overflow,
calc_prod__underflow,
calc_prod__div_by_zero
} calc_prod__STATE;

e e it R
CONCRETE_CONSTANTS Clause: scalars and arrays
———————————————————————————————————————————————— *x/

const int calc_prod__max_dsp_number = 99999999;

const int calc_prod__min_dsp_number = - 9999999;

Y e

extern int calc_prod__last_result;
extern calc_prod__STATE calc_prod__status;

extern void calc_prod__add(
int calc_prod__opl,
int calc_prod__op2,
int *calc_prod__result);
extern void calc_prod__ans(
int *calc_prod__last_res);
extern void calc_prod__div(
int calc_prod__opl,



B.2 Generated Source Files

int calc_prod__op2,
int *calc_prod__result);
extern void calc_prod__get_status(
calc_prod__STATE *calc_prod__ret_status);
extern void calc_prod__mult(
int calc_prod__opl,
int calc_prod__op2,
int *calc_prod__result);
extern void calc_prod__sub(
int calc_prod__opl,
int calc_prod__op2,
int *calc_prod__result);

#endif

/% 5k %k 5k sk %k ok sk %k ok ok %k 3k sk sk %k sk sk %k ok %k %k 5k 3k %k ok 3k %k sk 3k %k 5k 3k %k >k 3k % >k >k % >k > % >k 3k % %k >k % *k

File Name : calc_prod.c
sk sk sk ok sk ok ok ok sk sk ok sk ok ok ok sk ok sk ok ok ok ok sk sk sk ok sk sk sk sk ok ok ok sk ok sk sk ok ok ok sk ok sk ok ok ok ok ok ok /

#include <stdbool.h>
#include "calc_prod.h"

int calc_prod__last_result;
calc_prod__STATE calc_prod__status;

K mmmm e e e
INITIALISATION Clause
———————————————————————— */

void calc_prod__INITIALISATION(void) {
calc_prod__last_result = 0;
calc_prod__status = calc_prod__ok;

}

[kmmm e -

void calc_prod__ans(
int *calc_prod__last_res) {
*calc_prod__last_res = calc_prod__last_result;

}

void calc_prod__get_status(
calc_prod__STATE #*calc_prod__ret_status) {
*calc_prod__ret_status = calc_prod__status;

}

void calc_prod__add(
int calc_prod__opl,
int calc_prod__op2,
int *calc_prod__result) {
{

int calc_prod__temp;

calc_prod__temp = calc_prod__opl +
calc_prod__op2;
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if ((calc_prod__temp <=
calc_prod__max_dsp_number) &&
(calc_prod__temp >=
calc_prod__min_dsp_number))

{
calc_prod__status = calc_prod__ok;
*calc_prod__result = calc_prod__temp;
calc_prod__last_result = calc_prod__temp;
}
else {
if (calc_prod__temp <
calc_prod__min_dsp_number)
{
*calc_prod__result = 0;
calc_prod__status = calc_prod__underflow;
}
else {
*calc_prod__result = 0;
calc_prod__status = calc_prod__overflow;
}
}

}

void calc_prod__sub(
int calc_prod__opl,
int calc_prod__op2,
int *calc_prod__result) {

{
int calc_prod__temp;
calc_prod__temp = calc_prod__opl -
calc_prod__op2;
if ((calc_prod__temp <=
calc_prod__max_dsp_number) &&
(calc_prod__temp >=
calc_prod__min_dsp_number))
{
calc_prod__status = calc_prod__ok;
*calc_prod__result = calc_prod__temp;
calc_prod__last_result = *calc_prod__result;
}
else {
if (calc_prod__temp <
calc_prod__min_dsp_number)
{
*calc_prod__result = 0;
calc_prod__status = calc_prod__underflow;
}
else {
*calc_prod__result = O0;
calc_prod__status = calc_prod__overflow;
}
}
}

}

void calc_prod__mult(
int calc_prod__opl,
int calc_prod__op2,
int *calc_prod__result) {

{
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int calc_prod__temp;

calc_prod__temp = calc_prod__opl *
calc_prod__op2;

if ((calc_prod__temp <=
calc_prod__max_dsp_number) &&
(calc_prod__temp >=
calc_prod__min_dsp_number))

{
calc_prod__status = calc_prod__ok;
*calc_prod__result = calc_prod__temp;
calc_prod__last_result = *calc_prod__result;
}
else {
if (calc_prod__temp <
calc_prod__min_dsp_number)
{
*calc_prod__result = 0;
calc_prod__status = calc_prod__underflow;
}
else {
*calc_prod__result = 0;
calc_prod__status = calc_prod__overflow;
}
}

}

void calc_prod__div(
int calc_prod__opl,
int calc_prod__op2,
int *calc_prod__result) {
if (calc_prod__op2 ==

0)
{
calc_prod__status = calc_prod__div_by_zero;
*calc_prod__result = 0;
}
else {
calc_prod__status = calc_prod__ok;
*calc_prod__result = calc_prod__opl /
calc_prod__op2;
calc_prod__last_result = *calc_prod__result;
}
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