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Abstract

Platelet integrity and dynamics are crucial in hemostasis and thrombosis. During these
processes, circulating disc shaped platelets are recruited from the blood stream to sites of
vascular injuries. The initial platelet and plasma protein, von Willebrand factor (VWF),
interaction occurs platelet activation independent. Depending on the combination of laminar
blood flow shear stress and the platelet-vWF interplay, the unactivated platelets either adhere
or form tethers by pulling membrane pieces from the moving platelets. The irreversible
attachment step of activated platelets to vVWF induces spreading and in contrast, to collagen,
which is exposed after endothelial injury, aggregation.

The major aim of this interdisciplinary thesis was to bridge the gap between in vitro
measurements and the understanding of factors influencing the platelet-vWF interaction.
Specific focus was given on individual phenomena as well as collective phenomena. The
single investigations involved variations in the platelet mechanical properties as well as in the
vWEF. To explore the role of cortical tension of the platelet envelope, their cytoskeleton was
disrupted. Variations in the cholesterol concentration, which is a component of the plasma
membrane, were quantified to measure the impact on the investigated platelet functions as
platelet adhesion and tether formation. Altering the size distribution of the vVWF multimer and
mutations in the vVWF protein were investigated to clarify the role of the vWF functionality on
the platelet-vWF interplay. The formation of platelet-vWF aggregates was characterised to
study the conditions of stenosis and atherosclerotic occlusions.

The multi step experiments discuss variations in the hematocrit (HCT), especially the impact
of platelet-red blood cell collisions and the flattening of the flow profile by higher HCTs. The
platelet-tumor cells interactions were studied to clarify the role of tumor cells in platelet
activation, aggregation and receptor transfer.

The results of the individual phenomena showed that disrupting platelet F-actin with
cytochalasin D decreased the platelet adhesion to vWF, the membrane tight adhesion area and
the tether length compared to untreated platelets. On the contrary, breaking up the
microtubular system with nocodazole had the inverse effect. These results indicate that the
membrane tension is reduced after cytochalasin D treatment and increased after nocodazole
treatment. Consequently, the membrane undulations would be enlarged after F-actin
disruption and reduced after microtuble breakage. The platelet cholesterol loading as well as
the depletion decreased the platelet adhesion and the tether length slightly. However, both

cholesterol concentrations increased minimal the weak platelet adhesion area compared to
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control platelets. The cholesterol concentration is assumed to minimal enhance the
membrane-cytoskeleton adhesion. To clarify the role of vVWF on the platelet-vWF interplay,
first the investigated various commercially available vVWF products showed comparable
results in platelet adhesion to vWF or collagen and in tether formation to vWF. In contrast,
the subfractions of one product, Haemate, depicted the differences in the multimer
distribution. The large multimers were most pronounced at the beginning of the aggregate
formation to collagen as well as at high shear rates as high as 10,000s™. However, the smaller
multimers were comparable with the larger ones after 2min of flow exposure at 1,500s™.
Second, the vWF loss of function mutant (lofm) decreased the platelet adhesion, increased the
rolling velocity and left the tether length constant compared to the vWF wild type (WT).
Third, above a critical threshold of 10,000s" to 15,000s™ reversible platelet-vWF aggregates
were formed, although platelets were not activated. Platelet-vWF conglomerates were
constantly rolling in flow direction, grew in size with increasing shear rate, but were
unaffected by flow time exposure increase. These aggregates assembled in whole blood and in
washed blood cell suspensions reconstituted with various vVWF proteins. Recombinant full-
length vWF generated larger vWF networks than a commercial vWF preparation from pooled
human plasma. In contrast, platelet-sugar free vVWF rolling aggregates formation was
hindered. Perfusion of collagen coated surfaces caused shear dependent assembly of vWF
networks anchored to the collagen fibrils and capture of activation-blocked platelets within
them. The von Willebrand disease (VWD) type 2B mutant, a gain of function mutation,
rendered the rolling platelet-vWF conglomerate formation at a shear rate as low as 1,500s™".

The multi component experiments showed that variations in the HCT did not affect the
adhesion area and the tether formation, but the adhered platelet number was strongly
influenced. These variations are proposed to be mainly due to concentration changes of the
platelets near the vessel wall. This higher concentration leads to an increased adhesion
probability. Small cell lung carcinoma cells (SCLC) and maligne melanoma cells (MV3) and
their supernatants induced platelet aggregation and secretion of adenosine triphosphate
(ATP). Over vWF, SCLC or MV3 cell blood suspensions caused no tumor cell adhesion or
platelet interaction. By flow cytometer measurements no transfer of tumor cells receptors to
platelets or vice versa could be observed. Metastasizing SCLC cells entering the blood stream
might induce platelet aggregation due to induced ATP secretion of platelets. The impact of
platelet microparticle incubation of tumor cells remained the interaction pattern and the

receptor transfer unchanged.
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1. Introduction

In haemostasis and thrombosis platelet integrity and dynamics are of central importance. At
sites of vascular injuries circulating platelets are recruited from the blood stream to initiate
wound closure (Reininger 2008 b)). Little is known on the impact of individual and collective
phenomena on the actual biophysical mechanism of platelet recruitment. The complex
behaviour and interaction of cellular objects like platelets and the plasma protein, von
Willebrand factor (vWF), is investigated under blood flow conditions. Finally, the platelet-
tumor cell interaction is analysed. Due to the complexity of this interdisciplinary project each
result chapter of the performed experiments will be introduced by a specific introduction
concerning the scientific topic, in order to aid the readability and understandability of this

thesis.

The following general introduction will cover the basics of haemostasis and thrombosis as

well as the involved physical and biological processes.

1.1 Haemostasis and thrombosis

At sites of vascular injury platelets aggregate and form thrombi, which results in a bleeding
stop. However, in some cases these platelet aggregates occlude atherosclerotic arteries
causing cardiac and cerebrovascular diseases (Reininger 2009; Andrews and Berndt 2008;
Reininger 2008 a); Reininger 2008 b); Reininger 2006; Ruggeri et al., 2006; Lopez and Dong
2005; Andrews and Berndt 2004; Bernardo et al., 2004; Shrimpton et al., 2002). After
vascular injury collagen of various types (e.g. type L, II) is exposed to the blood flow (fig. 1).
Collagen is the major component of the subendothelium. The negatively charged endothelial
cell layer lining the inner walls of the blood vessel provides a channel for the delivery of
nutrients, hormones and oxygen, whilst also acts as a barrier against toxins, drugs and
infective viruses (Potzsch and Madlener 2009). A further function of this layer is to prevent
the adhesion of circulating cells from the blood flow to the vessel wall (fig. 1) (Reininger
2006; Savage et al., 1999). Platelet adhesion, their aggregation and thrombus formation occur
in distinct steps. In arterial flow platelets circulate in the blood stream as disc shaped objects,
which can withstand high dynamical shear stress and their shape is important to their function
in haemostasis (White and Jennings 1999; White and Rao 1998; Cramer et al., 1991; White
1987).
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Figure 1: Scheme of arterial blood flow in distinct steps. In a) the bulk of erythrocytes is lifted towards the
centre of the vessel wall (axial migration), thus creating a platelet rich fluid boundary layer near the vessel wall
(plasma skimming). This separation is due to the Fahraeus Lindqvist effect. Soluble vIWF is shown in its globular
form. Above a critical shear rate the vWF molecule is stretched. In b) a sketch of shear induced vWF
immobilization and unfolding on subendothelial collagen type I and Il during blood flow is depicted. The
platelet GPIba interacts with the vWF Al domain. Additionally, vIWF is released from Weibel-Palade bodies and
from the a-granules of the platelets (modified and adapted from Reininger 2008 a)).

To respond to vascular injury, platelets adhere to endothelial damage, become activated,
undergo shape change, which is combined with a platelet cytoskeletal contraction, and spread
in an attempt to seal the vascular leakage (Kuznetsova et al., 2007; Barkalow et al., 2003;
Grgurevich et al., 2002; Gaffet et al., 1995; Fritz et al., 1994; Holmsen 1994; Cramer et al.,
1991; Wurzinger 1990). This change in the morphology of the platelets leads to a secretion of
platelet ingredients and to variations in the membrane composition. The activation is mainly
responsible for the formation of filamentous pseudopods, which connect the platelets among
each other. In particular, coagulation factors, vascoactive agents and platelet activating agents
such as adenosine triphosphate (ATP) are secreted. Due to the release of these mediators,
more thrombocytes get activated and consequently, the blood clotting is accelerated (P6tzsch
and Madlener 2009). In this activation mechanism the glycoprotein GPIba is believed to play
an essential role by serving as the surface receptor that attaches platelets to the surface
(Cramer et al., 1991; Chesterman and Berndt 1986; George et al., 1984). This interaction is
mediated by the vWF that binds to the subendothelial structures under blood flow (fig. 1)
(Reininger 2009; Andrews and Berndt 2008; Reininger 2008 a); Yago et al., 2008; Reininger
et al., 2006; Lopez and Dong 2005; Bernardo et al., 2004; Shrimpton et al., 2002; Cramer et



1. Introduction 9

al., 1991; Chesterman and Berndt 1986; George et al., 1984). The interplay of the vWF Al
domain with the GPIba receptor has a short half-life time and by itself cannot provide
irreversible adhesion. Through the binding site for actin binding proteins, the GPIb anchors
directly to the membrane skeleton (Van Lier et al., 2005; Kasirer-Friede et al., 2004). This
interaction is the first introductory step for the thrombus formation. Until no permanent
adhesion, which leads to aggregation and spreading, is mediated by the glycoprotein VI or the
integrin allbP3, the platelets translocate and form tethers (fig. 2), as a consequence of the
torque induced by the blood flow (White and Rao 1998; Tablin and Castro 1992; Casella et
al., 1981; Jung et al., 1981). Furthermore, it was also observed that the main platelet body
could detach from the tether and the surface, yielding in a single tube-shaped platelet
fragment (fig. 2). These fragments translocate independently or detach completely from the
surface and form ruptured tethers as observed by various groups (fig. 2) (Reininger et al.,
2006; Casella et al., 1981). Tethers are clearly distinct from filopodia, which are actively
formed due to intracellular actin polymerisation following platelet stimulation.
Morphological, filopodia are twice as thick and form seven times slower than tethers
(Reininger et al., 2006). The GPIba domain on tethers is clustered in distinct subdomains and
F-actin is detected in tether ends (Reininger et al., 2006), whereas no microtubules are
detected in the tether (White and Rao 1998; Tablin and Castro 1992; Casella et al., 1981; Jung
etal., 1981).

Figure 2: Scanning electron micrograph of the platelet tether formation under blood flow due to interaction with
the vWF Al domain. The white arrows show tethers on the platelet body and additionally ruptured tethers (scale
bar: 500nm) (taken from Reininger et al., 2006).

Above a critical shear rate of approximately 1,500s" platelet attachment to thrombogenic
surfaces depends on the platelet GPIba receptor and its interaction with the vVWF A1 domain
(Reininger 2009; Bergmeier et al., 2006; Reininger et al., 2006). Soluble vWF binds via its
A3 domain to collagen and therefore, allows platelet arrest. The crucial task of the GPIba and
the vVWF Al domain is to enhance binding, while shear forces increase and thus, the
unfavourable condition for adhesion (Reininger 2009; Reininger 2008 a); Ruggeri et al., 2006;

Savage et al., 1999). This platelet-vWF interaction requires no prior platelet activation and is
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only transient. The GPIba receptor is present in the membrane as the complex GP Ib-I1X-V.
Platelets can permanently bind to vVWF by engagement of their integrin alIbf33 receptors with
the Arg-Gly-Asp sequence in the vVWF C1 domain. This complex receptor ligand interplay is
summarized in a model sketch in figure 3 (Reininger 2009; Reininger 2008 a); Goto et al.,

1995; Ruggeri et al., 1983).

cleavage site for
ADAMTS-13

Figure 3: Scheme of the vWF binding sites and cleavage site for ADAMTS 13 (adapted from Reininger 2008 a)).

This adhesion step is dependent on the platelet activation and calcium intracellular signalling.
After activation the platelets change their shape, spread and attract further platelets from the
flowing blood (P&tzsch and Madlener 2009; Reininger 2009; Reininger 2008 a); Reininger
2006; Goto et al., 1995; Ruggeri et al., 1983). Newly arriving platelets at the vascular injury
site require more VWF to bridge not only the platelets to exposed collagen, but also to each
other by being sandwiched between the multiple platelet layers of a haemostatic plug
(Potzsch, Madlener 2009; Reininger 2009; Reininger 2007; Reininger 2006). Primary
haemostasis characterizes the concerted action of all these processes: initial platelet arrest,
platelet adhesion, and platelet aggregation. These activated platelets exhibit a
phosphatidylserine rich membrane surface, which is an acceleration factor for blood
coagulation and can not be found in resting platelets (Butenas et al., 2001). Platelet activation
is a stringent condition for assembly and activation of tissue factor, factor VII, the tenase
complex and the prothrombinase complex and thus, mediate secondary haemostasis. The final
platelet clot is a fibrin-stabilized platelet aggregate that occludes the vessel injury and
prevents deleterious leakage of blood (Pdtzsch and Madlener 2009; Bruhn et al., 2007;
Reininger 2006). The prothrombotic response is simultaneously limited to the region of
leakage closure by potent antithrombotic and anticoagulatory counter-regulation (Reininger

2008 a)).
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1.2 Cellular components of the blood

Max Schultze reported in 1865 on cells in the blood, which were smaller than erythrocytes
and were able to agglutinate (Schultze 1865). 17 years later Giulio Bizzozero investigated
blood platelets by means of vital microscopy in amphibians and observed that platelets attach
to vascular injury prior to the formation of blood clot (Bizzozero 1882). This was the first step
in the field of thrombotic blood clotting research (Potzsch and Madlener 2009). Blood in the
human body is in constant motion to deliver cells and nutrients to all regions in the organism.
Whole blood consists of plasma, red blood cells, platelets, and white blood cells. Plasma is a
water-based solution composed mainly of proteins and electrolytes. Platelets constitute only
0.3% of the blood’s volume, but erythrocytes constitute nearly half the blood volume (Crowl
and Fogelson 2009; Hathcock 2006; Goldsmith 1971). The volume ratio of cellular and fluid
components of the blood is described by the hematocrit (HCT) value. Normal HCT values are
in the range of 41% for women and of 46% for men (Silbernagel and Despopoulous 2007).
Therefore, erythrocytes are responsible for most of the viscous and elastic fluid properties
(Hathcock 2006; Duke 1910). Erythrocytes act as micro mixers within the blood, as the
velocity profile is parabolic. This profile causes erythrocytes to move over one another with a
shear dependent rotational motion (Hathcock 2006; Goldsmith and Turitto 1986).
Erythrocytes are responsible for the gas transport in the blood. Leukocytes are divided in
different groups: the granulocytes, the monocytes and the lymphocytes. All of them have
functions in the immune system (Koolmann and R6hm 2002). Platelets are involved in the
haemostatic repair of vasculature. This challenging task seems to be displayed especially
under high shear conditions (Bruhn et al., 2007). Platelets are enucleate and negatively
charged cytoplasmic fragments of megakaryocytes and are released from the bone marrow
into the blood (Sackmann and Merkel 2010; P6tzsch and Madlener 2009; Bruhn et al., 2007,
Reininger 2006; Ogawa 1993; Golde 1991). The inactive platelet plasma membrane shows an
ordered distribution of the membrane phospholipids, which is altered after activation. Due to
this distribution change the clotting process is fostered and accelerated (P6tzsch and Madlener
2009). As the lipid bilayer is incompressible, the increase of the surface area of a platelet,
which once activated undergoes spreading, is provided by the tiny folds on the exposed
surface and by channels of the open canalicular system (Behnke 1970). Their membrane is
relatively smooth compared to the leukocyte membrane and shows a fine rugose appearance,
resembling the gyri and sulci on the surface of the brain (White and Escolar 1993). Small
openings of the surface, which connect the open canalicular system, are randomly dispersed.

The platelet membrane has a thicker exterior coat or glycocalyx than other blood cells (White
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1971). Platelets contain three major components of secretory organelles, including o-
granules, dense bodies and lysosomes (Heijnen et al., 1998). Their lifetime in circulating
blood is 7-10 days (Reininger 2008 a); White 2007). Non-activated platelets circulate disk
shaped in the blood stream with an average diameter of 2.0um to 5.0um and a thickness of
around 0.5um to lpm (fig. 2) (Protzsch and Madlener 2009; Bessis 1973; Tocantins 1938;
Bizzozero 1882; Donne 1842). At high flow rates thrombocytes interact with a variety of
plasma proteins, which are tightly regulated to allow on the one hand the sealing of a vascular
injury, but on the other hand prevent an overshooting reaction such as lumen occlusion and
thromboembolism. Intense attention will be given to the largest plasma protein in the blood
flow, the vWF. The vWF functionality and properties will be discussed in chapter 1.3. VWF
helps to arrest fast flowing platelets on exposed collagen of the damaged subendothelial
surface (Potzsch and Madlener 2009; Reininger 2007; Reininger 2006). Resting platelets
express approximately 25,000 to 30,000 of the GPIb-IX receptors (Andrews et al., 1999) and
about 80,000 GPIIb-IIla receptors (White 1987). Both receptors are mobile and their ability to
move is extremely important for their function in hemostasis. After platelet activation and
spreading these receptors move spontaneously and can cluster (White et al., 1995 a); White et
al., 1995 b); White et al., 1995 ¢); Escolar et al., 1994; White et al., 1994; White and Escolar
1990).

1.2.1 Cytoskeleton of platelets

The two basic components of the platelet membrane are the phosholipid bilayer and the
underlying cytoskeleton. The platelet membrane acts as a barrier between the cytosol and the
extra cellular fluid, whereas the cytoskeleton is responsible for the cell’s shape, strength and
motility (Hochmuth and Marcus 2002; Hochmuth et al., 1983; Hochmuth and Evans 1982).
Platelets circulate in the blood stream as disc shaped objects, which can withstand high
dynamical shear stress. To tolerate such forces acting on the platelet, platelets have developed
a highly organized cytoskeleton. The impact of variations in the cytoskeleton will be
discussed in detail in chapter 4. It consists of peripheral microtubule coils and rigid
crosslinked actin filaments that fill the cytoplasmic space and are connected to a membrane
skeleton composed of spectrin and its associated proteins (Potzsch and Madlener 2009;
Hartwig 2007; Barkalow et al., 2003; White and Jennings 1999; White and Rao 1998; Cramer
et al., 1991; Hartwig and DeSisto 1991; Fox et al., 1988; White 1987). Shape changes require

a remodelling of the resting cytoskeleton and the assembly of new cytoplasmic actin filaments
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(Hartwig 2007). The platelet’s discoid form is lost and it becomes round. Fingerlike structures
grow from the cell periphery. Then the platelet flattens over the surface and extends broad
lamellae. As the platelet flattens, the granules and organelles are squeezed into the centre of
the cell. Approximately 0.5um long actin filaments fill the lamellipodia (Fox et al., 1987).
After platelet activation the platelet integrin alIbp3 becomes tethered to the underlying actin
filaments by binding interactions between it and a still unresolved number of adhesive site
proteins (Buridge et al., 1990; Burridge and Fath 1989). Additionally, dynamic disassembly
and rearrangement of the microtubules occur. These microtubules have been shown to
centralise and constrict, due to their association with the cortical actin shell, which also
contracts upon activation (Tablin and Castro 1992; Jung et al., 1981; Nachmias 1980).
Microtubules show a cylindrical structure, in which the tubulin heterodimers are packed
around a central core. a- and B-tubulin form o-, P-heterodimers, which polymerize to
protofilaments. Thirteen linear protofilaments compose a ringlike complex, which
accumulates through a further polymerisation to a long tube of several microns (100um).
Only one microtubuli coil is responsible for the platelets discoid shape and its cytoskeletal
support system (Protzsch and Madlener 2009; Escolar et al., 1986; Kenney and Linck 1985).
The coil is not a bundle or microtubules bound together. It is a single microtubule wound up
many times to fit inside the resting platelets (White and Sauk 1984). Microtubules assemble
from the centrosome and grow outward into the cell cortex. From this point they turn and run
in parallel with the cell edges (Patel et al., 2005). The microtubule bundle lies close to the cell
wall, but never appears to contact it (Pipeleers et al., 1977). Microtubules are dynamic and
polar structures. It is possible to distinguish between a fast-growing end, the plus end, and a
slow growing, the minus end, which tends to loose subunits, if not stabilized. Embedding
them in a structure, called the centrosome, stabilizes the minus ends of microtubules, and the
rapidly growing ends are then free to add tubulin molecules. These plus ends can shorten as
well as lengthen: after growing outward for many minutes by adding subunits, its plus end
may undergo a sudden transition that causes it to loose subunits, so that the microtubule
shrinks rapidly inward and may disappear (Alberts et al., 2003; Koolman and R6hm 2002;
Brinkley 1985). The microtubule-associated proteins crosslink to the microtubule coil to
maintain its stability and to link to the underlying cytoskeleton (Tablin and Castro 1992;
Tablin et al., 1990; Kenney et al., 1988; Tablin et al., 1988; White et al., 1986; Kenney and
Linck 1985).

The cell cortex is formed by actin filaments lying just beneath the plasma membrane and

these filaments are cross-linked into a dynamic network by various actin-binding proteins.
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These filaments are polarized structures (Huxley 1963). The cortical actin filament network
determines the shape and mechanical properties of the plasma membrane as for example
internal transformation, contraction of the hemostatic plug and retraction of clots (Escolar et
al., 1986). Actin occurs in two different shapes, one monomolecular shaped globular actin, G-
actin, and the other one as helical homopolymer filamentous actin, F-actin. G-actin is an
antisymmetric molecule, which contains two domains. With increasing ionic strength the G-
actin reversible assembles to F-actin. G-actin carries tight adhered ATP molecules, which are
slowly hydrolysed by F-actin to adenosine diphosphate (ADP) (Kim et al., 2009; Alberts et
al., 2003; Koolman and R6hm 2002; Fox et al., 1984; Flanagan and Lin 1980; Brenner and
Korn 1979). As single G-actin molecules are linked in the same direction parallel, the F-actin
is polar, negatively charged. It is composed of two different ends, which show variable
polymerisation sites. If the ends are not stabilized by specific molecules, the plus end of the F-
actin will constantly grow to a critical concentration of the G-actin, whereas the minus end
will simultaneously collapse. That dynamic behaviour of growing and shrinking, without net
change in filament length, is called treadmilling. This phenomenon, like dynamic instability,
is a no equilibrium behaviour that requires input of energy, which is provided by the ATP
hydrolysis that accompanies polymerization (Mohrdieck et al., 2007; Alberts et al., 2003;
Pelletier et al., 2003; Koolman and Rohm 2002; Godette and Frieden 1986; Brenner and Korn
1979). The F-actin length can vary from less than one micrometer to several tens of
micrometers. The persistence length of actin filaments, which is a parameter of their bending
stiffness, is about 17pum. This is in the order of the typical contour length of actin filaments
(Mohrdieck et al., 2007; Le Goff et al., 2002). Especially, the F-actin networks are involved
in cell morphology, motility and adhesion processes (Pelletier et al., 2003).

Spectrin molecules bind directly to the cytoplasmatic side of the plasma membrane (Protzsch
and Madlener 2009; Kenney and Linck 1985). The cytoplasm of platelets is rich in glycogen
(White and Jennings 1999).

1.2.2 Cholesterol and platelet membranes

Platelet membranes are composed of lipid bilayers. These are fluid, which enables individual
molecules to diffuse rapidly. However, in the lipid bilayers cholesterol and glycolipids are
organised. Especially, large amounts of cholesterol are found in the eucaryotic plasma
membranes (Alberts et al., 2003). The cholesterol loading of membranes affects the

permeability, transport and enzymatic activities of the membrane and the availability of
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membrane surface receptors. Cholesterol is insoluble in water, but it is dissolvable in
phosholipids (Cooper 1987). A unique ability of cholesterol is to increase the lipid order in
fluid membranes, while maintaining fluidity and diffusion rates. Cholesterol provides low
permeability barriers to lipid membranes and is the basis for large mechanical coherence. The
bending modulus k of the platelet membrane is increased by cholesterol and therefore, the
repulsive undulation force is diminished. Cholesterol is considered to be important for several
plasma membrane-based properties in the human body, such as raft formation, protein sorting,
and cell signalling (Mouritsen and Zuckermann 2004). The influence of the cholesterol

concentration on the platelet functions will be discussed in chapter 5.

1.3 Von Willebrand Factor

The von Willebrand disease (vWD) has been investigated since 1926, when Erik Adolf von
Willebrand reported a severe bleeding disorder from a family living on an island of the
Finland coastline (Reininger 2008 a); Haberichter and Montgomery 2006; Schneppenheim
and Budde 2006). Bleeding is related with pseudohaemophilia, but in the following decades it
was pinpointed to be a failure in haemostasis residing in the plasma of the patients. In 1971,
Zimmerman was able to identify immunological vWF (Reininger 2008 a); Schneppenheim
and Budde 2006; Zimmerman et al., 1971). The influence of vWF mutations on the platelet-
vWF interaction will be focused in chapter 7. VWF is a multimeric glycoprotein of identical
subunits, which are composed of 2,050 residues with multiple A-, B-, C-, and D-type domains
(Reininger 2008 a); Reininger 2008 b); Yago et al., 2008; Verweij et al., 1986). The
multimers are formed within the endoplasmatic reticulum by disulphide linkage of dimers of
approximately 500kD and result in multimers of various sizes that may exceed 10,000kD or
Ium in length (Reininger 2008 a); Arya et al., 2002; Fowler and Fretto 1989). VWF in plasma
is globular and above a critical shear rate the vWF molecule is stretched. By atomic force
microscopy (AFM) stretched vWF fibres absorbed on OTS-SAM were imaged in tapping
mode under aqueous conditions (Siediecki et al., 1996) and the reversible formation from
globular to stretched vWF molecules under flow condition was reported by Schneider and
coworkers (Schneider et al., 2007). Endothelial cells and megakaryocytes synthesize and store
vWEF. VWF is stored in Weibel-Palade bodies of the endothelial cells, rod-shaped organelles
and presumably derived from the Golgi apparatus (P6tzsch and Madlener 2009; Reininger
2008 a); Reininger 2007; Butenas et al., 2001; Weibel and Palade 1964). VWF can be

secreted from endothelial cells either (i) constitutively by molecules that are released directly



1. Introduction 16

upon synthesis, or (ii) via a regulated pathway, in which stored mature vWF molecules are
released after stimulation by secretagogues. The release of vWF can either be apical or
luminal into the circulating blood or basolateral or abluminal into the subendothelial matrix
(Reininger 2008 a); Wagner 1989; Van der Kwast et al., 1986). Generally, it is assumed that
vWF stored within the Weibel-Palade bodies is composed of the largest multimeric species,
i.e. ultra-large vVWF, that are usually not observed in the blood of normal individuals
(Reininger 2008 a); Tsai et al., 1989; Wagner and Marder 1984). The metalloproteinase
ADAMTS 13 cleaves ultra-large vVWF at the A2 domain and is thus, a physiological
mechanism to prevent their appearance in the circulation (Reininger 2008 a); Moake et al.,
1982). The second storage site for vVWF is within the platelet a-granules (Reininger 2008 a);
Cramer et al., 1988). This storage may contain as much as 20% of the total vVWF present in
blood and consists also of the ultra-large vVWF multimers (Potzsch and Madlener 2009;
Reininger 2008 a)). As platelets release their granule contents only upon stimulation by
agonists such as ADP, collagen and thrombin, this secures ultra-large VWF multimer
availability at sites of vascular leakage. Simultaneous release of ultra-large vVWF multimers
from adjacent endothelial cells ensures the presence of haemostatically most effective
multimers at the vessel wall and in the fluid phase in the immediate vicinity of the vascular
lesion (Potzsch and Madlener 2009; Reininger 2008 a); Nesheim et al., 1991; Koutts et al.,
1978). The impact on the vVWF multimer size on the platelet-vWF crosstalk will be analysed
in chapter 6 and 8.

1.4 Physical properties of the blood flow

Under arterial and arteriolar flow conditions dependent on the shear rate and HCT, platelets
show an enhanced concentration near the blood vessel wall (Crowl and Fogelson 2009;
Woldhuis et al., 1992; Tangelder et al., 1985). More details on the influence of the HCT will
be quantified in chapter 9. The peak platelet concentration was not directly at the wall. It was
approximately Sum to 10pum in distance to the vessel wall, an effect attributed to
hydrodynamic lift or repulsion forces between the platelets and the wall (Hathcock 2006;
Eckstein et al., 1987; Tilles and Eckstein 1987). Platelets marginate to the vessel wall from
the centre. Thus, under most arterial flow conditions the platelet concentration near the wall is
increased by a factor of 2 to 3 compared to the centre of the vessel dependent on both the
HCT and the shear rate (Hathcock 2006; Holme et al., 1997, Takada et al., 1994; Aarts et al.,
1988; Alkhamis et al., 1988; Goldsmith and Turitto 1986). However, erythrocytes concentrate
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towards the high-velocity region near the centre of the vessel (Hathcock 2006; Eckstein et al.,
1987; Tilles and Eckstein 1987), leaving a thin, slower-moving, cell poor layer near the wall.
The near-wall platelets are influenced by inelastic collisions with red blood cells (Tokarev et
al., 2011). The high-velocity movement of erythrocytes through small vessels relative to that
of plasma is associated with depressed local HCT values in such vessels (Fahraeus-Lindquist
effect), thereby partially explaining the local decrease in blood viscosity. Additionally,
reducing the vessel diameter decreases the apparent viscosity of flowing blood. This effect is
most pronounced as the vessel diameter is lowered from 100um to 10um. This reduction
might be due to several physical factors (Hathcock 2006; Thurston 1972; Chien et al., 1966;
Fahraeus and Lindquist 1931). A few microns above the vessel wall the frictional drag of the
wall causes the axial flow velocity to go back to zero and Brownian motion causes the radial
movement towards the reactive wall (Hathcock 2006; Goldsmith and Turitto 1986; Bird et al.,
1960). Its magnitude can be estimated based on the molecule size, shape and the kinematic
viscosity of the medium using the Stokes—FEinstein relationship (Hathcock 2006; Bird et al.,
1960). Diffusion based transport is only effective over short distances and not across the
whole vessel diameter. Under steady laminar flow conditions the diffusion rate is dependent
on the diffusion of the cell, on the bulk cell concentration and the length of the vessel. The
number of collisions between the cell and the wall strongly influences the diffusion rate
(Hathcock 2006). Platelets are too large to be significantly controlled by Brownian motion
(Crowl and Fogelson 2009; Goldsmith 1971). The diffusive transport is important for proteins
(Crowl and Fogelson 2009; Hathcock 2006; Bird et al., 1960). The velocity profile across the
vessel is roughly parabolic and the non-uniform cell distribution depends on the fluid
dynamics of blood as a heterogeneous medium (Crowl and Fogelson 2009; Hathcock 2006;
Bird et al., 1960). As the flow through the vasculature is laminar, the viscous forces damp out
relative momentum differences between adjacent fluid layers. These forces prevent
disturbances between the layers and creating a smooth velocity profile across the vessel,
approximating a parabola (Hathcock 2006; Goldsmith and Turitto 1986). Commonly, the
blood movements throughout the vasculature are pressure driven across a branched network
of vessels of varying contours, diameters and length scales. Arterial flow is pulsatile. The
amplitude of pulsatility decreases with the distance to the heart (Hathcock 2006; Wootton and
Ku 1999; Swanson et al., 1986). The blood viscosity is a rheological parameter that depends
on complex interactions and deformations of suspended cells. Physical effects alter the local
HCT. Additionally, radial distribution of cells across a vessel influence blood viscosity in a

non-Newtonian manner (Fahraeus and Lindquist 1931). For most physiological shear rates the
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viscosity of the blood is ~ 0.035P (g/cms) (Hathcock 2006; Goldsmith and Turitto 1986). The
apparent blood viscosity enlarges in a non-Newtonian manner as the shear rates reduce <
100s™, thus enhancing vascular resistance (Thurston 1972).

Generally, shear rates in arteries are higher compared to those in veins. The highest wall shear
rates reached in small arterioles of 10—50um diameters vary between 500s™ and 5,000s™. In
the pathological obstructing atherosclerosis state wall shear rates of 3,000-10,000s™ have
been measured in coronary arteries with 50% stenosis (Back et al., 1977; Reininger 2008 a))
and can exceed 50,000s" at higher degrees of occlusion (Reininger 2008 a); Mailhac et al.,
1994; Strony et al., 1993).

1.5 Theoretical analysis of the cells behaviour
1.5.1 Adhesion of cells

The adhesion of cells or platelets from shear flow is a dynamic process that is controlled not
only by a complex interplay of specific attractive short-range lock and key forces (fig. 4) and
long-range repulsion forces, but also by the elasticity of the membrane and the soft shell
(Evans and Calderwood 2007; Boulbitch et al., 2001; Albersdorfer et al., 1997; Bruinsma
1995; Evans 1985; Leckband et al., 1995; Lipowsky and Seifert 1991; Seifert and Lipowsky
1990; Bell 1978). In the case of platelets and vVWF the lock and key interactions are
exemplary between the GPIba and the vWF Al domain. The most important non-specific
repulsive forces are probably the undulation forces or Helfrich repulsions. These result from
thermally excited bending fluctuations. The mean square of the amplitude of the oscillation
(u2 ) of the a quadratic membrane piece with a length d increases with ~ d°,

(%) = s T I, (1)
where kg is the Boltzmann constant, 7" the temperature, )y the bending modulus (Sackmann
2004; Simson and Sackmann 1998; Seifert 1995; Sackmann 1995). Aside these also
unspecific interactions, electrostatic and van der Waals forces, between the platelet membrane
and the vWF surface also exist (Sackmann 2004; Simson and Sackmann 1998). During
adhesion the receptors start to form clusters (fig. 4), thereby enhancing the adhesion energy
(Smith et al., 2008; Reininger et al., 2006; Boulbitch et al., 2001; Albersdorfer et al., 1997;
Goldmann et al., 1996; Cramer et al., 1991). For platelets the bond formation during the
adhesion process is believed to take place in two steps. First, the platelets adhere point wise

through the interaction of single ligands at receptors of the membrane and form discrete
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adhesion points (DAPs). Thereafter, clusters are formed from receptor-ligand pairs (adhesion
domains, tight adhesion regions), which stabilise the adhesion. The clusters form because of a
lateral phase separation of the receptors and the sugar polymers of the gylcocalyx (fig. 4),
which is driven by the competition of the attractive lock and key forces and the induced
repulsive force of the polymers (Sackmann 2004; Sackmann and Bruinsma 2002; Simson and

Sackmann 1998).

/ membrane
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Figure 4: Schematic drawing of the lock and key interactions and the repulsive forces of the gycocalyx at a
membrane. The grey line represents the model membrane (adapted from Sackmann 2004).

In the late actively regulated stage of adhesion, the actin cytoskeleton couples to the adhesion
domains. These adhesion domains are in close contact (~ 7nm) strongly adhering with the
non-fluctuating regions of the substrate (Smith et al., 2008; Albersdorfer et al., 1997). At
homogenous tight adhesion zones the receptor-ligand pair concentration of the membrane is
high (Boulbitch et al., 2001; Guttenberg et al., 2001) The clustering of the receptor during the
adhesion process might be due to a reduction of the local repulsion between the cell and the
substrate (Albersdorfer et al., 1997; Ammam and Lipowsky 1996). For membranes under low
tension, thermally induced fluctuations of the surface are more pronounced than those of a
membrane under moderate tension (Kim et al., 2009; Glassinger and Raphael 2006; Evans
1995). Helfrich derived a scaling law that tried to correlate the undulatory repulsion, the

tension and the attraction through a //z° van der Waals potential

(e);, =lio )
and

(gu)=0 (3)
where (z),, is the equilibrium mean spacing, o the tension and g, the adhesion energy

between membranes per unit area of adhesive contact (Helfrich 1995).
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1.5.2 Theoretical analysis of the formation of membrane tethers

During blood flow two physical conditions are crucial for the tether formation process. First
the localization of the force to a spot on the surface and second the existence of excess area in
the blood platelet (Evans and Yeung 1994). Exerting a force at a point on the platelet surface
led to the formation of long, thin cylindrically shaped tethers (Hochmuth and Marcus 2002;
Hochmuth et al., 1983; Hochmuth and Evans 1982). As the formation of a tether involves the
creation of a high curvature, the work to pull a tether is basically done against the bending
energy (Harmandaris and Deserno 2006; Boek et al., 2005; Marrink and Mark 2001; Lindahl
and Edholm 2000). The force required to maintain a tether at a given length depends upon
both membrane elastic properties and tension (Glassinger and Raphael 2006). If yield tension
is provided, tethers might be stable (Bukman et al., 1996). The membrane tension is assumed
to increase, as the tether is lengthened (Glassinger and Raphael 2006; Koster et al., 2003).
The tether behaviour is actually influenced by small variations in the tension of the membrane
(Glassinger and Raphael 2006). The apparent surface tension is determined by the sum of the
in-plane, far-field tension and the energy of adhesion between membrane and cytoskeleton
(Hochmuth et al., 1996). The increase in energy of the system during tether formation arises
from two sources: (i) an increase in bending energy owing to the movement of membrane
with no curvature from the disk like cell body to the cylindrical tether with a constant
curvature and (ii) the separation of the membrane from the cytoskeleton, where there is a
chemical affinity or free energy of adhesion y between membrane and cytoskeleton

(Hochmuth et al., 1996).
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2. Scope of the work

Aim of this interdisciplinary PhD thesis was to bridge the gap between soft cellular objects
e.g., platelets and a dissolved plasma protein, e.g. vVWF, which both change form and function
in a mutual interplay that is dependent on shear. Huge effort was undertaken to show the
interaction under blood flow conditions, mimicking the in vivo situation. Individual (e.g.
single platelet adhesion) as well as collective phenomena (e.g. platelet adhesion in the
presence of red blood cells) were studied using mainly the microfluidic flow chamber.
Specific focus was given to the impact of changes in the platelet mechanics, by variations in
the cytoskeleton, as well as the erythrocyte concentration, the HCT, and the role of the blood
coagulation glycoprotein vWF. These goals were achieved by combining experimental and
theoretical concepts.

The influence on the GPIba and vWF A1l domain interaction by changing various parameters
either of the platelets or of the vVWF protein was investigated. To clarify this complex platelet-
VWF crosstalk phenomenon, the thesis is divided in specific chapters, in which different
impacts on the platelets and on the vWF molecule are investigated. Each chapter deals with a
distinct problem. Finally, a general conclusion will be drawn. The main focus was placed on
either the platelet adhesion and tether formation on vWF, which does not require any prior
platelet activation, or on the platelet aggregate formation on collagen. A schematic overview

of the investigated impacts on variations of the platelets and the vWF is provided in figure 5.
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Figure 5: Schematic overview of the investigated topics of this thesis.
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In the first result chapter the influence of variations in the cytoskeleton is discussed. Here, the
platelets were treated with cytochalasin D, which disrupts the F-actin of the platelets, or the
microtubuli breaking drug, nocodazole. In the next chapter the impact of cholesterol loading
and depletion is investigated. The next three chapters deal with variations of the vWF protein.
The importance of the multimer size distribution of the vWF molecule and the comparison of
commercially available products is studied. The next chapter shows the impact of VWF
mutations and in the last chapter concerning vWF, the characterization of rolling platelet-
vWF aggregates is described. The physical influence of the platelet-vWF interplay is
investigated by changes in the HCT. The work discusses in the final chapter the platelet-

tumor cell interaction.
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3. Materials and methods

3.1 Biological sample preparation

The biological sample preparation was mainly adapted with slight modification to the work
previous published by Reininger and Ruggeri (Reininger et al., 2006; Ruggeri et al., 1983;
Ruggeri et al., 1999). The entire chemicals and suppliers are listed in the appendix A.

3.1.1 Blood samples preparation with activation inhibited platelets

Venous blood from normal consented female or male donors, who had not ingested platelet
relevant drugs for at least 10 days, was collected in a test tube. For the cytoskeleton (see
chapter 4), cholesterol (see chapter 5) and HCT (see chapter 9) flow experiments the test tube
contains the anticoagulant acid citrate dextrose (0,106M trisodium citrate), the irreversible
thrombin inhibitor H-D-Phe-Pro-Arg chloromethyl ketone (PPACK; 46uM), prostaglandin E,
(PGE;; 0.35ul/ml), the alIbB3 inhibitor aggrastat concentrate (0.25ug/ml) and apyrase grade
7 (1.3 ATPase U/mL). For the combined AFM-patch clamp set-up (see chapter 4) the H-D-
Phe-Pro-Arg chloromethyl ketone concentration was increased to 93uM (Reininger et al.,
2006). The blood sample was centrifuged at 170g for 15min. For cytoskeleton flow
experiments the platelet rich plasma (PRP) was incubated in a rolling chamber with
cytochalasin D (final concentration: 4uM) dissolved in DMSO for lh or with nocodazole
(final concentration: 5pg/ml) for 2h at 37°C. For the combined AFM-patch clamp set-up the
PRP was incubated at least 1h to a 4h maximum with cytochalasin D (final concentration:
8uM) or at least 2h to a 4h maximum with nocodazole (final concentration: 10pug/ml) at 37°C
(Reininger et al., 2006). For cholesterol flow experiments the PRP was enriched with or
depleted with cholesterol by incubation with 100mM methyl-B-cyclodextrin (MBCD)
saturated in 10mM cholesterol or using 10mM MBCD not complexed with cholesterol and
incubated for 30min at 37°C. The platelet count in the final suspension was adjusted to the
orginal value in the blood (230,000-390,000/ul). The PRP for the HCT perfusion experiments
was centrifuged at 1083g for 15min. The platelet count in the final suspension was adjusted to

200,000/pul and the HCT to around 20%, 40% and 60%.
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3.1.2 Blood sample preparation with plasma free blood and activation inhibited platelets

Venous blood from normal consented donors (see chapter 3.1.1) was collected in a test tube
containing 1.6mg/mL EDTA to block platelet activation and inhibit integrin receptor function
(Savage et al., 2002), H-D-Phe-Pro-Arg chloromethyl ketone (PPACK; 46uM), prostaglandin
E: (PGE;; 0.35ul/ml), apyrase grade 7 (1.3 ATPase U/mL) and citrate dextrose solution
(ACD; 200ul/ml). In modifications to Ruggeri’s protocol, blood cells were washed free of
plasma constituents by repeated centrifugation and resuspension in Hepes-Tyrode buffer
(10mM HEPES, 140mM NacCl, 2.7mM KCI, 0.4mM NaH,PO,, 10mM NaHCO3, and 5SmM
dextrose), at pH 6.5 (Ruggeri et al., 1983). The sedimented cells (including platelets and
leukocytes on top of the erythrocyte cushion) were resuspended and subsequently centrifuged
at 1000g for 13min. The supernatant was washed and purified 4 times with fresh buffer
suspension, resulting in progressively decreasing residual amounts of plasma proteins. After
the first centrifugation step apyrase grade 7 (0.65 ATPase U/mL) was added to the cell
suspension. After each centrifugation step until the third one, the added concentration of
apyrase grade 7 was bisected. After the final centrifugation step, the cell pellet was
resuspended in modified HEPES-Tyrode buffer, pH 7.4, containing 50mg/mL of bovine
serum albumin (BSA), as well as 1.0mmol/L CaCl,, 0.5mmol/L MgCl, and prostaglandin E,
(PGE;; 0.35ul/ml) (Ruggeri et al., 1999). For the vVWF products comparison perfusion
experiments over collagen (see chapter 6) the multimeric vWF products (Fanhdi, Haemate,
Haemoctin, Immunate, Octanate, Wilate, Haemate subfractions (E100, E140, E180, E250);
final concentration: 100ug/ml or 10pg/ml) were added to the blood suspension. To rolling
platelet-vWF aggregate flow experiments (see chapter 8) multimeric VWF proteins
(recombinant vVWF, plasma vWF, plasma derived vWF with and without sugar, Haemate,
Haemate subfractions (E100, E250); final concentration: 20ug/ml), labelled with Alexa Fluor
488 or unlabelled, were added to the washed blood suspension, except for the whole blood
experiments. These were carried out with the same inhibitors, but without the washing

procedure.

3.1.3 Blood samples preparation with activated platelets

For the cytoskeleton (chapter 4) and tumor cell experiments (see chapter 10) venous blood
from normal consented donors (see chapter 3.1.1) was collected in a test tube containing the
anticoagulant acid citrate dextrose (0,106M trisodium citrate). The blood sample was

centrifuged at 170g for 15min. For tumor cell experiments the blood sample was centrifuged
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at 120g for 20min to obtain PRP. The PRP for cytosekeletal experiments was incubated in a
rolling chamber with cytochalasin D (final concentration: 4uM) dissolved in DMSO for 1h or
with nocodazole (final concentration: Spug/ml) for 2h at 37°C (Reininger, et al., 2006). For the
VvWF products comparison experiments (see chapter 6) the test tube contains 1.6mg/mL
EDTA, H-D-Phe-Pro-Arg chloromethyl ketone (PPACK; 46uM). For the vWF products
comparison perfusion experiments over collagen (see chapter 6) the multimeric vWF products
(Fanhdi, Haemate, Haemoctin, Immunate, Octanate, Wilate, Haemate subfractions (E100,
E140, E180, E250); final concentration: 100ug/ml or 10pug/ml) were added to the blood
suspension after a slightly modification of the washing procedure in chapter 3.1.2. No
inhibitors during the washing procedure were used and the washing steps were repeated 3
times. The same blood preparation, as for the vVWF products over collagen, was used for the
WT and loss of function mutant (lofm) flow experiments (see chapter 7) over collagen.
Multimeric VWF (WT, lofm (provided by Prof. Dr. Schneppenheim, Hamburg); final

concentration: 10ug/ml) was added to the washed blood suspension.

3.1.4 Cells culture

Human small cell lung carcinoma cells (SCLC) typically grow as aggregates in solution and
maligne melanoma cells (MV3) adherent. The cells were cultivated in RPMI at pH 7.0, at
37°C in a 5% CO; atmosphere with 95% humidity. For experimental use or further passage
the non-adherent SCLC cells were cultivated 6 to 8 days and MV3 cells were adherent grown
to a confluent layer in 3 to 5 days. For flow chamber, aggregation and ATP secretion
experiments the cells were either kept in the tissue media or resuspended in Tyrode buffer
(17mM Hepes [N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid], 130mM NaCl, 2.7
mM KCl, 0.4mM NaH,PO,, and 2.8mM dextrose) to an average final concentration of 10,000
+/- 2,000 cells/ul for SCLC cells and 2,000 +/- 400 cells/ul for MV3 cells. To resuspend the
SCLC cells and MV3 cells in Tyrode buffer, the cells were centrifugated 2 times at 45g for
3min. For flow cytometer measurements the cells were resuspended in Tyrode buffer (1:10

dilution).
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3.2 Methods
3.2.1 Flow chamber set-up

3.2.1.1 Flow chamber

Coated glass cover slips were used as a substrate and assembled with parallel plates to form a
rectangular flow chamber. These cover slips were coated for cytoskeleton (see chapter 4),
HCT (see chapter 9) and tumor cell (see chapter 10) perfusion experiments with immobilized
multimeric vWF (Haemate; final concentration: 100ug/ml). To provide enough binding sites
on the surface for the platelets the glass slides were coated with an increased physiological
vWF concentration to distinguish the alterations. For cholesterol perfusion experiments (see
chapter 5) the glass cover slips were coated with immobilized multimeric VWF (WT
(provided by Prof. Dr. Schneppenheim, Hamburg); final concentration 10ug/ml). The glass
cover slips for the vVWF product comparison experiments (see chapter 6) were coated with
either the immobilized multimeric vVWF products (Fanhdi, Haemate, Haemoctin, Immunate,
Octanate, Wilate; final concentration: 100ug/ml or 10pug/ml) or fibrillar type I collagen
equine tendon (final concentration: 1:10 of stock solution). Perfusion experiments of vWF
WT and lofm (see chapter 7) were performed by using immobilized multimeric vVWF (WT,
lofm (provided by Prof. Dr. Schneppenheim, Hamburg); final concentration: 10ug/ml) or
fibrillar type I collagen equine tendon (final concentration: 1:10 of stock solution) coated on
to glass cover slips. Rolling aggregate perfusion experiments (see chapter 8) were performed
with either recombinant dimeric vVWF Al (final concentration: 20ug/ml) or fibrillar type I

collagen equine tendon (final concentration: 10% of stock solution) coating.

3.2.1.2 Flow champer actuation

Perfusion experiments were conducted using a syringe pump (Harvard Apparatus, Boston,
MA) at 37°C. Whole blood was aspirated for the cytoskeleton impact on the adhesion and the
tether formation (see chapter 4) at a flow rate of 10,000s" and on spreading at a flow rate of
800s™' through the chamber. For cholesterol experiments (see chapter 5) the flow rates ranged
from 5,000s™ to 20,000s" and for vWF product comparison experiments (see chapter 6) from
400s™" to 40,000s™". For the WT and vWF lofim mutant experiments (see chapter 7) the flow
rates were adjusted in the range of 1,500s" to 20,000s”, for rolling aggregate experiments
(see chapter 8) of 0s” to 50,000s™ and for HCT experiments (see chapter 9) of 400s” to

20,000s™". The shear rate was set to 100s™ for tumor cell flow experiments (see chapter 10).
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3.2.1.3 Microscopy

Reflection interference contrast microscopy (RICM) was performed using an optical upright
microscope (Axioskop 2 plus; Zeiss, Germany) with a plan neofluoar antiflex objective (63x,
oil immersion, N.A.=1.6, Zeiss, Germany) equipped with a wavelength-independent quarter-
wave plate and a 50-W mercury lamp for illumination. The measured visual field per frame
was around 5,000pm”. Except for the tumor cell experiments an inverted microscope (Eclipse
TE2000-E; Nikon, Dusseldorf, Germany) was used. To minimize the reflections of the glass
surface oil objectives are used. Due to this label-free light optical technique, the distance
between cell membrane and adhesive surface can be analysed and the contact area can be
resolved. This technique allows the analysis of intransparent fluids like blood. Under static
conditions it is possible to reconstruct the height profile of an object from the interference
pattern of polarized light being reflected at the object’s surface. In general, incoming light is
refracted and partly reflected at optical interfaces of ny to n; and from n; to n,, respectively, as

shown in figure 6.
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Figure 6: Principle of the RICM. The incident beam (1) is partially reflected from the substrate (VWF coated
glass cover slip, ng), which interferes with light reflected from the membrane of platelets (n;) flowing in close
proximity to or interacting with it. The resulting interference colours of the Newton rings give a quantitative
measure of distance between the platelet membrane and the adhesive surface. I; and I, are the intensities of the
refracted light. The platelet is dissolved in plasma (ny).

The reflected parts interfere with each other in a constructive (bright rings) or destructive
(dark rings) manner depending on the difference of their optical path length and form Newton
rings. The resulting interferogram contains information about the vertical distance /4 of the

object above the substrate. The height profile can be calculated from the observed intensity

1(9) of the interfering light beams as follows:
1) =1, + 1, +2+/1,1, cos[2kh(x,y)cos U + ¢] (4)
where ¢ is the angle of incidence, /; and I, the intensities of the refracted light, A(x,y) is the

distance between the substrate and the object as a function of the lateral position (x,y) and
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2mn . . o
k = S is the wavevector corresponding to the wavelength 4 and # the refractive index of the

surrounding medium. The constant phase ¢ accounts for the phase shift between two reflected
light beams, which depends on the angle of incidence as well as the polarization of the light.
Under flow conditions the monochromatic light reflected from the substrate coated glass
surface interfered with that reflected from the membrane of platelets flowing in close
proximity to or interacting with the coated surface, but a direct measurement of the height
profile is not possible. Therefore, static measurements from Smith and coworkers were used
to estimate the distances of the platelet and the vWF coated glass surface (Smith et al., 2008;
Reininger et al., 2006; Gonnenwein 2003; Kloboucek et al., 1999).

Fluorescence images were taken using a plan neofluar objective (40x, oil immersion,
N.A.=0.75, Zeiss, Germany). The measured visual field per frame was around 66,000um?.
For epifluorescence microscopy, platelets were treated with 10uM mepacrine (quinacrine

dihydrochloride, Sigma, Rodermark, Germany) for fluorescent rendering (Savage 1996).

3.2.1.4 Data aquistion

A black-and-white video camera for RICM images was used to obtain interference colours on
a grey scale. Fluorescence images were taken with a colour video camera (Exwave HAD
3CCD, Sony, San Jose, USA). All experiments were recorded on DVD using a CCD camera
(BC-71, AVT Horn, Aalen, Germany) and a DVD recorder (LQ-MD800 Medical Grade DVD
Video Recorder, Panasonic, Germany) at the acquisition rate of 25 frames s'. Image analysis
was performed off-line using Metamorph (Universal Imaging, West Chester, PA) and Matrox
(Imaging, Dorval, Quebec, Canada).

3.2.2 Atomic force microscopy

3.2.2.1 Sample preparation

Immobilized multimeric vWF products (Haemate, Wilate; final concentration: 20ug/ml) in
HBSS (4,760g Hepes and 7,891g NaCl dissolved in 11 H,O) buffer were used as substrates for
the high-resolution imaging. To obtain a shear coating of the vWF products, these products
were aspirated over glass cover slips through the flow chamber (see chapter 3.2.1.1) with a

tubing pump (Reglo; Ismatec, Glattbrugg, Switzerland) at flow rates of 6,000s" for 30min at
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RT. In a final step, the vVWF shear coated cover slips were fixed with 2.5% glutaraldehyde and
10% paraformaldehyde.

3.2.2.2 Imaging

All images of the vVWF products (Haemate, Wilate) were obtained in HbSS buffer with an
atomic force microscopy (AFM) (JPK instruments, Berlin, Germany). Liquid images were
performed in tapping mode using rectangular cantilever (CSC37/noAl; Mikromash, Tallinn,
Estonia). Cantilever with force constants of 0.65Nm and 0.35Nm (manufacturer information)

were used.

3.2.2.3 Tip functionalization and characterization

Soft silicon nitride cantilevers (Veeco, Santa Barbara, CA) were incubated in 3-
Glycidoxypropyltrimepoxysilan for Imin at RT, rinsed in toluol for 1min and briefly after in
H,O for 1min, and finally dried in a heated exicator for 30min at 80°C. Subsequently, the tips
were incubated in NH,-PEG-COOH x HCL (25mM) in a fluid chamber for 1h at RT, rinsed 4
times in ddH,O, incubated in EDC-N-Hydroxysuccinimid C4H5NO3 (100mM) for 10min,
briefly followed by 3 times rinsing in ddH,O, and a final incubation in dimeric vWF A1 (final
concentration: 0.01pg/ml) in a fluid chamber for 2h. Before each experimental series, the
cantilevers were calibrated using the thermal noise amplitude analysis approach (Butt and
Jaschke 1995; Florin et al., 1995). The measured spring constants were between 15-25pN/nm,

in agreement with the nominal spring constant of 20pN/nm.

3.2.2.4 Force spectroscopy

The in-house-built force measurement und patch clamp set-up (Prof. Dr. Gaub Group, LMU,
Munich) was mounted to the microscopic stage of an inverted optical microscope. This
arrangement enabled precise positioning of the cantilever on the area of interest along the
platelet membrane. The force spectroscopy steps are briefly summarized: The platelet
suspension was injected in the HbSS buffer medium (4,760g Hepes and 7,891g NaCl
dissolved in 11 H,O) of the patch clamp set-up at RT. A single platelet (preparation see
chapter 3.2.3) was caught with the in-house-built AFM-patch clamp device and the

experimental set-up was rinsed 10 times with HbSS buffer to obtain an almost platelet free
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surface around the patch clamp hole. Subsequently, the dimeric vVWF A1 domain coated AFM
cantilever was moved towards the platelet until getting into contact with the platelet
membrane. This could be monitored by the deflection signal of the laser. The cantilever-

membrane contact time varied from 1s to 3s.

3.2.3 vWF gel electrophoresis

SDS-agarose gelelectrophoresis was performed in modification to Ruggeri and Laemmli
(Ruggeri and Zimmerman 1981; Laemmli 1970). The running buffer (0.375M Tris, 0.1%
SDS) was adjusted to pH 8.8 and a concentration of 1% and 2% standard agarose gels was
used. Agarose-acrylamide gels contained 0.8% agarose and between 1.75% and 3.5%
acrylamide, with 5% crosslinking. The acrylamide soltution was preheated to 60°C and mixed
with agarose at 60°C. As polymerizing agents were 3-dimethylamino-propionitrile (0.25%)
and ammonium persulfate (0.025%). Agarose was solidified and flushed with a constant flow
of nitrogen for 1h and left in the nitrogen atmosphere overnight at RT. The vWF Haemate
proteins of different multimer size distribution (Haemate subfractions) were dissolved in 1:20
SDS loading buffer (10mM Tris, ImM EDTA, 2% SDS, 8M urea, 0.005% bromopherol blue)
at pH 8. After incubation for 15min at 60°C, 20ul samples were applied to each pocket and
electrophoresis started at a constant current of 10mA/gel in a LKB-Multiphor 2117 (LKB,
Bromma, Sweden) and cooled down to 15°C. The electrophoresis buffer was composed of
0.005M Tris, 0.384M glycine, 0.1% SDS at pH 8.35. The gels were connected to the buffer
reservoirs by Whatman 3MM paper wicks. After the samples had run out of the pockets, these
were filled with stacking gel and the current was increased to 12.5mA/gel. Electrophoresis
was stopped, when the tracking dye reached the anodal end of the gel, usually within 5-6h.
After the electrophoresis the gels were fixed washed and incubated with 1251-labelled affinity
purified anti vWF antibody raised in emus. As a reference, plasma vWF (0.5-1pg) was run in
parallel with Haemate subfractions and identified by staining with Coomassie Brilliant Blue R

(Ruggeri and Zimmerman 1980).

3.2.4 Platelet aggregometry

Tumor cell mediated platelet aggregation was induced by adding either 200ul SCLC cell-
suspension or 200ul MV3 cell-suspension to 200ul PRP and measured as light transmission

in an aggregometer at 37°C (APACT, Labor, Germany). The steel rod at the bottom of the
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measuring cuvette (1000rpm) mixed the cell suspensions. The enhanced light scattering due
to the added SCLC cells or MV3 cells led to an initial drop in light transmission that was
compensated by shifting the start point (t = Omin) to the nadir of this curve drop. In control
experiments aggregation was also induced by adding 6.3uM ADP solution (Serva, Germany)

to 200l PRP.

3.2.5 Platelet ATP Secretion

Tumor cell mediated platelet ATP segregation was induced by adding 190ul SCLC cell
suspension to 190ul PRP, which was primary incubated with 20ul Adenosine 5'-triphosphate
(ATP) assay mix (stock solution 1vl/5ml; Sigma, Germany) 2min at 37°C and measured as
light transmission in a chronolog aggregometer (Osburg, Germany). Experimental workflow

was comparable to the platelet aggregometry experiments.

3.2.6 Flow cytometry

Either PRP or tumor cells were subjected to shear rates of 10,000s™ for 3min in a cone-and-
plate viscosimeter with 0.5° cone angle and 26um cone-plate distance (Haake Rheovisco 1,
Thermo Electron Corporation, Waltham, MA) in the absence of erythrocytes to avoid
hemolysis at 37°C. The generated MPs in sheared PRP or tumor cells were centrifugated at
510g for 10min at RT. The supernatant of the MP suspension was used and mixed 1:1 with
either PRP or tumor cells and mixtures 1:1 of PRP and tumor cells were evaluated using flow
cytometry (Coulter Epics XL; Beckman Coulter, Krefeld, Germany). Platelets, tumor cells
and the mixed suspensions were labelled with monoclonal antibodies against CD41 or
annexin V. Detection was triggered with the fluorescence signal (FL1, FITC) or the forward
scatter (FS). For data analysis a positive event was defined as an event having greater
fluorescence intensity than the isotype control (FITC IgGl). Individual samples (90ul), were
fixed with 10% paraformaldehyde and labelled with 10Vol% antibodies (10ul) and diluted to
a final volume of Iml with 10% paraformaldehyde diluted in HbSS. Data were acquired over

60s at a flow rate of 15mL/s for each prepared sample.
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4. Influence of variations in the cytoskeleton

4.1 Introduction

The mechanical behaviour of tethers can be studied by physically extracting highly curved
membrane cylinders from vesicles and living cells by applying an external point force
(Brochard-Wyart et al., 2006; Glassinger and Raphael 2006; Hochmuth et al., 1996). The
tether diameters can vary in the range from 10nm to 100nm (Hochmuth et al., 1996). When
tethers are extracted out of vesicles, the force on the tethers linearly increases with the
velocity of extraction (Hochmuth et al., 1996; Evans and Yeung 1994). Consequently, the
viscous resistance in this process behaves linear or Newtonian (Hochmuth et al., 1996; Evans
and Yeung 1994). The tether radius must decrease as the velocity of the tether is increased
(Hochmuth and Evans 1982). In contrast, if the tension does not change during the tether
formation process, the tether radius shall remain constant (Glassinger and Raphael 2006).
Pulling on the tethers also leads to a surface flow of lipids from the cell body to the tethers
through cytoskeleton binders (Brochard-Wyart et al., 2006).

For several reasons the analysis of the adhesion and tether forming process of platelets with
variations in the cytoskeleton play an important role. First, it allows the understanding of the
F-actin and the microtubuli influence in the adhesion and tether forming process. Second, it
contributes to a complete picture of the cytoskeleton influence on the membrane tension and
the membrane undulations. To investigate the impact on the cytoskeleton of the platelet
behaviour, platelets were either treated with cytochalasin D, which disrupts the F-actin, or
nocodazole, which breaks the microtubules. Platelets treated with the fungal metabolite
cytochalasin D either before or after stimulation showed fewer pseudopods compared to
untreated platelets. The surface of the treated platelets appeared much less convoluted and no
vesicle shedding occurred (Kodali et al., 2007; Alberts et al., 2003; Koolman and R6hm 2002;
Gaffet et al., 1995; Cooper 1987; Godette and Frieden 1986; Schliwa 1982; Casella et al.,
1981; Flanagan and Lin 1980; Brenner and Korn 1979; Brown and Spudich 1979).
Cytochalasin D inhibits the rapid polymerization of F-actin and induces depolymerization of
F-actin in stimulated platelets, both resulting in variations of the platelet morphology and a
prevention of the reorganisation of the cytoskeleton (Nielsen et al., 2000; Gaffet et al., 1995;
Olorundare et al., 1992; Cramer et al., 1991; Fox et al., 1984; Casella et al., 1981). However,
it is assumed that the amount of tubulin is not affected by cytochalasin D treatment (Casella et

al., 1981). Cytochalasin D treatment impaired the migration of GPIba and no internalization
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could be observed. Thus, the GPIba distribution on the platelet surface remained unchanged
(Cramer et al., 1991). Actin polymerization is considered to be the driving force for cell
spreading, since depolymerization by cytochalasin decreases the spreading kinetics to one
tenth of its normal value. It is assumed that the rate of spreading depends on the rate of actin
polymerization and comes to a halt, when membrane tension counteracts polymerization at
the cell border (Heinrich et al., 2008). Nocodazole, a synthetic microtubule inhibitor, was
developed as an antitumural drug and has been shown to have highly specific anti-
microtubular activity. This drug is chemically unrelated to the microtubule disintegrating
alkaloids (Malek and Izumo 1996; Eilers et al., 1989; Zieve et al., 1980; Jung et al., 1981;
Tablin and Castro 1992). This microtubule inhibitor depolymerises microtubules from their
minus (slow growing) end and competes with colchicine for its microtubule binding site
(Tablin and Castro 1992). Nocodazole blocks aggregation and especially the release activity
of platelets induced by collagen, thrombin, adrenaline, polylysine, and lectins. This inhibition
effect of the polymerization of tubulin is reversible. A variation in the sensitivity of platelets
from different donors was observed (Jung et al., 1981). A schematic model sketch of the

blood platelet before and after cytochalasin D and nocodazole is summarized in figure 7.

\%
after cytochalasin D, 5\/74 \
nocodazole treatment .

\\ : /X

Figure 7: Schematic illustration of the actin filaments (vellow), ringlike microtuble (black) and spectrin
networks (red) inside an unactivated platelet before and after cytochalasin D (F-actin disruption) and
nocodazole (microtubuli disruption) treatment is shown (adapted from Barkalow et al., 2003).

Despite a large number of studies evolving the role of receptor-ligand interaction, very few
studies have addressed the biophysical perspective on the platelet adhesion, tether formation
and rupture. Both adhesion processes, the platelet attachment and spreading, were analysed,
as the actin polymerisation is a crucial influence factor for cell spreading. The platelet-vWF
interplay was investigated by using either real time reflection interference contrast
microscopy (RICM) to focus directly on the behaviour of the platelets moving over a coated
surface or by a combined atomic force microscopy (AFM)-patch clamp set-up. By RICM the

platelet adhesion and tether formation to the surface were analysed. First, the difference
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between weak and tight adhesion was quantified as well as the number of platelets adhering to
the vWF surface. Second, the difference in the tether length of tethers at the platelet body and
ruptured ones was elucidated as well as the comparison of the number of tethers at the platelet
body, ruptured tethers and the summation of both types of tethers. Finally, the percentage
spreading area coverage was measured. By an AFM tip a tether was pulled out of a platelet
membrane, which had never done before, and the rupture force and tether length were
measured. Next, the tether formation and adhesion rate were quantified. These two different
techniques will be the basis for the understanding of the biophysical mechanism on the

platelet adhesion and tether formation process.

4.2 Results and Discussion
4.2.1 Flow chamber experiments

4.2.1.1 Platelet adhesion and tether formation

Whole blocked blood (preparation see chapter 3.1.1) was perfused in a flow chamber with a
vWF (Haemate) coated glass surface and subjected to shear flow using an optical accessible
flow chamber equipped with a RICM (set-up see chapter 3.2.1). For shear rates of 10,000s™,
increased platelet arrest from flowing blood onto the immobilized vWF at the chamber walls,
leading to tethers being pulled out of the platelet membrane, was observed. This designed

flow chamber set-up allowed reproducible results as depicted in figure 8.

Figure 8: RICM images of blood samples (blocked) over Haemate (10U) at shear rates of 10,000s™. Image a)
the cytochalasin treated, b) the nocodazole treated and c) untreated blood samples are depicted after shear was
applied for 45sec. Arrested platelets, platelets with tether and ruptured tethers are shown. The black arrows
indicate the platelet adhesion area, which is composed of weak and tight contact zones. Tethers and ruptured
tethers are marked with white arrows. Insets exemplary demonstrate a zoomed (300%) contact area of
cytochalasin (a)) and nocodazole (b)) treated platelets. Cytochalasin treated platelets show an increased weak
contact area (bright regions), but a decreased tight adhesion area (dark regions) compared to platelets treated
with nocodazole, which illustrate a decreased weak contact area (bright regions), but an increased tight
adhesion area (dark regions). Note the large number of ruptured tethers for microtubular breakage in (b)). (In
all images scale bar: Sum.)

RICM enables to differentiate between strong and weakly adhering regions of platelets and

tethers attached to the vWF surface during the flow experiment (enlarged insets in fig. 8).
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Furthermore, it was also observed that the main platelet body could detach from the tether and
the surface, yielding in a single tube-shaped platelet fragment (white arrows in fig. 8). These
fragments translocate independently or detach completely from the surface and form ruptured
tethers as previously observed by various groups (Reininger et al., 2006; Casella et al., 1981).
Tethers should not be mixed up with filopodia, which are formed due to a shape change of the
activated platelets. In the investigated experiments no filopodia occur as the activation of the
platelets is inhibited. The adhesion of platelets from blood flow is a dynamic process as
described in the introducing chapter 1.5.1. The adhesion domains are in close contact (~ 7nm)
(dark regions in fig. 8) strongly adhering with the non-fluctuating regions of the substrate
(Smith et al., 2008; Albersdorfer et al., 1997). The bright regions shown in figure 8 represent
regions of weak adhesion, with a typical distance between membrane and substrate of ~
100nm (Smith et al., 2008; Evans and Calderwood 2007; Goénnenwein 2003; Simson and
Sackmann 1998; Albersdorfer et al., 1997). To analyze the adhesion behaviour of platelets,
the contact area at the bottom of the flow chamber was measured, following the exposure of
the platelets to a shear flow of 10,000s™ for 45s (fig.8). The contact area is composed of two
subareas, one where tight adhesion and one where weak adhesion area prevailed (insets in fig.
8). While, the weak adhesion area, which includes the tight adhesion zones, of nocodazole
treated platelets showed a fairly sharp distribution with a most likely contact area around
3um’, cytochalasin D treated and untreated platelets were more homogeneously distributed in
the range between 2-17um? and between 1-13um? (fig. 9). This distribution indicates a drastic
change in the mechanical properties of the platelet. To directly compare the two treatments,
the average contact area has been calculated from integrating each histogram of the different
donors and taking the average. A disruption of the F-actin led to an increase in the weak
contact area, but to a decrease in the tight adhesion area, whereas for microtubule breakage
the opposite was observed. The contact area was decreased and the tight adhesion area was
increased compared to untreated platelets. For F-actin depolymerisation the average of the
platelet adhesion area increased (A. = 8.6um?+/-0.7um?) and for microtubule breakage
decreased (A, = 3.8um?+/-0.1pm?) compared to untreated platelets (A, = 5.5um?+/-0.4pum?)
(inset in fig. 9). The standard deviations of the weak adhesion area averages were calculated
by the variations of the different donors. Due to a better general view the standard deviations
are not illustrated in the inset in figure 9. Most of the tight adhesion areas of the platelets
(dark regions in fig. 8) were close to the optical resolution limit (< 400nm). Keeping in mind

that the adhesion process requires at least some discrete points of tight adhesion, I conclude
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that the tight adhesion areas might range from 0.1um” (size of a DAP measured by electron

microscopy (Reininger et al., 2006)) up to the measured contact area (4pm? - 9um?).
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Figure 9: Weak adhesion area distribution for treated and untreated platelets at 10,000s”: the weak contact
area is plotted against the probability P (YP=100%,) The red curve represents the adhesion area of cytochalasin
treated platelets, the blue curve of nocodazole treated platelets and the black of untreated platelets. The inset
shows the mean of the weak adhesion area of treated and untreated platelets at a flow rate of 10,000s™.

To get a more complete picture on the adhesion process, the adhered platelets on the vVWF
surface of the flow chamber (fig. 8) were counted by using different RICM still images of
blood samples after the exposure of platelets to a shear flow of 10,000s™ for 45s. Due to this
static capture, it was not possible to resolve the dynamic behaviour of the platelets, e.g. the
difference in rolling velocity of the platelets as well as in the adhesion time. A shear flow of
10,000s™" lowered the amount of cytochalasin treated platelets adhering to the surface
compared to nocodazole treated and untreated platelets of around 35%-40%. The variations of
different donors were significant (~ 50%), but the tendency remained almost constant. These
results indicate a strong dependence of the F-actin on the adhered platelet number, but not of
the microtubuli. From the analysis of bound platelets it seemed reasonable to extract the
difference in the energy of absorption AG of untreated and treated platelets by applying the

Boltzmann equation

M nireated = g AG/KT (5)
n

treated

where kjp is the Boltzmann constant, AG is the change in absorption energy between untreated
and cytochalasin D or nocodazole treated platelets, 7 the temperature and nuupeared ANA Pyreatea
is the average fraction of the amount of untreated and cytochalasin D or nocodazole treated
platelets on the surface (Fleck et al., 2002; Alberts et al., 2003). Using the average amount of

untreated and cytochalasin D or nocodazole treated platelets adhering to the surface resulted
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in an energy difference AG in the order of 0.1-0.5 kgT. These differences in the absorption
energy extracted by untreated and treated platelets are too low compared to adhesion energy
differences of cells typically found in the literature. By using the Young’s law, Simson and
coworkers reported the lowest difference in adhesion energy of 0.8*10™'* J/um?* of wild type
and mutant cells deficient in cortexillin II-null (Simson et al., 1998). These variations in the
absorption energy and the adhesion energy are not fully understood. I propose that the
adhesion energy calculated of static experiments significantly exceeds the absorption energy
of a platelet or cell to withstand the shear flow. In a static process the system is able to
equilibrate, as there is enough time provided for the adhesion process. However, in a dynamic
one the forces acting on a platelet change over time. The absorption energy differences were
also quantified in chapter 5,7 and 9, but the calculated values were also too low to be
compared with the adhesion energies found in the literature. As these results show a clear
dependence of the cytoskeleton on the platelet adhesion process, the cytoskeleton variations
will also affect the tether formation process. To study the tether formation, they are often
extracted out of membranes by aspiration micropipette techniques. This formation process
stabilizes the vesicle and controls the elastic tension of the membrane (Glassinger and
Raphael 2006). The aspiration method increases the observable surface area, which suggests
small increases in tension (Glassinger and Raphael 2006). To overcome this enhanced tension
and to simulate the tether forming process in a more physiological manner, the whole blood
was exposed to shear flow. The tether formation is described in more detail in chapter 1.5.2.
To understand the tether formation process the tether length at the platelet body as well as
ruptured tethers on the bottom of the flow chamber (white arrows in fig. 8) were analysed
after the exposure of the platelets to a shear flow of 10,000s" for 45s. While, tethers at the
cytochalasin D treated platelets showed a fairly sharp distribution with a most likely tether
length of around 2pum, nocodazole treated and untreated platelets were spread more
homogeneously over the range between 1-34um (fig. 10). This indicates a drastic change in
the mechanical properties of the tether during the formation process after F-actin disruption.
Ruptured tethers showed a fairly sharp distribution with a most likely tether length of around
6um for F-actin disruption and around 4pum for microtubuli breakage and untreated platelets

(inset in fig. 10).
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Figure 10: Tether length distribution curves at the platelet for treated platelets at a shear rate of 10,000s”: the
tether length is plotted against the probability P (YP=100%). The red curve represents the tether length of
cytochalasin treated, the blue curve of nocodazole treated and the black curve of untreated platelets. The inset
shows the ruptured tether length distribution of treated and untreated platelets at a flow rate of 10,000s™.

For cytochalasin D treated platelets this result is less significant, as only 7% ruptured tethers
existed. Nocodazole treated platelets however exhibited 38% ruptured tethers and untreated
ones 24%. Ruptured tethers finished the formation process and therefore, acted different
compared to tethers at the platelet body. Consequently, cytochalasin D and nocodazole
treatment of the platelets did not influence the ruptured tethers length distribution compared
to control platelet ruptured tethers, as F-actin is only detected in tether ends, (Reininger et al.,
2006), whereas no microtubules are located in the tethers (White and Rao 1998; Tablin and
Castro 1992; Casella et al., 1981; Jung et al., 1981). The average tether length was calculated
by adding tethers at the platelet body and ruptured tethers up and from integrating the
histograms of each donor and finally, taking the mean. At 10,000s’ for F-actin
depolymerisation the average of the tether length decreased to 1. = 4.9um+/-1.6um compared
to reference platelets. Microtubule breakage by nocodazole elongated the average of the tether
length to I, = 9.9um+/-1.3um compared to untreated platelets (1, = 8.8um+/-0.8um) (the error
bars were calculated by the donors variations). To directly compare the two treatments, the
average amount of the total tethers and the ruptured tethers was investigated by counting the
tethers adhered on the vWF surface at a shear rate of 10,000s™'. Compared to cytochalasin
treated platelets, the total tether count almost triplet for nocodazole treated platelets and the
average amount of ruptured tethers was 13 fold higher (white arrows in fig. 8). The tendencies
of each investigated donor remained almost constant (sd ~ 25%-60%). These results indicate a
strong dependence of the cytoskeleton on the platelet adhesion and the tether formation. The

membrane tension of cytochalasin treated platelet might be decreased compared to untreated
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ones and enhanced for nocodazole treated platelets compared to controls. Consequently, a
disruption of the F-actin might lead to an increase in the membrane undulations, which are
induced by a decrease in membrane tension. These undulations decrease the adhesion of the
platelets to the surface, especially decrease the tight adhesion domains and increase the weak
contact area. In contrast, microtubular breakage showed the inverse effects. However,
Hochmuth and coworkers treated neuronal growth cones with cytochalasin D and nocodazole
(Hochmuth et al., 1996) and reported that after cytochalasin D treatment the apparent surface
tension was decreased by around 67%, but for nocodazole treatment only by around 45%
(Hochmuth et al., 1996). These changes in membrane tension can not be completely predicted
for blood platelets. My results for F-actin disruption are comparable with Hochmuth’s results,
but for microtubular breakage the contrary for blood platelets compared to neuronal growth
cones was observed. Therefore, the microtubuli in blood platelets have a different impact on
the membrane tension compared to neuronal growth cones. The membrane tension is
increased for nocodazole treated platelets. A reduced membrane tension as well as enhanced
undulations might inhibit the clustering of the GPIba receptor. The microtubule breakage acts
contradictionary. The undulations are decreased and the membrane tension is increased.
These results coincide with Cramer and coworkers, who reported that after cytochalasin D
treatment of platelets the distribution of GPIbo. remained unchanged and therefore, no

receptor clustering occurred (Cramer et al., 1991).

4.2.1.2 Platelet spreading process

Spreading is a tight adhesion process, in which the receptor segregation and tight adhesion
domain formation is more pronounced compared to the adhesion without platelet activation.
After the introductory adhesion phase, the actin filaments couple to the adhesion domains and
stabilise them. As the platelets completely spread and are pancake shaped, the adhesion
process might be approximated by a first order wetting transition. In general, a wetting
transition is described as a spontaneous formation of a thin fluid film on a solid state through
completely spreading of the drop until a pancake like structure is formed. Due to a strong
surface adhesion and a long-range repulsion of the solid state and the surface of the fluid film,
which stabilises the finite fluid thickness, the fluid is able to spread. However, the cell
adhesion is a more complex process. Long-range attraction forces of the cell through
gravitation and the repulsion of undulation forces control the distance of the loose floating
membrane and the surface. To decrease this distance the steric repulsion of the sugar

polymers of the glycocalyx gets more pronounced compared to the long-range attraction
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forces of the cell. If these polymers are compressed, they will act as macromolecules, which
are jammed in between two parallel plates. These will carry out an entropic pressure, if the
distance is smaller than their head groups (Sackmann and Merkel 2010). Considering the fact,
that spreading requires actin polymerisation and a distinct minimal receptor-receptor distance
(Geiger et al., 2009), the impact of the cytochalasin D and nocodazole treatment on the firm
adhesion process was investigated by perfusion of whole blood (preparation see chapter 3.1.3)
in a flow chamber with a vVWF (Haemate) coated glass surface. The platelet spreading
behaviour was quantified under shear flow conditions using an optical accessible flow
chamber equipped with a RICM (set-up see chapter 3.2.1). For shear rates of 800s™, platelets
arrested from flowing blood onto the immobilized vWF at the chamber walls and spread over
the surface. To analyze the spreading area dimensions, the area of the spread platelets on the
vWF surface of the flow chamber (fig. 11) was measured by using different still RICM
images of blood samples after the exposure of platelets to a shear flow 800s™ for 1min to

9min.

Figure 11: RICM images of blood samples (unblocked) over Haemate (10U) at shear rates of 800s™. Image a)
shows cytochalasin D, b) nocodazole treated and c) untreated blood samples after shear was applied for 9min.
Spread and arrested platelets are depicted. White arrows indicate the platelet spreading area. Platelets treated
with cytochalasin D show no spreading, only adhesion. Untreated platelets illustrate an increased spreading
area (dark regions) compared to nocodazole treated ones. (In all images scale bar: 5um)

For cytochalasin D treated platelets no spreading in the investigated flow time range could be
observed. Nocodazole treated platelets showed lowered spreading area coverage for all flow
times compared to untreated ones, indicating a drastic change in the mechanical properties of
the platelet. The variations between nocodazole treated and untreated platelets were most
significant at the beginning and at the end of the flow exposure. Increasing flow time
exposure enhanced the spread area percentage coverage (fig. 12). However, the spread area
distribution was almost similar for treated and untreated platelets. Both treatments showed a
fairly sharp distribution with a most likely spread area of around 20pum? up to 5min flow time
exposure. Increasing flow time increased the most likely spread area to around 30pum®. The
differences between the donors were crucial (< 100%), but the trends of the depicted results in

figure 12, remained almost unchanged. For a better overview of the variation of treated and
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untreated platelets, the error bars are not shown.
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Figure 12: Percentage area coverage of spread platelets on vIWF after different flow times at 800s™ is shown.
Cytochalasin and nocodazole were added to the blood suspension at final concentrations. For cytochalasin
treated platelets no spreading could be observed. The blue histogram shows the nocodazole treated platelets and

the black histogram the untreated ones.

These results show that maximum spreading is dependent on an optimal receptor-receptor
distance. After F-actin disruption no spreading could be observed and after microtubuli
breakage the percentage spreading coverage was decreased compared to untreated platelets.
As there is no actin polymerisation and receptor clustering observed after cytochalasin D
treatment, I propose that both the inhibition of the actin polymerisation and the receptor-
receptor distance, which is too large to allow the platelets to spread, are crucial influence
factors for platelet spreading. These results are in line with Geiger and coworkers, who
reported that above a maximum distance of binding sites (in a range of 50-70nm) of
individual integrin molecules almost no cell spreading occurred (Geiger et al., 2009).
Furthermore, the membrane tension might also influence the binding site distance to a small
extent. Thus, for F-actin disruption the binding site distance might be larger than 50-70nm.
However, compared to untreated platelets the receptor-receptor distance might be slightly
increased after nocodazole treatment due to an increased tension. Additionally, the receptor
density is responsible for the spreading process. At a receptor density (pr ~ 10°um™) a
homogeneous adhesion zone is formed, and the vesicles explode. Due to the adhesion and
blast, an induced critical membrane tension reaches the rupture threshold of o > 3mN/m
(Sackmann and Merkel 2010). Cytochalasin D treated platelets were not able to form a tight
adhesion zone due to the non-clustering of the receptors and thus, a blast of the platelet and

the formation of a spread platelet was not possible.
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4.2.2 AFM-patch clamp set-up experiments

Exerting a point force on the surface of a platelet extracts a tether out of the membrane. The
membrane separates from the underlying cytoskeleton and creates a long, thin cylindrically
shaped tether (fig. 13 a)). As the lipid membrane is only capable of minimal area expansion in
the order of 4% or less, the material for the tether forming process must be provided by the
cell body (Hochmuth and Marcus 2002) (detailed information chapter 1.5.2). To get more
insights in tether formation and especially measure the tether rupture force, a tether was
extracted out of a platelet by a combined AFM-patch clamp set-up (see chapter 3.2.2.4 for
details on set up and see chapter 3.2.2.3 for details on cantilever functionalization) for the first
time (fig. 13 a)). The tip-membrane contact time varied from 1s to 3s to focus on either
cluster formation by longer contact times or to clarify the role of the cantilever tip as an
impurity. A plotted exemplary force curve of the retracted cantilever shows multiple rupture
events as depicted in figure 13 b). The retraction profiles recorded with untreated and treated
platelets exhibit a typical initial high force region (fig. 13 b), 1)). To trigger the tether forming
process a substantial effort was needed. This was also confirmed by Sun and coworkers (Sun
et al., 2005). This might be due to the rebinding forces. In general, the receptor-ligand binding
resists external forces by increasing the adhesion strength (Sackmann and Merkel 2010). The
amount of plateaus is comparable to the amount of tethers bound to the cantilever tip (fig. 13
b) 2) and 3)). The plateau length equates to the tether length (fig. 13b) 2) and 3)) (Sun et al.,
2005).

. 1)

latelet
a) T ee/ b) extension [um]

Figure 13: Sketch of an AFM tip tether extraction out of a platelet is shown in image a). In b) a typical
schematic single AFM force spectroscopy retract cycle is depicted. The highlighted steps indicate the tether
ruptures of multiple tethers 2) and of a single tether 3) and 1) the initial tip/surface position (adapted to Sun et
al., 2005). The AFM tip remained 3s on the untreated control platelet surface. A retraction velocity of 3.4 um/s
was used.
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The force necessary to exert a tether of a blood platelet was quantified. Tether pulled out of
cytochalasin treated platelets showed a fairly sharp distribution with a most likely rupture
force of around 40pN for a Is duration. However, for a tip contact time of 3s these tethers
were more homogeneously distributed in the range of 15-60pN. Pulled tethers from
nocodazole treated platelets were homogenously distributed in the range of 10-80pN for both
duration times. Control platelets showed the broadest rupture force distribution compared to
treated ones. For a 1s duration time of force application, the force distribution was
homogenously distributed in a range of 10-100pN and for 3s of 20-90pN (fig. 14). The
comparison between treated and untreated platelets showed that the most frequent rupture
force was increased for untreated platelets to 70pN compared to treated ones to 40pN after a
Is duration time. These values changed after 3s duration to 40pN for cytochalasin D treated
platelets, to SOpN for nocodazole treated ones and to 60pN for control platelets (fig. 14). To
compare directly the two treatments, the average rupture force was calculated from
integrating the histograms of each donor and taking the average value across all donors. A
disruption of the F-actin led to an increase of 20% for 1s and to a 22% decrease for 3s
duration time in the rupture force compared to the control platelets, whereas for microtubule
breakage a decrease of 17% for 1s and of 31% for 3s of the rupture force was observed (inset
in fig. 14). The decrease in the rupture force might be due to a reduced membrane tension of
treated platelets compared to untreated ones. However, a change in the receptor distribution
might not be a crucial influence factor, as there were no differences observed for cytochalasin
D treated platelets between 1s and 3s duration time. In addition, after a 1s duration time the
variation between both treatments was negligible. The error bars were significantly large
between various donors (sd ~ 40%-60%). However, the tendencies remained almost
unchanged except for cytochalasin D treatment and 1s duration time. The second maximum
peak of the red curve in figure 14 a) of around 110pN is donor specific. Consequently, the
average of this force distribution was increased. Due to an improved general view, the error

bars are not shown in figure 14.
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Figure 14: Single rupture force distribution curves for treated and untreated platelets: the rupture force is
plotted against the probability P (YP=100%). The red curve represents the tether length of cytochalasin treated,
the blue curve of nocodazole treated and the black curve of untreated platelets. The inset shows the mean of the
rupture force of treated and untreated platelets. In image a) the rupture force distribution of Is is plotted and in
b) of 3s. A retraction velocity of 3.4 um/s was used.

These results suggest a dependence of the cytoskeleton on the tether rupture force and are
coincide with previous studies, who also demonstrated for different cell types, except blood
platelets, that the tether formation strongly depends on the integrity of the cytoskeleton on
both the F-actin network and the microtubules (Sun et al., 2005; Sheetz 2001; Raucher et al.,
2000; Raucher and Sheetz 1999; Hochmuth et al., 1996). After inhibition of actin
polymerisation the tether force was reduced by 50% (Sun et al., 2005). A disruption of F-actin
of bovine aortic endothelial cells with latrunculin-A resulted in a significant reduction in the
threshold pulling force and the membrane viscosity (Sun et al, 2007). The effective viscosity
is defined as the membrane viscosity that contains contributions associated with the intrinsic
material properties of the lipid bilayer, the interbilayer slip and the association of the
membrane with the underlying cytoskeleton. Whereas, the force is a direct tool to measure the

membrane cytoskeleton adhesion energy and membrane stiffness (Sun et al., 2007; Hochmuth
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et al., 1996). Therefore, both variables contain information on the membrane cytoskeleton
interplay (Sun et al., 2007). In summary, the results of Sun and coworkers imply that the
organisation of the actin cytoskeleton strongly influences the biophysical properties of the
membrane (Sun et al., 2007). My results indicate that not only the cytoskeleton integrity, but
also the receptor clustering are crucial influence factors for the rupture force. Following the
statistical analysis of the rupture forces of the extracted platelet tethers, it seemed reasonable
to use a unique relation between tether radius R, and the apparent surface tension 7+y. This
equation was derived by Hochmuth and coworkers, who formed a tether from neuronal
growth cones by a laser tweezer trap (Hochmuth et al., 1996). As the tether radius depends
only on the bending modulus B and the apparent surface tension and remains constant during

the tether forming process. It follows

2B
Jo =7=4HR,(T+)/)~ (6)

‘
Assuming a tether radius of 120nm and using the most frequent rupture force for f, the
surface tension and the bending modulus of treated and untreated platelets with duration times
of 1s and 3s were calculated. The most frequent rupture force might reliably be used to
analyse the difference in surface tension and bending modulus. The calculated values are

summarized in table 1.

Table 1: Summary of the bending modulus B and the apparent surface tension T+y

B [pNpm] T+y[pN/pm]
cytochalasin Is 0.59 20.6
cytochalasin 3s 0.63 21.9
nocodazole 1s 0.78 27.2
nocodazole 3s 0.82 28.5
control 1s 0.97 33.8
control 3s 0.88 30.5

After cytochalasin D treatment the apparent surface tension was decreased of around 39% and
of around 20% for nocodazole treatment compared to control platelets. The membrane tension
of cytochalasin treated platelet was decreased compared to nocodazole treated ones. Hence,
the disruption of the F-actin led to an increase in the membrane undulations, which were
induced by a decrease in membrane tension. However, for microtubular breakage the
membrane tension was increased compared to cytochalasin treated platelets. This led to a
decrease in the membrane undulations compared to cytochalasin treated platelets. Neuronal
growth cones were treated with cytochalasin D and nocodazole and the changes in apparent

surface tension 7+y were measured by Hochmuth and coworkers (Hochmuth et al., 1996).
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After cytochalasin D treatment the apparent surface tension was decreased by around 67%,
but for nocodazole treatment only by around 45%. The smaller effect on the membrane
tension of the cytochalasin D and the nocodazole treatment of the platelets compared to
neuronal growth cones, might be due to a small suction of the patch clamp set-up, to the
different membrane properties of neuronal growth cones and to the other used tether
formation application. As these results show a dependence of the cytoskeleton on the platelet
rupture force, variations in the cytoskeleton will affect the tether length as well. To get more
information on the tether formation process the tether lengths of the last ruptured exerted
tether of a blood platelet were analysed. While, cytochalasin treated platelets showed a fairly
sharp distribution with a most likely tether length of around Ium for 1s and of around 2pm
for 3s duration times. Nocodazole treated platelets and control platelets showed a fairly sharp
distribution with a most likely tether length of around 2um for 3s duration time. However, for
Is duration nocodazole treated and untreated platelets were more homogeneously distributed
in the range between 0-8um and 0-13pm (fig. 15). To directly compare the two treatments
and the untreated platelets the average tether length was calculated from integrating the
histograms of each donor and taking the average. A disruption of the F-actin led to a 51%
decrease in the tether length compared to the control platelets, whereas for microtubule
breakage a decrease of 22% of the tether length was observed for 1s duration time. For 3s
duration the tether length of treated and untreated platelets were almost comparable (inset in
fig. 15). The standard deviations of various donors were in the range between 6%-60%, but
the trends remained unaffected. Due to a better general view, the error bars are not included in

figure 15.
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Figure 15: Single tether length distribution curves for treated and untreated platelets: the rupture force is
plotted against the probability P (YP=100%). The red curve represents the tether length of cytochalasin treated,
the blue curve of nocodazole treated and the black curve of untreated platelets. The inset shows the mean of the
tether length of treated and untreated platelets. In image a) the rupture force distribution of 1s is plotted and in
b) of 3s. A retraction velocity of 3.4um/s was used.

These results suggest, that the duration time of the applied force by using the cantilever tip
significantly influenced the tether length. For 1s duration the membrane tension and the
receptor clustering is crucial for the difference in the tether length. A decrease in membrane
tension is combined with an increase in the membrane undulation, which affects the rupture
of the tethers. Increased membrane undulations thus lead to a reduced tether length. As the
receptor distribution remains unchanged for the cytochalasin D treated platelet (Cramer et al.,
1991), the receptor-ligand pair formation is reduced. Consequently, the tethers are also
shortened. However, for 3s duration times the impact of the membrane tension and therefore,
the undulation vanishes and the receptor distribution becomes more significant. After F-actin
disruption no receptor clustering occurred, thus 3s duration might be enough time for the

receptor-ligand pairs to form as much of bonds as nocodazole treated and untreated platelets.
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Another aspect might be that the tip functions as an impurity in the platelet membrane.
Consequently, the symmetry of the membrane is broken and a reorientation may happen in
the platelet membrane. This rearrangement might be compared with a phase separation of the
lipids and the cantilever tip. Thus, the most frequent tether length of treated and untreated
platelets is comparable after 3s duration time. As both the tether rupture force and the tether
length were crucially influenced by the membrane cytoskeleton, the cytoskeleton could have
an impact on the tether formation and the vWF A1l domain and GPIba interaction rate. To
zoom in the various impacts of the cytoskeleton on the tether formation and the adhesion rate,
both rates of treated and untreated platelets were calculated. The tether formation rate was
decreased for cytochalasin D treated platelets by around 58% and for nocodazole treated
platelets by around 27% compared to untreated platelets. The differences in the tether
formation rate between both duration times were negligible. In addition, the adhesion rate was
significantly increased compared to the tether formation rate. For F-actin disruption the
adhesion rate was increased around 6 times, for microtubular breakage around 4 times and for
the control platelets around 3 times. The adhesion rate of cytochalasin D treated platelets was
around 16% reduced compared to nocodazole and untreated platelets. Nocodazole and
untreated platelets showed a comparable adhesion rate. The standard deviation for the
different donors was large (< 100%), but trends remained unchanged. This indicates a strong
dependence on the cytoskeleton, especially of the F-actin, on the tether formation and
adhesion rate. The deciding variation in the tether formation and adhesion rate might be
caused by the non-clustering of the GPIba of cytochalasin D treated platelets, as the
difference between nocodazole and untreated platelets is minimal. The binding affinity and
strength of cytochalasin D treated platelets is lowered and consequently, the probability of the
tether forming is reduced. For poor adhesion without tether formation only a few vVWF Al
domain and GPIba bonds are sufficient, but for the tether formation the GPIba cluster
formation is essential. The tether formation and adhesion were also significantly influenced
by cytoskeleton changes. The membrane tension and therefore, the induced membrane
undulations and the receptor distribution are the crucial influencing factors. After F-actin
disruption the membrane tension is decreased and the membrane undulations are increased,
whereas after microtubular breakage the inverse effect is observed compared to cytochalsin D
treated platelets. The rupture force and the tether length were decreased for both treated
platelets due to a reduced membrane tension compared to untreated ones. However, the
rupture force might be neither influenced by the receptor distribution of the GPIba. nor by the

phase separation. In contrast, for 3s duration times the receptor distribution and the phase
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separation may influence the tether length, but not the tether formation probability. More
receptor-ligand pairs might be formed between cytochalasin D treated platelets GPIba and the
VvWF Al domain after a larger duration time. Consequently, the tether length was lengthened
compared to 1s duration time. On the contrary, the tether length for nocodazole treated and
untreated platelets was shortened compared to 1s. Thus, the phase separation, which is caused
by the cantilever tip, critically influences the tether length and results in a comparable tether
length for treated and untreated platelets. The membrane tension and the receptor clustering
significantly influenced the tether formation rate. Both treatments showed a reduced tether
formation rate. For F-actin disruption the tether formation rate was additionally decreased due
to the non-clustering of the receptors. However, the adhesion rate was only effected by
cytochalasin D treatment, thus the receptor distribution might be the crucial influence factor

for the adhesion rate.

The tether formation process by flow or by an AFM tip is a complete different process, which
occurs in different time regimes. In a flow chamber set-up, the tether formation velocity is
around 40 times faster (in the range between 108pum/s and 159um/s) compared to the AFM
retraction velocity (3.4pum/s). Furthermore, the tether formation in the flow chamber is an
active process, in contrast the tether extraction by an AFM tip is passive. The variations in
membrane tension of the flow chamber results and the AFM patch clamp results could be also
due to a change of the membrane tension by the patch clamp set-up. The patch clamp set-up
may additionally change the membrane tension. Cytochalasin D treated platelets showed a
decreased membrane tension and therefore, these treated platelets might be sucked deeper into
the patch clamp set-up. Consequently, the membrane tension is enhanced compared to flow
experiments. However, for nocodazole treated platelets, the membrane tension is increased
and therefore, the platelets might be not sucked as deep as the cytochalasin D treated or
control platelets into the patch clamp hole. Thus, the change in membrane tension of
nocodazole treated platelets is minimal. As control platelets did not show any change in the
membrane tension compared to the treated platelets, these were sucked not as deep as the
cytochalasin D treated platelets, but also not as minimal as the nocodazole treated platelets
into the patch clamp hole. Therefore, the control platelets showed an enhanced membrane
tension compared to treated ones. Furthermore, the variation between nocodazole treated
platelets and control platelets was not as significant as the variations of cytochalasin D and

untreated platelets in both set-ups.
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In summary, undulations are the key characteristics of the platelet behaviour and are strongly
influenced by parts of the cytoskeleton. Variations in the cytoskeleton lead to changes in the
membrane tension, which change the degree of undulations. The interpretation of the results
is summarized in figure 16. It depicts the correlation between the observed data and the

induced membrane change with the variation in the undulations.
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Figure 16: The sketch illustrates the combination of theory and experiment. The influence of cytochalasin D and
nocodazole on the membrane tension and the induced membrane undulation is demonstrated combined with a
model RICM image of the experiment. In a) the platelet is treated with cytochalasin D, which leads to a decrease
in the membrane tension and to an increase in the membrane undulations. As indicated the distance between
platelet to vIWF surface is increased compared to nocodazole treatment. Furthermore, the model image (grey
colours) shows the appearance of this configuration on the screen that the platelet only adheres weakly. In b) the
opposite effect is sketched. After treatment with nocodazole the membrane tension is increased and therefore, the
induced fluctuations are decreased. This induces a reduced distance between the platelet and the vVIWF surface
and appears as black spots on the screen, which illustrates the tight adhesion of the platelet to the surface. The
black arrows demonstrate the incident and refracted light, as described in figure 7.

A model system to study the integrity of the cytoskeleton and consequently, the modifications
of the adhesion and tether forming process was established. Furthermore, variations in the
cytoskeleton induce changes in the membrane tension, which generate alterations in the
membrane undulations. These results extend the simplified picture on mechanics and
thermodynamics of pure lipid bilayers with the more realistic and complex picture of a
membrane shell containing the F-actin and microtubuli skeleton. These new findings can help
to further understand the role that membrane tension and therefore, the induced undulations

play in biological processes, especially in platelet adhesion and tether formation.
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5. Impact of cholesterol loading and depletion in platelets

5.1 Introduction

Platelet free cholesterol concentration appears to influence the platelet functions (Shattil et al.,
1977). Individuals with elevated levels of free cholesterol in platelets suffer from
hypercholesterolemia (Shastri et al., 1980; Shattil et al., 1977). In these individuals an
increased sensitivity to the aggregating agents collagen, epinephrine, and ADP is observed
(Carvalho et al., 1974). These higher plasma cholesterol concentrations are a systemic trigger
for the formation of atherosclerotic lesions and consequently, increase the risk of death from
coronary heart disease (Davey Smith and Pekkanen 1992; Hulley et al., 1992; Oliver 1991; La
Rosa et al., 1990; Dawber and Kannel 1966). When cholesterol levels are lowered in these
patients, the sensitivity to the aggregating agonists ADP and collagen is lowered (Grgurevich
et al., 2002; Notarbartolo et al., 1995). Lowering cholesterol levels in these patients reduces
also the incidence of myocardial infarction (Haskell et al., 1994; Frick et al., 1987). However,
the mechanism how cholesterol affects the platelet behaviour is still unknown. To investigate
the impact of the cholesterol concentration on the platelet behaviour, platelets were either
loaded or depleted with cholesterol. The cholesterol content in platelets is depleted in vitro
with methyl-p-cyclodextrin (MBCD) (Grgurevich et al., 2002; Christian et al., 1997). MBCD
is a cyclic heptasaccharide, which contains a hydrophobic core capable of solubilising non-
polar substances and extracts membrane cholesterol from a variety of cells, in particular
platelets (Grgurevich et al., 2002; Waheed et al., 2001; Kilsdonk et al., 1995; Pitha et al.,
1988). The impact of the cholesterol concentration is a further step to complete the picture of
the biophysical aspect of the platelet-vWF interaction introduced by the cytoskeleton
disruption influence of the platelet function in chapter 4. The role of the cholesterol content
on the platelet adhesion, the number of adhered platelets and the weak adhesion area, as well
as the tether formation on a VWF coated surface was analysed to round up the effect of
individual phenomena on the platelet-vWF interplay by changing the platelet functions. This
might help to understand the increased risk of myocardial infarction by elevated cholesterol

levels.
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5.2 Results and Discussion

In a flow chamber equipped with a RICM (set-up see chapter 3.2.1) whole blocked blood
(preparation see chapter 3.1.1) was perfused with a vWF (WT) coated glass surfaces and
subjected to shear rates ranging from 5,000s™ to 20,000s™, platelets arrested from flowing
blood onto the immobilized vWF at the chamber walls (black arrows in fig. 17) and pulled

tethers out of the platelet membrane (white arrows in fig. 17) (Reininger et al., 2006; Casella

et al., 1981).
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Figure 17: RICM images of blood samples (blocked) over WT (10ug/ml) at shear rates of 10,000s”. Image a)
shows the cholesterol-loaded, b) cholesterol-depleted and c) control platelets adhered to the vVWF surface after
shear was applied for 25s. Arrested platelets, platelets with tether and ruptured tethers are shown. The black
arrows indicate the platelet adhesion area. The white arrows exemplary show tethers and ruptured tethers. (In
all images scale bar: 5um)

To focus on the adhesion behaviour of platelets, the weak contact area on the bottom of the
flow chamber was investigated after exposing platelets to shear flows ranging from 5,000s™" to
20,000s" for 25s (fig. 18). Loaded and depleted cholesterol and control platelets were
homogeneously distributed in the range between 2-14pm? at all investigated shear rates (fig.
18). To directly compare the impact of the cholesterol content, the average contact area was
calculated from integrating the histograms of each donor and taking the average. Cholesterol-
loaded platelets showed a minimal reduced average of the platelet adhesion area. Cholesterol-
depleted indicated an increased platelet adhesion area and the control platelets depicted a
maximum at 10,000s" at increasing shear rates from 5,000s™ to 20,000s™. The differences in
the shear rates and the various cholesterol contents were insignificant. The standard deviation
of the various donors was calculated. For all investigated shear rates both cholesterol contents
showed an increased platelet adhesion area compared to untreated platelets (table 2).

Table 2: Summary of the average contact area and the standard deviations of cholesterol-loaded, -depleted and
control platelets on the vWF coated surface

mean +/- sd 5,000s™" 10,000s™ 20,000s™
[um’] [um’] [um’]
cholesterol+ 6.4 +/- 1.1 6.0 +/-0.8 5.9+/-1.1
cholesterol- 56+/-1.8 6.0 +/-0.6 6.4 +/-0.6
control 44+/-0.3 49+/-1.0 43+/-0.6




5. Impact of cholesterol loading and depletion in platelets 53

The corresponding weak contact area distribution and average weak contact area for 10,000s™
are exemplarily depicted in figure 18. The standard deviations are not depicted in the inset in
figure 18 to better show the differences of treated and untreated platelets. These results denote

a minimal dependence on the cholesterol concentration on the platelet adhesion area.
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Figure 18: Weak adhesion area distribution for treated and untreated platelets at 10,000s™ : the weak contact
area is plotted against the probability P (YP=100%,). The red curve represents the adhesion area of cholesterol-
loaded platelets, the blue curve of cholesterol-depleted platelets and the black of control platelets. The inset
shows the mean of the weak adhesion area of treated and untreated platelets at a flow rate of 10,0005

To get a more cohesive picture on the adhesion process, the adhered platelets on the vWF
coated flow chamber surface (fig. 17) were counted by using different static RICM images of
blood samples following the exposure of platelets to a shear flow ranging from 5,000s™ to
20,000s" for 25s. The platelet adhesion to the surface decreased for all investigated
treatments with higher shear rates (fig. 19). At 5,000s" the platelet adhesion to the VWF
surface was decreased by 11% for cholesterol-loaded and by 21% for —depleted platelets
compared to controls. A higher shear rate of 10,000s" reduced both cholesterol contents by
around 18%-19% compared to untreated platelets. In contrast, at 20,000s" the adhesion was
lowered by 23% for cholesterol-loaded platelets and increased by 4% after cholesterol
depletion compared to control platelets. Increasing shear flow from 5,000s” to 10,000s™
reduced the adhesion of cholesterol-loaded platelets by 11%, for cholesterol depletion by 2%
and for control platelets by 2%. At 20,000s™" cholesterol-loaded platelet adhesion was lowered
by 53%, -depleted by 28% and untreated platelet attachment by 44% compared to 5,000s™,
indicating a minimal dependence on the platelet cholesterol concentration on the platelet
adhesion. The standard deviation between the different donors was not significant (12%-

26%), thus the error bars are not depicted in figure 19.



5. Impact of cholesterol loading and depletion in platelets 54

140

120

100 &

40

average platelet count

20

5000 10000 20000

shear rate [s7]

Figure 19: Average of the total platelet count per frame (5,000um’) of treated and untreated platelets at
increasing flow rates. The red curve represents the total platelet count of cholesterol-loaded platelets, the blue
curve of cholesterol-depleted platelets and the black curve of controls.

These results indicate that above the shear rate threshold of vWF stretching the platelet
adhesion decreases by increasing the force acting on the platelets. Above 10,000s™ the force
acting on the platelets reaches a maximum, thus this might be a critical shear rate threshold to
significantly decrease the platelet adhesion. To zoom in the platelet absorption process, it
seemed reasonable to extract the difference in the energy of absorption AG of untreated and

treated bound platelets by applying the Boltzmann equation (adapted equation (5));

Meontrol _ _ ,-8GIksT Rl

1 chotesterol
where k3 is the Boltzmann constant, AG is the change in absorption energy between control
and cholesterol-loaded or -depleted platelets, T the temperature and #consor aNA Fepolesteror 18 the
average fraction of the amount of control and cholesterol-loaded or -depleted platelets on the
surface (Fleck et al., 2002; Alberts et al., 2003). Using the average amount of control and
cholesterol-loaded or -depleted platelets adhering to the surface resulted in an energy
difference AG in the order of 0.1-0.3 kgT. These differences in the absorption energy
extracted by untreated and treated platelets were minimal compared to the adhesion energy
differences of cells typically found in the literature (Simson et al., 1998). Detailed data
analysis on the comparison of absorption energy and adhesion energy in the literature is
depicted in chapter 4.2. These results do not show a clear dependence of the cholesterol
concentration on the platelet adhesion process, thus the tether formation process might be
more sensitive compared to the adhesion process to investigate cholesterol content variations.
First, the tether length on the bottom of the flow chamber (white arrows in fig. 17) was

analysed after the platelets were exposed to a shear flow ranging from 5,000s" to 10,000s™
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for 25s. At 5,000s" and 10,000s" cholesterol-loaded and -depleted platelets showed a fairly
sharp distribution with a most likely tether length at the platelet of around 4um. However,
untreated platelets were spread more homogeneously over the range between 1-30pm
indicating a change in the mechanical properties of the tether. Instead, at 20,000s™
cholesterol-loaded and -depleted and control tethers at the platelet were spread homogenously
over the range between 1-26pum (loaded and control platelets: 1-26pum and depleted platelets:
1-20um) (fig. 20). In contrast, the ruptured tethers depicted at all investigated shear rates a
sharp distribution of around 4um for cholesterol-loaded or -depleted platelets, whereas the
control tethers were spread more homogenously in a range between 2-20um (fig. 20). The
ruptured tether number was significantly reduced compared to tethers at the platelet body. At
5,000s" cholesterol-loaded platelets showed 10% ruptured tethers, cholesterol-depleted
platelets 14% and control platelets 27% compared to the total tether count. In contrast, at
10,000s" both cholesterol contents formed 9% ruptured tethers and untreated platelets 15%.
Increasing shear rate to 20,000s” demonstrated for treated and untreated 18%-19% ruptured
tethers. The tether length distribution of tethers at the platelet body and of ruptured ones was
almost comparable. Afterwards, the average total tether length was calculated from
integrating the histograms of each donor either at the platelet body and ruptured ones and
taking the average. The standard deviation was calculated by the variations of the different
donors. For all investigated shear rates, the average tether length of treated platelets was

decreased compared to untreated ones (table 3).

Table 3: Summary of the average tether length and the standard deviations of cholesterol-loaded, -depleted and
control platelets on the vVWF coated surface.

mean +/- sd 5,000s™ 10,000s™ 20,000s™
[nm] [nm] [nm]
cholesterol+ 5.5+-1.7 5.3+/-02 6.1 +/-1.1
cholesterol- 54+/-2.1 37+/-0.3 4.9+/-0.2
control 10.7 +/- 0.0 7.9+/-1.3 73+/-1.0

The corresponding length distribution of tethers at the platelet body and ruptured tethers (inset
in fig. 20) exemplarily for 10,000s™ is shown in figure 20.
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Figure 20: Tether length distribution curves at the platelet body for treated platelets at a shear rate of 10,000s™ :
the tether length is plotted against the probability P (3P=100%). The red curve represents the tether length of
cholesterol-loaded, the blue curve of MBCD treated and the black curve of untreated platelets. The inset shows
the ruptured tether length distribution of treated and untreated platelets at a flow rate of 10,000s”.

These results show a dependence of the cholesterol content on the tether length. Thus,
cholesterol might be found in tethers, failing this the ruptured tether length distribution would
not be affected by cholesterol content changes. To zoom in the tether formation behaviour the
influence of the shear rate on the tether formation process was investigated. For treated
platelets the average of the tether length showed a minimum at 10,000s™', but the variations
were minimal. In contrast, the tether length formed out of control platelets decreased with
increasing shear rate. In general, it is assumed that an increase in the force or shear rate is
combined with an increase in the tether length. To get an idea about the shear rate impact
these results were compared with Smith and coworkers derived equation. Assuming that the
tether volume is much smaller than the vesicle volume, the tether length is defined as a
function of force:

L=(1-v")f (8)
with L the tether length, v the vesicle volume and f'the applied force (Smith et al., 2004). As
the tether length did not significantly increase for higher shear rates, this force-tether length
relationship could not be applied. The variations of the most frequent tether length and the
average tether length were minimal due to force changes. The impact of shear rate changes on
the tether length will also be investigated in chapter 6, 7 and 9, but the variations by
increasing shear rate were too minimal to be used for the force-tether length relationship
(equation 8). Equation 8 will not be quantified in the following chapters. The tether length is
mainly influenced by platelet function variations. The impact on the vWF on the tether

forming process will be analysed in the following three chapters. To complete the tether
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formation process, the average amount of the total tethers adhered on the vVWF surface was
calculated. The total tether count almost bisected for cholesterol-depleted platelets compared
to cholesterol-loaded and untreated ones at shear rates of 5,000s™". At 10,000s™ the total tether
amount was 9% and 26% reduced for cholesterol-loaded and -depleted platelets compared to
controls. Whereas, at 20,000s™ the total tether amount was lowered by 31% and 42% for
cholesterol-loaded and -depleted platelets compared to untreated ones. The standard deviation
between the different donors was significant (30%-60%), but the tendencies remained almost
unchanged. These results indicate that the tether formation process is more sensitive on the
cholesterol concentration changes in the platelet as the platelet adhesion. The tether formation
and the tether length were reduced due to cholesterol content changes. The platelet adhesion
was minimal reduced and the weak contact area was minimal increased compared to untreated
platelets. As the variations in the platelet adhesion are minimal, the changes in the cholesterol
content might be too low. These variations in the tether length and the platelet adhesion might
be due to a slightly increased membrane-cytoskeleton adhesion. Due to the increased
membrane-cytoskeleton adhesion the formation of adhesion domains might be lowered, thus
more lock and key interactions have to be formed to achieve the same adhesion strength
compared to an untreated membrane-cytoskeleton adhesion. The enhanced lock and key
interaction formation increase the weak adhesion area. Due to this lowered adhesion strength
the tether formation and the tether length are reduced. These results are almost in line with
Sun and coworker except for cholesterol-enriched platelets. For different cell types, except
blood platelets, the membrane-cytoskeleton adhesion is decreased for cholesterol-enriched
cells and increased for cholesterol-depleted ones (Sun et al., 2007). Every variation out of the
platelets biological equilibrium, which is the status of a healthy platelet, might influence the
tether formation and adhesion in the same direction. The concentration of cholesterol loading
and depletion may also be responsible for the same impact on the platelet adhesion and tether
formation processes, as low and large cholesterol concentrations influence the permeability
and the thermomechanics of membranes contrary (Mouritsen and Zuckermann 2004).
Cholesterol depletion diminishes collagen induced platelet aggregation by first, altering the
platelet ultrastructure critical in mediating secretion and second, influencing intracellular
events, such as a reduction in microtuble ring formation and tyrosine phosphorylation
(Grgurevich et al., 2002). The spreading on vWF (Van Lier et al., 2005) and the platelet
volume is also lowered suggesting a decreased platelet reactivity. However, morphological
changes, variations in the granule structure, the allbp3 distribution and the platelet activation

state are not observed (Gousset et al., 2004; Grgurevich et al., 2002). Human platelets
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depletion with 10mM MPBCD leads to a 24%-54% reduction in total cholesterol concentration
of the platelets (Grgurevich et al., 2002). These effects of cholesterol depletion analysed by
Grgurevich and coworkers showed that MPCD changes the platelet biochemistry. The
presented results coincide with the other groups, but the influence on the platelet adhesion and
tether formation was minimal compared to the changes in adhesion on collagen and spreading
on VWF. Thus, a higher change in the cholesterol concentration might stronger influence

these investigated processes.

Taken together, these small variations in the cholesterol concentration might not crucially
affect the GPIba-vWF Al domain interaction. The investigated changes in the cholesterol
concentration were in the physiological relevant range. In contrast, physically more effective
would be an increased cholesterol concentration change. The platelet-vWF interaction might

not be the main risk factor for mycardinal infarctions.
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6. Importance of the multimer size for von Willebrand factor

function

6.1 Introduction

Essential in the coagulation cascade is a functional vWF. Defect of the vWF results in a
decrease of the vWF antigen content and in alterations in its functionality. The
multifunctional character of vWF, its complex biosynthesis, intercellular transport, secretion
pathways and structure are responsible for its marked heterogeneity of clinical symptoms in
von Willebrand disease (VWD) (Schneppenheim 2004; Schneppenheim and Budde 2004). In
general, three different main types of vWD can be observed. The vWD type 1 shows a low
vWF antigen concentration, type 3 the loss of VWF and type 2 qualitative mutations
independent of the vWF antigen content. Type 2 is devided into several subgroups. The vWD
type 2A is characterised by a disordered platelet dependent function due to loss or relative
reduction of the high molecular weight multimers, which are most active in primary
hemostasis. Type 2B is distinguished by an increased GPIba binding affinity independent of
either a loss of the large multimers or a normal vWF multimer distribution. Platelet dependent
defects of the vWF are described by type 2M and defects in the factor VIII-vWF interaction
by type 2N (Schneppenheim and Budde 2006; Schneppenheim 2004; Schneppenheim and
Budde 2004; Sadler 1994). The severity and the type of the vWD are the basis for the therapy
plan. For example, vWD type 3 patients are treated with commercial available vVWF products.
Crucial for this therapy are the large multimers of the vWF products, as these are more active
and important for the primary haemostasis step (Schneppenheim and Budde 2006). VWF
products used for patient treatment exhibit a large variation in multimeric distribution, which
may reflect in vivo effectiveness. Up to now, the influence of various multimer size lengths is
not fully understood. This knowledge is important for the differentiation and classification
between the various vVWF product types. To directly point out the impact on different lengths
of the vVWF multimer distribution, subfractions from one vWF product, Haemate, were as well
investigated. The platelet adhesion, the number and the weak adhesion area, and the tether
formation on a vVWF product coated surface were analysed by a flow chamber set-up equipped
with a RICM. It is a suitable tool to test the efficiency of vVWF products in vitro. Over
collagen the percentage coverage area was quantified by epifluorescence microscopy with the

vWF products and Haemate subfractions in the blood suspension.
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6.2 Results and Discussion

Either washed blocked cell suspensions (preparation see chapter 3.1.2) with immobilized
multimeric VWF products coated on a glass surface or blocked or not blocked blood
containing EDTA, PPACK (preparation see chapter 3.1.2 and 3.1.3) and multimeric vVWF
over fibrillar type I collagen were perfused in a flow chamber (set-up see chapter 3.2.1). The
VWF products Fanhdi, Haemate, Haemoctin, Immunate, Octanate and Wilate were
investigated. The effect of shear rates and vWF products on the platelet-vWF interaction by
increasing the shear rate from 400s™ to 40,000s™' was examined. To point out the differences
of the multimer size length on the platelet-vWF interplay, especially in the adhesion on
collagen, the subfractions of the vVWF product Haemate were quantified. The vWF proteins
were used in a final concentration of 100ug/ml or 10pg/ml. The physiological vWF blood
concentration is 10ug/ml. The increased vWF concentration was investigated to clarify the
role of an increased VWF concentration on the platelet-vWF interaction to study the
possibility of an increased vVWF content for patient treatment. To resolve the structure of a
few Angstrom and the distribution of vWF after shear surface coating, two vWF products,
Haemate and Wilate, were shear coated onto a glass surface under constant shear conditions
of 6,000s™" for 30min. These coated glass slides were preliminary analysed by AFM operating
in tapping mode (set-up see 3.2.2.1) not to manipulate the sample by the AFM tip. The vWF
coated glass cover slips were fixed with 2.5% glutaraldehyde and 10% paraformaldehyde to
provide stable immobilization. Only for Haemate multimer fibers on the coated cover slips
could be observed. Wilate showed a homogenous distribution of globular vWF molecules.
The presence of elongated vWF fibers might be due to the largest multimers of Haemate

compared to Wilate (fig. 21).

- -

Figure 21: Atomic force microscopy images of vVWF multimer fibers (see arrows) in a) the Haemate product
adsorbed to glass under shear rates of 6,000 s™ versus lack of those structures in b) the Wilate product. (In all
images scale bar: 5um)



6. Importance of the multimer size for von Willebrand factor function 61

This suggests that the largest multimers might be responsible for the fibre formation of the
vWF protein on surfaces. The absorption of vWF on a glass surface is obtained by unspecific

interactions and not by lock and key interactions.

6.2.1 vWF products coated on the chamber surface

To quantify the adhesion of platelets in detail, first the adhered platelets on the vWF surface
of the flow chamber were statistically calculated by using still RICM images of blood samples
after the exposure of platelets to a shear flow ranging from 1,500s" to 40,000s" for 45s.
Unfortunately, due to this static capture it was not possible to resolve the dynamic behaviour
of the platelets. The rolling velocities of the vVWF products were determined to clarify the
differences in adhesion time of the GPIba and the vVWF Al domain. The amount of the
adhered platelets on the vVWF surface was dependent on the shear rate and on the coating
concentration, but not on the vVWF products. For a coating concentration of 100pg/ml most of
the vVWF products showed a maximum for the platelet adhesion at 10,000s”. In contrast,
Fandhi exhibited a maximum at 4,000s™ and Haemate at 20,000s'. The average value of the
platelet adhesion per frame and their standard deviation, calculated by various donors, are

depicted in table 4.

Table 4: Summary of the average platelet adhesion and the standard deviations to the vWF surface per frame
(5,000um’) coated by different vWF products (10U).

vWF products 1,500s™" 4,000s™ 10,000s™ 20,000s™ 40,000s™

(mean +/- sd)

Fanhdi 42.1+/- 16.4 95.6 +/- 30.5 88.8 +/-24.5 87.5 +/- 34.7 52.4+/-35.2
Haemate 28.9 +/- 12.7 952 +/-15.5 | 110.0 +/-24.8 | 1092 +/-27.4 | 57.7+/-53.8
Haemoctin 38.3+/-8.6 58.2+/- 19.5 71.5+/-21.9 68.7 +/- 20.6 29.4 +/-30.5
Immunate 442 +/- 8.1 95.9+/-21.5 | 117.4+/-18.4 | 101.9+/-21.7 | 64.4+/-40.7
Octanate 52.3 +/- 15.8 90.9 +/-24.7 | 116.0+/-16.7 | 79.5+/-38.7 20.5+/-7.0
Wilate 56.2 +/- 18.8 93.2 +/-32.2 96.9 +/-22.9 82.5+/-19.9 43.4+/-25.4

For the lower vWF coating concentration the shear rates with the most significant differences
and only one VWF product from Octapharma were chosen to investigate the adhesion and
tether formation processes on vVWF as well as the aggregate formation on collagen. A lower
VvWF coating concentration of 10pg/ml showed more than twice as much adhered platelets on
the vVWF surface compared to the higher vVWF coating concentration. The increase from
1,500s" to 10,000s' doubled for all investigated VWF products the platelet adhesion.

However, the variations of the different vVWF products were minimal as for the higher vWF
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concentration. The mean of the platelet adhesion and their standard deviation is summarized

in table 5.

Table 5: Summary of the average platelet adhesion and the standard deviations to the vWF surface per frame
(5,000um’) coated by different vWF products (1U).

vWF products 1,500s" 10,000s™
(mean +/- sd)

Fanhdi 102.1 +/- 18.0 222.4+/-20.5
Haemate 103.3 +/-19.0 217.6 +/-11.5
Haemoctin 108.3 +/- 18.7 214.1 +/-12.3
Immunate 93.2+/-21.8 219.7 +/-23.0
Wilate 107.8 +/- 6.3 208.3 +/-11.2

These results indicate a significant dependence on the vVWF concentration and the exposed
shear rate. In contrast, the variations in the platelet adhesion of the vWF products were
minimal. The differences in the vVWF multimer distribution might be too small to influence
the platelet adhesion. The significant increase in the platelet adhesion amount from 1,500s™ to
10,000s " might be due to the stretching of the vWF protein above a critical shear rate. In the
range between 2,000s™ and 5,000s" the vVWF protein gets activated (Schneider et al., 2007).
Above a shear rate of 10,000s™ the adhesion decreased due to an increased applied force,
which pushed most of the platelets over the surface without the possibility of detaching. The
platelet-vWF interaction might be not strong enough at 20,000s™" to provide the same number
of adhered platelets. Thus, at high shear rates more lock and key interactions and the
formation of adhesion domains are essential. An increase in the vWF product concentration is
combined with a decrease in platelet adhesion. The platelet count on the surface was almost
bisected by a higher vWF concentration. Therefore, increased vWF surfaces coating contents
might not provide more binding sites, as VWF products might tend to self assemble on the
vWF surface. Consequently, the availability of the receptors for platelet adhesion is reduced.
To elucidate the dynamic behaviour of the platelets, the rolling velocities of the platelets over
the different vWF products (c = 100ug/ml) coated surfaces were investigated. All vWF
products showed comparable velocities. By trend Wilate had a decreased rolling velocity
compared to Haemate, these resulted in a longer binding time of the GPIba and the Al
domain of the Wilate product. The average value of the rolling velocities and their standard
deviations due to the various donors are depicted in table 6. The rolling velocities minimal

increased with increasing shear rate.
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Table 6: Summary of the platelet rolling velocities and the standard deviations of vVWF product coated surfaces
(10U).

vWF products 1,500s™ 4,000s™ 10,000s™
(mean +/- sd) [um/s] [um/s] [um/s]

Fanhdi 3.7+/-2.6 4.0+/-29 6.8 +/-4.1
Haemate 3.84/-2.0 S5.1+/-4.7 6.9 +/-4.2
Haemoctin 2.7+/-1.9 7.1+/-4.7 93+/-4.4
Immunate 3.0+/-2.0 3.6 +/-2.7 5.0+/-3.2
Octanate 3.0+/-2.0 45+/-3.2 6.8+/-3.4
Wilate 2.9 +/-2.1 3.84/-3.0 52+4/-3.9

For lower vWF coating concentrations the differences in rolling velocities were not
investigated, as no differences for the comparison of products at higher coating concentrations
were present. These results show that the difference in the multimer distribution of the
investigated vVWF products is too low to influence the platelet rolling velocities. The rolling
velocity increased with the flow rate, as the force acting on the platelets was enhanced and
therefore, the probability for binding events and time was reduced. Next, the contact area on
the bottom of the flow chamber after the exposure of the platelets to different shear flows
ranging from 1,500s" to 40,000s' for 45s was quantified. All vWF products were
homogeneously distributed in the range between 1-15um” at all investigated shear rates and
for both vWF coating concentrations (fig. 22). To point out the variation of low and high
shear rates for the lower vWF coating concentration were 1,500s™" and 10,0005 investigated.
To highlight the impact of the vVWF products, the average contact area was calculated from
integrating the histograms of each donor and taking the average. All investigated products
were comparable to each other. The differences of the vVWF products were in the range of the
standard deviation of the various donors. The average of the contact area showed a maximum
at 10,000s'. However, the changes in the investigated shear rates were minimal. A detailed
list of the average contact area and the standard deviations on all investigated vWF coated

surfaces and for both coating contents is summarized in table 7 and 8.

Table 7: Summary of the average platelet adhesion and the standard deviations to the vWF surface coated by
different vWF products (10U).

vWF products 1,500s™ 4,000s™ 10,000s™ 20,000s™ 40,0005
(mean +/- sd) [um’] [um’] [um’] [um’] [um’]

Fanhdi 5.4+/-0.7 5.5+/-0.7 6.0 +/-0.2 7.0 +/-0.4 6.4 +/-1.1
Haemate 5.5+4/-0.2 5.7+/-02 6.2+/-0.7 7.0 +/-0.4 6.2+-15
Haemoctin 4.9+/-0.4 6.6 +-1.3 6.7 +/-0.6 7.6 +-1.1 6.2 +/-1.0
Immunate 6.5+/-0.5 6.5+/-0.9 6.5+/-1.2 7.3+/-1.1 7.6 t/-1.6
Octanate 6.0 +/-0.5 6.6 t/-1.2 7.0+/-1.0 7.0 +/-0.9 6.7+/-0.4
Wilate 5.5+/-0.8 5.9+/-0.3 6.9 +/- 0.5 7.1+/-0.6 7.2+/-0.5
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Table 8: Summary of the average platelet adhesion and the standard deviations to the vWF surface coated by
different vWF products (1U).

vWEF products 1,500s" 10,000s™
(mean +/- sd) [um?] [um?]

Fanhdi 4.6 +/-0.1 5.2+/-03
Haemate 48+/-0.5 53+4/-0.2
Haemoctin 4.8+/-0.2 52+/-03
Immunate 4.8+/-0.2 54+/-0.4
Wilate 49+/-0.2 5.2+/-0.2

Exemplarily for 10,000s" the weak contact area and exemplary RICM still images of platelets

adhering to the Haemate surface of both coating concentration are depicted in figure 22.
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Figure 22: Adhesion area distribution of platelets over a vVWF product coated surface at 10,0005 : the contact
area is plotted against the probability P (YP=100%). a) shows the adhesion area distribution of a vVWF coating
concentration of 100ug/ml and b) of a concentration of 10ug/ml. The insets show RICM still images of platelets
adhering exemplary to a Haemate surface of both vWF concentrations at 10,000s™. The black arrows indicate
the platelet weak contact area. (In all images scale bar: 2um)
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These results suggest that the platelet weak adhesion area on the vVWF coated surface
remained constant by minimal variations in the multimer distribution of the investigated vWF
products and also by a drastic change in the vVWF coating concentration. Additionally, the
weak adhesion area was minimal increased by increasing shear rate. The influencing factor of
the weak adhesion area might be the platelet and not the vVWF protein, especially the large
multimers, as variations in the platelet cytoskeleton significantly changed the weak adhesion
area (details see chapter 4). However, the effect of the vVWF protein will be analysed in the
next two chapters, to confirm this assumption. The tether length might be more sensitve in
multimer distribution variations. To zoom in the platelet-vWF interaction, the tether length on
the bottom of the flow chamber was analysed, following the exposure of the platelets to shear
flows ranging from 1,500s" to 40,000s" for 45s. The variations between the different
products and different coating concentrations were minimal. All products showed a fairly
sharp distribution between 3-10um at all investigated shear rates (fig. 23). The tether length
distribution varied between tethers at the platelet body and ruptured ones minimal. However,
the amount of ruptured tethers was significantly reduced. Almost all investigated products
showed approximately 10% ruptured tethers, except Wilate, which formed approximately
30% ruptured tethers. The average tether length was calculated to better compare the
variations of the vWF products by integrating each histrogram and taking the average. All
investigated VWF products were comparable to each other. The tether length reached a
maximum at 10,000s™, but the changes by the shear rate were minimal. The detailed values of
the average tether length and the standard deviations of the various donors are depicted in

tabele 9 and 10.

Table 9: Summary of the average tether length and the standard deviations to the vVWF surface coated by
different vWF products (10U).

vWF products 1,500s™" 4,000s™ 10,000s™ 20,000s™ 40,000s™
(mean +/- sd) [pm] [pm] [pm] [pm] [nm]

Fanhdi 4.8+/-0.7 7.6+/-3.0 8.1+/-1.0 6.1 +/-1.0 5.9+/-0.5
Haemate 41+/-1.3 6.4+/-0.6 6.9+/-1.0 6.9 +/-0.8 5.9+/-0.9
Haemoctin 5.0+/-0.6 5.8+/-1.1 9.5+/-1.4 7.2+/-1.0 6.3+/-0.9
Immunate 44+/-1.1 5.6 t/-0.4 9.0+/-2.5 8.6 +/-0.8 6.5+/-0.9
QOctanate 4.9+/-0.7 5.4+/-1.0 7.5+/-0.9 6.6 +/-0.3 52+/-0.5
Wilate 4.6 +/-0.6 5.0+/-0.8 7.8 +/-1.1 8.2+/-0.7 6.4+/-14
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Table 10: Summary of the average tether length and the standard deviations to the vWF surface coated by

different vWF products (1U).

vWEF products 1,500s" 10,000s™
(mean +/- sd) [um] [um]

Fanhdi 4.4+/-0.7 9.4+/-1.8
Haemate 43 +/-1.5 9.8+/-3.2
Haemoctin 3.6 +/-0.4 T4+/-22
Immunate 3.9+4/-1.3 8.6+/-2.4
Wilate 39+/-1.6 7.5+/-2.2

Exemplarily, for a shear flow of 10,000s" the total tether length distribution and RICM still

images of tethers and platelets adhering to the Haemate coated surface of both coating

concentrations are depicted in figure 23.
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Figure 23: Total tether length distribution for platelets over a vWF product coated surface at 10,0005 : the
tether length is plotted against the probability P (YP=100%). a) shows the tether length distribution of a vVWF
coating concentration of 100ug/ml and b) of a concentration of 10ug/ml. The insets show RICM still images of
tether and platelets adhering exemplary to a Haemate surface of both vWF concentrations at 10,000s”. The
black arrows indicate tethers. (In all images scale bar: 5um)
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Finally, the total tether count was quantified. At higher vWF coating concentrations the tether
adhesion was maximal at 20,000s™ for all investigated vVWF products, except Fanhdi, which
depicted most of the tethers at 10,000s™". These results were also comparable with the lower
vWF coating concentration. At all investigated shear rates and a higher vWF surface coating
Haemoctin showed the fewest total tether number. In contrast, at lower vVWF coating
concentration Fanhdi showed the fewest tethers. Wilate significantly increased the ruptured
tethers number by increasing shear rate and both coating concentrations compared to the other
VWF products. In general, the tether count increased with increasing shear rate. The
calculated standard deviations were < 50%, however, the tendencies remained unchanged.
These results show that the tether length is minimal controlled by the shear rate. The average
value of the tether length slightly increased until 10,000s" and decreased above that shear rate
threshold. However, the tether count depends on the shear rate, due to an increased platelet
adhesion probability. The tether formation rate increases until 10,000s" like the platelet
adhesion. Consequently, the increased platelet adhesion to the surface might be the key
impact factor on the tether formation. The various vVWF products and both coating contents
did not regulate the tether formation process, except for Wilate. Wilate showed most of the
tethers adhering to the surface, especially ruptured ones. Thus, Wilate might offer an

increased binding affinity for GPIba compared to the other products.

Over all, all investigated products were comparable to each other for all investigated platelet

functions and no impact of the large multimers on the platelet-vWF interplay was observed.

6.2.2 Collagen coated surface

To analyse the aggregate formation of platelets, the formed platelet aggregates on the collagen
surface of the flow chamber were statistically quantified. The adhesion on collagen might
simulate in more detail the in vivo blood flow compared to the vVWF coated surface, as
collagen is exposed to the blood flow after vascular injury. By using epifluorescence
microscopic images of unblocked blood samples (preparation see chapter 3.1.3) containing
VvWF products or Haemate subfractions the aggregate formation was examined after the
exposure of platelets to a shear flow of 400s™ to 10,000s” for 30s to 5min (fig. 24). Both
coating contents were quantified to point out the impact on the vWF concentration in the

blood suspension on the platelet-vWF interplay.
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Figure 24: Epifluorescence microscopic picture of platelet aggregates over collagen exemplary added Haemate
(10ug/ml) to the blood suspension arrested single platelets and platelet aggregates are shown. Black arrows
indicate the platelet aggregates on collagen. (In all images scale bar: 40um)

For high vWF concentrations, a shear rate of 1,500s™ and a flow time duration of 1min
showed that Haemate provided most of the vWF-platelet aggregates on collagen. However, at
increasing flow time duration all products were comparable except Wilate, which had the
greatest amount of small aggregates (< 200um?). This amount was almost doubled compared
to the other products. At 10,000s’ Wilate showed most of the aggregates on collagen
compared to the other products. From summing up the amount of aggregates a percentage
area coverage was calculated, which exactly demonstrated the results of the single aggregate
observation. The differences between the products for 1,500s™ were not significant (fig. 25
a)), but for 10,000s™ the percentage area coverage was increased for Wilate (fig. 25 b)). In
contrast, for the low vWF concentration the aggregate distribution varied. At 1,500s™" and for
30s and 1min flow exposure the difference between the products was significant (fig. 25 c)).
Haemate and Immunate showed most of the aggregates, but at increasing duration times this
effect vanished. However, at a duration time > 4min Wilate showed most of the aggregates,
which was comparable to ten times of the vVWF concentration (fig. 25 ¢)). On the contrary, at
10,000s™ and a flow exposure of 30s Haemate formed most of the aggregates on collagen
(fig. 25 d)). Instead, at increasing flow time duration the products were comparable except for
Fanhdi and Haemoctin (fig. 25 d)). This result was completely contrary to the higher vWF
concentration. For the higher vWF concentration Wilate formed most of the aggregates. The
percentage area coverage showed the same results (fig. 25). The standard deviations between
the donors were significantly large (< 100%), however, the trends remained almost constant.

Due to a better overview, the error bars are not depicted in figure 25.
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Figure 25: Percentage area coverage of platelet aggregates on collagen. VWF products were added to the blood
suspension at final concentrations of a), b) of 100ug/ml and c), d) of 10ug/ml. Image a) shows platelet
aggregate formation at shear rates of a), ¢) of 1,500s" and b), d) of 10,000s™.

For shear rates of 400s™' the vVWF products were comparable until 4min duration time of the
shear flow except Immunate, which showed for all duration times a lower amount of
aggregates. However, at 4min the variation of the vVWF products increased and for Haemoctin
and Wilate most of the aggregates were observed. At 800s™ and at the beginning of the flow
perfusion Haemoctin and Immunate formed most of the aggregates on collagen. In contrast,
with increasing flow time the products were comparable (fig. 26). These flow measurements
at shear rates of 400s" and 800s™ were only performed for the lower vVWF concentration, as
no variation for the higher vWF concentration could be observed at 1,500s". The standard
deviations between the donors were significantly large (< 100%), however, the trends

remained almost constant. Due to a better overview, the error bars are not depicted in figure
26.
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Figure 26: Percentage area coverage of platelet aggregates on collagen. VWF products were added to the blood

suspension at final concentrations of 10ug/ml. Image a) shows platelet aggregate formation at shear rates of a)
of 400s™ and b) of 800s™".

These results indicate that the differences in the multimeric distribution of the vWF products
over collagen are significant at lower vVWF concentrations compared to higher ones. At the
beginning of the flow exposure (30s, Imin) at 1,500s™" and at 10,000s™" Haemate formed most
of the platelet aggregates compared to the other investigated vWF products. Therefore, the
largest multimers might be a key characteristic for the aggregate formation over collagen, as
Haemate was the only vWF product, which was composed of the whole multimer distribution
of the normal plasma vWF. The other products did not consist of the largest multimers. In
contrast, at increasing flow exposure at 1,500s™ the effect of the largest multimers vanished.
After two minutes flow exposure the vVWF multimers might conglomerate and were able to
replace the influence of largest multimers due to self assembling. Contrary, for higher vWF
concentration the influence of the largest multimers vanished. At 1,500s™ the variation in the
aggregate formation of the different VWF products was minimal, but for 10,000s”" Wilate
showed most of the aggregates. Although Wilate was not composed of the largest multimers,
to overcome the effect of the largest multimers Wilate might tend to self assemble more
effective at 10,000s” compared to the other vVWF products. The influence of the largest
multimers might be neglected due to a ten times increased vVWF protein concentration. To
directly clarify the effect of each multimer group and to understand the possibility of self
assembly, Haemate subfraction of the same production process containing only small, middle
or large size multimers (multimer distribution in fig. 27) were analysed by using a collagen
coated flow chamber equipped with epifluorescence microscopy. The variation in the
multimer distribution of the Haemate subfractions was biochemical analysed by agarose gel
electrophoresis to better understand the differences of small, middle and large multimers. The
main differences in the multimer length are shown by the black circles and arrows in the

upper bands in figure 27.
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Figure 27: Analysis of vWF multimer patterns of 4 different subfractions of Haemate by sodium dodecyl sulfate—
agarose gel electrophoresis. NP, normal plasma; lane I, E100 (low molecular weight); lane2, EI40 (low
intermediate molecular weight); lane 3, E180 (high intermediate molecular weight; lane 4, E250 (high
molecular weight). Concentration of vVWF as determined by ristocetin cofactor activity assay was adjusted to
1.0U/mL. The black arrows and circles indicate the changes in the multimer distribution size.

On the basis of the gel electrophoresis the amount of aggregates and the aggregate size was
investigated to quantify the influence of shear rate, flow duration time, vVWF multimer size
length and the vWF concentration. To get an idea of the various aggregation formation
processes due to the multimer size difference, shear rate and exposure, exemplarily for the
physiological vVWF concentration the adhesion pattern on collagen at 1,500s™ and flow times
of 1min, 2min and 5min (fig. 28 a)) and at 10,000s" of 3min (fig. 28 b)) is depicted for small
multimers (E100), Haemate and large multimers (E250) in figure 28. The variation in the
different multimer sizes at higher vWF contents was minimal at 1,500s" except for the large
multimers. The large multimers formed at any investigated flow exposure time at 1,500s™ less
aggregates compared to the other subfractions. At duration times between 30s and 1min the
larger intermediate multimer fraction showed most of the aggregates compared to the other
investigated subfraction. However, after 2min flow exposure the subfraction were comparable
except the large multimers, which showed significantly decreased amounts of the aggregates
on collagen (fig. 29 a)). At a higher shear rate of 10,000s™ the influence of differences of the
Haemate subfractions was more pronounced compared to 1,500s™". For all investigated flow
exposure times at 10,000s™ the larger multimers formed most of the aggregates and also the

largest aggregates (fig. 29 b)).



6. Importance of the multimer size for von Willebrand factor function 72

Eluate 100 Haemate Eluate 250

Figure 28: Epifluorescence microscopic picture of platelet aggregates over collagen by adding E100 (small
multimers), Haemate (comparable with normal plasma) and E250 (large mulltimers) at a final concentration of
10ug/ml to the blood suspension. Arrested single platelets and platelet aggregates are shown. Black arrows
indicate the platelet aggregates on collagen. Image a) shows aggregate formation at 1,500s" and b) at 10,0005
! (In all images scale bar: 40um)
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The percentage area coverage showed the same results and is demonstrated exemplarily for
1,500s" and 10,000s™ in figure 29 a) and b). The influence of the larger multimers was more
significant at lower VWF concentrations compared to higher ones. At 1,500s" and at the
beginning of the flow exposure the large multimers were crucial for the aggregate forming
process, at flow times increasing 2min the multimers were comparable (fig. 29 c)). The large
multimers were essential for all flow duration times at 10,000s™ (fig. 29 d)). To show the
difference between the multimers the percentage area coverage for 1,500s™ and 10,000s™ is
illustrated in figure 29 c) and d). The standard deviations between the various donors were

pronounced (in the range 10% - 100%, depending on the multimer size, the shear rate and the
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duration time), but the distributions remained almost constant. To better outline the impact on

the multimer size length, no standard deviations are depicted in figure 29.
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Figure 29: Percentaged area coverage of platelet aggregates on collagen. Haemate and Haemate subfractions
were added to the blood suspension at final concentrations of a), b) of 100ug/ml and c), d) of 10ug/ml. Image a),
¢) shows platelet aggregate formation at shear rates of 1,500s™ and b), d) at 10,000s™.

These results indicate that at low vWF concentrations the large multimers were essential for
the aggregate formation process at the beginning of the flow exposure (30s, 1min) at 1,500s™
and at 10,000s™". This was comparable with the effect of Haemate by comparing the vWF
products. Increasing the vVWF concentration could minimize or even invert the effect of the
large multimers. For 1,500s™ the large multimers showed less aggregates compared to the
other subfractions. These results fit to the results observed for the vWF products. In contrast,
at 10,000s™" and the higher vVWF concentration the large multimers showed most of the
formed aggregates, which was contrary to the result of the vWF products. By increasing the
vWF concentration the effect of the large multimers could be disregarded according to the self
assembly of the smaller multimers. Next, the influence of the vVWF products on the vWF-
collagen and on the platelet-vWF interaction was carried out with washed blocked blood cell
suspensions. At high vWF concentrations increasing shear rates decreased the platelet
adhesion. For 1,500s" and 4,000s" Wilate showed almost four times more adhered platelets
on the surface compared to the other vVWF products. For 10,000s™ almost all products were
equal in their adhesion and for 20,000s™ Haemate and Haemoctin showed most of the adhered

platelets. Instead, for lower vWF concentrations the adhesion behaviour of the platelets
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changed. At 1,500s" the single platelet adhesion on collagen was comparable for all
investigated vVWF products, but for 10,000s” Wilate showed only one half adhered platelets
compared to the other products. The error bars between the donors were large (< 90%), but
the effects remained almost unchanged. This suggests that the vWF-collagen and platelet-
vWF interaction is slightly influenced by the multimer distribution size except for Wilate. At
physiological VWF concentration the binding affinity of Wilate and collagen might be
reduced by an increasing Wilate concentration. Overall, the differences in the multimer
distribution only minimal influence the platelet functions and vWF interactions with platelets
or collagen. These results are comparable with Mouton and coworkers. They reported that
there were no significant differences among 6 commercially available vVWF concentrates
(Haemate HS, Immunate STIM lus, Facteur Willebrand-LFB, Octanate, Wiloctin Alphanate)
with regard to platelet adhesion to de-endothelialized, human vessel walls under arterial flow
conditions, although these concentrates varied considerably in terms of content of high
molecular weight vVWF multimers (Mouton et al., 2004). While, some products have
multimeric patterns very similar to that of normal human plasma, no concentrate contains the
full amount of the largest vWF multimers, as plasma does (Metzner et al., 1998; Mannucci et

al., 1994).

In conclusion, for patient treatment the physiological concentration of vVWF products is
crucial. As the variations of the various vVWF products were minimal in the investigated
platelet functions, all vWF products might be applicable for patients’ treatment, but further in

vivo investigations need to be done.
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7. Influence of the von Willebrand Factor loss of function mutant

7.1 Introduction

Dysregulated interactions between the GPIba and vVWF A1 domain or mutations in both cause
bleeding either in vWF disorders such as vWD or in thrombotic disorders such as thrombotic
thrombocytopenic purpura (Yago et al., 2008; Sadler et al., 2006). Due to the multifunctional
VvWEF properties VWD is known for its marked heterogeneity (Schneppenheim 2004;
Schneppenheim and Budde 2004) (more details on vWD types see chapter 6.1). In 1989 the
genomic VWF structure was solved by polymerase chain reaction (PCR) based methods. This
was the first step to qualitatively describe the different vWD types and to elucidate new vWD
types in patients (Schneppenheim 2004; Schneppenheim and Budde 2004; Mancuso et al.,
1989). This investigated vVWF loss of function mutant (lofm) is genetically recombinant
produced by Schneppenheim and coworkers after PCR analysis of the patient’s vVWF protein.
Schneppenheim and coworkers will publish the genomic structure and more clinical details of
the vVWF mutant. Up to now the impact of this patient vWF lofm on the platelet functions is
unknown. As the diagnosis and classification of vWD in the different subtypes is difficult, the
biophysical mechanism of platelet-vWF mutant interaction will be in the focus of the
following chapter. The platelet functions were investigated by a flow chamber set-up,
equipped with a RICM or an epifluorescence microscopy, to analyse the platelet adhesion on

either vWF or collagen as well as the tether formation on and the rolling velocities over vVWF.

7.2 Results and Discussion
7.2.1 vWF coated surface

Whole unactivated blood (preparation see chapter 3.1.2) was perfused in a flow chamber
equipped with a RICM (set-up see chapter 3.2.1) and a surface coating of either a vVWF WT or
VvWF lofm. For shear rates ranging from 1,500s" to 20,000s™, platelets arrested from flowing
blood onto the immobilized vWF and pulled tethers (fig. 30).
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Figure 30: RICM images of blood samples (blocked) over different vWF coatings at shear rates of 10,000s™.
Image a) vWF WT coating and b) vWF lofm coating after shear was applied for 25s. Arrested platelets, platelets
with tether and ruptured tethers are shown. Black arrows exemplary indicate the platelet contact area and the
white arrows exemplary show tethers and ruptured tethers. Note the large number of platelets and tethers for
vWF WT coating. (In all images scale bar: 5 um)

To analyze the platelet adhesion in detail, the adhered platelets on the vVWF surface of the
flow chamber (fig. 30) were counted by using different still RICM images of blood samples
after the exposure of platelets to a shear flow of 1,500s" and 20,000s" for 25s. Due to this
static capture the dynamic behaviour of the platelets remained unresolved, e.g. the differences
in the rolling velocity as well as in the adhesion time. To clarify the dynamic platelet function
the platelets rolling velocities over the vVWF surface were calculated. The adhered platelet
amount on the vWF surface and the rolling velocities of the platelets were strongly influenced
by the vWF coated surface and the shear rate. With increasing shear rate the platelets adhered
to the surface increased for vVWF WT until 10,000s" and for the vWF lofm until 4,000s". For
higher shear rates the difference between the vWF WT and vWF lofm was more significant
compared to lower shear rates. At 1,500s” and 4,000s" the average amount of platelets
adhered to the vVWF WT surface is about 50% increased compared to the vWF lofm surface
and at 10,000s" even by 75% (fig. 31 a)). However, the rolling velocities enhanced with
higher shear rates and there was no reduction observed until 10,000s". For vWF WT the slope
was almost linear (~ 1) between 1,500s" and 10,000s™”, but for the vVWF lofim the slope
between 1,500s" and 4,000s" was almost 4 and for 4,000s and 10,000s™” was almost 0.5.
The rolling velocities at 1,500s" were reduced by 42% for vVWF WT coating compared to the
vWF lofm, at 4,000s™" by 61% and at 10,000s™' by 51% (fig 31 b)). The standard deviations in
the platelet adhesion of the various donors were in the range between 20%-30%. However,

the tendencies remained almost unchanged, thus the error bars are not depicted in figure 31.
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Figure 31: a) Average of the total platelet count per frame (5,000um’) and b) average rolling velocities of
different vIWF coatings at increasing flow rates. The black curve represents the total platelet count on vWF WT,
the red black curve on vVWF lofm.

Following the presented results it can be concluded, that the stretching properties of the vVWF
protein might be essential for the platelet adhesion behaviour. Above the critical shear rate the
vWF protein is activated and increases the Al domain exposure and thus, the platelet
adhesion to the surface. Above 10,000s™ the force acting on the platelets is too large to show
the same amount of platelet adhesion. Due to a vWF lofm the platelet-vWF interaction is
reduced and therefore, the platelet adhesion to the vWF surface. The shear rate influence on
the platelet adhesion is also discussed in chapter 5 and 6. From this statistical analysis of
bound platelets it seemed reasonable to extract the difference in adhesion energy AG of
platelets adhered on a vVWF WT or a vWF lofm surface by applying the Boltzmann equation
(adapted to equation (5));

=e
R iofin

Nwr  —  _AGIk,T (8)

where kg is the Boltzmann constant, AG is the change in adhesion energy between vVWF WT
and vWF lofm, T the temperature and nyr and nyy, is the average fraction of the amount of
platelets on the vVWF WT and vWF lofm surface (Fleck et al., 2002; Alberts et al., 2003).
Using the average amount of platelets adhering to the vVWF WT and to the vWF lofm surface
resulted in an energy difference AG in the order of 0.7 kgT for 1,500s", 0.7 kgT for 4,000s™
and 1.4 kT for 10,000s™'. These variations in the absorption energy extracted by platelets
adhering to vWF WT or lofm surface are too low compared to adhesion energy differences of
cells typically found in the literature (Simson et al., 1998). The detailed discussion is depicted
in chapter 4.2. To complete the adhesion behaviour of platelets on vVWF, the weak contact
area on the bottom of the flow chamber was analysed after platelets were exposed to a shear
flow ranging from 1,500s™ to 20,000s™” for 25s. For vWF WT surface coating and at all
investigated shear rates the platelets were homogeneously distributed in the range between 1-

15um?®, whereas for vVWF lofm surface coating the distributions ranged from 1-13um?* (fig.
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32). The average contact area was calculated by integrating the histograms of each donor and
taking the average, to better compare both investigated vVWF proteins (inset in fig. 32). The
average of the platelet adhesion area at all investigated shear rates was comparable for both

VvWF coatings and is listed in table 11.

Table 11: Summary of the average weak contact area and the standard deviations to the vWF surface

(mean +/- sd) 1,500s™ 4,000s™ 10,000s™ 20,000s™
[um?] [um?] [um?] [um?]

WT 4.8 +/-0.5 5.1+/-0.7 5.4+/-09 5.6+/-0

lofm 4.8 +/-0.6 54+/-0.2 5.34+/-0.6 0

Exemplarily at 10,000s™ the weak adhesion area and the average weak adhesion area are
depicted in figure 32. The standard deviations were calculated by the changes of various

donors. Due to a better overview the error bars are not shown in figure 32.
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Figure 32: Platelet weak adhesion area distribution on vWF WT and vWF lofim at 10,0005 : the weak contact
area is plotted against the probability P (YP=100%). The black curve represents the adhesion area of platelets
on vVWF WT, the red one on vWF lofm. The inset shows the mean of the weak adhesion area of platelets of
variable vVIWF coatings at a flow rate of 10,000 s™.

These results indicate a massive influence of the different vVWF coatings on the platelet
adhesion amount on the surface, but the adhesion area itself remained unaffected. Thus, vVWF
mutations will as well affect the tether formation process like the adhesion processes. To
qualitatively understand the tether formation process, the tether length on the bottom of the
flow chamber (white arrows in fig. 30) was quantified after exposing platelets to a shear flow
of 1,500s™" to 20,000s™ for 25s. While, for 1,500s" and 4,000s™" the tethers at the platelet body
showed for both vWF coatings a fairly sharp distribution with a most likely tether length of

around 2pm. However, at 10,000s™ the tethers at the platelets were more homogeneously
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spread over the range between 1-28um for vVWF WT and in the range between 1-16um for
vWF lofm. As at 20,000s ™' no platelets adhered to the vVWF lofm surface, the tether formation
was hindered, but for VWF WT the tethers at the platelet were homogenously spread over the
range between 1-24um. The ruptured tethers on vWF WT at 1,500s" were more
homogenously spread in a range between 2-7um, whereas the ruptured ones on vVWF lofm
showed a fairly sharp distribution with a most likely tether length of around 2um. The number
of ruptured tethers on VWF lofm was bisected compared to vVWF WT. At 4,000s' on vWF
WT, the ruptured tethers showed a fairly sharp distribution with a most likely tether length
around 3pum. On vVWF lofm formed 14% of vWF WT ruptured tethers. This small amount was
randomly distributed in a range between 3-7um. However, at 10,000s’ on vVWF WT the
ruptured tethers were more homogenously distributed in a range between 2-17um. On vWF
lofm the ruptured tethers formation was hindered. At 20,000s" on vWF WT the ruptured
tethers showed a fairly sharp length distribution of around 2pm. The corresponding length
distribution of tethers at the platelet and ruptured ones is exemplarily shown for 10,000s™" in

figure 33.
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Figure 33: Tether length distribution curves for platelets on vVWF WT and vWF lofm coatings at a shear rate of
10,0005 the tether length is plotted against the probability P (YP=100%). The black curve represents the
tether length of vWF WT surface and the red curve of vWF lofin surface. The inset shows the ruptured tether
length distribution of platelets at a flow rate of 10,000s™. The vWF lofm did not form any ruptured tethers at the
depicted shear rate.

Next, the total average tether length was calculated by integrating the histograms of each
donor and taking the mean. The standard deviations of the various donors were as well
evaluated to better estimate the variations of both vWF coatings. At all investigated shear
rates the average of the tether length was different for the vVWF WT and the vWF lofm
coating. The vVWF WT coating showed a maximal average tether length at 10,000s" and vWF
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lofm at 4,000s™". The shear dependent increase and decrease were minimal. To better compare
both coatings the total average tether length and their standard deviations are listed in table

12.

Table 12: Summary of the average tether length and the standard deviations to the vWF surface coated by
different vWF products (10U).

(mean +/- sd) 1,500s™ 4,000s™ 10,000s™ 20,000s™
[nm] [pm] [pm] [pm]

WT 4.5+/-0.8 6.5 +/-0.8 6.8 +/-0.5 56+/-1.2

lofm 2.84/-0.5 3.84/-13 3.74/-1.1 0

To complete the influence of the vWF coatings on the tether formation process the average
amount of the total tethers was analysed by counting the tethers adhered on the vWF surface.
The changes between vVWF WT and the vWF lofm were significant. The total tether count
almost bisected for a shear rate of 1,5005'l for vWF lofm, at 4,0005'1 the amount of tethers
was 64% decreased and at 10,000s™ even 80% lowered compared to tether numbers on vVWF
WT (data not shown) (fig. 30, white arrows). On vWF WT surface at 1,500s" 7% ruptured
tethers were formed, on vWF lofm 12% compared to each total tether count. In addition, at
4,000s" vWF WT showed 13% ruptured tethers and vWF lofm 4%. In contrast, at 10,000s™
vWF WT demonstrated 18% ruptured tethers and vWF lofm 1%. At 20,000s" vWF WT
formed 32% ruptured tethers. The changes of the different donors were significant (in the
range between 20%-60%, depending on the vWF coating and the shear rate), but the effects
remained almost constant. These results indicate a crucial dependence of the vVWF coating on
the tether formation process and the platelet adhesion to the vVWF surface, but not on the weak
adhesion area on the vWF surface. By studying the specific interactions between platelets and
vWF under controlled flow conditions, the effect of alterations of a vWF lofm on the platelet
behaviour was identified. A reduction in the apparent platelet adhesion to the vVWF lofm
surface was observed. This was combined with an increased platelet rolling velocity. This
behaviour is assumed to be a consequence of the reduced GPIba. and Al domain binding
affinity of the vVWF lofm. The platelets adhesion area on the vVWF surface is not influenced by
alterations in the vVWF A1 binding site. Consequently, after the initial platelet-vWF interaction
the adhesion area formation takes place independent of a reduced A1l binding affinity. The Al
domain is crucial for the number of first platelet adhesion contacts as well as for the platelet
adhesion time on the VWF surface, but the platelet weak adhesion area is unchanged by
variations in the number of adhesion contacts and the adhesion time. In contrast, the tether

formation is governed by alterations in the A1 domain, as the first contact and the adhesion
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time are critical for the tether formation process. A reduction in the binding affinity of the
VWF Al domain and the GPIboa causes a decrease in the tether length. For optimal and
maximal tether formation a strong binding of the GPIba to the surface is coactive. The force
acting on the platelets, which is altered by the shear rates, is also a stringent requirement for
the investigated platelet properties. At a specific force or shear rate for most vVWF coatings at
10,000s™, which is dependent on the platelet-vWF interaction, the platelet adhesion and the
tether number are maximal, however the adhesion area and the tether length are minimal
affected. After this threshold force point the adhesion and the tether formation process is
reduced. As the probability of platelet adhesion is reduced due to the increased applied force,
the possibility of tether formation is also decreased. To mimick the in vivo situation of
platelet aggregate formation, the surface was coated with collagen and both vWF types were

added to the blood suspension.

7.2.2 Collagen coated surface

To quantify the platelets aggregate formation, the aggregate formation was examined by using
static epifluorescence microscopic images of blood samples after the exposure of platelets to a
shear flow of 1,500s™" to 10,000s™ for 30s to 2min. The aggregate dimensions were dependent
on the shear rate, the time of exposure of the shear rate, and the vWF added to the blood
suspension. For vVWF WT blood suspension the aggregate formation increased with the
duration time and the shear rate. In contrast, for the vVWF lofm containing blood suspension
the aggregate formation was enhanced with duration time, but reduced for increasing shear
rates. At all investigated shear rates and duration times the difference in the percentage area
coverage was maximal at 120s duration time between vVWF WT and vWF lofm. At 1,500s™
and a 120s flow time duration vVWF WT showed twice the average of the area coverage
compared to vVWF lofm, at 4,000s" the increase was 7 times higher and at 10,000s" even 25
times higher compared to vVWF lofm (fig. 34). The standard deviations of the various donors
were calculated. The error bars for vVWF WT were in the range of 21% and 30% and for vWF
lofm of 42%-100%, but the trends remained unaffected. Due to a better overview the error

bars are not depicted in figure 34.
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Figure 34: Percentage area coverage of platelet aggregates on collagen. VWFE WT or vWF lofm were added to
the blood suspension at final concentrations of 10ug/ml. The black curve represents the vVWF WT blood
suspension and the red curve the vWF lofim one. The curves with a quadrat symbol show platelet aggregate
formation on collagen at shear rates of 1,500s”, the curves with the circle of 4,000s” and the ones with a
triangle of 10,000s™.

Furthermore, the most frequent aggregate size was analysed. This size was comparable for
both vWF WT and vWF lofm at all investigated shear rates and duration times. However, the
average aggregate size increased for both vWF types with increasing duration time. For vVWF
WT the aggregate size increased with shear rate, but for vWF lofm the aggregate size reached
a maximum at 4,000s"'. Differences in the aggregate size between vVWF WT and vWF lofm
were pronounced at all investigated shear rates and duration times of 120s. At 1,500s™" and
4,000s" the aggregate size of VWF WT was 3 times higher and at 10,000s” 15 times
enhanced compared to vWF lofm. The standard deviations were calculated by the changes of
the various donors. As aggregate size is homogenously distributed, the error bars were
significantly high (< 100%). These results show a significant impact of the soluble vVWF in
the blood suspension on the amount of platelet adhesion to the collagen surface. The soluble
vWF lofm showed a clear reduction in the apparent platelet adhesion to the collagen surface
compared to VWF WT. This behaviour might be a consequence of the reduced binding
affinity of the vWF lofm to platelets and maybe to collagen. The most frequent aggregate size
was not influenced by alterations in the vWF-binding site. In addition, the force acting on the
platelets, which is altered by the shear rates, and the duration time are a stringent requirement
for the platelet adhesion to collagen and therefore, for the aggregate formation. Increasing
shear rate and flow duration time enhanced the platelet adhesion and aggregate formation for
vWF WT due to the increased platelet probability near the vessel and an enhanced vWF-
platelet and vWF-collagen binding affinity compared to vWF lofm. The closure of the
vascular injury is strongly decreased for vWF lofm compared to vWF WT, as the adhesion

and aggregate formation on collagen is strongly lowered for the vWF lofm.
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Over all, the presented results showed that the vVWF lofm strongly influenced the platelet
adhesion, aggregate formation and tether forming processes. This can help to further
understand the role of this specific short-range lock and key interaction, especially the effect
of vWF mutants in the vWD. Furthermore, these investigations might be the first step for a
new testing tool for the difficult and complex classification of the various vWD types. This

knowledge might help to improve clinical therapy plans.
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8. Characterization of platelet-vWF aggregates

8.1 Introduction

Thrombotic arterial occlusion requires fast accrual and prolonged arrest times of initially
unstimulated platelets. This process is controlled by shear rate activation of vVWF. Exclusively
at high shear rates, this leads to the reversible platelet aggregate-vWF network formation.
This exclusively occurs at the interface of immobilized and soluble vVWF. The vWF mediated
platelet aggregation is independent of the activation of the allbp3 and their functionality. The
interplatelet connections are formed by adhesive vWF proteins functionally altered by tensile
stress (Ruggeri et al., 2006). Multimeric vVWF normally does not agglutinate circulation
platelets, except from being immoblized at sites of vascular injury or being exposed to
massively high shear rates, exceeding 20,000s” (Ruggeri et al., 2006; Dong et al., 2001).
However, in patients with type 2B vWD plasma vWF may spontaneously interact with
platelet GPIba (Szanto et al., 2007; Sadler 2005; Matsuhita and Sadler 1995). These
mutations in the vVWF protein directly affect the mechanical properties of the isolated Al
domain bonds with GPIba. Due to the agglutination the large vWF multimers are depleted,
which might cause thrombocytopenia (Yago et al., 2008). The characterization of the platelet-
VvWF aggregate formation remains unresolved until now. To clarify the role of the vWF
multimer distribution size and the sugar content in the platelet agglutination, the formation of
platelet-vWF aggregates in a flow chamber device with adjustable shear rates with dimeric
vWF Al domain coating was investigated. Over collagen the impact of vVWF mutations
compared to recombinant full-length vVWF was examined. The shear rates were varied from

0s™ to 50,000s™" to report the thrombus growth rates.

8.2 Results and Discussion
8.2.1 Dimeric vWF Al surface coating

Whole blocked blood as well as washed blocked blood cell suspensions (preparation see
chapter 3.1.2) reconstituted with various labelled or unlabelled multimeric vVWF proteins were
perfused in a flow chamber (set-up see chapter 3.2.1) with an immobilized recombinant

isolated dimeric vVWF Al domain or a collagen surface coating. Recombinant full-length
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VvWEF, healthy donor plasma vWF, commercially vWF preparation from pooled human plasma
(Haemate), subfractions from the same production process containing only small (E100) or
large (E250) size multimers and sugar free and sugar containing vWF added to the blood cell
suspension were investigated. The main differences in the investigated vWF proteins are the
vWF multimer distribution and the sugar content. Recombinant full-length vWF shows the
largest multimers and additionally, the whole multimer distribution of normal plasma vWF. In
the vVWF product Haemate the multimer distribution is comparable to normal plasma vWF,
whereas E100 contains only the small multimers and E250 only the large multimers (fig. 27).
Additional detailed information on commercially vVWF preparations from pooled human
plasma is depicted in chapter 6. Both sugar free and sugar containing vWF show comparable
multimer size distributions. The effect of serial increasing shear rates from 0s™' to 50,000s™,
as the thrombus growth rate was reported to be a linear function of very high shear rates
beyond 40,000s" (Ku and Flannery 2007) on the the platelet-vWF aggregate formation was
investigated. Above a critical threshold of 10,000s™" to 30,000s™ dependent on the vWF
protein in the blood suspension inactivated platelet-vWF aggregates started to roll over the
immobilized dimeric VWF Al domain surface without adhering. The progressive
disappearance of rolling aggregates below the shear rate threshold point could be visualized in
real time and therefore, the absence of platelet-vWF conglomerates in areas exposed to lower
shear rates. These conglomerates continually rolled in the flow direction above the threshold
shear rate, grew in size with increasing shear rate, and were completely reversible below the
critical shear rate threshold, although platelet activation was completely inhibited.
Additionally, these formed aggregates differed in size in dependence to the added multimeric
vWF proteins. The formation of vWF strands in and around those platelet-platelet aggregates,
which grew up to several microns thickness and up to several tens of microns length, was
observed. These resulting large vVWF networks could be visualized and analysed for the first
time. These results showed that platelets were enmeshed in the vWF networks. The threshold
aggregate forming shear rate and the size of the platelet-vWF conglomerates were analysed.
For recombinant full-length vWF the shear rate threshold was at around 15,000s™ (fig. 35 b)
and d); supplemental material). The reversibility of activation-independent aggregate

formation is shown in figure 35.
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Figure 35: Microscopic still images taken from real-time video-recording of blood flow over immobilized
dimeric vWF Al domain at shear rates a) and c) of 10,000s™ and b) and d) of 30,000s™. The blood cells were
washed plasma-free and resuspended in buffer containing recombinant full-length vWF. Image a) shows the
single platelet adhesion occurring below the critical shear rate threshold of 15,000s” and images b) and d)
depict reversible platelet-vWF aggregates formed above the critical shear rate and rolling over the surface
without attaching to it. In images a) and b) double illumination with fluorescence and bright field was used, and
thus the aggregate appears brighter due to the enmeshed fluorescently labelled recombinant full-length vWF.
Comparison between c) and d) demonstrate appearance of reversible, fluorescent vVIWF networks rolling over the
surface only above the critical shear rate threshold in d) (white arrows). Image c) and d) depict the identical
region. (In all images scale bar: 10um)

Due to the various preparation processes healthy donor plasma vWF and commercial vWF
preparation from pooled human plasma (Haemate) and subfractions from the same production
process containing only small (E100) or large (E250) size multimers in solution could not be
labelled. On the one hand the extraction of the poor vVWF out of the whole blood is difficult
and on the other hand the fluorescence labelling of the vVWF requires at least 4 days, thus the
same whole blood from the healthy donor could not be used for the flow experiments, as the
whole blood would be too long not under physiological conditions. The vWF commercially
prepared from pooled plasma contains a large amount of factor VIII, due to the labelling the
vWF protein agglomerated. To solve this problem the enmeshed platelets were fluorescently
labelled to observe the reversible rolling aggregate formation in real time. Plasma vWF (fig.
36 a); supplemental material) and Haemate (fig. 36 c); supplemental material) in the plasma-
free and resuspended in buffer platelet suspension exhibited the same critical shear rate as the
recombinant vWF (15,000s™), but for E100 no rolling aggregates could be observed (data not
shown) and for E250 the critical shear rate decreased to 10,000s™ (fig. 36 b); supplemental
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material). The reversible aggregate formation was not influenced by the different vWF protein

preparations.

Figure 36: Fluorescent microscopic still images taken from real-time video-recording of blood flow over
immobilized dimeric vWF Al domain at shear rates of 20,000s”. The blood cells were washed plasma-free and
resuspended in buffer containing the fluorescent dye mepacrine (10uM) and a) plasma vWF, b) E250 and c)
Haemate over dimeric vWF Al domain (20ug/ml). Although, activation was completely inhibited, platelet-vWF
aggregates formed in varying size dependent on the added vWF. White errors indicate exemplarily the reversible
platelet-vWF aggregates rolling over the surface without attaching to it. (In all images scale bar: 20um)

Sugar free vVWF showed no rolling aggregates formation (data not shown), but sugar
containing vVWF exhibited rolling aggregates above a critical shear rate of 30,000s™ (fig. 37
b); supplemental material). The reversible platelet-vWF conglomerate formation process was
crucial dependent on the content of sugar of the vVWF protein. Due to the fluorescence
labelling the sugar containing vVWF networks could be visualized and compared with the

recombinant vVWF formed networks and aggregates (fig. 37 a)).

Figure 37: Fluorescent microscopic still images taken from real-time video-recording of blood flow over
immobilized dimeric vVWF Al domain (20ug/ml). The blood cells were washed plasma-free and resuspended in
buffer containing fluorescently labelled a) recombinant full-length vWF at a shear rate of 20,000s”, b) sugar
containing vWF at a shear rate of 40,000s”. White errors indicate exemplarily the platelet-vWF aggregates.
Although, activation was completely inhibited, platelet-vWF aggregates formed in varying size dependent on the
added vWF. (In all images scale bar: 10um)

These results are in line with Ruggeri and coworkers, who described platelet-vWF aggregates,
so called “rolling aggregates” over fibrillar collagen type I and vWF (¢ = 20pg/ml) coated
surfaces. By electron microscopy the presence of membrane protrusions connecting platelets
to one another and to the surface was demonstrated (Ruggeri et al., 2006). The effects of
perfusion fixation on the vVWF networks could be analysed by vWF labelling and thus,
observed microscopically. After fixation the morphology of rolling aggregates was preserved,

but the vVWF networks vanished. Consequently, the vVWF networks resolve was hindered due
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to perfusion fixation. In the experiments of Ruggeri only the platelets were labelled and only
the platelet-platelet aggregates without the interconnecting part could be visualized by
fluorescence microscopy. Due to the vWF labelling, it was possible to resolve the
interconnecting parts of the platelet-platelet aggregates. To zoom qualitatively in the
aggregate formation process the size distribution of the formed platelet-vWF conglomerates
was quantified. The recombinant vVWF networks showed an increasing maximal aggregate
length with increasing shear rate. The maximal length for 20,000s" was around 43pum, for
30,000s™" around 87pum and for 40,000s™ around 146pm, but the aggregate count decreased
with increasing shear rate (fig. 38). As the aggregates increased in size by increasing the shear
rate, the larger conglomerates picked up the smaller ones and assembled. The amount and the
maximal size of the sugar containing vVWF aggregates were reduced by more than 90% of the

recombinant vWF. The maximal size for 40,000s" was around 8pm.
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Figure 38: VWF conglomerate length distribution of recombinant vWF with different shear rates: the aggregate
length is plotted against the probability P (YP=100%). The bright grey histogram represents a shear rate of

20,0005, the middle grey histogram a shear rate of 30,000s” and the dark grey histogram a shear rate of
40,0005,

For the other vVWF proteins the vWF labelling was not possible and therefore, only the length
of the formed labelled platelet aggregates was measured. These aggregates were different in
size compared to the labelled VWF networks. The labelled platelet conglomerates formed
visually larger aggregates then the vVWF networks alone. For 20,000s" washed blocked cell
suspension formed aggregates with a maximal length of around 57um, Haemate of around
32um and E250 of around 43um. However, Haemate formed most of the aggregates,

followed by E250 and whole blocked blood had less aggregates (fig. 39).
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Figure 39: Platelet-v WF conglomerates length distribution at 20,000s” shear rate: the aggregate length is
plotted against the probability P (YP=100%). The bright grey histogram represents washed blocked blood

containing plasma vWF, the middle grey histogram containing Haemate and the dark grey histogram containing
E250.

These results show a massive influence of the vVWF multimer distribution, the vVWF sugar
content and the shear rate on the platelet-vWF conglomerate formation. The differences in the
aggregate length distribution are mainly due to the variation in the size distribution of the
multimers, which expose various numbers of Al domains and thus, a different number of
binding sites for GPIba. In the elongated vWF structure the concentration of the A1 domains,
which are exposed to the blood flow, is higher for the recombinant full-length vWF compared
to plasma vWF. The size of the aggregates of normal plasma vWF was larger than for E250,
although E250 was assembled of the largest multimers of the vVWF Haemate protein.
Therefore, the exposure of the A1 domain should be increased for E250 compared to normal
plasma vWF. Not only the A1 domain exposure might be a crucial factor for the formation of
rolling aggregates, but also the binding strength and the stretching properties of the vWF
molecule. Instead, the shear rate threshold was decreased for E250 compared to plasma vWF.
A possible reason could be the enhanced binding strength or stretching properties of E250
compared to plasma vWF. This assumption might be in line with Ayra and coworkers, who
reported that the recombinant vVWF bond is around one third more powerful as the plasma
vWF bond (Ayra et al., 2002 a)). Consequently, the bond strength might not be the
influencing factor for the shear rate threshold point, as the recombinant vVWF and the plasma
VWF showed the same critical shear rate for aggregate formation. Thus, the stretching
properties might be enhanced for E250 compared to the recombinant and the plasma vWF.
The large vVWF multimers might play the major role in the formation of the platelet-vWF
conglomerates as no rolling aggregates were formed in the absence of larger multimers. The
small multimers of the vVWF might not expose enough binding sites for the GPIbo. and might

not be as functional and active as the larger ones. The reduced elongation probability might be
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as well a crucial factor. Furthermore, rolling aggregates of sugar free vVWF were not observed.
Sugar free plasma vWF might not provide the possibility to increase the exposure of the Al
domain, as the stretching properties are limited compared to the sugar containing plasma
vWEF. A model opinion that sugar free vVWF might not be able to recoil at the same shear rate
as the sugar containing vWF is introduced. At a critical shear rate in the range of 2,000s™ to
5,000s" vWF is elongated (Schneider et al., 2007). The sugar free VWF might stretch at
higher shear rates and thus, expose only at higher shear rates a higher concentration of Al
domains, as the globular vVWF might be more compact and adhesive due to the loss of sugar
molecules. Each vVWF monomer contains N- and O-linked olgiosaccaride chains, which
together account for almost 20% of the final monomeric mass (Titani et al., 1986). The
presented results coincide with previous studies, which have shown that glycan structures
cause protein-protein interactions through either conformational and/ or charge-induced
mechanisms (Mitra et al., 2006; Toyoda et al., 2002; Nishiyama et al., 2000; Wormald and
Dwek 1999; Kimura et al., 1998; Wyss et al., 1995; Narhi et al., 1991). The sugar content is
crucial not only for the stretching properties, but also recently reported for the vWF clearance
and the cleavage by ADAMTS 13. The absence of sugar on vWF reduces the probability of
cleavage, but increases the likelihood of clearance (McGrath et al., 2010). The investigated
shear rate range might be not high enough to observe platelet-vWF conglomerates of sugar
free vVWF. Increasing the shear rate was the basis for the formation of huge conglomerates for
the other investigated vWF proteins, due to a “fishing” mechanism by collecting platelets and
even small platelet-vWF aggregates from the blood flow. Not only the fishing mechanism, but
also the exposure of active Al domain within the vWF protein is crucial for the larger
aggregate length by higher shear rates, as the probability of vWF stretching is enhanced by
increasing the shear rate. These results are mainly in compliance with Yago and coworkers,
who reported that the mean lifetime of the GPIba and the vWF Al domain increased with
increasing force. As the lifetimes of A1 bonds with GPIba are too short at arterial shear rates
(500-5,000s "), the GPIba-Al domain is not able to agglutinate. Only at shear rates of
20,000s" shear induced platelet-vWF aggregation is possible (Yago et al., 2008; Ruggeri et
al., 2006; Dong et al., 2001). However, the presented results showed a decreased threshold
shear rate for platelet-vWF aggregate formation over dimeric vVWF Al. The physical basis for
the enhanced formation of vWF-platelet aggregates close to the surface was discussed by
Alexander-Katz, Netz and coworkers. The unfolding of the vVWF occurs mostly close to the
surface of the blood flow, as the flow gradient and thus, the shear rate is maximal (Alexander-

Katz and Netz 2008). Additionally, the blood cell wall dramatically enhances the unfolding
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and decreases the critical shear rate due to an increase in hydrodynamic stress (Alexander-
Katz and Netz 2008; Alexander-Katz and Netz 2007; Sing and Alexander-Katz 2010).
Therefore, the unwanted binding of the vWF to platelets in the vessel interior is reduced and
the vWF is directed to the surface of the capillaries (Alexander-Katz and Netz 2007). Due to
the results reported by Yago and coworkers, eliminating deformability of the platelets did not
alter the descending phase of the velocity curve for rolling on WT Al (Yago et al., 2008),
changing the deformability of the platelets might not alter the effect of the formation of the

rolling aggregates.

8.2.2 Collagen coated surface

Perfusion of washed blood cell suspensions containing recombinant vVWF or a vWF gain of
function mutant type 2B (J1309V) over a collagen coated surfaces caused shear dependent
assembly of VWF networks anchored to the collagen fibrils and captured discoid activation-

blocked platelets within them (fig. 40, supplemental material).

Figure 40: Microscopic still images taken from real-time video-recording of blood flow over immobilized
collagen type I at shear rates of a), b) 2,000s™ and of ¢), d) 40,000s™. The blood cells were washed plasma-free
and resuspended in buffer containing recombinant full-length vIWF. In the fluorescence illumination image a) the
black arrow shows fluorescently labelled vIWF, which has attached permanently to collagen fibres during the
flow, thereby forming vWF strands and nets. In b) the identical region of a) is depicted in bright field. The black
arrow demonstrates the attachment of platelets to the vWF nets. The completely activation-inhibited platelets
adhere nevertheless permanently to the vIWF strands. In images c) and d) double illumination with fluorescence
and bright field is used to observe vWF networks (black arrows) closely interwined with platelets. Image d)
shows the identical region of c). In d) a detaching vWF-platelet conglomerate can be seen. The white arrows
indicate a collagen fibre. (In all images scale bar: 10um)

These detaching of the aggregates was due to the hydrodynamic drag. These platelet-vWF
conglomerates arrested more than a minute and reached a total length of 100-200um.

Recently, formed platelet conglomerates could be visualized eventually detaching and rolling
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over the surfaces. Flow measurement with shear rates ranging from 1,500s™ to 50,000s™ were
performed. The threshold shear rate for recombinant vWF formation of platelet-vWF
conglomerates was around 2,000s” (fig. 40). However, for the mutant vWF type 2B
individually slowly rolling aggregates formed at 1,500s™ (fig. 41; supplemental material). The
vWF mutant type 2B is recombinant genetically produced and grown in a protein media,
therefore the fluorescence labelling of the VWF mutant was not possible. Although, the
platelets were completely activation inhibited, these platelet-vWF conglomerates formed,
detached from and rolled over the surface. These aggregates had a decreased rolling velocity
and size compared to the ones formed with recombinant full-length vWF at the same shear

rate.

Figure 41: Fluorescence microscopic still images taken from real-time video-recordings of blood flow over
immobilized collagen type I at a shear rate of 1,500s”. The blood cells were washed plasma-free and
resuspended in buffer containing mutant vWF type 2B and fluorescently labelled platelets. Black arrows in
image a) and b) delineate a detaching platelet-vWF conglomerate subsequently rolling over the surface.
Although platelet activation was completely inhibited, platelet aggregate formation and rolling was observed.
(In all images scale bar: 10um)

These results indicate that variations in the bond strength and the bond lifetime of the GPIba
and the VWF Al domain influence the shear rate threshold and the size of the rolling
aggregates over collagen, but not in the vVWF multimer distribution. The gain of function
mutant showed over collagen a decreased shear rate threshold of 1,500s™ and an increased
rolling aggregate size. This is comparable to previous studies, which reported on patients with
type 2B vWD plasma vWF may spontaneously interact with platelet GPIba and
spontaneously agglutinate, as the lifetimes of vWF with GPIba is increased at low shear rates
(200s™") (Yago et al., 2008; Ruggeri et al., 1980). Therefore, the GPIba-Al domain bond

strength effects the formation of the rolling aggregates over collagen.



8. Characterization of platelet-vWF aggregates 93

In summary, the exposure of the Al domain of the vVWF protein, the bond strength, bond
lifetime of the GPIba and the vVWFA1 domain, the vWF sugar content and the shear rate are
the key characteristics for the formation of the platelet-vWF aggregates rolling over the
surface. Only due to the interplay of the various influence factors the formation of rolling
aggregates is possible. The knowledge of the key features of the platelet-vWF aggregate
formation process is essential for the therapy of patients with stenotic arteries, which leads to
acute thrombotic occlusions. The experiments are the first step to understand the biophysical

mechanism involved in the rolling aggregate formation process.
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9. Influence of the hematocrit

9.1 Introduction

The impact of the hematocrit (HCT) on the platelet adhesion and the tether formation is not
fully understood. In particular, the consequences of a change in the HCT, like the occupancy
platelet probability near the vessel wall or a variation in the platelet-erythrocyte collision, will
analyse fundamental insights in the biophysical mechanisms of the platelet-vWF interaction.
Detailed information of the physical properties of the blood flow is described in the
introducing chapter 1.4. The following chapter will be the starting point for the investigation
of collective phenomena on the platelet GPIba and vWF A1l domain crosstalk. The influence
of the solid components of the blood on the platelet adhesion, especially the first platelet
contact with the vVWF coated surface, the number of adhered platelets and the weak adhesion
area, as well as the tether formation will be quantified by a flow chamber set-up equipped

with a RICM.

9.2 Results and Discussion

Over a vWF (Haemate) coated surfaces whole blocked blood (preparation see chapter 3.1.1)
was perfused in a flow chamber equipped with a RICM (set-up see chapter 3.2.1). The shear

rates ranged from 400s™' to 20,000s™". By the RICM technique platelets (black arrows in fig.

il
. Image a)
HCT of 20%, b) of 40% and c) of 60% after shear was applied for a) 46s, b) 32s and c) 34s. Arrested platelets,
platelets with tether and ruptured tethers are shown. Black arrows exemplarily indicate the platelet contact area

and the white arrows exemplarily show tethers and ruptured tethers. Note the large number of platelets and
tethers for HCT 40% (b)) and 60% (c)). (Scale bar in all images: 5um)

To understand the impact of the HCT on the platelet adhesion processes, the first dynamic
attachment of the platelet was analysed. At 400s™ for HCT of 20% no platelet adhered to the
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vWF surface and for 40% and 60% the first platelet interacted after 19s with the vWF coated
surface. For a 20% HCT a shear flow of 1,500s" was applied for 82s, before the first platelets
adhered to the vWF surface. For a 40% HCT this value was lowered of around 87% and for
60% HCT of around 91%. Shear rates of 10,000s" showed almost the same percentual
variations in the first platelet-surface contact time, but adhered significantly faster. For HCT
of 20% the first platelets adhered after 16s of flow exposure, of 40% after 2s and of 60% after
4s. However, for 20% HCT the shear rate of 4,000s™" had to be applied for 17s and for 40%
and 60% for 8s and 7s, respectively. Additionally, at 20,000s™ and a HCT of 20% not a single
platelet adhered in between the first few minutes. For the other hematocrit values rolling
platelet-vWF aggregates (details see chapter 8) formed in between the first seconds and
collected all adhered platelets on the surface. Due to this accumulation process also parts of
the vVWF coating were ruptured. Therefore, the platelet adhesion was hindered after around
60s. To get an idea on the platelet adhesion count changes, the adhered platelets on the vWF
surface of the flow chamber (fig. 42) were counted. The average amount of platelet adhesion
was significantly enhanced for an increase in shear rate from 400s™ to 1,500s™ for all HCTs.
The curve progression for all three HCTs was crucial altered. HCT of 20% and 40% showed
an almost linear increase from 400s™ to 4,000s™. For 60% HCT the slope between 400s" and
1,500s™" was around 4 and between 1,500s™" and 4,000s™" around 3. From 4,000s' to 10,000s
the curve of HCT of 20% decreased linearly and the curve slopes of the HCTs 40% and 60%
were comparable (fig. 43). The standard deviations between the different donors were in the
range of 20%-50% at 400s" and 1,500s™" and in the range between 8%-25% at 4,000s™" and
10,000s”. In contrast, the trends remained almost constant, thus, the error bars are not

depicted in figure 43.
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Figure 43: Average of the total platelet count per frame (5,000um’) of different HCTs at increasing flow rates.
The red curve represents the total platelet count of 20% HCT, the black curve of 40% and the blue curve of 60%.
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This indicates that the activation of the vWF protein is crucial for the platelet adhesion
increase. This behaviour was also observed in chapter 5,6 and 7. The significant decrease in
platelets adhere to the vWF surface at a HCT of 20% compared to a HCT of 40% or 60%
might be due to a reduced near wall platelet concentration. The difference of 40% HCT and
60% HCT remained still unexplained, but above 1,500s™" the variation might be due to an
increased near wall platelet concentration. From this statistical analysis of bound platelets it
seemed reasonable to extract the difference in adhesion energy AG of platelets influenced by
variable HCTs using the Boltzmann equation (adapted to equation (5));

Moo _ -6GIkT )
nHCT
where kg is the Boltzmann constant, AG is the change in adhesion energy between 20% HCT
and 40% or 60% HCT, T the temperature and 7,y and nycr is the average fraction of the
amount of platelets on the surface at 20% HCT and at 40% or 60% HCT (Alberts et al., 2003;
Fleck et al., 2002). Using the average platelets amount adhering to the surface of HCT of 20%
and of 40% or 60% resulted in an energy difference AG in the order of 1.6-1.8 kgT at 1,500s™,
1.2-1.5 kgT at 4,000s™", 2.0-2.3 kgT at 10,000s" and at 20,000s”. These differences in the
absorption energy extracted by untreated and treated platelets are too low compared to
adhesion energy differences of cells typically found in the literature (Simson et al., 1998). The
detailed information is depicted in chapter 4.2. To complete the adhesion behaviour of
platelets, the weak contact area on the bottom of the flow chamber was analysed after
exposing the platelets to a shear flow of 1,500s" and 10,000s". As the highest differences
compared to the other investigated shear rates were expected, these two shear rates were
chosen. At 1,500s™ as well as at 10,000s™ the platelets were homogeneously distributed in
the range between 1-11pm? for all investigated HCTs (fig. 44). The average contact area was
calculated from integrating the histograms of each donor and taking the average. The standard
deviations were calculated from the variations in the donors. The average of the platelet
adhesion area at 1,500s" was comparable for all hematocrits. The variations at 10,000s™
between the different fractions of solid parts to fluid parts were minimal (inset in fig. 44). The

average platelet weak adhesion values are summarized in table 13.
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Table 13: Summary of the average weak adhesion area and the standard deviations on the vIWF coated surface

mean +/- sd 1,500s™ 10,000s™
[um’] [um’]
20% 5.8+/-0.3 6.2+/-1.0
40% 4.7+/-0.4 49+/-0.8
60% 4.6+/-0.6 39+/-0.1

The weak adhesion area distribution and the average weak adhesion area are exemplarily
shown at 10,000s™ in figure 44. Due to a better overview of the influence of the HCTs, the

error bars are not depicted in figure 44.
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Figure 44: Weak adhesion area distribution for different HCTs at 10,0005 : the weak contact area is plotted
against the probability P (YP=100%). The red curve represents the adhesion area of platelets of 20% HCT, the
black curve of 40% and the blue of 60%. The inset shows the mean of the weak adhesion area of platelets of
variable HCTs at a flow rate of 10,0005

These results demonstrate that the HCT strongly influences the platelet adhesion amount and
the first contact of the platelets with the vVWF surface. On the contrary, the adhesion area itself
remained constant. Variation in the solid parts content of the blood will affect the tether
formation process. To unravel this, the tether length on the bottom of the flow chamber (white
arrows in fig. 42) was measured after the exposure of the platelets to a shear flow of 1,500s™
and 10,000s". These two shear rates were again selected, as the most difference for these
compared to the other investigated shear rates was expected. While, for 1,500s™ the tethers at
the platelets showed for all different HCTs a fairly sharp distribution with a most likely tether
length of around 2pum, at 10,000s™ the tethers at the platelet body were spread more
homogeneously over the range between 1-28um (fig. 45). In contrast, the formation of

ruptured tethers was almost hindered for HCT of 20% and 40% at 1,500s™". For HCT of 60%



9. Influence of the hematocrit 98

only 9% ruptured tethers compared to the total tethers amount were formed and were
homogenously distributed in the range between 2-20pm. At 10,000s™ the ruptured tethers for
20% HCT were spread more homogenously in a range between 2-31um, for 40% and 60%
HCT the ruptured tethers showed a fairly sharp distribution of around 3um (inset in fig. 45).
All investigated HCTs formed 9%-10% ruptured tethers compared to each investigated total
tether amount at 10,000s ™. Exemplarily, at 10,000s™ the tether length distribution of tethers at

the platelet and the ruptured ones is depicted in figure 45.
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Figure 45: Tether length distribution curves for tethers at the platelets of different HCTs at a shear rate of
10,0005 : the tether length is plotted against the probability P (YP=100%). The red curve represents the tether
length of HCT 20%, the black curve of 40% and the blue curve of 60%. The inset shows the ruptured tether
length distribution at a flow rate of 10,000s™.

To highlight the influence of the solid components of the blood on the tether formation the
total average tether length was calculated from integrating the histograms of each donor and
taking the mean. The standard deviation was calculated due to variations of the donors. At
1,500s" the average of the tether length was almost comparable for all HCTs. Instead, at
10,000s™" the average of the tether length was significantly decreased for 20% HCT compared
to HCT 40% and 60% (table 14).

Table 14: Summary of the average tether length and the standard deviations on the vWF coated surface

mean +/- sd 1,500s™ 10,000s™
[um] [um]
20% 43+/-2.5 6.6 +/-1.8
40% 3.7+/-1.7 8.1+/-2.0
60% 4.8+/-0.3 8.5+-1.5
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To elucidate the changes in the tether count the average amount of the total tethers on the
vWF surface was counted. The total tether count almost triplet for a shear rate of 1,500s™ for
HCT of 40% and of 60% and was 5 and 7 times higher for HCT of 40% and of 60%
compared to 20% HCT (fig. 42, white arrows). The standard deviations of the various donors
were in the range between 30%-60% at 1,500s" and between 20%-40% at 10,000s™. The
trends remained almost constant. These results suggest that the tether formation process is
influenced by the HCT changes from 20% to 40% or 60%, but 40% HCT and 60% HCT were
comparable. This is comparable with the number of platelet adhesion to the vVWF surface and
the first platelet adhesion contact time. The variation between a HCT of 20% and of 40% and
60% were significant, but the differences between 40% and 60% were minimal. However, the
adhesion area on the vWF surface remained unhindered by HCT changes. Due to an increased
amount of platelets near the vessel wall and of platelet-erythrocyte collisions, the probability
of the platelets to adhere to the surface might be enhanced and thus, the tether formation rate.
The tether length is only slightly influenced due to an enhanced platelet adhesion and tether
formation rate, therefore the probability of the formation of longer tethers is increased. In
contrast, the weak adhesion area and the tether formation were significantly influenced by
variations in the platelet cytoskeleton (see chapter 4). Consequently, it is assumed that the red
blood cells do not exert an additional high enough force or pressure on the platelets adhering
on the surface. These results are coincide with the literature. The platelets experience a
complex motion during blood flow that was roughly characterized as enhanced diffusion
(Turitto et al., 1972). More recently, an increased platelet concentration near the vessel wall
compared to the centre was observed in flowing blood under arterial or arteriolar flow
conditions (Tilles and Eckstein 1987; Tangelder et al., 1985). In flowing blood, even at high
HCTs, it was observed that red blood cells were shifted towards the centre of the channel due
to their deformability (Goldschmith 1971). Additional experimental studies by Aarts and
coworkers showed that red blood cells in whole blood migrated towards the centre of the
vessel and pushed the plasma containing the platelets near the vessel wall (Aarts et al., 1988).
The size of the cell free layer near the vessel wall strongly depends on the HCT (Crowl and
Fogelson 2009). At 50-60% HCTs the blood flow behaves non-Newtonian and thus, flattens
the velocity profile and the off-wall lateral migrations of the red blood cells. These variations
of the Poisseuille flow increase the near wall shear rate as well as the near wall platelet
concentration (Tokarev et al., 2011; Yeh and Eckstein 1994; Eckstein et al., 1989; Goldsmith
and Turitto 1986; Goldsmith and Skalak 1975). A graphical illustration summarizing the
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influence of the HCT on the blood flow and on the particle distribution is presented in figure
46.

platelet distribution

blood flow

Figure 46: The sketch schematically illustrates the influences of the HCT on the distribution of the solid
components of the blood flow and the platelet distribution across the blood vessel. The black curves indicate the
platelet distribution. A reduced HCT of 20% shows a reduced near wall platelet concentration. The platelets are
spread more homogenous in the vessel (image a)). However, an increase in the HCT of 60% enhances the near
wall platelet concentration (image c)). In image b) physiological HCT concentrations (40%) are illustrated.

In summary, these results can help to unravel the role that increased red blood cell
concentrations play in disease for example chronic obstructive pulmonary disease (Edelman
et al., 1992) and for high performance sports. Furthermore, these results might be the first step
to understand the biophysical mechanism of probability changes and external force on the
complex platelet-vWF interplay. The impact on the HCT on the platelet functions might be

the basis to understand the influence of collective phenomena on the platelet-vWF interplay.
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10. Interaction of tumor cells with platelets

10.1 Introduction

Tumor metastasis is a dynamic process, in which tumor cells interact with platelets and the
vessel wall, before colonizing on secondary sites (Terraude et al., 2007; Terraude et al.,
2006). Metastasis may depend on the ability of tumor cells to interact with platelets (Nash et
al., 2002). The presence of the platelets could protect the tumor cells from the clearance by
the immune system (Nieswandt et al., 1999). Furthermore, platelets might mediate tumor cell
arrest and the adhesion to the endothelium, thus facilitating cell extravasation (Terraude et al.,
2007; Terraude et al., 2006; Dardik et al., 1997; Felding-Habermann et al., 1996). On the one
hand a direct interaction of vVWF with tumor cells is observed (Morganti et al., 2000), but on
the other hand vWF is not absolutely required for haematogenous metastasis. VWF might be
responsible for tumor cell death (Terraude et al., 2007). In a mouse model platelet deficient
mice as well as mice with mutations rendering non functional platelets, showed reduced
metastases from lung carcinoma and melanoma cell injection (Terraude et al., 2007;
Boucharaba et al., 2004; Nash et al., 2001). As coagulation and platelet function support
tumor metastasis, functional absence of GPIba resulted in a decreased metastasis (Terraube et
al., 2007). The thrombin formation is enhanced in small cell lung cancer (SCLC) and
malignant melanoma cells (Kirszberg et al., 2005). Tumor cells activate circulating platelets
and thus, platelet-derived microparticles (PMPs) are shed in the vicinity of tumor cells in the
vasculature. PMPs are small encapsulated by plasma membrane due to activation of platelets.
MPs are defined as cell derived membrane fragments, which range in the size from 0.1pum to
lum. The MPs are present at the surface of negative phospholipid moieties that are essential
in the case of PMPs for initiation of blood coagulation (Gosh et al., 2008; Reininger et al.,
2006). MPs bear at least one of the antigenic markers distinctive of the parent cell (Reininger
et al., 2006; Abid Hussein et al., 2003). Enhanced levels of PMPs were observed in the
circulation of patients with different cancers (Tilley et al., 2008; Del Conde et al., 2007;
Zwicker et al., 2007; Kim et al., 2003). Dashevsky and coworkers reported a direct correlation
of PMPs and prostate cancer cells, Clone-1 (CL-1). Preincubation of CL-1 with PMPs showed
an increased invasion through a gelatin coated (a denaturated form of collagen) membrane of
the Boyden chamber system. An incorporation of PMPs into the tumor cell membrane might
be possible, thus PMPs can firmly adhere to the cancer cell membrane (Dashevsky et al.,

2009). Pancreatic and lung cancer cells produce microparticles (MPs), which aggregate
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platelets. Endogenous cancer cell derived MPs shed from growing tumor are able to
accumulate at the site of injury in mice (Thomas et al., 2009). In mouse models the presence
of an ectopic tumor increased the quantity of MPs present in the bloodstream and accelerate
thrombus formation. However, cancer cells themselves may not participate in thrombus
formation (Thomas et al., 2009). While, the relation between blood platelets, PMPs und tumor
cells in mouse models is well described, the interaction of platelets and the influence of PMPs
with tumor cells in in vitro models is entirely unclear. The stimulatory effect of SCLC and
maligne melanoma cells (MV3) on platelet aggregation in an aggregometer was analysed. To
investigate the stimulatory agonist the tumor cell impact on ATP secretion of the platelets in a
chronology aggregometer was measured. The platelet-tumor interaction in a parallel flow
chamber device was investigated. Finally, the receptor transition or MP increase due to
stimulation was measured in a flow cytometry. As MPs might increase the stimulatory effect
of tumor cells, the supernatant of the tumor cells was investigated due to MP fractions in the
supernatant solution. Additionally, tumor cells and platelet were sheared in a cone and plate to

generate an increased amount of MPs.

10.2 Results and Discussion
10.2.1 Tumor cell induced platelet aggregation in solution

Adding SCLC cells suspended in Tyrode buffer to platelet rich plasma (PRP) induced platelet
aggregation in the aggregometer (solution preparation see chapter 3.1.4 and 3.1.3; set-up see
chapter 3.2.4). The average maximal amplitude reached was around 20% after 45s. The curve
decreased and reached a steady state around 0%-5% due to a platelet deaggregation.
However, adding MV3 cells suspended in Tyrode buffer reduced the maximal aggregation
amplitude by 80% compared to SCLC cells in Tyrode buffer. SCLC cells in medium bisected
the maximal aggregation amplitude compared to SCLC cells in Tyrode buffer. The maximal
aggregation amplitude of MV3 cells in medium was comparable with the ones in Tyrode
buffer. To measure the effect of tumor cell derived MPs on the aggregation behaviour of
platelets either the supernatants of the tumor cells or sheared tumor cells in Tyrode buffer at
10,000s™ for 3min in a cone and plate viscosimeter were used. The supernatant SCLC cell
maximal aggregation amplitude was 37% decreased compared to SCLC cells in Tyrode
buffer. The supernatant MV3 cells showed no aggregation. For sheared SCLC cells maximal

aggregation amplitudes was bisected and for sheared MV3 cells lowered by 71% compared to
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SCLC cells in Tyrode buffer (fig. 47). The standard deviations were significant, but the trends

were unaffected, thus the error bars are not shown in figure 47.
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Figure 47: Average percentage aggregation of PRP and tumor cells in buffer or medium, stimulated tumor cells
in buffer and the supernatant of the tumor cells are depicted. Image a) shows SCLC cells and b) MV3 cells.

These results indicate that the platelet stimulation was significant dependent on the tumor cell
solution as well as on the tumor cell type. For all investigated solutions and treating
procedures the SCLC cells showed an increased average maximal aggregation amplitude
compared to the MV3 cells. The SCLC cells might be more active compared to the MV3
cells. As the SCLC cells grow as aggregates and the MV3 cells as individual cells, the
aggregates of the SCLC cells might precipitate faster compared to MV3 cells. This
assumption is supported by the reduced difference between sheared SCLC and MV3 cells
compared to the other solutions investigated. The MV3 supernatant solution showed no
platelet aggregation, as there are no cells or cell derived microparticles in the MV3 cell
supernatant solution. SCLC cell-supernatant induced aggregation was lowered compared to
SCLC cell suspension. As the aggregation curve did not drop to zero, an ongoing ATP release
during aggregometry can be proposed. The enlarged amount of SCLC cells compared to MV3
cells does not influence the aggregation process. The tumor cells stimulate platelets, may be
due to an ATP secretion. To verify this hypothesis the ATP secretion of the tumor cells was

measured.

10.2.2 Induced ATP secretion by tumor cells

To clarify the ATP secretion of platelets the same varying tumor cell solutions as for the
aggregation measurements were used (solution preparation see chapter 3.1.4 and 3.1.3; set-up
see chapter 3.2.5). As a control, the ATP secretion after adding the poor Tyrode buffer or
tissue medium was measured. No ATP secretion was observed. The ATP secretion of SCLC
cells in Tyrode buffer was bisected compared to MV3 cells in Tyrode buffer. SCLC cells in

Tyrode buffer showed a 6 time higher secretion compared to SCLC cells in medium, 4 times



10. Interaction of tumor cells with platelets 104

higher than the supernatant of SCLC cells and 3 times bigger as SCLC cells, which were
sheared for 3min (fig. 48 a)). However, Tyrode buffer incubated and sheared MV3 cells
showed a comparable secretion average value and MV3 cells in medium secreted only a tenth
of MV3 cells in Tyrode buffer (fig. 48 b)). The standard deviations were significantly large,
in the range of 40%-100%, however the trends remained unchanged. Except for PRP and

collagen the error bar was only 9%. Due to a better overview the error bars are not depicted in

figure 48.
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Figure 48: Average percentage ATP secretion of PRP by addition of tumor cells in buffer or medium, stimulated
tumor cells in buffer and the supernatant of the tumor cells is shown. a) SCLC cells and b) MV3 cells.

The platelet aggregation is stimulated due to an ATP secretion. As the MV3 stimulated ATP
secretion is increased compared to the SCLC stimulated one, the cell count might unhinder
the measured results for all investigations. The ATP secretion characteristics did not correlate
directly with the aggregation measurements. The observed differences of ATP secretion and
aggregation remained unexplained. To observe in real time and analyse the interaction of

platelets and tumor cells in vitro a flow chamber set-up was used.

10.2.3 Tumor cell adhesion to vWF under blood flow conditions

Perfusion of immobilized multimeric vWF with whole blood without further stimulation at
flow rates of 100s™ caused single platelet adhesion (see solution preparation see chapter 3.1.4
and 3.1.3; set-up see chapter 3.2.1). No tumor cell adhesion or platelet-tumor cell interaction
was observed. Incubation of tumor cells with PMPs did not change the adhesion or interaction
pattern. The tumor cells are pushed towards the centre of the channel due to the
hydrodynamic drag. The Fahraeus-Lindquist effect might be an explanation for the observed
phenomenon. In contrast, to Thomas and coworkers, who reported an increased amount of
MPs from platelets and tumor cells, which were able to accelerate the thrombus formation in a
mouse model (Thomas et al., 2009). The tumor cell adhesion to immbolized multimeric vVWF

or collagen type I in buffer solution was observed (Fallah et al., 2010). The interaction of
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tumor cells with platelets or the interaction with their derived MPs is reported by various
groups in vitro or in mouse models (Dashevsky et al., 2009; Thomas, et al., 2009; Gosh et al.,
2008; Tilley et al., 2008; Del Conde et al., 2007; Zwicker et al., 2007; Abid Hussein et al.,
2003; Kim et al., 2003), but not in a comparable flow chamber set-up with whole blood. Flow
chamber studies, which focus on the platelet-tumor cell interaction are still lacking. It remains
unclear, if mouse models could fully replace in vitro studies. Investigations by comparing
both in vitro and mouse models could elucidate this problem. The interaction of platelets and
tumor cells was measured by an aggregometry and it was shown that this interplay cause the
activation of platelets. To clarify the role of an effect on the receptor distribution on the cell’s

surface, the MP increase or receptor adaption was tested by flow cytometry.

10.2.4 Flow cytometry measurements

The receptor transfers of platelets to tumor cells or vice versa alone and after incubation of
platelets or tumor cells or PMPs was investigated by flow cytometry (solution preparation see
chapter 3.1.4 and 3.1.3; set-up see chapter 3.2.6). Incubation times of Oh, 1h, 2h, 24h and 48h
were tested. After 48h the investigated cells were in an apoptotic condition, thus only
incubation times from Oh to 24h are depicted. The increase in MPs after different incubation
times is the multiple times MP amount compared to the Oh measurements for not mixed
suspension due to a better overview of the differences in the MP amount increase. However,
for mixed suspensions it is the multiple times increase of one half of each suspension partner
of Oh measurement. The annexin V labelled MPs of platelets and tumor cells showed a
maximum after 2h incubation, except SCLC cell MPs. However, the variations between the
different incubation times were not significant, as the standard deviations, especially for the
2h incubation time measurement, were crucial large. As the measured values obtained by the
variation of the Oh measurement the difference due to various donors or growth sections
might be minimal. The CD41 labelled MP amounts demonstrate a maximum at 2h for PMPs,
MV3 derived MPs, PRP-MV3 MP solution and for both tumor cell-PMPs solutions. In
contrast, SCLC derived MPs, both tumor cell-platelet solution and PRP-SCLC MP solutions
increased continuously. Both tumor cell-PMPs solution depicted an enlarged MP amount
compared to the other investigated solutions. The difference between these investigated
solutions were minimal, as error bars were significantly large. Comparing both individual
labels showed that each investigated solution showed annexin V label as well as CD41 label.

The MP amount of CD41 label was significantly increased compared to the annexin V label.
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These results indicate that these tumor cells might exhibit the platelet integrin receptor allbf3
as well as platelets. The increase of the MPs of the tumor cell-PMPs solution might be due to
the incorporation of the PMPs into the tumor cells or due to an increased amount of PMPs
after shearing. The various cell counts of both tumor cell lines did not affect the results, as all
results were related to the Oh measurements. Over all, a drastic increase due to stimulation or
an induced receptor transfer could not be observed. An assembly of the investigated increases
in MPs of various tumor cells, platelets and MPs incubation and the standard deviations are
shown in figure 49. As the trends did not remain unaffected, the error bars are depicted in

figure 49.
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Figure 49: Multiple times increase of the MP amount compared to Oh incubated not mixed solution or for mixed
solutions multiple times increase compared to one half of each measured solution. Figure a) shows the MP
amount of annexin V label of SCLC cells and b) of MV3 cells. c¢) depicts the MP amount of CD41 of SCLC cells
and d) of MV3 cells. The error bars are calculated by standard deviation.

These results are in parts in line with the literature. A receptor transfer due to incorporation
from PMPs to the tumor cells or from tumor cell derived MPs to platelets was measured.
Some authors reported that integrins allbf3 and aVP3 commonly found on platelets were
expressed on the surface of tumor cells (Chen et al., 1997; Felding-Habermann et al., 1996;
Oleksowicz et al., 1997). Therefore, the binding of tumor cells to platelets would be possible
and even the formation of platelet-tumor cell aggregates mediated by adhesive proteins like
VWF (McCarty et al., 2000; Karpatkin et al., 1988). Interactions of vVWF and tumor cells were
reported by involving ollbp3 (Floyd et al., 1992) or aVP3 (Pilch et al., 2002) or GPIb
(Oleksowicz et al., 1997). In a flow system the interaction of platelet integrin allbf3 and an

unidentified ligand on human colon carcinoma cell line LS174T by vWF was observed
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(McCarty et al., 2000). Consequently, the receptor expressing on tumor cells is an important
part in the platelet-tumor cell interaction.

Hematogenous tumor cell metastasis is a complex process, which is dependent on various
cellular and molecular interactions within the vasculature. In a first step to metastasize
successfully, the tumor cells must adhere to the blood vessel walls (Terraube et al., 2006).
Most of the groups, who are involved in platelet-tumor cell or tumor cell-PMPs interactions
normally used at 4°C stored PRP or PMPs. This might be the basis for the variation in the
presented results. A combination of in vivo and in vitro measurements would be a good
starting point for further investigations. The correlation of mouse models with human in vitro
models is difficult due to various probe types. Comparing the monitoring assays of mouse
models and human in vitro models would be the next step for further platelet-tumor cell

interaction studies.

Taken together, an ATP dependent aggregation of platelets with tumor cells was observed,
although a flow chamber set-up could not monitor the platelet-tumor cell interaction. The
receptor transfer from platelet to tumor cells or vice versa was not detectable, but the

expression of allbP3 receptors on SCLC and MV3 cells was measured.
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11. Summary

A model system was established to study the integrity of the cytoskeleton and especially, the
modifications of the adhesion and tether forming process. Variations in the cytoskeleton
induce changes in the membrane tension, which generate alterations in the membrane
undulations. Disruption of the F-actin reduces the membrane tension and increases the
membrane undulation. However, a breakage of the microtubuli acts contradictionary. The
membrane-cytoskeleton adhesion was minimal increased by cholesterol loading and
depletion. To bridge the gap between the platelet-vWF interaction the vVWF site was varied.
For patient treatment the physiological concentration of vVWF products was crucial, but
minimal changes in the multimer size distribution did not influence the platelet recruitment
process. In contrast, the vVWF lofm strongly influenced the platelet-vWF interplay and led to a
significant reduction in the effectiveness of the GPIba. and Al domain binding. The Al
domain exposure of the vVWF multimer, the bond strength and bond lifetime of the GPIba and
the VWFA1 domain as well as the vVWF sugar content and the shear rate are the key
characteristics for the formation of platelet-vWF aggregates rolling over the surface. To
investigate the first step in the blood clotting process, collective phenomena as the variation in
the HCT were crucial influence factors. A higher HCT increased the platelet concentration
near the wall and thus, the probability to adhere. Increasing the HCT over physiological
values flattens the velocity profile and enhances the non-Newtonian behaviour of the blood.
The platelet-tumor cell interplay could not be visualized under flow conditions, but the tumor
cells induced the platelet ATP secretion leading to aggregation. The receptor distribution on
platelets and tumor cells remained constant after interaction of tumor cells and platelets or
their MPs with each other, but tumor cells expose the allbp3 receptor. Changes in the shear
rate have a minimal impact on the platelet weak adhesion area and the tether length, but
massively influence the adhered platelet and tether number.

Taken together, the individual phenomena showed that the mechanism of platelet attachment
and adhesion under flow cannot be reduced to specific ligand-receptor interactions, but must
include the structural integrity of the cytoskeleton, its interaction with the lipid membrane and
the elastic properties of the entire membrane shell. This adhesion process is secured by shear
rate activation of vVWF leading to reversible platelet aggregate-vWF network formation. These
presented results are the first steps towards a complete understanding of the platelet-vWF

crosstalk on the basis of physical concepts.
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Product Company Location

ACD Caridian BCT Canewood, USA
aggrastat MSD Sharp & Dohme GmbH Haar Germany

Alexa Fluor Invitrogen Karlsruhe, Deutschland
annexin V Serotec

apyrase grade 7 Sigma

BSA Sigma

CD 41 Serotec

cholesterol Sigma

collagen Horm-Chemie, Nycomed Munich, Germany
cytochalasin D Sigma

DMSO Sigma

Fanhdi Grifols Langen, Germany
glutaraldehyde Sigma

Haemate CSL Behring GmbH Wien, Austria
Haemoctin Biotest Dreieich, Germany

IgG Serotec

Immunate Baxter UnterschleiBheim, Germany
MBCD Sigma

nocodazole Sigma

Octanate Octapharma Langenfeld, Germany
paraformaldehyde Sigma

PPACK Bachem Budendorf, Switzerland
rvWF Baxter UnterschleiBheim, Germany
Wilate Octapharma Langenfeld, Germany
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Supplement movies on DVD

Discripton

figure 35 1

DAT1 coating, blood suspension with recombinant full-length vWF, at

30,000s™

figure 35 11

DAT1 coating, blood suspension with recombinant full-length vWF, at

30,000s™" to 10,000s™

figure 36 a)

DA coating, whole blood suspension, at 20,000s'1 to 10,0005'1

figure 36 b)

DA coating, blood suspension with E250, at 20,000s™

figure 36 c)

DAL coating, blood suspension with Haemate, at 20,0005'1 to IO,OOOS'1

figure 37 a)

DAT1 coating, blood suspension with recombinant full-length vWF, at

20,000s™

figure 37 b) DAT1 coating, blood suspension with vVWF containing sugar, at
40,000s™

figure 40 a) and b) collagen coating, blood suspension with recombinant full-length vWF,
at 2,000s

figure 40 c) and d) collagen coating, blood suspension with recombinant full-length vWF,
at 40,000s

figure 41 collagen coating, blood suspension with vVWF mutant type 2B, at

1,500s™
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