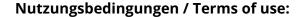


Convexity of Reflective Submanifolds in Symmetric R-spaces

Peter Quast, Makiko Sumi Tanaka

Angaben zur Veröffentlichung / Publication details:

Quast, Peter, and Makiko Sumi Tanaka. 2011. "Convexity of Reflective Submanifolds in Symmetric R-spaces." Augsburg: Universität Augsburg.



Institut für Mathematik

Peter Quast, Makiko Sumi Tanaka

Convexity of Reflective Submanifolds in Symmetric R-spaces

Impressum:

Herausgeber:

Institut für Mathematik

Universität Augsburg

86135 Augsburg

 $\verb|http://www.math.uni-augsburg.de/pages/de/forschung/preprints.shtml|$

ViSdP:

Peter Quast

Institut für Mathematik

Universität Augsburg

86135 Augsburg

Preprint: Sämtliche Rechte verbleiben den Autoren © 2011

CONVEXITY OF REFLECTIVE SUBMANIFOLDS IN SYMMETRIC R-SPACES

PETER QUAST AND MAKIKO SUMI TANAKA

ABSTRACT. We show that every reflective submanifold of a symmetric R-space is (geodesically) convex.

Introduction

The main result in this article is:

Theorem 1. Reflective submanifolds of symmetric R-spaces are (geodesically) convex.

We organized this article as follows: In Section 1 we define all notions used in Theorem 1. Reflective submanifolds in symmetric R-spaces are described in Section 2. The proof of Theorem 1 can be found in Section 3. In Section 4 we explain why the assumption "symmetric R-space" in Theorem 1 can not be easily generalized.

Symmetric R-spaces form a class of compact symmetric spaces that have very peculiar geometric properties and appear in various contexts. For example symmetric R-spaces arise as certain spaces of shortest geodesics, namely as those centrioles (see [CN88]) that are formed by midpoints of shortest geodesics arcs joining a base point to a pole (see e.g. [MQ11a]). Reflective submanifolds in symmetric spaces include among others polars and centrioles (see e.g. [CN88, Na88, Qu11]). An iterative construction involving such centrioles has been used by Bott [Bo59] in the first proof of his famous periodicity result for the homotopy groups of classical Lie groups (see also [Mi69, § 23,24] and [Mit-88, § 7]). For the construction described in [MQ11b, Sect. 1.2] it is important that the distance between a base point and a pole in a centriole of certain R-spaces measured in the centriole is the same as the distance measured in the ambient R-space. This follows directly from Theorem 1.

Theorem 1 also provides a conceptional proof of [NS91, Remark 3.2b] in the case where the ambient space is a symmetric R-space.

Date: November 23, 2011.

²⁰¹⁰ Mathematics Subject Classification. 53C40, 53C35.

Key words and phrases. convexity, reflective submanifolds, symmetric spaces. The second author was partly supported by the Grant-in Aid for Science Research (C) 2011 (No. 23540108), Japan Society for the Promotion of Science.

1. Preliminaries

We first define the terminology used in Theorem 1.

Reflective submanifolds. A reflective submanifold M of a Riemannian manifold P is a connected component of the fixed point set of some involutive isometry τ of P, that is τ^2 equals the identity. Thus reflective submanifolds are totally geodesic (see e.g. [BCO-03, Prop. 8.3.4]). To contain many reflective submanifolds the ambient Riemannian manifold P must have a large isometry group. An interesting class of ambient manifolds are therefore symmetric spaces. In the series of papers [Le73, Le74, Le79a, Le79b] D.S.P. Leung studied and classified reflective submanifolds in simply connected irreducible symmetric spaces of compact type.

Convexity. We call a totally geodesic submanifold $M \subset P$ of a Riemannian manifold P (geodesically) convex, if the (Riemannian) distance $d_M(m_1, m_2)$ in M between any pair of points $m_1, m_2 \in M$ coincides with the Riemannian distance $d_P(m_1, m_2)$ in the abient space P. In other words, a submanifold $M \subset P$ is convex if any shortest geodesic arc in M joining two arbitrarily chosen points m_1 and m_2 in M is still shortest in P (see also [Sa96, p. 26, 84]).

Symmetric spaces. Before defining the terminology "symmetric R-space" we shortly introduce some useful notions about symmetric spaces. We refer to the Helgason's standard monograph [He78] for proofs and further details about symmetric spaces. Let S be a (Riemannian) symmetric space, that is a connected Riemannian manifold such that for point $p \in S$ there exists an isometry s_p of S that fixes p and whose differential at p is $-\mathrm{Id}$ on T_pS . One can show that symmetric spaces are geodesically complete and homogeneous.

We now fix an origin $o \in S$ and get an involutive Lie group automorphism σ of the isometry group I(S) of S defined by $\sigma(g) = s_o \circ g \circ s_o$ for any $g \in I(S)$. Its differential σ_* at the identity is an involutive automorphism of the Lie algebra of I(S).

The (-1)-eigenspace \mathfrak{s} of σ_* is called the *Lie triple* corresponding to (S,o). It is identified with T_oS by the differential at the identity of the principal bundle $I(S) \to S$, $g \mapsto g.o$, where g.o denotes the point in S obtained by applying g to the origin o. By this identification \mathfrak{s} carries a scalar product denoted by $\langle ., . \rangle$ induced from the Riemannian metric on T_oS . The curvature tensor on T_oP is the expressed in \mathfrak{s} by double Lie brackets and the geodesics of P emanating from o are of the form

$$t \mapsto \exp(tX).o \text{ with } X \in \mathfrak{s},$$

where exp is the Lie theoretic exponential map. The linear isotropy action on \mathfrak{s} coincides with the adjoint action restricted to \mathfrak{s} .

Orthogonal unit lattices. Choose a maximal abelian subspace $\mathfrak{t} \subset \mathfrak{s}$ in \mathfrak{s} , then $T := \exp(\mathfrak{t}).o$ is a maximal complete connected totally geodesic flat submanifold of S, a maximal flat torus.

For a compact symmetric space S, the unit lattice

$$\Gamma(S, \mathfrak{t}) := \{ X \in \mathfrak{t} : \exp(X).o = o \}$$

of S is called *orthogonal*, if there exists a basis $\{b_1, ..., b_r\}$ of \mathfrak{t} with the following properties:

(i)
$$\langle b_j, b_k \rangle = 0$$
, if $j \neq k$.

(ii)
$$\Gamma(S, \mathfrak{t}) = \operatorname{span}_{\mathbb{Z}}(b_1, ..., b_r) = \left\{ \sum_{j=1}^r x_j b_j : x_j \in \mathbb{Z} \right\}.$$

Symmetric R-spaces. Symmetric R-spaces form a distinguished subclass of compact Riemannian symmetric spaces. They arise as particular orbits of s-representations, i.e. linear isotropy representations of symmetric spaces of compact type:

Let S be a symmetric space of compact type, that is the universal Riemannian cover of S is still compact, and o an origin in S. Using the notation introduced above we take a nonzero element $\xi \in \mathfrak{s}$ that satisfies

$$ad(\xi)^3 = -ad(\xi).$$

Then the connected isotropy orbit $P := \operatorname{Ad}_{\operatorname{I}(S)}(H)\xi \subset \mathfrak{s}$ is a *symmetric* R-space. Here $H \subset \operatorname{I}(S)$ denotes the identity component of the isotropy group of $o \in S$, which is a compact Lie group. Thus symmetric R-spaces are always compact.

The orbit $P \subset \mathfrak{s}$ is extrinsically symmetric in the Euclidean space \mathfrak{s} , that is, P is invariant under the reflections at all its affine normal spaces (see [Fe80]). In particular symmetric R-spaces are (Riemannian) symmetric spaces (w.r.t. the submanifold metric induced by the scalar product on \mathfrak{s}). Ferus [Fe74] (see also [Fe80, EH95]) has shown that the converse also holds, namely every full compact extrinsically symmetric submanifold in a Euclidean space is a symmetric R-space.

Irreducible symmetric R-spaces have been first classified by Kobayashi and Nagano in [KN64]. A list of them can also be found in [BCO-03, p. 311]. Takeuchi [Tak-84] has shown that irreducible symmetric R-spaces are either irreducible hermitian symmetric spaces of compact type or compact connected real forms of them and vice-versa.

Theorem 2 (Satz 3 in [Lo85]). The unit lattice of a R-symmetric space P is orthogonal.

Following Loos [Lo85] this property is actually an intrinsic characterization of symmetric R-spaces among compact symmetric spaces.

2. Reflective submanifolds of symmetric R-spaces

Let now $M \subset P$ be a reflective submanifold of a symmetric R-space P and $o \in M$ a chosen origin. Since P is compact and M a closed subset of P, M is also compact. Let G be the transvection group of P, that is the identity component of I(P). The topology underlying the Lie group structure of G is the compact-open topology (see e.g. [He78]). Thus the identity component L of $\{g \in G : g(M) \subset M\}$ is a closed subgroup of the compact Lie group G and therefore a compact Lie group, too. Since M is a totally geodesic submanifold of P, L contains all transvections of P along geodesics of M. Thus L acts transitively (but maybe highly non effectively) on M.

The involution σ of G given by $\sigma(g) = s_o \circ g \circ s_o$ for all $g \in G$ leaves $\{g \in G : g(M) \subset M\}$ and therefore also L invariant and induces an involutive automorphism of L which we also denote by σ . We set

$$H := \{l \in L : l.o = o\}.$$

Since H is a closed subgroup of the compact Lie group L, H is a compact Lie subgroup of L.

Observation 3. (L, H) is a compact Riemannian symmetric pair (in the sense defined in [Sa77, p. 137]).

Proof. We are left to show that $L_e^{\sigma} \subset H \subset L^{\sigma}$, where $L^{\sigma} \subset L$ is the fixed point set of σ in L and L_e^{σ} its identity component.

Let K be the subgroup of G formed by all transvections of P that leave o fix. It is well-known that $G_e^{\sigma} \subset K \subset G^{\sigma}$ (here G^{σ} is the fixed point set of σ in G and G_e^{σ} its identity component), see e.g. [He78]. Since $H = L \cap K$, $L^{\sigma} = L \cap G^{\sigma}$ and L_e^{σ} is the identity component of $L \cap G_e^{\sigma}$ the claims follows, because

$$L_e^\sigma \subset L \cap G_e^\sigma \subset H = L \cap K \subset L \cap G^\sigma = L^\sigma.$$

Let $\mathfrak p$ be the Lie triple corresponding to (P,o) and $\mathfrak m \subset \mathfrak p$ the subtriple of $\mathfrak p$ corresponding to (M,o) (see [He78, p. 224 f.] for further explications). If τ denotes the involutive isometry of P such that M is a connected component of the fixed point set of τ and τ_* the involution on $\mathfrak p$ induced by the differential of τ at o, then $\mathfrak m$ is the fix point set and its orthogonal complement $\mathfrak m^\perp$ in $\mathfrak p$ is the (-1)-eigenspace of τ_* . Notice that s_o and τ commute (see [Le73, p. 156]). We get an involutive Lie group automorphism

$$\tilde{\tau}: G \to G, \ q \mapsto \tau \circ q \circ \tau.$$

Since the curves $t \mapsto (\tau \circ \exp(tX) \circ \tau).o$ and $t \mapsto (\tau \circ \exp(tX)).o$ in P coincide, we see that on $\mathfrak{p} \cong T_oP$ the differential $\tilde{\tau}_*$ of $\tilde{\tau}$ at the identity coincides with the differential τ_* of τ at o and therefore leaves \mathfrak{p} invariant.

Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{m} and \mathfrak{t} a maximal abelian subspace of \mathfrak{p} containing \mathfrak{a} .

Observation 4 (see Lemma 3.1 in [TT11]). \mathfrak{t} is invariant under τ_* .

Proof. The arguments given here are similar to the proof of [Lo-69-II, Prop. 3.2, p. 125]. Take $T \in \mathfrak{t}$, then $T + \tau_*(T)$ lies in \mathfrak{m} . Since

$$[A, T + \tau_*(T)] = [A, T] + [A, \tau_*(T)] = [\tau_*(A), \tau_*(T)]$$

$$= [\tilde{\tau}_*(A), \tilde{\tau}_*(T)] = \tilde{\tau}_*([A, T])$$

$$= 0$$

for all $A \in \mathfrak{a}$ and \mathfrak{a} is a maximal abelian subset of \mathfrak{m} , we see that $T + \tau_*(T) \in \mathfrak{a}$ and hence $\tau_*(T) = (T + \tau_*(T)) - T \in \mathfrak{t}$.

Observation 4 implies that t splits as an orthogonal direct sum

$$\mathfrak{t}=\mathfrak{a}\oplus\mathfrak{a}^\perp$$

with $\mathfrak{a}^{\perp} = \mathfrak{t} \cap \mathfrak{m}^{\perp}$.

Since τ_* is the differential of an involutive isometry of P that leaves \mathfrak{t} invariant, $\tau_*|_{\mathfrak{t}}$ is an orthogonal transformation of \mathfrak{t} that squares to the identity and preserves the unit lattice $\Gamma(P,\mathfrak{t})\subset\mathfrak{t}$. As the unit lattice of the symmetric R-space P is orthogonal (see Theorem 2 due to Loos [Lo85]), there exists an orthogonal basis $\{b_1, ..., b_r\}$ of t that generates $\Gamma(P,\mathfrak{t})$ over \mathbb{Z} .

Proposition 5 (Prop. 3.3 in [TT11]). There exists an orthogonal basis $\{e_1,...,e_r\}$ of $\mathfrak t$ with the following properties:

(i)
$$\Gamma(P, \mathfrak{t}) = \operatorname{span}_{\mathbb{Z}}(e_1, ..., e_r) = \left\{ \sum_{j=1}^r x_j e_j : x_j \in \mathbb{Z} \right\},$$

- (ii) There exist integer numbers p, q with $0 \le 2p \le q \le r$ such that
 - $\tau_*(e_{2j}) = e_{2j-1}$, for $1 \le j \le p$,

 - $\tau_*(e_j) = e_j$, for $2p + 1 \le j \le q$, $\tau_*(e_j) = -e_j$, for $q + 1 \le j \le r$.

Proof. Tanaka and Tasaki presented a differential geometric proof of this result (see [TT11, proof of Prop. 3.3]). In this paper we are inclined to give an elementary linear algebraic construction of the orthogonal basis $\{e_1, ..., e_r\}$.

Without loss of generality we may assume that the orthogonal basis $B = \{b_1, ..., b_r\}$ that generates the unit lattice $\Gamma(P, \mathfrak{t})$ over \mathbb{Z} is ordered by length, that is $||b_1|| \le ||b_2|| \le ... \le ||b_r||$. Let $s \in \{1,...,r\}$ be the integer number such that $||b_1|| = ||b_j||$ for j = 1,...,s and $||b_1|| <$ $||b_{s+1}||$. If $0 \neq x = \sum_{j=1}^r x_j b_j \in \Gamma(P,\mathfrak{t})$, that is $x_j \in \mathbb{Z}$, then $||x||^2 =$ $\sum_{i=1}^{r} x_i^2 \|b_i\|^2 \ge \|b_1\|$, and $\|x\| = \|b_1\|$ holds true if and only if $x \in$ $\{\pm b_1, ..., \pm b_s\}$. Since τ_* is an orthogonal map that preserves $\Gamma(P, \mathfrak{t})$, we conclude that

$$\tau_*(b_j) \in \{\pm b_1, ..., \pm b_s\}$$
 for all $j \in \{1, ..., s\}$.

Let $V := \operatorname{span}_{\mathbb{R}}\{b_1, ..., b_s\}$, then $V^{\perp} = \operatorname{span}_{\mathbb{R}}\{b_{s+1}, ..., b_r\}$. Since the orthogonal endomorphism τ_* leaves V invariant, the same holds true for V^{\perp} . By applying the above arguments to $\tau_*|_{V^{\perp}}$ and by iterating this scheme we get

$$\tau_*(b_j) \in \{\pm b_1, ..., \pm b_r\}$$
 for all $j \in \{1, ..., r\}$.

Since τ_* is involutive $\tau_*(b_i) = b_k$ implies $\tau_*(b_k) = b_i$ and $\tau_*(b_i) = -b_k$ implies $\tau_*(b_k) = -b_i$.

After renumbering $\{b_1, ..., b_r\}$ suitably, we can therefore assume that

- $\tau_*(b_{2j}) = \pm b_{2j-1}$, for $1 \le j \le p$, $\tau_*(b_j) = b_j$, for $2p + 1 \le j \le q$,
- $\tau_*(b_i) = -b_i$, for q + 1 < i < r.

for some integers p, q with $0 \le 2p \le q \le r$. We now choose the desired basis $\{e_1, ..., e_r\}$ as follows:

- $$\begin{split} \bullet & \ e_{2j-1} = b_{2j-1}, \ \text{for} \ 1 \leq j \leq p, \\ \bullet & \ e_{2j} = \left\{ \begin{array}{ll} b_{2j}, & \ \text{if} \quad \tau_*(b_{2j}) = b_{2j-1} \\ -b_{2j}, & \ \text{if} \quad \tau_*(b_{2j}) = -b_{2j-1} \end{array} \right., \ \text{for} \ 1 \leq j \leq p, \\ \bullet & \ e_j = b_j, \ \text{for} \ 2p+1 \leq j \leq r. \end{split}$$

Since \mathfrak{a} is the fixed point set of τ_* in \mathfrak{t} , Proposition 5 implies:

Corollary 6 (Prop. 3.3 in [TT11]).

$$\mathfrak{a} = \left\{ \sum_{j=1}^{r} x_j e_j : \ x_{2j-1} = x_{2j} \ for \ 1 \le j \le p, \ and \ x_{q+1} = \dots = x_r = 0 \right\}.$$

3. Proof of the main result, Theorem 1

A reflective submanifold $M \subset P$ in a compact symmetric R-space is itself a compact connected symmetric space and hence complete. The classical theorem of Hopf and Rinow (see e.g. [Sa96, p. 84]) tells us that any two points $m_1, m_2 \in M$ can be joined by a geodesic in M that is shortest within M. If such a shortest geodesic in M is still shortest within P, then M is geodesically convex.

The tangent cut locus $C(T_pP)$ of a compact Riemannian manifold P at a point $p \in M$ is the set of all tangent vectors $X \in T_pP$ such that

- $d_P(p, \gamma_X(t)) = t ||X||$ for $t \in [0, 1]$ and
- $d_P(p, \gamma_X(t)) < t||X|| \text{ for } t > 1$,

where d_P denotes the Riemannian distance in P (see e.g. [Sa96, p. 26] for the definition) and γ_X is the geodesic in P that emanates from p in the direction X. We refer to [Sa96, p. 104] for further explication concerning the cut locus.

Thus $M \subset P$ is convex, if

(1)
$$\tilde{C}(T_m M) = T_m M \cap \tilde{C}(T_m P)$$

holds for any point $m \in M$. Since M is homogeneous, it suffices to verify Equation (1) at just one point $o \in M$.

Sakai [Sa77, Thm. 2.5] has shown that the tangent cut locus of a compact symmetric space is determined up to the isotropy action by the tangent cut locus of a maximal flat totally geodesic torus. Tasaki [Tas10, Lemma 2.2] adapted Sakai's result to totally geodesic submanifolds. We now state Tasaki's result in a version that is specialized to fit best our needs and set up. We use again the notions established in Sections 1 and 2. Tasaki's assumptions in [Tas10, Lemma 2.2] concerning the symmetric pairs hold true by Observation 3.

Lemma 7 (see Lemma 2.2 in [Tas10]). Let M be a reflective submanifold of a symmetric R-space P, o a point in M, \mathfrak{a} an arbitrarily chosen maximal abelian linear subspace of $\mathfrak{m} \cong T_oM$ and \mathfrak{t} a maximal abelian linear subspace of $\mathfrak{p} \cong T_o P$ that contains \mathfrak{a} . Let A be the maximal flat torus of M corresponding to $\mathfrak a$ and T the maximal flat torus of P corresponding to \mathfrak{t} , that is $\mathfrak{a} \cong T_o A$ and $\mathfrak{t} \cong T_o T$. If

(2)
$$\tilde{C}(\mathfrak{a}) = \mathfrak{a} \cap \tilde{C}(\mathfrak{t})$$

then

$$\tilde{C}(\mathfrak{m}) = \mathfrak{m} \cap \tilde{C}(\mathfrak{p})$$

and M is a (geodesically) convex submanifold of P.

Thus, to prove Theorem 1, we just need to show that Equation (2) is satisfied. We do this by showing

Claim 8. For all points $a \in A$ we have

$$d_A(o,a) = d_T(o,a).$$

Proof. Both maps

$$\mathfrak{a} \to A, X \mapsto \exp(X).o$$
 and $\mathfrak{t} \to T, Y \mapsto \exp(Y).o$

are Riemannian coverings between flat spaces. Thus they map straight lines in \mathfrak{a} and \mathfrak{t} onto geodesics of A and T, and very geodesic arises in this way.

Let $a \in A$ be an arbitrary chosen point in A, then $a = \exp(X).o$ for some $X \in \mathfrak{a}$. In view of Corollary 6 one can write $X = \sum_{i=1}^{r} x_j e_j$ with

- $x_{2j} = x_{2j-1}$ for $1 \le j \le p$, $x_{q+1} = \dots = x_r = 0$,

where $\{e_1, ..., e_r\}$ is the orthogonal basis of \mathfrak{t} mentioned in Proposition 5. Using Theorem 2 we get

$$d_T^2(o, a) = \min\{\|X + Y\|^2 : Y \in \Gamma(P, \mathfrak{t})\}$$

$$= \min\left\{ \left\| \sum_{j=1}^r (x_j + y_j) e_j \right\|^2 : y_1, ..., y_r \in \mathbb{Z} \right\}$$

$$= \min\left\{ \sum_{j=1}^r (x_j + y_j)^2 : y_1, ..., y_r \in \mathbb{Z} \right\}.$$

We now choose integer numbers $z_1, ..., z_r \in \mathbb{Z}$ as follows:

• for $1 \leq j \leq p$ we choose z_{2j} such that

$$(x_{2j} + z_{2j})^2 = \min\{(x_{2j} + y_{2j})^2 : y_{2j} \in \mathbb{Z}\}$$

and set $z_{2j-1} := z_{2j}$. Since $x_{2j} = x_{2j-1}$, we also get

$$(x_{2j-1} + z_{2j-1})^2 = \min\{(x_{2j-1} + y_{2j-1})^2 : y_{2j-1} \in \mathbb{Z}\},\$$

• for
$$2p + 1 \le j \le q$$
 we choose $z_j \in \mathbb{Z}$ such that $(x_j + z_j)^2 = \min\{(x_j + y_j)^2 : y_j \in \mathbb{Z}\},$

•
$$z_{q+1} = \dots = z_r = 0.$$

These choices ensure that

$$\sum_{j=1}^{r} (x_j + z_j)^2 = d_T^2(o, a).$$

Moreover the vector $Z = \sum_{j=1}^{r} z_j e_j \in \Gamma(P, \mathfrak{t})$ satisfies

- $z_{2j} = z_{2j-1}$ for $1 \le j \le p$,
- $z_{q+1} = \dots = z_r = 0$,

that is $Z \in \mathfrak{a}$.

Notice that $\exp(X+Z).o = \exp(X)\exp(Z).o = \exp(X).o = a$ and $d_T^2(o,a) = \|X+Z\|^2$. Since $X+Z \in \mathfrak{a}$ and $d_T^2(o,a) \leq d_A^2(o,a)$, we get $d_T^2(o,a) = d_A^2(o,a)$, and Claim 8 follows.

4. Counterexamples

Though our proof of Theorem 1 relies on Loos' characterization of symmetric R-spaces in terms of orthogonal unit lattices, one may ask if the statement of Theorem 1 holds true for reflective submanifolds in arbitrary compact symmetric spaces. In this section we present two counterexamples for such a statement, that arose in discussion with Jost-Hinrich Eschenburg.

Example 9. Take a flat 2-torus P with a non-rectangular rhombic lattice. Then the long diagonal in the rhombic lattice gives a reflective submanifold M of P. The shortest geodesic in P joining the midpoint of a rhombic fundamental domain to a vertex of it follows the short

diagonal and does therefore not lie in the reflective submanifold M. Thus M is not convex.

With this picture in mind for a maximal flat torus in a symmetric space, one gets a first counterexample of the statement Theorem 1, if one replaces the assumption "symmetric R-space" by symmetric space of compact type.

Example 10. Consider SU_3 equipped with the bi-invariant metric induced by

$$\langle X, Y \rangle = \operatorname{trace}(XY), \ X, Y \in \mathfrak{su}_3.$$

The complex conjugation is an involutive isometry of SU_3 , whose fixed point set is SO_3 . Since the complex conjugation leaves the center

$$C = \left\{ I_3, \ e^{\frac{2\pi}{3}i}I_3, \ e^{\frac{4\pi}{3}i}I_3 \right\}$$

of SU₃ invariant, it descends to an involutive isometry σ of the irreducible symmetric spaces $P = SU_3/C \cong Ad(SU_3)$. Since SO₃ does not meet the center of SU₃, the restriction of the Riemannian covering

$$\pi: SU_3 \to SU_3/C, x \mapsto [x]$$

to SO_3 is an injective map and $M = \pi(SO_3)$ is the fixed point set of σ and therefore a reflective submanifold of P.

A shortest geodesic arc within M joining $[I_3]$ to $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$

$$\begin{bmatrix}
e^{\frac{\pi}{3}i} & 0 & 0 \\
0 & e^{\frac{\pi}{3}i} & 0 \\
0 & 0 & e^{-\frac{2\pi}{3}i}
\end{bmatrix}$$
 is given by

$$\gamma_1: [0, \pi] \to M \subset P, \ t \mapsto \begin{bmatrix} e^{tX_1} \end{bmatrix} \text{ with } X_1 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

But there is a considerably shorter geodesic arc in P with the given endpoints, namely

$$\gamma_2: [0, \pi] \to M \subset P, \ t \mapsto \begin{bmatrix} e^{tX_2} \end{bmatrix} \text{ with } X_2 = \begin{pmatrix} \frac{1}{3}i & 0 & 0\\ 0 & \frac{1}{3}i & 0\\ 0 & 0 & -\frac{2}{3}i \end{pmatrix}.$$

Notice that $||X_2||^2 = \frac{2}{3} < 2 = ||X_1||^2$. This shows that the reflective submanifold M of P is not geodesically convex.

ACKNOWLEDGEMENTS

Both authors wish to thank Jost-Hinrich Eschenburg for valuable discussions and helpful remarks.

References

- [BCO-03] BERNDT, J.; CONSOLE, S. & OLMOS, C., Submanifolds and holonomy, CRC Research Notes in Mathematics 434, Chapman & Hall, Boca Raton 2003
- [Bo59] BOTT, R., The stable homotopy of the classical groups, *Ann. Math.* (2) **70**(2) (1959), 313 337
- [CN88] Chen, B.-Y. & Nagano, T., A Riemannian geometric invariant and its applications to a problem of Borel and Serre, *Trans. Am. Math. Soc.* **308**(1) (1988), 273 297
- [EH95] ESCHENBURG, J.-H. & HEINTZE, E., Extrinsic symmetric spaces and orbits of s-representations, *Manuscr. Math.* 88(4) (1995), 517 -524
- [Fe74] FERUS, D., Immersions with parallel second fundamental form, *Math. Z.* **140** (1974), 87 93
- [Fe80] FERUS, D., Symmetric submanifolds of euclidean space, *Math. Ann.* **247** (1980), 81 93
- [He78] HELGASON, S., Differential Geometry, Lie groups and symmetric space, Academic Press, San Diego 1978
- [KN64] Kobayashi, S. & Nagano, T., On filtered Lie algebras and geometric structures I, J. Math. Mech. 13(5) (1964), 875 907
- [Le73] Leung, D.S.P., The reflection principle for minimal submanifolds of Riemannian symmetric spaces, J. Differ. Geom. 8 (1973), 153 160
- [Le74] LEUNG, D.S.P., On the classification of reflective submanifolds of Riemannian symmetric spaces, *Indiana Univ. Math. J.* 24(4) (1974), 327
 339, erratum *Indiana Univ. Math. J.* 24 (1975), p. 1199
- [Le79a] LEUNG, D.S.P., Reflective submanifolds. III. Congruency of isometric reflective submanifolds and corrigenda to the classification of reflective submanifolds, J. Differ. Geom. 14 (1979), 167 - 177
- [Le79b] Leung, D.S.P., Reflective submanifolds. IV. Classification of real forms of hermitian symmetric spaces, J. Differ. Geom. 14 (1979), 179
 185
- [Lo-69-II] Loos, O., Symmetric spaces II: Compact Spaces and Classification, W. A. Benjamin, New York 1969
- [Lo85] Loos, O., Charakterisierung symmetrischer *R*-Räume durch ihre Einheitsgitter, *Math. Z.* **189** (1985), 211 226
- [MQ11a] Mare, A.-L. & Quast, P., On some spaces of minimal geodesics in Riemannian symmetric spaces, Q. J. Math. (2011), doi: 10.1093/qmath/har003
- [MQ11b] Mare, A.-L. & Quast, P., Bott periodicity for inclusions, preprint (2011)
- [Mi69] MILNOR, J., Morse Theory, Annals of mathematical studies **51**, 3rd printing, Princeton University Press, Princeton 1969
- [Mit-88] MITCHELL, S. A., Quillen's theorem on buildings and the loops on a symmetric space, *Enseign. Math.*, *II. Sér.* **34** (1988), 123 166
- [Na88] NAGANO, T., The involutions of compact symmetric spaces, *Tokyo J. Math.* **11**(1) (1988), 57 79
- [NS91] NAGANO, T. & SUMI, M., The spheres in symmetric spaces, *Hokkaido Math. J.* **20**(2) (1991), 331 352
- [Qu11] Quast, P. Centrioles in symmetric spaces, preprint (2011)
- [Sa77] SAKAI, T., On cut loci of compact symmetric spaces, Hokkaido Math. J. 6 (1977), 139 - 161
- [Sa96] SAKAI, T., Riemannian Geometry, Translations of Mathematical Monographs. 149, American Mathematical Society, Procidence 1996

- [Tak-84] Takeuchi, M., Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, *Tôhoku Math. J., II. Ser.* **36** (1984), 293 314
- [TT11] TANAKA, M.S. & TASAKI, H., The intersection of two real forms in Hermitian symmetric spaces of compact type, J. Math. Soc. Japan (2011), in press, available at http://mathsoc.jp/publication/JMSJ/pdf/JMSJ6019.pdf
- [Tas10] Tasaki, H. The intersection of two real forms in the complex hyperquadric, *Tohoku Math. J.* (2) **62**(3) (2010), 375 - 382
- (P. Quast) Institut of Mathematics, University of Augsburg, 86135 Augsburg, Germany

 $E ext{-}mail\ address:$ peter.quast@math.uni-augsburg.de

(M. S. Tanaka) Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan

E-mail address: tanaka_makiko@ma.noda.tus.ac.jp