
Universität Augsburg

���������	
���
Reconfigurable Extension for CarCore

Stefan Maier

Report 2005-17 September 2005

Institut für Informatik
D-86135 Augsburg

Copyright c© Stefan Maier
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Reconfigurable Extension for CarCore

Stefan Maier

University of Augsburg
Institute of Computer Science

Eichleitnerstr. 30, 86159 Augsburg, Germany

Abstract

Reconfigurable processing units promise to boost the performance of computational in-
tensive applications. Thereby the kernel of an application is executed in the reconfigurable
hardware instead of being executed in software. This report presents a reconfigurable ex-
tension for the CarCore embedded processor. The extension combines reconfigurability with
simultaneous multithreading and real-time capabilities of the CarCore. The prototype im-
plementation in SystemC shows an overall application speedup of 4 compared to a single
threaded pure software execution.

1 Introduction

This report describes a reconfigurable extension for the simultaneous multithreaded CarCore mi-
crocontroller and its implementation in SystemC [5]. The CarCore is derived from the Infineon
TriCore 1 and obtains binary compatibility to it. The CarCore features hardware based scheduling
of four threads. The threads are isolated from each other and one thread cannot influence the
runtime behavior of the other threads. The processor is designed to deal with real-time threads
and the timing behavior of the threads should be predictable. A performance gain is reached by
using the latencies of highly prioritized threads for execution of instructions from other threads.

To further increase performance integrating reconfigurable hardware is considered to be a
feasible solution. A reconfigurable unit speeds up computational intensive parts of an application
by executing them in hardware. The reconfigurable extension for the CarCore described in this
report is similar to the MOLEN Reconfigurable Processor proposed in [6].

Section 2 gives a short introduction to the preconditions of the work. In particular the architec-
tures of the CarCore embedded processor and the MOLEN polymorphic processor are described.
Section 3 describes the CarCore reconfigurable extension in detail while the last section presents
the evaluation results.

2 Preconditions

Two existing processor architectures are the preconditions of the reconfigurable extension described
in this work. The CarCore simultaneous multithreaded processor itself serves as basis for the
reconfigurable extension and was developed during a diploma thesis at the University of Augsburg.
The MOLEN Polymorphic Processor was designed at the Delft University of Technology as a
general purpose processor with a reconfigurable processor attached.

2.1 CarCore

The CarCore [5] consists of a five stage pipeline containing the stages instruction fetch, schedule,
decode, execute and write back. Similar to the TriCore 1 the pipeline is divided into an address and
a data pipeline where the fetch and schedule stage are common for both pipelines. Therefore two

1

priority

scheduler

instruction

schedule &

issue

instruction

windows

decode
register

files

branch

ALU

decode
register

files

branch

ALU

data pipeline

address pipeline

memory

buffers

microrom

memory

instruction

fetch
M

U
X

Figure 1: Block Diagram of CarCore.

instructions can be executed in parallel. As the CarCore features simultaneous multithreading the
two instructions may belong to the same thread or to different threads. Figure 1 shows the block
diagram of the CarCore. Each pipeline contains one register set per thread (overall 8 register files)
and its own ALU and branch unit. Besides the register sets other parts of the processor context
are duplicated for each thread, e.g. program counter, status and core registers.

The fetch unit maintains the four program counters and four instruction windows decouple
the fetch stage from the rest of the pipeline. The scheduler keeps track of the thread priorities
and issues instructions to the data and to the address pipeline. Some complex instructions of
the TriCore instruction set, i.e. CALL and RET, need several cycles to be executed. If such a
complex instruction would block the pipeline, the predictability of the timing behavior of the other
threads would be destroyed. Therefore these instructions are executed as interruptible sequences
of microinstructions. The microcode unit maintains a microinstruction pointer for each thread
and hence allows to interrupt microprograms and to interleave microinstructions with assembler
instructions from different threads.

Every clock cycle the scheduler chooses two instructions from the instruction windows and
issues them to the pipelines. Thereby it follows the priorities of the threads wich are given by
the priority unit. Two priority schemes are supported. The fixed priority scheme associates fixed
priorities to the hardware threads, i.e. thread 0 has always highest, thread 3 lowest priority. This
scheme prefers one thread which can be considered as a real-time thread. The round-robin scheme
circularly changes the thread priorities and therefore equally disposes processing time.

The scheduling works as follows: First an instruction taken from an unblocked thread with a
priority as high as possible is issued to the integer pipeline. Second an operation in the address
pipeline is scheduled. This operation may be a microinstruction to start or continue a micro-
program or to issue an instruction out of the instruction windows to the decoder of the address
pipeline. Thereby the scheduler prefers operations of highly prioritized threads. According to the
fill level of the instruction windows and the priorities of the threads the scheduler selects a thread
to fetch a code block from memory in the next cycle.

Though memory accesses may last several cycles the address pipeline must not be blocked
by one thread and potentially disturb the runtime behavior of other threads. To address this
problem the CarCore executes load accesses as split-phase loads. The scheduler separates address
generation and data write-back in two operations. Valid data from memory is stored in a memory
buffer until the scheduler explicitly inserts the data into the register file.

2

Reconfigurable Processor

XREGs

Register
File

rm-code
unit

CCU

Memory

Arbiter Memory MUX

General
Purpose

Processor

Figure 2: The Molen Organization.

2.2 MOLEN Polymorphic Processor

The MOLEN Polymorphic Processor [6] combines a general purpose processor with a reconfig-
urable custom computing unit. The reconfigurable hardware allows the designer of an application
to extend the processor’s functionality at design time and to speed up the application by ex-
ecuting parts of the application in hardware. Figure 2 shows the Molen architecture with the
general purpose processor (GPP) and the reconfigurable processor (RP). The Arbiter predecodes
and issues the instructions to either of the processors. The exchange registers (XREGs) allow the
exchange of data between the GPP and RP. The reconfigurable processor itself mainly contains
the reconfigurable microcode unit (ρµ-code unit) and a custom configurable unit (CCU). To use
the functionality implemented in the CCU a general one-time extension of the instruction set is
necessary. The basic operations of the RP are set and execute. The set instructions configure the
CCU and the execute instruction performs a computation on the CCU. All together eight instruc-
tions are proposed to extend the instruction set. Six of them are controlling the reconfigurable
hardware:

• The partial set (pset) instruction configures the hardware for the common part of multiple
functions whereas complete set (cset) configures the remaining blocks of the CCU, not set
by the pset instruction.

• The execute instruction starts a microcode on the CCU configured by pset or cset.

• The set prefetch and execute prefetch instructions prefetch a microcode needed by
succeeding set or execute instructions.

• For synchronization of the core processor with the reconfigurable processor the break in-
struction is introduced.

Two further instructions are used for accessing the XREGs from the pipeline of the core
processor:

• movtx Xa, Rb copies the value of the general purpose register (GPR) Rb to the exchange
register Xa.

• movfx Ra,Xb moves the value from exchange register Xb to GPR Ra.

As not all instructions are required for different implementations of reconfigurable processors,
the minimal instruction set extension covers only cset, execute, movfx and movtx. Set and exe-
cute instructions (including the prefetch versions) are using pointers to reconfigurable microcode

3

Sequencer

MIR

Reconfigurable
Control Store

(set, exec)

Reconfigurable
Microcode

Loading Unit

CCU

mc_addrstart_op

mc_addrstart_op

status

cs_addr

end_op datadata
address

Memory MuxArbiter

Figure 3: Molen Reconfigurable Microcode Unit.

as operands which are emulated by the ρµ-code unit. Therefore microcode controlling the con-
figuration of the CCU and microcode executing on the CCU is distinguished. Figure 3 shows
the internal organization of the ρµ-code unit. To execute a set or exec instruction the ρµ-code
unit checks its residence table if the microcode specified by the address is already loaded into the
corresponding control store. The control stores are separated into a set and an execute control
store holding the microcodes for set and execute respectively. If the microcode is not available
the ρµ-code loading unit loads the microcode into the control store which is acting like a cache.
For performance reasons some of the frequently used entries in the control stores can be marked
as fixed and therefore cannot be overwritten by other microcodes. To distinguish between fixed
and pageable microcodes one bit of the address field is used. After the microcode is available in
the control store the sequencer starts to generate the control store address in order to determine
the next microinstruction and to write it to the microinstruction register (MIR). There it controls
either the reconfiguration of the CCU or in case of an execute instruction is executed on the CCU.
During the microcode execution the sequencer follows the last CCU status to generate the next
ρ-CS-address. After finishing the CCU execution the ρµ-code unit signals the arbiter the end of
the reconfigurable operation.

The prototype implementation described in [4, 3] implements the minimal ISA extension as
described above and prevents the GPP and the RP to execute in parallel. Before issuing a
reconfigurable instruction the arbiter clears the pipeline of the GPP and drives it into a wait state
until the end of the execution of the RP is signaled. Furthermore the arbiter occupies the memory
for use by the CCU. Then the active CCU can exclusively access the exchange registers and the
memory without the need for synchronization. Every implementation of a CCU must only comply
to the interface specifications to the XREGs, the memory and the ρµ-code unit. The interfaces
include data buses, write signals and clock signals.

3 CarCore RU Extension

The main target of the CarCore reconfigurable extension is to speed up threads running on a
simultaneous multithreaded processor by the utilization of a custom configurable unit. In one
configuration the reconfigurable extension may be used exclusively by one thread preserving the
real-time capability for this thread. Meanwhile other non real-time threads continue their ex-
ecution using the latencies of the main thread. The other scenario is to concurrently use the
reconfigurable extension within all threads.

Problems arise when the reconfigurable unit and another thread executing a load or store
instruction try to access the memory at the same time. The concurrent memory accesses have to

4

priority

scheduler

instruction

schedule &

issue

instruction

windows

decode
register

files

branch

ALU

decode
register

files

branch

ALU

data pipeline

address pipeline

memory

instruction

fetch

reconfigurable

unit
XREGs

memory

buffers

SFR bus

Figure 4: The CarCore with reconfigurable unit.

be arbited and the priorities of the threads considered. The challenge is to preserve the real-time
behavior at least for the thread using the reconfigurable part and to enable the scheduler to decide
about the memory accesses. In the case of more threads using the reconfigurable extension the
access to it also must be arbited. But since the RU may need many cycles to complete its job
other threads may have to wait until the RU is free again.

3.1 Interface

The reconfigurable extension is called reconfigurable unit(RU) and is integrated into the existing
CarCore like a co-processor following the MOLEN idea. The RU directly interfaces with the
scheduler and the memory controller. Furthermore the RU is connected to the special function
register (SFR) bus to enable the pipeline to read and write the exchange registers (XREGs) which
are part of the RU. Figure 4 gives an overview over the pipeline with the reconfigurable unit
interfaced.

The interface of the RU depicted in Figure 5 is kept simple and very similar to the MOLEN
interface to the reconfigurable processor. The functionality of the MOLEN arbiter is taken on
by the scheduler of the CarCore. When the scheduler recognizes a set or execute instruction it
sets start op and writes the instruction word to instr. The instruction word is decoded by
the reconfigurable unit itself and a set or execute operation is executed accordingly. During the
operation of the RU the corresponding thread as well as the RU is locked. Other threads may
continue executing instructions in the processor pipeline. After the RU has finished its operation,
end op signals the scheduler the completion of the set/execute instruction and the thread as well
as the RU are unlocked again.

For memory accesses the RU has its own bus to the memory controller. It consists of read and
write signals, an address bus, a data read and write bus and a signal indicating valid data from
memory. The memory controller does not arbitrate between memory requests from the pipeline
and the RU, so the RU must regard the mem rdy signal. If it’s set to one, a memory access from
the RU is allowed, otherwise the RU must request a memory access from the scheduler by setting
the mem req to one and req thread to the current thread.

To access the XREGs from the processor pipeline the reconfigurable unit is connected to the
SFR bus. Hence the XREGs can be read and written like other special function registers, e.g. the

5

data
rd

data
wr

wrrd

mem_rdy

mem req

addr data
valid

memory

end op

start op

instr

SFR
wr addr data

pipeline

S
C

H
E

D
U

L
E

req_thread

threadclk

Exchange
Registers

thread

RECONFIGURABLE UNIT

Figure 5: Interface of the reconfigurable unit.

program status words or the thread information words, by using the mfcr (move from core register)
and mtcr (move to core register) assembler instructions. Table 1 shows the sfr bus addresses of the
XREGs in the current implementation. Note, that in the current implementation of the simulator
the threads share the XREGs unlike the general purpose register sets. Theoretically there is no
limitation on the number of XREGs within the 16 bit address space of the SFR bus. Normally
not the data itself but only pointers to data regions in memory will be exchanged between the
processor pipeline and the RU. Therefore only few XREGs are needed.

XREG Address
XREG0 0x8100
XREG1 0x8104
XREG2 0x8108
XREG3 0x810c
XREG4 0x8110
XREG5 0x8114
XREG6 0x8118
XREG7 0x811c
XREG8 0x8120
XREG9 0x8124
XREG10 0x8128
XREG11 0x812c

Table 1: Addresses of Exchange Registers.

The current implementation of the simulator allows to run a multithreaded workload, one or
more threads using the reconfigurable unit in turn. However, if more than one thread is using the
RU the programmer or compiler must take care of threads using the same exchange registers. The
threads may interfere each other if they are reading and writing different values from the same
XREGs. Furthermore the real-time behavior of the thread with the highest priority cannot be
guaranteed, if this thread must share the RU with another low priority thread.

NB: According to the access rules of the SFR bus, the sfr thread, sfr wr and sfr addr signals
are set one cycle before the sfr data may be written (in case of a write) or is valid (in case of a
read). A detailed description of the SFR bus can be found in [5].

6

3.2 Instruction Set Extension

In order to use the features of the reconfigurable unit at least four instructions are necessary,
namely mol set, mol exec, mol movtx, mol movfx. The mol movfx and mol movtx instructions
read and write the exchange registers and are directly mapped to the existing instructions mfcr
and mtcr. Hence they are executed by the address pipeline of the core processor affecting the
signals of the internal SFR bus.

mol set and mol exec correspond to the MOLEN complete set and execute instructions re-
spectively and extend the instruction set of the CarCore. The instructions are both 32 bit wide
and contain a 16 bit address field specifying the microcode. Figure 6 depicts the instruction format
of the new instructions. The position of the two opcode fields is the same as in the TriCore RRR
instruction format described in [2].

NB: The opcode for mol exec overlaps with the sub.f instruction of the TriCore floating point
unit [1].

mol_set ADDRHI 0x1 ADDRLO - 0x6b

31 24 23 12 7 020 19

mol_exec ADDRHI 0x3 ADDRLO - 0x6b

31 24 23 12 7 020 19

Figure 6: Opcode format of mol set and mol exec.

In order to make the use of the new instructions easier and to avoid changes to the TriCore
compilers the new instructions are introduced as preprocessor macros using inline assembler. They
are defined in the file tc molen.h (here showing the Hightec GNU compiler style):

1 //tc_molen.h
2 #define _mol_exec(addrhi, addrlo) \
3 __asm(".word 0x" addrhi "3" addrlo "06b")
4 #define _mol_setc(addrhi, addrlo) \
5 __asm(".word 0x" addrhi "1" addrlo "06b")
6 #define _mol_movtx(xreg, dreg) \
7 __asm("mtcr "xreg", %0" : : "d"(dreg))
8 #define _mol_movfx(dreg, xreg) \
9 __asm("mfcr %0, "xreg : : "d"(dreg))

10

11 //Example 1
12 _mol_setc ("00","04"); //setc 0x0004
13 _mol_movtx("0x8100", 15); //move value of data register d15 to XREG0
14 _mol_exec ("00","64"); //exec 0x0064
15 _mol_movfx(15, "0x8104"); //move value of XREG1 to data register d15
16

17 //Example 2
18 // XREG0, XREG1, CCU_DCT_ADDR_HI/LO, RMC_DCT_ADDR_HI/LO
19 // are defined in cc_rusetup.h
20 #include "cc_rusetup.h"
21

22 int param1[2048] = { 200, ... };
23 int param2[2048] = { 200, ... };
24

25 _mol_movtx(XREG0, param1); //mov address of array to XREG0
26 _mol_movtx(XREG1, param2); //mov address of array to XREG1
27

28 _mol_setc(CCU_DCT_ADDR_HI, CCU_DCT_ADDR_LO);
29 _mol_exec(RMC_DCT_ADDR_HI, RMC_DCT_ADDR_LO);

7

In contrast to the mol movfx and mol movtx instructions mol set and mol exec are recognized
by the scheduler and directed to the reconfigurable unit. They are decoded there and the 16 bit
address of the microcode is generated from the addrhi (containing the most significant 8 bits)
and addrlo parts of the instruction.

3.3 Scheduling

The extension of the CarCore with the reconfigurable unit makes changes to the scheduler nec-
essary. The thread information word (TIW) now has two more entries controlling the scheduling
behavior for the reconfigurable unit (Figure 7). The other flags of the TIW are described in [5] in
its details. The new entries are RC ACT and RC MEMREQ and are maintained by the scheduler itself.
RC ACT is set to one, if the reconfigurable unit is active for this thread, RC MEMREQ indicates, that
the reconfigurable unit has requested a memory access via the ru mem req port.

TIW

3 2 1 0

ACTLDST-BRANCH_CNT-
MC
ACT

MC
LOCK

MC
RDY

-
RC
ACT

RC
MREQ

-

7 6 411 10 9 815 14 13 12

Figure 7: Thread Information Word.

To make a scheduling decision the set/execute instructions and the flags of the reconfigurable
unit must be considered. The new scheduling rules are as follows:

1. Dispatch a set or execute from one of the instruction windows to the RU. If more than one
thread has a reconfigurable instruction the scheduler takes that one with the highest priority.
The RC ACT flag is set in the corresponding TIW and the thread as well as the RU is locked
until the operation has finished. Other threads needing the RU must wait until the the end
of operation is signaled and the TIW flags are reseted.

2. Dispatch an instruction to the data pipeline. The selection of the thread follows the same
rules as in the original CarCore i.e. a data instruction from a thread with a priority as
high as possible is dispatched whereas the thread must not be locked by a branch, load or
microcode instruction and a reconfigurable instruction of it must not be executing.

3. Dispatch an operation to the address pipeline. The scheduler chooses a thread with the
highest priority and successively considers the following cases until an operation is found.

A thread executing a reconfigurable instruction normally holds as locked. But if the flag
RC MEMREQ of this thread is set the RU requests a memoy access. The scheduler checks if the
memory access already takes places in the current cycle by reading the same mem rdy signal
as the RU. Otherwise it introduces an empty slot into the address pipeline to give the RU
the possibility of a memory access.

If a thread is locked by a load and the data in the memory buffer is valid, the load insert
instruction is inserted into the pipeline. If a thread is locked by a microcode, the next
microinstruction of the microcode is executed.

Finally, if none of the special cases applies, the scheduler tries to dispatch an address in-
struction from the instruction windows.

These rules allow the scheduler to dispatch the instructions to the two pipelines and to the
reconfigurable unit in parallel. Furthermore the pipeline can be used during RU operation by the
threads not using the RU. Thereby the restriction applies that only one thread can use the RU
at a time, other threads accessing the RU have to wait until the RU finished its operation. The
real-time behavior of one thread can only be guaranteed if the highest prioritized thread is the
sole accessing the reconfigurable unit.

Concurrent memory accesses of the address pipeline and the RU are also arbited by the sched-
uler. If the RU cannot immediately access the memory the scheduler decides according to the
thread priorities to which thread the access is granted.

8

XREGsSET

control
store map

EXEC

control
store map

SET

control
store

start_op

instr

end_op

mem_req

EXEC

control
store

thread

req_thread

emulated
CCU

w
r

rd

a
d
d

r

d
a

t a
_
w

r

d
a

t a
_

rd

d
a

t a
_

v
a
l id

mem_rdy

Figure 8: Internal view of the CarCore reconfigurable unit

3.4 Simulation

The reconfigurable unit is written as extension to the existing SystemC simulator of the Car-
Core. The RU is implemented as module and is emulating the mol set and mol exec instructions.
Currently the simulation is restricted to microcodes fixed in the control store. Therefore the mi-
crocodes are not needed to control the setup of the reconfigurable hardware (there is none in the
simulator). Furthermore they are not used to control the execution on the CCU, because the
CCUs are emulated by a standard C function call. This section explains how the emulation works
and why the experimental results can be considered realistic.

3.4.1 RU Operation

After the start op signal is set to one, the RU decodes the instruction and generates the microcode
address. According to the instruction the address is looked up in the set or execute control store
map respectively and translated to a position in the control store. The position in the control
store determines if the address is valid and which CCU functionality must be emulated by the
simulator. Figure 8 shows the internal organization of the RU.

For set instructions no functional emulation takes place, because they only change the internal
status of the RU. Set instructions affect the core processor if they access the memory. Therefore
a memory profile can be specified performing the memory accesses and generating traffic on the
memory bus which is explained later in this section.

In case of a execute instruction, a standard C function is called to emulate the CCU func-
tionality. The XREGs associated with the microcode to be executed are read and the values are
passed to the standard C function. If the values of the XREGs are pointers to structures it can
be necessary to read out the memory of the simulator and write its contents into a standard C
struct passed to the function. After the computation is completed the results of the function are
written back to the XREGs. If necessary, the contents of C structs must be copied back to the
memory of the simulator. The whole emulation happens in the first cycle the execute instruction
is performed on the RU.

3.4.2 Memory Profile

Until now both the processing time of a quite complex CCU operation and the memory accesses
made by a CCU are neglected. As concurrent memory accesses of the RU and the core pipeline are
crucial for the timing of a multithreaded workload it is important to simulate the actual processing
time and the traffic on the memory bus that would be performed by a hardware implementation
of the function.

9

To allow the user of the simulator to easily change the timings of a CCU operation a config-
uration file specifies the number of cycles the CCU needs and the read and write accesses to the
memory. The listing shows an example of a configuration file:

1 3025 ## cycles: normalized processing time
2

3 302500 ## divisor
4

5 ## time: with respect to magnitude
6 ## the absolute cycle of an operation is calculated
7 ## by time * cycles / divisor
8 ##
9 ## operation: LD or ST

10 ## address: address in memory
11 ## width: 8, 16, 32, 64
12

13 #time op address width
14

15 100 LD 0x00100000 32
16 200 LD 0x00100004 32
17

18 ...
19

20 251300 ST 0x00100000 32
21 251400 ST 0x00100004 32
22 ...

The first number of the so called memory profile is the normalized processing time. It represents
the number of cycles of the core processor the CCU needs for completion not including latencies
of memory accesses. It’s noteworthy that all runtimes are counted as core processor cycles, be-
cause hardware implementations like the MOLEN prototype may use a slower clock speed for the
reconfigurable processor than for the core processor. The second number in the profile is a divisor
which all following cycle numbers are divided by. Then a list of memory accesses follows, each in
a new line. A specific memory access takes place in the cycle computed by time ∗ cycles/divisor
after the begin of operation not counting the cycles of memory latencies. The result of the division
is truncated and if more than one access results on the same cycle number only the first one is
performed.

NB: The memory accesses are really performed in the simulator, so stores will change the
content at the specified address.

3.4.3 DCT Memory Profile

The current simulator only supports one CCU which performs a discrete cosine transformation
(DCT) on a block of 128 integer values. The MOLEN project has developed a corresponding hard-
ware implementation of this CCU and validated it against its prototype. The number of memory
accesses and the total runtime for the DCT are extracted from the prototype and normalized to
get the number of cycles of the core processor. From this numbers the DCT memory profile for
the CarCore simulator is derived. They form a generous estimation of the runtime behavior not
considering any optimization. The advantage of a changeable memory profile is, that it is easy to
check, if a CCU hardware with other timing behavior would boost the performance of the whole
multithreaded workload.

10

10971846

73026
2513214

72972

6165842

6166156
2434398

2434568

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

mjpeg
software

mjpeg
ru

mjpeg O3
software

mjpeg O3
ru

ru
nt

im
e

remaining code
dct kernel

Figure 9: Runtimes of MJPEG benchmark in one single thread.

4 Evaluation

To evaluate the impact of the reconfigurable unit on the CarCore first a workload with a single
thread was chosen. A implementation of the MJPEG algorithm serves as load which was compiled
in four different configurations: A configuration with pure software execution (not using the
RU) and one executing the DCT kernel of the benchmark in hardware (using the RU). Both
configurations exist in a version with and without compiler optimizations (-O3 flag). The chart
in figure 9 shows the runtimes in core processor cycles of each configuration converting the first
frame of a picture sequence to a JPEG image.

The comparison of the unoptimized binaries shows a speedup of the pure DCT function call of
about 150 times using the reconfigurable unit. The DCT function is mostly executed by the RU
and needs more than half of the processor cycles than the pure software solution. The speedup of
the whole application is 2.75 which is similar to the results of the MOLEN project. This is close to
the theoretical maximum of 2.78 (assumed a runtime of zero cycles for the DCT). The performance
gain of the optimized binaries is 34.44 for the kernel and 1.97 for the whole application (theoretical
maximum of 2.03). Although the runtime of the reconfigurable unit is generously estimated, the
performance gain is very high and a further optimization of the RU runtime does not seems to be
necessary.

For the evaluation of a multithreaded workload all four threads executed the same MJPEG
benchmark and independently processed the same picture. Figure 10 shows the runtimes of the
optimized binaries using the fixed and the round robin priority scheme. They are compared to the
runtime of the sequential execution of the benchmark with and without using the reconfigurable
unit. The speedup of the multithreaded workload compared to the sequential execution of the
benchmark performing the DCT in the reconfigurable hardware totals to 1.97 and 1.69 for the
round robin and the fixed priority scheme respectively. Compared to the sequential execution
purely in software the multithreaded speedup nearly doubles to 3.89 (round robin) and 3.34 (FPP)
respectively.

5 Conclusion

The CarCore reconfigurable extension speeds up applications with a computational intensive kernel
by a factor up to 2.75. In combination with the multithreading features a speedup of 3.89 is

11

4.924.193

2.580.921

10.030.160

19.790.448

5.086.821
5.933.368

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

round robin fixed prio sequential
ru

sequential
software

scheduling

ru
nt

im
e

t0
t1
t2
t3

Figure 10: Runtimes of the multithreaded execution of the MJPEG benchmark.

possible. This is achieved by the integration of a reconfigurable unit similar to a co-processor.
Changes to the scheduler guarantee the real-time capabilities of the thread with the highest priority
in combination with the use of the RU. Therefore the memory accesses of the RU must be controlled
by the scheduler.

A future challenge will be to use the reconfigurable unit with more than one real-time thread.
A new scheduling scheme has to be integrated and the concurrent use to the reconfigurable unit by
more than one thread should be allowed. It must be assured that the threads cannot disturb each
other during the usage or even worse the reconfiguration of the RU. Hence memory accesses will
be crucial as they may occur concurrently from the instruction fetch stage, the address pipeline
and each active CCU in the reconfigurable unit.

References

[1] Infineon Technologies AG, München. TriCore 1 32-bit Unified Processor Floating Point Unit,
June 2002. Version 1.0.

[2] Infineon Technologies AG, München. TriCore 1 Architecture Manual, September 2002. Version
1.3.3.

[3] G.K. Kuzmanov. The Molen Polymorphic Media Processor. PhD thesis, Delft University of
Technology, December 2004.

[4] G.K. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis. The molen processor prototype. In
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM 2004), pages 296–299, April 2004.

[5] Stefan Maier. Entwurf und Evaluierung eines mehrfädigen TriCore-kompatiblen Prozessork-
erns. Master’s thesis, Universität Augsburg, June 2005.

[6] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G.K. Kuzmanov, and E. Moscu Panainte.
The molen polymorphic processor. IEEE Transactions on Computers, pages 1363–1375,
November 2004.

12

	Introduction
	Preconditions
	CarCore
	MOLEN Polymorphic Processor

	CarCore RU Extension
	Interface
	Instruction Set Extension
	Scheduling
	Simulation
	RU Operation
	Memory Profile
	DCT Memory Profile

	Evaluation
	Conclusion

