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Abstract

We consider adaptive space-time finite element approximations of parabolic op-
timal control problems with distributed controls based on an approach where
the optimality system is stated as a fourth order elliptic boundary value prob-
lem. The numerical solution relies on the formulation of the fourth order
equation as a system of two second order ones which enables the discretization
by P1 conforming finite elements with respect to simplicial triangulations of
the space-time domain. The resulting algebraic saddle point problem is solved
by preconditioned Richardson iterations featuring preconditioners constructed
by means of appropriately chosen left and right transforms. The space-time
adaptivity is realized by a reliable residual-type a posteriori error estimator
which is derived by the evaluation of the two residuals associated with the
underlying second order system. Numerical results are given that illustrate
the performance of the adaptive space-time finite element approximation.
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1. Introduction

In this contribution, we study adaptive space-time finite element approxima-
tions of unconstrained optimally controlled initial-boundary value problems for
linear parabolic partial differential equations (PDE) with distributed controls
based on simplicial triangulations of the space-time domain.

We note that the efficient numerical solution of boundary and initial-boun-
dary value problems for PDE and systems thereof by adaptive finite element
methods has reached some state of maturity as documented by the mono-
graphs [1, 5, 7, 25, 69, 82] and the references therein. Several error concepts
have been developed over the past decades including residual-type estimators
[1, 5, 82] that rely on the appropriate evaluation of the residual in a dual norm,
hierarchical type estimators [5] where the error equation is solved locally us-
ing higher order elements, error estimators that are based on local averaging
[19, 86], the so-called goal oriented dual weighted approach [7, 25] where in-
formation about the error is extracted from the solution of the dual problem,
and functional type error majorants [69] that provide guaranteed sharp upper
bounds for the error. A systematic comparison of the performance of these
estimators for a basic linear second order elliptic PDE has been provided re-
cently in [21]. While the majority of the contributions has been dealing with
elliptic PDE, adaptive methods for parabolic PDE have been investigated, e.g.,
in [7, 13, 14, 16, 17, 18, 23, 26, 27, 52, 63, 67, 70]. These contributions typically
consider a discretization in space by finite elements with respect to triangula-
tions of the spatial domain in combination with finite difference methods for
discretization in time with respect to a partitioning of the underlying time
interval. A central issue is the separation of the error in time and the error in
space to allow for an automatic time-stepping and spatial mesh adaption by
refinement and coarsening.

The systematic mathematical treatment and numerical solution of optimally
controlled PDE dates back to the late sixties of the last century (cf. the sem-
inal monograph [56] and the more recent textbooks [29, 34, 41, 55, 81] as well
as the references therein). However, it took roughly twenty more years un-
til the a posteriori error analysis of adaptive finite element schemes for PDE
constrained optimal control problems has been addressed. For optimally con-
trolled elliptic problems, classical residual-based error estimators have been
derived in [30, 31, 35, 39, 40, 42, 43, 44, 51, 53], whereas the goal-oriented dual
weighted approach has been applied in [8, 11, 36, 37, 38, 83, 85]. Much less
work has been devoted to other available techniques. In particular, hierarchi-
cal estimators have been considered in [12], those based on local averaging in
[54], and those using functional type error majorants in [32, 33]. For further
references, we refer to the recent monograph [60].
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The numerical solution of optimal control problems for parabolic PDE has
been dealt with in [9, 58, 59, 64, 65, 66, 71, 74]. One is faced with the prob-
lem that the optimality conditions give rise to a coupled system consisting of
the forward-in-time state equation, the backward-in-time adjoint state equa-
tion, and an equation or variational inequality (in case of control constraints)
which relates the adjoint state and the control at optimality. Finite element
discretizations in space and implicit time integrators for discretization in time
typically lead to very large algebraic systems whose efficient numerical solution
represents a significant challenge with regard to computational complexity (see,
e.g., [9]). Moreover, since the state and the the adjoint state may exhibit sin-
gularities at different space-time locations, individual time-stepping and mesh
adaptivity for the state and the adjoint state equation would be advantageous
which, however, would render the adaptive method computationally costly as
well.

The latter difficulty can be circumvented by the simultaneous use of finite
element discretizations based on triangulations of the space-time domain. For
time-dependent PDE, such an approach has been initiated in [15, 28, 50, 61]
and has been further dealt with in [3, 4, 10, 48, 49, 62]. The application to
optimally controlled parabolic PDE has been considered in [68]. However,
to our best knowledge, adaptive space-time finite element approximations for
parabolic optimal control problems based on simplicial triangulations of the
space-time domain have not yet been studied in the literature.

Adaptive finite element methods for optimal control problems associated with
PDE consist of successive loops of the cycle

SOLVE =⇒ ESTIMATE =⇒ MARK =⇒ REFINE .

Here, SOLVE stands for the numerical solution of the discretized optimality
system. The step ESTIMATE is devoted to the derivation of an a posteriori
error estimator whose contributions are used for the realization of adaptivity
in space (elliptic problems) or adaptivity in space and time (time-dependent
problems). The subsequent step MARK deals with the selection of elements
and faces (or edges) of the triangulation for refinement and/or coarsening based
on the information provided by the local contributions of the a posteriori error
estimator. Since in this contribution we use space-time finite elements, we
will only be concerned with refinement for which we are going to use the
bulk criterion from [24], meanwhile also known as Dörfler marking. The final
step REFINE addresses the technical realization of the refinement/coarsening
process. Here, refinement will be based on newest vertex bisection (cf., e.g.,
[6, 22, 75]).

The novelty of the adaptive approach in this contribution is that the optimality
system for the optimally controlled parabolic PDE under consideration will be
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stated as a fourth order elliptic boundary value problem. We note that for PDE
constrained optimal control problems such an approach, merging the state and
adjoint state equation, has been recently used for elliptic problems in [57] and
for the parabolic case in [68]. The fourth order problem can be formulated
equivalently as a boundary value problem for a system of two second order
equations. This suggests the use of standard P1 conforming finite elements
with respect to simplicial triangulations of the space-time domain. The P1
conforming space-time discretization leads to an algebraic saddle point problem
which will be numerically solved by a preconditioned Richardson iteration. The
adaptive space-time mesh refinement relies on a residual-type a posteriori error
estimator which can be derived within the framework of unified a posteriori
error control [20].

The thesis is organized as follows: In the following section 2, after provid-
ing basic functional analytic notations and preliminaries in subsection 2.1,
we consider an unconstrained parabolic optimal control problem featuring a
tracking type objective functional and distributed controls (subsection 2.2) and
state the first order optimality conditions in terms of the forward-in-time state
equation, the backward-in-time adjoint state equation, and an equation which
relates the adjoint state and the control (subsection 2.3). In section 3, we show
that the optimality system gives rise to a fourth order elliptic boundary value
problem (Theorem 3). We rewrite the fourth order equation as a system of two
second order equations and introduce a weak solution concept in an appropri-
ate function space setting. In particular, we prove that the operator-theoretic
formulation involves a linear continuous, bijective operator so that the solu-
tion depends continuously on the data (Theorem 4). Consequently, having an
approximate solution at hand, the error can be estimated from above in terms
of the associated residuals which have to be evaluated in the norms of the
respective dual spaces (Corollary 5). Section 4 deals with P1 conforming finite
element discretizations of the second order system with respect to simplicial
triangulations of the space-time domain, whereas section 5 is concerned with
the numerical solution of the resulting saddle point problem by a precondi-
tioned Richardson iteration featuring preconditioners constructed by means of
suitably chosen left and right transforms. After a brief introduction to the
idea behind such transforms in subsection 5.1, the following subsections 5.2
and 5.3 are devoted to the construction of the preconditioners for the specific
saddle point problem under consideration. The residual-type a posteriori er-
ror estimator is presented in section 6. Using Galerkin orthogonality, it can
be derived by means of an appropriate evaluation of the two residuals from
Corollary 5 which simultaneously proves reliability of the estimator (Theorem
8). For two representative examples, section 7 contains a documentation of
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numerical results illustrating the performance of our adaptive approach. Some
concluding remarks are given in the final section 8.
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2. The parabolic optimal control problem

We consider an optimally controlled linear second order parabolic PDE with a
quadratic tracking type objective functional and distributed controls. In this
contribution, we only study the unconstrained case, i.e., constraints are neither
imposed on the control nor on the state. Moreover, we restrict ourselves to
the heat equation with homogeneous Dirichlet boundary conditions on the
boundary of the spatial domain. We note, however, that the generalization
to general linear second order parabolic PDE and other types of boundary
conditions is straightforward and only requires some technical effort.

2.1. Notations and preliminaries. We use standard notation from Lebesgue
and Sobolev space theory [78]. In particular, given a bounded Lipschitz do-
main Ω ⊂ R

d, d ∈ N, with boundary Γ := ∂Ω, for D ⊆ Ω we refer to
Lp(D), 1 ≤ p ≤ ∞ as the Banach spaces of p-th power integrable functions
(p < ∞) and essentially bounded functions (p = ∞) on D with norm ‖·‖Lp(D).
We denote by Lp(D)+ the positive cone in Lp(D), i.e., Lp(D)+ := {v ∈
Lp(D) | v ≥ 0 a.e. in D}. In case p = 2, the space L2(D) is a Hilbert space
whose inner product and norm will be referred to as (·, ·)L2(D) and ‖ · ‖L2(D).
For m ∈ N0, we denote by W m,p(D) the Sobolev spaces with norms

‖v‖W m,p(D) :=











(

∑

|α|≤m

‖Dαv‖p
Lp(D)

)1/p

, if p < ∞

max
|α|≤m

‖Dαv‖L∞(D) , if p = ∞
,

where α = (α1, · · · , αd)
T ∈ N0 with |α| :=

∑d
i=1 αi, and refer to | · |W m,p(D) as

the associated seminorms. For p < ∞ and s ∈ R+, s = m + σ, m ∈ N0, 0 <
σ < 1, we denote by W s,p(D) the Sobolev space with norm

‖v‖W s,p(D) :=
(

‖v‖p
W m,p(D) +

∑

|α|=m

∫

Ω

∫

Ω

|Dαv(x) − Dαv(y)|p

|x − y|d+σp
dx dy

)1/p

.

We refer to W s,p
0 (D) as the closure of C∞

0 (D) in W s,p(D). For s < 0, we denote
by W s,p(D) the dual space of W−s,q

0 (D), p−1 + q−1 = 1. In case p = 2, the
spaces W s,2(D) are Hilbert spaces. We will write Hs(D) instead of W s,2(D)
and refer to (·, ·)Hs(D) and ‖·‖Hs(D) as the inner products and associated norms.
Moreover, for T > 0 we consider the space-time domain Q := Ω × (0, T ). For
functions y on Q, derivatives with respect to time t ∈ [0, T ] will be denoted by
yt, ytt and so forth. Given a Banach space X, we denote by Lp((0, T ), X), 1 ≤
p ≤ ∞, and C([0, T ], X) the Banach spaces of functions v : [0, T ] → X with
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norms

‖v‖Lp((0,T ),X) :=







( T
∫

0

‖v(t)‖p
Xdt
)1/p

, 1 ≤ p < ∞

ess supt∈[0,T ]‖v(t)‖X , p = ∞
,

‖v‖C([0,T ],X) := max
t∈[0,T ]

‖v(t)‖X .

The spaces W s,p((0, T ), X) and Hs((0, T ), X), s ∈ R+, are defined likewise.
In particular, for a subspace V ⊂ H1(Ω) with dual V ∗ we will consider the
space

(2.1) W (0, T ) := H1((0, T ), V ∗) ∩ L2((0, T ), V ),

and note that the following continuous embedding holds true (cf., e.g., [72])

(2.2) W (0, T ) ⊂ C([0, T ], L2(Ω)).

2.2. Parabolic optimal control problem with distributed controls. Let
Ω be a bounded polyhedral domain in R

d, d ∈ N, with boundary Γ := ∂Ω. For
T > 0 we set Q := Ω × (0, T ) and Σ := ∂Q with Σlat := Γ × (0, T ), Σbot :=
Ω × {0}, Σtop := Ω × {T}. We further set Qp := Q̄ \ Σp where Σp stands for
the parabolic boundary Σp := Σbot ∪Σlat. Given a desired state yd ∈ L2(Q), a
shift control ud ∈ L2(Q) with supp ud ⊂ Q, an initial state y0 ∈ L2(Ω) as well
as a regularization parameter α > 0, we consider the following unconstrained
distributed parabolic optimal control problem

inf
y,u

J(y, u),(2.3a)

where

J(y, u) :=
1

2

T
∫

0

∫

Ω

|y − yd|2 dx dt +
α

2

T
∫

0

∫

Ω

|u − ud|2 dx dt,(2.3b)

subject to

yt − ∆y = u in Q,(2.3c)

y = 0 on Σlat,(2.3d)

y(·, 0) = y0 on Σbot.(2.3e)

We note that (2.3c)-(2.3e) has to be understood in a weak sense. In particular,
we are looking for (y, u) ∈ W (0, T )× L2(Q), where V := H1

0 (Ω) in (2.1), such
that for all v ∈ W (0, T ) the variational equation

(yt, v)L2(Q) + (∇y,∇v)L2(Q) = (u, v)L2(Q)(2.4)

and the initial condition y|Σbot
= y0 are satisfied.
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Theorem 1. Under the assumptions on the data of (2.3a)-(2.3e) there exists
a unique solution (y, u) ∈ W (0, T ) × L2(Q).

Proof. We refer to [81]. �

2.3. Optimality conditions. We derive the first order necessary optimality
conditions which for the optimal control problem (2.3a)-(2.3e) under consider-
ation are also sufficient due to the strict convexity of the objective functional.

Theorem 2. Let (y, u) ∈ W (0, T ) × L2(Q) be the optimal solution of (2.3a)-
(2.3e). Then, there exists an adjoint state p ∈ W (0, T ) such that the triple
(y, p, u) satisfies the state equation

yt − ∆y = u in Q,(2.5a)

y = 0 on Σlat,(2.5b)

y = y0 on Σbot,(2.5c)

the adjoint state equation

−pt − ∆p = y − yd in Q,(2.5d)

p = 0 on Σlat,(2.5e)

p = 0 on Σtop,(2.5f)

and the relationship

p + α(u − ud) = 0 in Q.(2.5g)

Proof. We formally use the Lagrange multiplier approach to derive (2.5a)-
(2.5g). Using Lagrange multipliers p ∈ H1((0, T ), H−1(Ω))∩L2((0, T ), H1

0(Ω))
for (2.5a) and p0 ∈ L2(Ω) for (2.5c), we introduce the Lagrangian

L(y, u, p, p0) := J(y, u) +

T
∫

0

〈yt − ∆y − u, p〉 dt + (p0, y − y0)L2(Ω),(2.6)

where 〈·, ·〉 stands for the respective dual product. Critical points of the La-
grangian are characterized by

Ly(y, u, p, p0) = 0,(2.7a)

Lu(y, u, p, p0) = 0,(2.7b)

Lp(y, u, p, p0) = 0,(2.7c)

Lp0(y, u, p, p0) = 0.(2.7d)

Obviously, (2.7c) and (2.7d) readily yield (2.5a) and (2.5c), whereas (2.5b) is
a direct consequence of y ∈ W (0, T ). On the other hand, partial integration
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with respect to t gives
T
∫

0

〈yt, p〉 dt = −

T
∫

0

〈pt, y〉 dt + (y|Σtop, p|Σtop)L2(Ω) − ((y|Σbot
, p|Σbot

)L2(Ω).

Moreover, observing yΣlat
= 0, applying Green’s formula twice, we find

−

T
∫

0

〈∆y, p〉 dt = −

T
∫

0

〈∆p, y〉 dt +

T
∫

0

〈nΓ · ∇y, p〉 dt,

and hence,

L(y, u, p, p0) = J(y, u) +

T
∫

0

〈−pt − ∆p, y〉 dt +

T
∫

0

〈nΓ · ∇y, p〉 dt

(2.8)

+ (p|Σtop, y|Σtop)L2(Ω) − (p|Σbot
− p0, y|Σbot

)L2(Ω) − (p0, y0)L2(Ω).

Taking Jy(y, u) = y − yd into account and using (2.8) in (2.7a) gives rise to
p0 = p|Σbot

and (2.5d)-(2.5f). Finally, in view of Ju(y, u) = α(u − ud), from
(2.7b) we deduce (2.5g).
For a justification of the formal Lagrangian approach for the optimal control
problem under consideration we refer to [29]. �
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3. Optimality system as a fourth order elliptic equation

In this section, we will show that for sufficiently smooth state y and adjoint
state p the optimality system (2.5a)-(2.5g) can be formulated as a fourth order
elliptic boundary value problem. Further, this fourth order problem will be
equivalently stated as a boundary value problem for a system of two second
order equations

Theorem 3. Assume that the state y and the adjoint state p are sufficiently
smooth. Then, the optimality system (2.5a)-(2.5g) is equivalent to the fourth
order elliptic boundary value problem

−ytt + ∆2y + α−1y = f in Q,(3.1a)

y = 0 on Σlat,(3.1b)

yt − ∆y = 0 on Σlat,(3.1c)

y = y0 on Σbot,(3.1d)

yt − ∆y = 0 on Σtop.(3.1e)

where the right-hand side f in (3.1a) is given by

(3.2) f := α−1yd − ∆ud − ud
t .

Proof. Substituting u in (2.5a) by means of (2.5g) yields

(3.3) yt − ∆y = −α−1p + ud.

Differentiating (3.3) with respect to time t results in

(3.4) ytt − ∆yt = −α−1pt + ud
t .

On the other hand, (2.5d) gives

(3.5) −α−1pt = α−1∆p + α−1(y − yd).

Thus, inserting (3.5) into (3.4), we obtain

(3.6) ytt − ∆yt = α−1∆p + α−1(y − yd) + ud
t .

Now, we apply the Laplacian ∆ to (3.3):

∆yt − ∆2y = −α−1∆p + ∆ud,

which results in

(3.7) α−1∆p = −∆yt + ∆2y + ∆ud.

Using (3.7) in (3.6) yields (3.1a). The boundary conditions (3.1b) and (3.1d)
follow readily from (2.5b) and (2.5c). On the other hand, observing supp ud ⊂
Q and (2.5e),(2.5f), from (2.5g) we deduce u|Σlat

= 0 and u|Σtop = 0. Hence,
(3.1c) and (3.1e) are a direct consequence of (2.5a). �
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We reformulate (3.1a)-(3.1e) as a boundary value problem for a system of two
second order equations. Setting w = −∆y, the fourth order boundary value
problem reads as follows

−ytt − ∆w + α−1y = f in Q,(3.8a)

∆y + w = 0 in Q,(3.8b)

y = y0 on Σbot,(3.8c)

y = 0 on Σlat,(3.8d)

yt + w
∆y + w

= 0
= 0

on Σ.(3.8e)

Multiplying (3.8a) by a smooth test function v on Q satisfying v|Σp = 0 and
integrating over Q yields

(3.9) −(ytt, v)L2(Q) − (∆w, v)L2(Q) + α−1(y, v)L2(Q) = (f, v)L2(Q).

In view of v(·, 0) = 0 and yt(·, T ) = −w(·, T ), by partial integration we find

−(ytt, v)L2(Q) = (yt, vt)L2(Q) − (yt(·, T ), v(·, T ))L2(Ω)(3.10)

= (yt, vt)L2(Q) + (w(·, T ), v(·, T ))L2(Ω).

Moreover, observing v|Σlat
= 0 as well as (3.2), Green’s formula gives

−(∆w, v)L2(Q) = (∇w,∇v)L2(Q) − (n · ∇w, v)L2(Σlat) = (∇w,∇v)L2(Q).
(3.11)

On the other hand, multiplying (3.8b) by a smooth test function z on Q and
integrating over Q we obtain

(3.12) (∆y, z)L2(Q) = −(∇y,∇z)L2(Q) + (n · ∇y, z)L2(Σlat).

Taking (3.9)-(3.12) into account, for the weak formulation of the second order
system (3.8a)-(3.8e) we introduce the function spaces

W := L2((0, T ); H1(Ω)) ∩ C([0, T ]; L2(Ω)),(3.13a)

Y := {y ∈ H1(Q) ∩ C([0, T ]; L2(Ω) | y|Σbot
= y0 , y|Σlat

= 0},(3.13b)

Y0 := {y ∈ Y | y|Σbot
= 0},(3.13c)

equipped with the norms

‖w‖W :=
(

T
∫

0

(|w|2H1(Ω) + ‖w‖2
L2(Ω)) dt + ‖w(·, T )‖2

L2(Ω)

)1/2

,(3.13d)

‖y‖Y :=
(

T
∫

0

(|y|2H1(Ω) + ‖y‖2
L2(Ω)) dt

)1/2

,(3.13e)
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as well as

Z := {z = (w, y)T ∈ W × Y | z satisfies (3.8e)},(3.14a)

Z0 := {z ∈ Z | z|Σp = 0}.(3.14b)

Then, the weak formulation of (3.8a)-(3.8e) amounts to the computation of
(w, y) ∈ Z such that for all v1 ∈ Y0 and v2 ∈ W there holds

a11(w, v1) + a12(y, v1) = ℓ1(v1),(3.15a)

−a21(w, v2) + a22(y, v2) = ℓ2(v2).(3.15b)

Here, the bilinear forms aij(·, ·), 1 ≤ i, j ≤ 2, are given by

a11(w, v1) := (∇w,∇v1)L2(Q) + (w(·, T ), v1(·, T ))L2(Ω),(3.16a)

a12(y, v1) := (yt, (v1)t)L2(Q) + α−1(y, v1)L2(Q),(3.16b)

a21(w, v2) := (w, v2)L2(Q),(3.16c)

a22(y, v2) := (∇y,∇v2)L2(Q) −

T
∫

0

〈n · ∇y, v2〉H−1/2(Γ),H1/2(Γ) dt,(3.16d)

where 〈·, ·〉H−1/2(Γ),H1/2(Γ) stands for the dual pairing between H−1/2(Γ) and

H1/2(Γ). In view of (3.2), the functionals ℓi(·), 1 ≤ i ≤ 2, in (3.15a),(3.15b)
read as follows

ℓ1(v1) := (f, v1)L2(Q),(3.17a)

ℓ2(v2) := 0.(3.17b)

(3.17c)

The operator theoretic version of (3.15a),(3.15b) reads as follows

L(w, y) = (ℓ1, ℓ2)
T ,(3.18)

where the operator L : Z → Z∗ is given by

〈L(w, y), (v1, v2)〉Z∗,Z := a11(y, v1) − a12(w, v1) + a21(y, v2) + a22(w, v2).
(3.19)

Theorem 4. The operator L is a continuous, bijective linear operator. Hence,
for any (ℓ1, ℓ2)

T ∈ Z∗, the system (3.15a),(3.15b) admits a unique solution
(y, w) ∈ Z. The solution depends on the data according to

(3.20) ‖(w, y)‖W×Y . ‖(ℓ1, ℓ2)‖W ∗×Y ∗ .

Proof. Without loss of generality we may assume y0 = 0, since otherwise we
define ŷ as the solution of the state equation (2.5a)-(2.5c) with zero right-hand
side and replace y with y − ŷ. Then, the corresponding pair (y, w) satisfies
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(3.15a),(3.15b) with homogeneous Dirichlet data on Σbot, but modified right-
hand sides.
The linearity and continuity of L are straightforward. Moreover, we may resort
to smooth trial and test functions y, v1 ∈ Y0∩C∞

0,Σp
(Q) and w, v2 ∈ W∩C∞(Q).

Then, (yt + w)|Σp = 0 implies w|Σp = 0 such that w is an admissible test
function in (3.15a). For such z = (w, y)T we have

〈L(w, y), (y + αw, y − w)〉 = (yt, yt)L2(Q) + α (yt, wt)L2(Q)

+ α a(w, w) + α−1 (y, y)L2(Q) + α (w(·, T ), w(·, T ))L2(Ω)

+ (w(·, T ), y(·, T ))L2(Ω) + a(y, y) + (w, w)L2(Q).

Observing w = −∆y and wt = −∆yt, we find

(yt, wt)L2(Q) = −(yt, ∆yt)L2(Q) = (∇yt,∇yt)L2(Q) ≥ 0,

(w(·, T ), y(·, T ))L2(Ω) = −(∆y(·, T ), y(·, T ))L2(Ω) = (∇y(·, T ),∇y(·, T ))L2(Ω) ≥ 0,

and hence, it follows that

〈L(w, y), (y + αw, y − w)〉 ≥

(3.21)

α

T
∫

0

|w|2H1(Ω)dt + ‖w‖2
L2(Q) + α‖w(·, T )‖2

L2(Ω) + |y|2H1(Q) + α−1 ‖y‖2
L2(Q).

A density argument shows that (3.21) holds true for all (w, y) ∈ Z0. This
allows to deduce the inf-sup condition which implies bijectivity of L . �

Corollary 5. Let (yh, wh) ∈ Yh × Wh, Yh ⊂ Y, Wh ⊂ W, be an approximate
solution of (3.15a),(3.15b). Then, there holds

(3.22) ‖(y − yh, w − wh)‖Y ×W . ‖(Res1, Res2)‖Y ∗×W ∗,

where the residuals Res1 ∈ Y ∗, Res2 ∈ W ∗ are given by

Res1(v) := ℓ1(v) − ((yh)t, vt)0,Q − a(wh, v)(3.23a)

− α−1 (yh, v)0,Q − (wh(·, T ), v)0,Ω, v ∈ V,

Res2(z) := ℓ2(z) − a(yh, z) + (wh, z)0,Q. z ∈ W.(3.23b)

Proof. The assertion is an immediate consequence of Theorem 4. �
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4. Space-time finite element discretization

We consider a shape regular family (Th(Q))h∈H of simplicial triangulations of
the space-time domain Q where H is a null sequence of positive real numbers.

We refer to Nh(D) as the set of vertices a
(i)
D , 1 ≤ i ≤ card Nh(D), and to

Fh(D) as the set of faces in D ⊆ Q̄. For K ∈ Th(Q), we denote by hK the
diameter of K and set h := max{hK | K ∈ Th(Q)}. We further refer to hF as
the diameter of F ∈ Fh(Q̄). We set QP := Q̄ \ ΣP , where ΣP stands for the
parabolic boundary ΣP := Σbot ∪ Σlat, and define

NQp := card Nh(Qp),(4.1a)

NΣbot
:= card Nh(Σbot),(4.1b)

NΣlat
:= card Nh(Σlat),(4.1c)

NΣP
:= NΣbot

+ NΣlat
.(4.1d)

For space-time discretization, we use P1 conforming finite elements with re-

spect to the triangulation Th(Q). Denoting by ϕ
(i)
QP

, 1 ≤ i ≤ NQP
, and by

ϕ
(i)
Σbot

, 1 ≤ i ≤ NΣbot
, as well as ϕ

(i)
ΣP

, 1 ≤ i ≤ NΣP
, the nodal basis functions as-

sociated with the nodal points in Nh(QP ) and Nh(Σbot),Nh(ΣP ), respectively,
we introduce the finite element spaces

Yh,Σbot
:= span(ϕ

(1)
Σbot

, · · · , ϕ
(NΣbot

)

Σbot
),(4.2a)

Yh,0 := span(ϕ
(1)
QP

, · · · , ϕ
(NQP

)

QP
),(4.2b)

Wh := Yh,0 ⊕ WΣP
h , WΣP

h := span(ϕ
(1)
ΣP

, · · · , ϕ
(NΣP

)

ΣP
),(4.2c)

Yh := {yh ∈ Wh | yh|Σbot
= yh,0, yh|Σlat

= 0},(4.2d)

where yh,0,∈ Yh,Σbot
is a suitable approximation of y0.

The space-time finite element approximation of the solution (w, y) ∈ W × Y
amounts to the computation of (wh, yh) ∈ Wh × Yh such that for all vh,1 ∈ Yh,0

and vh,2 ∈ Wh there holds

a11(wh, vh,1) + a12(yh, vh,1) = ℓ1(vh,1),(4.3a)

−a21(wh, vh,2) + a22(yh, vh,2) = ℓ2(vh,2).(4.3b)
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The algebraic formulation of (4.3a),(4.3b) leads to a block-structured linear
algebraic system. We set

y0 := (y
(1)
0 , · · · , y

(NΣbot
)

0 )T , y
(i)
0 := yh,0(a

(i)
Σbot

), 1 ≤ i ≤ NΣbot
,(4.4a)

yP := (y
(1)
P , · · · , y

(NQP
)

P )T , y
(i)
P := yh(a

(i)
QP

), 1 ≤ i ≤ NQP
,(4.4b)

wP := (w
(1)
P , · · · , w

(NQP
)

P )T , w
(i)
P := wh(a

(i)
QP

), 1 ≤ i ≤ NQP
,(4.4c)

wΣ := (w
(1)
Σ , · · · , w

(NΣP
)

Σ )T , w
(i)
Σ := wh(a

(i)
ΣP

), 1 ≤ i ≤ NΣP
,(4.4d)

x := (wP ,yP ,wΣ)T .(4.4e)

The linear algebraic system is given by

Kx = b,(4.5)

where the system matrix K and the right-hand side read as follows

K :=

(

APP APΣ

AΣP −MΣΣ

)

,(4.6a)

b := (bP , 0)T .(4.6b)

The first diagonal block APP of K is the 2 × 2 block matrix

APP =

(

A1 T + α−1M
−M A2

)

,(4.7)

where the matrices A1,A2,T,M ∈ R
NQP

×NQP are given by

(A1)ij := a11(ϕ
(i)
QP

, ϕ
(j)
QP

), (A2)ij := a22(ϕ
(i)
QP

, ϕ
(j)
QP

),

(T)ij := ((ϕ
(i)
QP

)t, (ϕ
(j)
QP

)t)L2(Q), (M)ij := (ϕ
(i)
QP

, ϕ
(j)
QP

)L2(Q) .

The off-diagonal matrices APΣ ∈ R
N2

QP
×NΣP and AΣP ∈ R

NΣP
×N2

QP are of the
form

APΣ =

(

A
(1)
PΣ

A
(2)
PΣ

)

, AΣP =
(

A
(1)
ΣP A

(2)
ΣP

)

(4.8)

with the matrices A
(i)
PΣ,A

(i)
ΣP , 1 ≤ i ≤ 2, being given by

(A
(1)
PΣ)ij := a11(ϕ

(j)
ΣP

, ϕ
(i)
QP

),

(A
(2)
PΣ)ij := − a21(ϕ

(j)
ΣP

, ϕ
(i)
QP

),

(A
(1)
ΣP )ij := − a21(ϕ

(j)
QP

, ϕ
(i)
ΣP

),

(A
(2)
ΣP )ij := a22(ϕ

(j)
QP

, ϕ
(i)
ΣP

).
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5. Numerical solution of the space-time discretized problem

We will solve the linear algebraic system (4.5) by the preconditioned Richard-
son iteration [2]

x(ν+1) = x(ν) − K̂−1
(

Kx(ν) − b
)

, ν ∈ N0,(5.1)

where K̂ is an appropriate preconditioner for K and x(0) is a given initial
iterate. The preconditioner K̃ will be constructed by means of left and right
transforms.

5.1. Left and right transforms. Let KL,KR be regular matrices. Then,
(4.5) can be equivalently written as

KLKKRK−1
R x = KLb.(5.2)

Assuming K̃ to be a suitable preconditioner for KLKKR, we consider the
transforming iteration

K−1
R x(ν+1) = K−1

R x(ν) − K̃−1
(

KLKx(ν) − KLb
)

.(5.3)

Backtransformation yields

x(ν+1) = x(ν) − KRK̃−1KL(Kx(ν) − b)(5.4)

= x(ν) − (K−1
L K̃K−1

R )−1(Kx(ν) − b).(5.5)

Consequently,

K̂ := K−1
L K̃K−1

R(5.6)

is an appropriate preconditioner for K.
We note that transforming iterations have been used as smoothers within
multigrid methods [84] as well as for the iterative solution of KKT systems
in PDE constrained optimization [45, 46, 47, 76, 77].

5.2. Construction of a preconditioner I. We assume ÂPP to be an appro-
priate preconditioner for APP (for its construction see subsection 5.3 below)
and choose the left transform KL and the right transform KR according to

KL = I, KR =

(

I −Â−1
PPAPΣ

0 I

)

.(5.7)

Recalling the definition of K (cf. (4.6)), it follows that

KLKKR =

(

APP (I− APP Â−1
PP )APΣ

AΣP −(MΣΣ + AΣP Â−1
PPAPΣ)

)

.

The matrix KLKKR admits the regular splitting

KLKKR = M1 + M2,
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where the matrices M1 and M2 are given by

M1 :=

(

ÂPP 0

AΣP −(MΣΣ + AΣP Â−1
PPAPΣ)

)

,

M2 :=

(

APP − ÂPP (I − APP Â−1
PP )APΣ

0 0

)

.

We note that M2 ≈ 0, if ÂPP ≈ APP . Hence, K̃ = M1 is a suitable precon-
ditioner for KLKKR. In view of (5.6), we thus obtain

K̂ = K−1
L M1K

−1
R(5.8)

as an appropriate preconditioner for the system matrix K. We thus arrive at
the following preconditioned Richardson iteration:

Algorithm (Preconditioned Richardson Iteration)

Step 1 (Initialization)

Choose an initial iterate x(0) = (w
(0)
P ,y

(0)
P ,w

(0)
Σ )T , prescribe some tolerance

TOL > 0, and set ν = 0.

Step 2 (Iteration loop)

Step 2.1 (Computation of the residual)
Compute the residual with respect to x(ν):

d(ν) = Kx(ν) − b.

Step 2.2 (Implementation of the preconditioner)
Solve the staggered linear algebraic system

M1y
(ν) = d(ν)

by forward substitution.

Step 2.3 (Computation of the new iterate)
Compute

x(ν+1) = x(ν) − KRy(ν).

Step 2.4 (Termination criterion)
If

‖x(ν+1) − x(ν)‖

‖x(ν+1)‖
< TOL,

stop the algorithm. Otherwise, set ν := ν + 1 and go to Step 2.1
21



5.3. Construction of a preconditioner II. As far as the construction of a
preconditioner for APP is concerned, we choose a left transform AL

PP and a
right transform AR

PP as the following block-diagonal matrices

AL
PP =

(

α1/2(I + αTM−1)−1/2 0
0 −I

)

,(5.9a)

AR
PP =

(

α−1/2(I + αTM−1)1/2 0
0 I

)

.(5.9b)

We thus obtain the symmetric block matrix

AL
PPAPPAR

PP =
(

(I + αTM−1)−1/2A1(I + αTM−1)1/2 α−1/2(I + αTM−1)1/2M
α−1/2M(I + αTM−1)1/2 −A2

)

.

The Schur complement associated with AL
PPAPPAR

PP is given by

S = A2 + α−1MA−1
1 (I + αTM−1)M = A2 + MA−1

1 T + α−1MA−1
1 M.

Consequently, we have

AL
PPAPPAR

PP =
(

(I + αTM−1)−1/2A1(I + αTM−1)1/2 α−1/2(I + αTM−1)1/2M
α−1/2M(I + αTM−1)1/2 −S + α−1MA−1

1 M + MA−1
1 T

)

.

With Â1 as a preconditioner for A1 and

Ŝ := τ−1 diag(A2 + α−1MÂ−1
1 M + MÂ−1

1 T), τ > 0,(5.10)

as a symmetric Uzawa preconditioner for AL
PPAPPAR

PP we choose

ÃPP =
(

(I + αTM−1)−1/2Â1(I + αTM−1)1/2 α−1/2(I + αTM−1)1/2M

α−1/2M(I + αTM−1)1/2 −Ŝ + α−1MÂ−1
1 M + MÂ−1

1 T

)

.

Backtransformation yields

ÂPP = (AL
PP )−1ÃPP (AR

PP )−1(5.11)

=

(

Â1 α−1(I + αTM−1)M

−M Ŝ− α−1MÂ−1
1 M− MÂ−1

1 T

)

.

Remark 6. Step 2.2 of the preconditioned Richardson iteration requires the
solution of linear algebraic systems of the form

ÂPP

(

wP

yP

)

=

(

b1
P

b2
P

)

.(5.12)
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In view of (5.11), this can be done by the successive solution of the two linear
subsystems

ŜyP = b2
P + MÂ−1

1 b1
P ,(5.13a)

Â1wP = b1
P − (α−1M + T)yp.(5.13b)

An appropriate preconditioner Â1 for A1 is

Â1 = σ−1 diag(A1), σ > 0,(5.14)

which facilitates the solution of (5.13a),(5.13b).

Remark 7. Denoting by Asym
1 and Ssym the symmetric part of A1 and S,

respectively, an appropriate choice of the parameters τ and σ (cf. (5.10) and
(5.14)) is as follows

τ ≤ λmax

(

(diag(Ssym))−1Ssym)−1
)

, σ ≤ λmax

(

(diag(Asym
1 ))−1Asym

1 )−1
)

,

(5.15)

where λmax(·) denotes the maximum eigenvalue of the respective matrix.
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6. Residual-type a posteriori error estimation

The residual a posteriori error estimator

ηh :=
(

∑

K∈Th(Q)

(η2
K,1 + η2

K,2) +
∑

F∈Fh(Q)

(η2
F,1 + η2

F,2) +
∑

F∈Fh(Σtop)

η2
F,3

)1/2

(6.1)

consists of element residuals ηK,i, K ∈ Th(Q), 1 ≤ i ≤ 2, and face residuals
ηF,i, F ∈ Fh(Q), 1 ≤ i ≤ 2, ηF,3, F ∈ Fh(Σtop). In particular, the element
residuals ηK,i, 1 ≤ i ≤ 2, are given by

ηK,1 := hK ‖f − α−1yh‖L2(K), K ∈ Th(Q),(6.2a)

ηK,2 := hK ‖wh‖L2(K), K ∈ Th(Q).(6.2b)

The face residuals ηF,i, 1 ≤ i ≤ 3, read as follows

ηF,1 := h
1/2
F ‖nF · [∇wh]F‖L2(F ), F ∈ Fh(Q),(6.3a)

ηF,2 := h
1/2
F ‖nF · [∇yh]F‖L2(F ), F ∈ Fh(Q),(6.3b)

ηF,3 := h
1/2
F ‖(yh)t + wh‖L2(F ), F ∈ Fh(Σtop),(6.3c)

where [∇wh]F stands for the jump of ∇wh across F = K+ ∩K−, K± ∈ Th(Q),
according to

[∇wh]F := (∇wh)|K+
− (∇wh)|K−

.

We note that [∇yh]F is defined analogously.

Theorem 8. Let (w, y) ∈ W × Y and (wh, yh) ∈ Wh × Vh be the solution of
(3.15a),(3.15b) and the space-time finite element approximation (4.3a),(4.3b),
respectively. Let further ηh be the residual a posteriori error estimator as given
by (6.1). Then, there holds

‖(w − wh, y − yh)‖W×Y . ηh.(6.4)

Proof. We first recall the definition of Clément’s quasi-interpolation operator
and state its stability and local approximation properties (cf., e.g., [82]).
For a ∈ Nh(Q̄) we denote by ϕa the nodal basis function with supporting point
a, and we refer to Da as the patch

Da :=
⋃

{ K ∈ Th(Q) | a ∈ Nh(K)}.

We refer to πa as the L2-projection onto P1(Da), i.e., πa(w), w ∈ W is given
by

(πa(w), z)L2(Da) = (w, z)L2(Da), z ∈ P1(Da).
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Then, Clément’s interpolation operator PC is defined as follows

PCw :=
∑

a∈Nh(Q̄)

πa(w) ϕa.

For K ∈ Th(Q) and F ∈ Fh(Q̄) we denote by DK and DF the patches

DK :=
⋃

{K ′ ∈ Th(Q) | Nh(K
′) ∩ Nh(K) 6= ∅ },

DF :=
⋃

{K ′ ∈ Th(Q) | Nh(K
′) ∩ Nh(F ) 6= ∅}.

Then, for v ∈ Y and K ∈ Th(Q), F ∈ Fh(Q̄) there holds

‖PCv‖L2(K) ≤C ‖v‖L2(DK ),(6.5a)

‖PCv‖L2(F ) ≤C ‖v‖L2(DF ),(6.5b)

‖∇PCv‖L2(K) ≤C ‖∇v‖L2(DK),(6.5c)

‖v − PCv‖L2(K) ≤ C hK ‖v‖H1(DK),(6.5d)

‖v − PCv‖L2(F ) ≤ C h
1/2
F ‖v‖H1(DF ).(6.5e)

Further, due to the finite overlap of the patches DK and DF we have

(

∑

K∈Th(Q)

‖v‖2
Hµ(DK)

)1/2

≤ C ‖v‖Hµ(Q), 0 ≤ µ ≤ 1,(6.6a)

(

∑

F∈Fh(Q̄)

‖v‖2
Hµ(DF )

)1/2

≤ C ‖v‖Hµ(Q), 0 ≤ µ ≤ 1.(6.6b)

We note that (6.5a)-(6.5e) and (6.6a),(6.6b) hold true as well for w ∈ W .
The evaluation of the residuals Res1 and Res2 (cf. (3.23a),(3.23b)) in the dual
norms relies on the Galerkin orthogonality

Res1(vh) = 0, vh ∈ Yh,(6.7a)

Res2(zh) = 0, zh ∈ Wh.(6.7b)

For v ∈ Y , we choose vh = PCv. Then, due to (3.23a) and (6.7a) we have

Res1(v) = Res1(v − PCv) =
∑

K∈Th(Q)

(f, v − PCv)L2(K)(6.8)

−
∑

K∈Th(Q)

((yh)t, (v − PCv)t)L2(K) −
∑

K∈Th(Q)

(∇wh,∇(v − PCv))L2(K)

− α−1
∑

K∈Th(Q)

(yh, v − PCv)L2(K) −
∑

K∈Th(Q)

(wh, v − PCv)L2(∂K∩Σtop).
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Observing (yh)tt|K = 0, K ∈ Th(Q), as well as (v−PCv)|Σbot
= 0, for the second

term on the right-hand side of (6.8) partial integration yields

∑

K∈Th(Q)

((yh)t, (v − PCv)t)L2(K) =
∑

K∈Th(Q)

((yh)t, v − PCv)L2(∂K∩Σtop).(6.9)

On the other hand, taking (∆wh)|K = 0, K ∈ Th(Q), and (v − PCv)|Σlat
= 0

into account, for the third term on the right-hand side of (6.8) an application
of Green’s formula gives

∑

K∈Th(Q)

(∇wh,∇(v − PCv))L2(K) =
∑

K∈Th(Q)

(n∂K · ∇wh, v − PCv)L2(∂K)

(6.10)

=
∑

F∈Fh(Q)

(nF · [∇wh]F , v − PCv)L2(F ).

Using (6.9) and (6.10) in (6.8) yields

Res1(v) =
∑

K∈Th(Q)

(f − α−1yh, v − PCv)L2(K)

−
∑

F∈Fh(Q)

(nF · [∇wh]F , v − PCv)L2(F ) −
∑

F∈Fh(Σtop)

((yh)t + wh, v − PCv)L2(F ).

By straightforward estimation and the local approximation properties (6.5d),(6.5e)
of Clément’s quasi-interpolation operator we obtain

|Res1(v)| ≤
∑

K∈Th(Q)

hK‖f − α−1yh‖L2(K)h
−1
K ‖v − PCv‖L2(K)

+
∑

F∈Fh(Q)

h
1/2
F ‖nF · [∇wh]F‖L2(F )h

−1/2
F ‖v − PCv‖L2(F )

+
∑

F∈Fh(Σtop)

h
1/2
F ‖(yh)t + wh‖L2(F )h

−1/2
F ‖v − PCv‖L2(F )
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.
∑

K∈Th(Q)

hK‖f − α−1yh‖L2(K)‖v‖H1(DK)

+
∑

F∈Fh(Q)

h
1/2
F ‖nF · [∇wh]F‖L2(F )‖v‖H1(DF )

+
∑

F∈Fh(Σtop)

h
1/2
F ‖(yh)t + wh‖L2(F )‖v‖H1(DF )

≤
(

∑

K∈Th(Q)

h2
K‖f − α−1yh‖

2
L2(K)

)1/2( ∑

K∈Th(Q)

‖v‖2
H1(DK)

)1/2

+
(

∑

F∈Fh(Q)

hF‖nF · [∇wh]F‖
2
L2(F )

)1/2( ∑

F∈Fh(Q)

‖v‖2
H1(DF )

)1/2

+
(

∑

F∈Fh(Q)

hF‖nF · [∇wh]F‖
2
L2(F )

)1/2( ∑

F∈Fh(Σtop)

‖v‖2
H1(DF )

)1/2

.

Observing (6.2a),(6.3a),(6.3c) and (6.6a),(6.6b) results in

‖Res1‖Y ∗ .
(

∑

K∈Th(Q)

η2
K,1

)1/2

+
(

∑

F∈Fh(Q)

η2
F,1

)1/2

+
(

∑

F∈Fh(Σtop)

η2
F,3

)1/2

.

(6.11)

As far as the evaluation of Res2 is concerned, for z ∈ W we choose zh = PCz.
Taking (3.23b) and (6.7b) into account, we find

Res2(z) = Res2(z − PCz) =
∑

K∈Th(Q)

(wh, z − PCz)L2(K)

(6.12)

−
∑

K∈Th(Q)

(∇yh,∇(z − PCz))L2(K) +
∑

F∈Fh(Σlat)

(nF · ∇yh, z − PCz)L2(F ).

Applying Green’s formula elementwise and taking (∆yh)|K = 0, K ∈ Th(Q),
into account, for the second term on the right-hand side in (6.12) it follows
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that
∑

K∈Th(Q)

(∇yh,∇(z − PCz))L2(K)(6.13)

=
∑

K∈Th(Q)

(n∂K · ∇yh, z − PCz)L2(∂K∩(Q∪Σlat))

=
∑

F∈Fh(Q)

(nF · [∇yh]F , z − PCz)L2(F )

+
∑

F∈Fh(Σlat)

(nF · ∇yh, z − PCz)L2(F ).

Using (6.13) in (6.12), we obtain

Res2(z) =
∑

K∈Th(Q)

(wh, z − PCz)L2(K) −
∑

F∈Fh(Q)

(nF · [∇yh]F , z − PCz)L2(F ).

Similar arguments as for the estimation of Res1(v) give

|Res2(z)| .
(

∑

K∈Th(Q)

h2
K‖wh‖

2
L2(K)

)1/2( ∑

K∈Th(Q)

‖z‖2
H1(DK)

)1/2

+
(

∑

F∈Fh(Q)

hF‖nF · [∇yh]F‖
2
L2(F )

)1/2( ∑

F∈Fh(Q)

‖z‖2
DF

)1/2

.

Due to (6.6a),(6.6b) and (6.2b),(6.3b) this results in

‖Res2‖W ∗ .
(

∑

K∈Th(Q)

η2
K,2

)1/2

+
(

∑

F∈Fh(Q)

η2
F,2

)1/2

.(6.14)

Combining (6.11) and (6.14) gives the assertion. �

In the step MARK of the adaptive cycle we use Dörfler marking [24]. In
particular, given a universal constant 0 < θ < 1, we determine a set of elements
MK and a set of faces MF such that

θ η2
h ≤

∑

K∈MK

(η2
K,1 + η2

K,2) +
∑

F∈MF

(η2
F,1 + η2

F,2 + η2
F,3)(6.15)

The Dörfler marking can be realized by a greedy algorithm (cf., e.g., [39]).
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7. Numerical results

This section is devoted to a detailed documentation of numerical results for
two examples illustrating the performance of the AFEM. The first example is
set up in Q := (0, 1) × (0, 1) and features a state y which rapidly changes in
a vicinity of (x, t) = (0.25, 0.50) and (0.75, 0.50). The second example is the
adaptation of a benchmark from [23, 52] where Q := (−1, +1)× (0, 1) and the
state y decays exponentially around t = 0.50.

Example 1:. We choose Ω = (0, 1), T = 1, and yd = g − 0.1(gtt − gxxxx), u
d =

0.9(gt−gxx), y
0 = g(x, 0), x ∈ Ω, as well as α = 0.1 where g(x, t) = r(x)s(t), (x, t) ∈

Q := Ω × (0, 1), with

r(x) :=
10000x4(1 − x)4

1 + 1000(x − 0.5)2
,

s(t) :=
1000t2(1 − t)2

1 + 100(t − 0.25)2
−

1000t2(1 − t)2

1 + 100(t− 0.75)2
.

The solution (y, u, p) of the optimal control problem (2.3a)-(2.3e) is given by

y = g, u = gt − gxx, p = −α (gt − gxx).

Figure 1. Example 1: Optimal state (left) and optimal control (right)

Figure 1 contains visualizations of the optimal state y (left) and the optimal
control u (right), whereas Figure 2 displays the adaptively generated triangu-
lations after 4 (left) and 8 (right) refinement steps.
Table 1 reflects the convergence history of the adaptive finite element method
(AFEM). In particular, it contains the total number of degrees of freedom
(DOF) and the discretization errors in y and w per refinement step ℓ.
Figures 3, 4, and 5 provide a comparison between adaptive and uniform re-
finement. On a logarithmic scale, the decrease in the errors ‖y − yh‖L2(Q),
‖y − yh‖Y , ‖w −wh‖L2(Q), ‖w −wh‖W , and |J(y.u)− Jh(yh, uh)| is shown as a
function of the degrees of freedom (DOF) (θ = 0.5 in the Dörfler marking).
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Figure 2. Example 1: Adaptively refined triangulations after
4 (left) and 8 (right) cycles of the adaptive algorithm
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Figure 3. Example 1: Adaptive versus uniform refinement: Er-
ror in y (L2-norm (left) and Y -norm (right)).

100

101

102

103

104

105

106

101 102 103 104

||
w

 -
 w

h
||

L
2
(Ω

)

DoF

θ = 0.5
uniform

103

104

105

106

101 102 103 104

||
w

 -
 w

l
||

W

DoF

θ = 0.5
uniform

Figure 4. Example 1: Adaptive versus uniform refinement: Er-
ror in w (L2-norm (left) and W -norm (right)).
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Table 1. Example 1: Convergence history of the AFEM. Dis-
cretization errors in y and w

l DOF ‖|y − yh|‖L2(Q) ‖y − yh‖Y ‖w − wh|L2(Q) ‖w − wh‖W

1 13 5.21e+03 2.16e+04 1.30e+05 9.24e+05
2 27 4.99e+02 1.96e+03 1.07e+04 7.55e+04
3 55 8.32e+01 3.42e+02 1.97e+03 2.07e+04
4 130 1.68e+01 6.61e+01 3.93e+02 9.40e+03
5 277 4.25e+00 1.67e+01 1.14e+02 6.18e+03
6 678 4.20e-01 1.81e+00 2.09e+01 4.08e+03
7 1639 5.84e-02 5.38e-01 8.87e+00 2.36e+03
8 4317 5.64e-02 4.18e-01 4.31e+00 1.42e+03
9 11391 4.16e-02 2.74e-01 1.94e+00 8.57e+02
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Figure 5. Example 1: Adaptive versus uniform refinement: Er-
ror in the objective functional.

Example 2:. We choose Ω = (0, 1), T = 1, and yd = g − α(gtt − gxxxx), u
d =

0, y0 = g(x, 0), x ∈ Ω, as well as α = 1.0 where g(x, t), (x, t) ∈ Q := Ω× (0, 1),
is given by

g(x, t) = x3(1 − x)3t2(1 − t)2 arctan(60(r − 1)),

r2 := (x − 5/4)2 + (t + 1/4)2.

The solution (y, u, p) of the optimal control problem (2.3a)-(2.3e) reads as
follows

y = g, u = gt − gxx, p = −α(gt − gxx).

Figure 6 displays the optimal state y (left) and the optimal control u (right).
Figure 7 shows the adaptively generated triangulations after 4 (left) and 8
(right) refinement steps.
Table 2 documents the convergence history of the AFEM for Example 2 with
the same legends as for Example 1.
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Figure 6. Example 2: Optimal state (left) and optimal control (right)

Figure 7. Example 2: Adaptively refined triangulations after
4 (left) and 8 (right) cycles of the adaptive algorithm

Table 2. Example 2: Convergence history of the AFEM. Dis-
cretization errors in y and w

l DOF ‖|y − yh|‖L2(Q) ‖y − yh‖Y ‖w − wh|L2(Q) ‖w − wh‖W

1 18 3.19e-01 1.26e+00 7.41e+00 5.23e+01
2 42 1.22e-01 4.60e-01 2.93e+00 2.38e+01
3 93 4.53e-02 1.83e-01 1.11e+00 1.24e+01
4 190 3.31e-03 1.59e-02 1.28e-01 7.13e+00
5 388 4.73e-04 2.65e-03 3.27e-02 4.40e+00
6 935 1.89e-04 1.19e-03 1.40e-02 2.61e+00
7 2570 9.64e-05 8.08e-04 6.44e-03 1.48e+00
8 6963 5.53e-05 5.60e-04 3.20e-03 8.71e-01
9 18936 3.87e-05 3.67e-04 1.43e-03 4.43e-01

Finally, Figures 8, 9, and 10 display the performance of the AFEM in compar-
ison to uniform refinement.
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Figure 8. Example 2: Adaptive versus uniform refinement: Er-
ror in y (L2-norm (left) and Y -norm (right)).
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Figure 9. Example 2: Adaptive versus uniform refinement: Er-
ror in w (L2-norm (left) and W -norm (right)).
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Figure 10. Example 2: Adaptive versus uniform refinement:
Error in the objective functional.
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8. Conclusions

For the numerical solution of optimal control problems with distributed con-
trols for linear second order parabolic initial-boundary value problems we
have developed, analyzed, and implemented an adaptive finite element method
based on the formulation of the optimality system as a fourth order elliptic
boundary value problem which can be equivalently stated as a second order
system. This enables the use of P1 conforming finite elements with respect to
simplicial triangulations of the space-time domain. We have put emphasis on

• the iterative solution of the resulting algebraic saddle point problem by
a preconditioned Richardson-type iterative scheme featuring precondi-
tioners constructed by means of appropriately chosen left and right
transforms,

• the derivation of a reliable residual-type a posteriori error estimator
with the framework of a unified a posteriori error control.

Numerical results have confirmed the theoretical findings and thus documented
the feasibility of this novel adaptive approach.

So far we have only considered the unconstrained case, i.e., we have imposed
neither constraints on the control nor on the state. Future work will be devoted
to the application of the adaptive approach to control constrained as well as
to state constrained optimally controlled parabolic problems.
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[20] C. Carstensen, M. Eigel, C. Löbhard, and R.H.W. Hoppe, A review of unified a pos-
teriori finite element error control. Preprint 2338, Institute of Mathematics and its
Applications, University of Minnesota, Minneapolis, 2010.

[21] C. Carstensen and C. Merdon, Estimator competition for Poisson problems. J. Comput.
Math., 28 309–330, 2010.

[22] L. Chen and C.-S. Zhang, AFEM@matlab: a MATLAB package of adaptive finite
element methods. see http://math.uci.edu/ chenlong/

[23] Z. Chen, F. Jia, An adaptive finite element algorithm with reliable and efficient error
control for linear parabolic problems. Math. Comp., 73, 1167-1193, 2004.

[24] Dörfler, W.; A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer.
Anal. 33, 1106–1124, 1996.

[25] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computational Differential Equa-
tions. Cambridge University Press, Cambridge, 1996.

[26] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems
I: A linear model problem, SIAM J. Numer. Anal., 28, 43–77, 1991.

[27] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems
II: Optimal error estimates in L∞L2 and L∞, L∞. SIAM J. Numer. Anal., 32, 706–740,
1995.

[28] C.S. Frederiksen and A.M. Watts, Finite-element method for time-dependent incom-
pressible free surface flows. J. Comp. Phys., 39, 282-304, 1981.

[29] A.V. Fursikov, Optimal Control of Distributed Systems: Theory and Applications.
American Math. Society, Providence, 1999.

[30] A. Gaevskaya, R.H.W. Hoppe, Y. Iliash, and M. Kieweg, Convergence analysis of
an adaptive finite element method for distributed control problems with control con-
straints. Proc. Conf. Optimal Control for PDEs, Oberwolfach, Germany (G. Leugering
et al.; eds.), Birkhäuser, Basel, 2006.
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