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A Probabilistic ‘Re-View’ on Felsenthal and Machover’s

The Measurement of Voting Power

Olga Birkmeier and Friedrich Pukelsheim

Felsenthal/Machover’s 1998 celebrated monograph on The Measurement of Voting Power

set off a renewed impetus on the analysis of weighted voting systems. Their presentation
strikes a balance between the game-theoretic and the probabilistic approaches to the sub-
ject. The present paper holds that the probabilistic view may be profitably extended even
further, in providing helpful language as well as motivating new results.

1. The book. Dan Felsenthal and Moshé Machover’s (1998) monograph on The

Measurement of Voting Power served a double purpose, of concisely presenting the

state of the art of the theory of weighted voting systems, and of initiating novel strains

of research in the area. The authors achieved these goals by carefully developing the

mathematical background, game theory and probability theory. The mathematical

frame was developed not in an ivory tower seclusion, but along pertinent applications

such as US-American court cases, or the Council of Ministers of the European Union.

The interplay of ideal theory and concrete applications proved most fertile.

In Augsburg we repeatedly worked through the book in the course of seminars

for our students who have a strong background in probability theory and statistics.

Therefore we paid particular attention to the book’s probabilistic language, and ex-

perimented with the technical vocabulary, in order to optimize communication with

non-mathematical contemporaries. An instant stumbling stone was felt to be the pho-

netic closeness of two central notions of the subject, voting weight and voting power. In

German they translate into Stimmgewicht and Stimmkraft. Since the German language

puts a strong emphasis on the first syllable of a compound word, a negligent speaker

may offer the audience an audible Stimm. . ., followed by a murmured . . .something,

thus completely missing the point. For this reason we tried to separate the notions

more clearly. We kept voting weight, but replaced absolute voting power by influence

probability, and relative voting power by power share. The term share indicates that

the ensemble of these indices totals unity, whence they form a power distribution.

In the present paper we explicate the probabilistic approach, in as far as we found

it telling and conducive. The approach is by no means new. It dates back at least to

Straffin (1978, 1988), and the Felsenthal/Machover (1998) monograph makes excellent

use of it. Nevertheless we believe that a ‘re-view’ on its role may prove useful.
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In their final Chapter 8, Felsenthal/Machover (1998) make a point to take ab-

stentions seriously. We maintain that ternary voting profiles provide a sufficiently

general reference set supporting both, ternary decision rules that permit abstentions,

and binary decision rules that are restricted to Yea-Nay voting (Section 2). The en-

suing development depends on the probability distribution adopted. A model is truly

ternary when it assigns positive weights to voting profiles with at least one absten-

tion. The case of abstention probability zero leads back to the binary setting. The

Penrose/Banzhaf models (Section 3) and the Shapley/Shubik models (Section 4) come

with abstention probabilities t ∈ [0, 1) that afford a smooth transition between ternary

and binary analyzes. We conclude with an outlook on bloc decision rules, a prime ex-

ample being provided by the Council of Ministers of the European Union (Section 5).

2. Ternary voting profiles. Let N denote an assembly consisting of finitely many

agents j. When a proposal is tabled and a vote is taken, the results are recorded as

a vector a = (aj)j∈N , a voting profile. The vote of agent j is reported as aj = yes

when j votes Yea, aj = no when j votes Nay, or aj = abstain when j abstains. The

natural ordering among these values is no ≤ abstain ≤ yes. Felsenthal/Machover

(1998, p. 282) use the coding no = −1, abstain = 0, and yes = 1.

The ensemble of all voting profiles constitutes the ternary profile space

ΩN =
{

(aj)j∈N

∣∣∣ aj ∈ {no, abstain, yes}, for all j ∈ N
}
.

Every profile a ∈ ΩN induces a region of growing acceptance consisting of those pro-

files b that express at least as much acceptance as is reported in a,

[a, yes] =
{

(bj)j∈N ∈ ΩN

∣∣∣ aj ≤ bj ≤ yes, for all j ∈ N
}
.

A subset WN ⊆ ΩN is called a decision rule when it satisfies the three properties

(1) [a, yes] ⊆ WN , for all a ∈ WN ,

(2) (yes, . . . , yes) ∈ WN ,

(3) (abstain, . . . , abstain) ̸∈ WN .

The profiles a that constitute the subset WN are called winning, in the sense that a

proposal is carried if and only if a belongs to WN . Here we do not consider systems in

which the final outcome might be a tie. The complement WC
N = ΩN \WN therefore

comprises the profiles that are loosing. Thus a subset WN is a decision rule if and

only if (1) it is acceptance monotone: if a is winning and b reports at least as much

acceptance as does a, then b is also winning, (2) unanimous acceptance is winning, and

(3) unanimous abstention is loosing.
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Now we fix some decision rule WN , and investigate its merits from the point of

view of agent j. Two events transpire to be of particular interest. First, there is the

set Aj(WN ) of agreeable profiles, when j agrees with the final outcome. Second, there

is the set Cj(WN ) of critical profiles, when the vote of j is decisive to turn the profile

winning or loosing. Let the notation (ai)i ̸=j & (yes)j represent the profile where the

votes of the other agents i ̸= j are concatenated with a Yea from agent j. Similarly

(ai)i ̸=j & (no)j is to indicate that the votes of the others is completed with j’s Nay.

The two events mentioned may then be described as follows:

Aj(WN ) =
{
a ∈ WN

∣∣∣ aj = yes
}
∪
{
a ∈ WC

N

∣∣∣ aj = no
}
,

Cj(WN ) =
{
a ∈ ΩN

∣∣∣ (ai)i ̸=j & (yes)j ∈ WN and (ai)i ̸=j & (no)j ∈ WC
N

}
.

So far the exposition is descriptive and qualitative. It is only now that we consider

quantitative indices. All of them originate from a probability measure P given on the

ternary profile space ΩN , with some of them being peculiar to an agent j:

P [WN ] the efficiency of the decision rule WN ,

P
[
Aj(WN )

]
the success probability of agent j,

P
[
Cj(WN )

]
the influence probability of agent j,

P
[
Cj(WN )

]
/ΣP (WN ) the power share of agent j, utilizing

ΣP (WN ) =
∑

i∈N P
[
Ci(WN )

]
the influence sensitivity of the decision rule WN .

The indices coincide with those in the monograph Felsenthal and Machover (1998),

except that there they are related to the Penrose/Banzhaf and Shapley/Shubik dis-

tributions. Specifically, the Penrose/Banzhaf influence probability of agent j is the

same as the Banzhaf power (or absolute Banzhaf index) of j, and the power share of j

coincides with the Banzhaf index of voting power (or relative Banzhaf index) of j. Our

motivation for not specializing too early is that there are results like Theorem 1 which

hold quite generally. To this end we need to introduce some notation.

The dual profile dual(a) of a ternary voting profile a ∈ ΩN is defined by reversing

the votes of all agents j ∈ N ,

(
dual(a)

)
j

=


no in case aj = yes,

abstain in case aj = abstain,

yes in case aj = no.

A distribution P is said to be selfdual when a voting profile and its dual are assigned

identical probabilities, P [{a}] = P
[
{dual(a)}

]
.
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A distribution P is said to be exchangeable when it remains invariant under all

permutations of the assembly N . In the presence of exchangeability, a maximal in-

variant statistic tallies Yeas, Nays, and abstentions of a voting profile a ∈ ΩN into the

three counts Yea(a), Nay(a), and Abs(a), respectively.

The success margin σ(WN )(a) is defined to be the difference between the number

of those who vote in favor of the final outcome, and those who vote against it,

σ(WN )(a) =

{
Yea(a) − Nay(a) in case a ∈ WN ,

Nay(a) − Yea(a) in case a ∈ WC
N .

Two decision rules deserve special attention. The first is the unanimity rule UN ,

signaling acceptance when nobody is objecting, and the second is the straight majority

rule MN , requiring the Yeas to outnumber the Nays,

UN =
{

(aj)j∈N ∈ ΩN

∣∣∣ Yea(a) > 0 = Nay(a)
}
,

MN =
{

(aj)j∈N ∈ ΩN

∣∣∣ Yea(a) > Nay(a)
}
.

Theorem 1. Let the ternary profile space ΩN be equipped with be a selfdual and

exchangeable probability distribution P , and let WN be an arbitrary decision rule.

Then the expected success margin of WN lies between the expected success margins

of the unanimity rule and of the straight majority rule,

EP

[
σ(UN )

]
≤ EP

[
σ(WN )

]
≤ EP

[
σ(MN )

]
.

Proof. See Proposition 4.1 in Birkmeier/Käufl/Pukelsheim (2011).

The unanimity rule and the straight majority rule are two instances of the wider

class of weighted decision rules WN [q; (wj)j∈N ], determined by the quota q ∈ [0, 1)

and the voting weights wj > 0 of the agents j ∈ N . Let YCW(a) =
∑

j∈N :aj=yes wj

denote the Yea-voters’ cumulative weight, and NCW(a) =
∑

j∈N :aj=no wj the Nay-

voters’ cumulative weight. A ternary voting profile a is defined to be winning, a ∈
WN [q; (wj)j∈N ], when the Yea-voters’ cumulative weight exceeds the fraction q of the

cumulative weight of all non-abstainers, YCW(a) > q ·
(
YCW(a) + NCW(a)

)
.
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3. The Penrose/Banzhaf model. The Penrose/Banzhaf distribution P t
N assumes

that all agents act independently, abstain with a common abstention probability t ∈
[0, 1), and divide the remaining likelihood 1 − t equally between a Yea and a Nay. In

this model, a ternary voting profile a ∈ ΩN carries the probability

P t
N [{a}] =

1

2Yea(a)+Nay(a)
(1 − t)Yea(a)+Nay(a) tAbs(a).

When the ternary parameter t vanishes, voting profiles that contain an abstention

are assigned zero probability. Thus a profile carries positive mass only when every agent

votes Yea or Nay. That is, with t = 0 the ternary Penrose/Banzhaf model reduces to

the familiar binary Penrose/Banzhaf model. The ternary Penrose/Banzhaf model thus

embraces the binary Penrose/Banzhaf model as a degenerate case. A sample result is

provided by Theorem 2.

Theorem 2. Let the ternary profile space ΩN be equipped with the Penrose/Banz-

haf distribution P t
N , with abstention probability t ∈ [0, 1), and let WN be an arbitrary

decision rule.

(i) For all agents j ∈ N , success and influence probabilities are related through

P t
N

[
Aj(WN )

]
=

1 − t

2
+

1 − t

2
P t
N

[
Cj(WN )

]
.

(ii) The influence sensitivity and the expected success margin of WN fulfill

ΣP t
N

(WN ) =
1

1 − t
EP t

N

[
σ(WN )

]
.

Proof. See Propositions 5.1 and 5.2 in Birkmeier/Käufl/Pukelsheim (2011).

With t = 0, this coincides with the results in Theorems 3.2.16 and 3.3.5 in Felsen-

thal/Machover (1998), see also Ruff/Pukelsheim (2010). Birkmeier (2011, Satz 2.3.4)

presents a version of part (i) dealing with a slightly larger set of profiles that are con-

sidered a success for agent j, namely those that are agreeable to agent j combined with

those wherein j abstains (and which might be considered ‘weakly agreeable’).
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4. The Shapley/Shubik model. The Shapley/Shubik distribution St
N on ΩN is

built up in three stages. The first stage, dealing with abstentions, is new. We propose

to assume all agents to abstain independently, with a common abstention probability

t ∈ [0, 1). Under this assumption the number ℓ of those who abstain follows a binomial

distribution, n!
ℓ!(n−ℓ)! t

ℓ(1− t)n−ℓ. The second and third stages are standard. The num-

ber of Yea-voters k is taken to attain each of its possible values 0, . . . , n − ℓ with the

same probability, 1/
(
n− ℓ + 1

)
. Third, each of the n!

k!ℓ!(n−k−ℓ)! profiles with k Yeas, ℓ

abstentions, and n − k − ℓ Nays is considered equally likely. Thus, with some of the

factorial terms canceling out and after re-substituting Yea(a) for k and Yea(a)+Nay(a)

for n− ℓ, the total probability of a ternary voting profile a ∈ ΩN becomes

St
N [{a}] =

Yea(a)! Nay(a)!(
Yea(a) + Nay(a) + 1

)
!

(1 − t)Yea(a)+Nay(a) tAbs(a).

In binary models, it is well-known that every decision rule WN has Shapley/Shubik

influence sensitivity equal to unity. This entails two intriguing consequences, that the

Shapley/Shubik sensitivity is insensitive to the specific decision rule WN , and that

the Shapley/Shubik influence probability of an agent j coincides with her or his power

share. In ternary Shapley/Shubik models, the first conclusion persists, the second does

not.

Theorem 3. Let the ternary profile space ΩN be equipped with the Shapley/Shubik

distribution St
N , with abstention probability t ∈ [0, 1), and let n be the cardinality of

the assembly N .

Then all decision rules WN share an identical influence sensitivity,

ΣSt
N

(WN ) =
1 − tn

1 − t
.

Proof. See Satz 2.3.9 in Birkmeier (2011).

The right hand side is the same as 1 + t+ · · ·+ tn−1. Hence its limit equals n, the

number of agents, as the abstention probability t tends to unity. This is quite plausible

since, with the likelihood of abstention growing, each of the n agents is getting to be

more and more critical when casting a clear Yea- or Nay-vote, and in the end acquires

an influence probability equal to unity.
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5. The EU Council of Ministers. In some applications the grand assembly N is

partitioned into disjoint subsets, called blocs. The associated compound decision rule

on N is composed of internal decision rules within blocs, and a second-level decision

rule among bloc delegates. An example is the Council of Ministers of the European

Union, where the entirety of the Union citizens, N , is partitioned into the 27 blocs of

its Member States’ citizenries that are represented by their Ministers.

In the binary Penrose/Banzhaf bloc model, a compound influence probability of

citizen j ∈ N typically factorizes into the product of the internal influence probabil-

ity of j in her or his bloc B, times the second-level influence probability of bloc B

relative to the partitioning specified, see Straffin (1978), Felsenthal/Machover (2002),

Laruelle/Valenciano (2004), or Ruff/Pukelsheim (2010). These product formulas gen-

eralize to carry over to ternary Penrose/Banzhaf bloc models, see Birkmeier (2011)

for a bottom up construction (Satz 5.1.3) as well as for a top down construction (Satz

5.1.6).

The analysis may be employed to design bloc decision rules that permit absten-

tions. The underlying notion of optimality is based on a weighted average, of the

diplomatic one state, one vote principle that underlies international relations among

Member States, and of the democratic one person, one vote principle that would apply

to the Union citizens, see Laruelle/Widgrén (1998) and Satz 5.3.3 in Birkmeier (2011).

However, it is by no means evident whether the Treaty of Lisbon (2010) would sup-

port the two equality principles and, if so, whether they may be mixed into a single

optimality criterion.

Nevertheless, a statistical evaluation of previous decision rules used in the EU

Council of Ministers leads to the estimates reported in Section 6.1 of Birkmeier (2011).

They suggest that, in the past, the Union functioned with a mixture of about a ten

percent weighting on the diplomatic equality principle, and a complementary ninety

percent weighting on the democratic equality principle. With these weightings, the

optimal quota is found to be 60.98 percent, see Birkmeier (2011, page 117). This is

slightly below the quota of 61.6 percent proposed in the Jagiellonian Compromise of

S lomczyński/Życzkowski (2010).

The mixture criterion is roughly in line with the composition of the European

Parliament where each Member State is guaranteed six seats out of a total of 751 seats.

That is, twenty percent of the seats are preassigned to the Member States obeying the

diplomatic equality principle of one state, one vote. The remaining eighty percent

then might be allocated via a proportional representation apportionment method to

honor the democratic equality principle of one person, one vote, as proposed in the

Cambridge Compromise of Grimmett et al. (2011).
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W. S lomczyński/K. Życzkowski (2010): Jagiellonian Compromise – An alternative voting system
for the Council of the European Union. Pages 43–58 in: M.A. Cichocki/K. Życzkowski (Editors).
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