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Abstract

We consider adaptive mixed finite element methods (AMFEM) for uncon-
strained optimal control problems associated with linear second order ellip-
tic boundary value problems featuring distributed controls and a quadratic
tracking-type objective functional. The focus is on solvers for the associated
optimality system and on residual-type a posteriori error estimators for adap-
tive refinement of the underlying simplicial triangulations of the computational
domain. In particular, for the numerical solution of the mixed finite element
discretized optimality system we use preconditioned Richardson-type itera-
tions with preconditioners that can be constructed by means of appropriately
chosen left and right transforms. The residual a posteriori error estimators can
be derived within the framework of a unified a posteriori error control which fa-
cilitates the proof of its reliability by evaluating the residuals in the respective
dual norms. Numerical results illustrate the performance of the AMFEM.



Chapter 1

Introduction

In this contribution, we study adaptive mixed finite element approximations of
unconstrained optimally controlled boundary value problems for linear second
order elliptic partial differential equations with distributed controls based on
simplicial triangulations of the computational domain.

The efficient numerical solution of boundary value problems for elliptic PDE
and systems thereof by adaptive finite element methods is well documented
in the literature. We refer to the monographs [1, 4, 6, 24, 54, 61] and the
references therein. Among several error concepts that have been developed
over the past decades there are residual-type estimators [1, 4, 61] that rely on
the appropriate evaluation of the residual in a dual norm, hierarchical type
estimators [4] where the error equation is solved locally using higher order
elements, error estimators that are based on local averaging [16, 66|, the so-
called goal oriented dual weighted approach [6, 24] where information about
the error is extracted from the solution of the dual problem, and functional
type error majorants [54] that provide guaranteed sharp upper bounds for the
error. A systematic comparison of the performance of these estimators for a
basic linear second order elliptic PDE has been provided recently in [19].

A systematic mathematical treatment of optimally controlled elliptic PDE
including existence and uniqueness results as well as the derivation of neces-
sary and sufficient optimality conditions can be found in the seminal mono-
graph [50] and the more recent textbooks [25, 31, 38, 49, 60]. As far as the
a posteriori error analysis of adaptive finite element schemes for PDE con-
strained optimal control problems is concerned, for optimally controlled el-
liptic problems classical residual-based error estimators have been derived in
26, 27, 32, 36, 37, 39, 40, 41, 46, 47|, whereas the goal-oriented dual weighted
approach has been applied in [7, 8, 33, 34, 35, 62, 65]. With regard to other
available techniques we note that hierarchical estimators have been considered
in [9], those based on local averaging in [48], and those using functional type
error majorants in [28, 29]. For further references, we refer to the recent mono-
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graph [53].

Although mixed finite element discretizations of elliptic PDE have been stud-
ied extensively (cf., e.g., [13] and the references therein) including the develop-
ment, analysis, and implementation of a posteriori error estimates [2, 11, 15,
64], there is only little work on its application to optimally controlled elliptic
boundary value problems within an adaptive framework [21, 51].

Adaptive finite element methods for optimal control problems associated with
PDE consist of successive loops of the cycle

SOLVE = ESTIMATE — MARK = REFINE.

Here, SOLVE stands for the numerical solution of the discretized optimality
system. The step ESTIMATE is devoted to the derivation of an a posteriori
error estimator whose contributions are used for the realization of adaptivity
in space. The subsequent step MARK deals with the selection of elements and
edges of the triangulation for refinement based on the information provided
by the local contributions of the a posteriori error estimator. We will use the
bulk criterion from [22], meanwhile also known as Dorfler marking. The final
step REFINE addresses the technical realization of the refinement process.
In particular, refinement will be based on newest vertex bisection (cf., e.g.,
[5, 20, 56]).

The novelty of the adaptive mixed finite element approximation in this con-
tribution is twofold. Firstly, as far as the step SOLVE of the adaptive cycle is
concerned, we will solve the resulting block-structured saddle point problem
numerically by a preconditioned Richardson-type iteration with a precondi-
tioner derived from suitable left and right transforms. We note that trans-
forming iterations have been used as smoothers within multigrid methods [63]
as well as for the iterative solution of KKT systems in PDE constrained opti-
mization [42, 43, 44, 57, 58]. Secondly, the second step ESTIMATE features a
residual-type a posteriori error estimator which can be derived and analyzed
within the framework of unified a posteriori error control [17].

The paper is organized as follows: In chapter 2, we provide basic functional
analytic notations (subsection 2.1) and then consider an unconstrained elliptic
optimal control problem with a tracking type objective functional and dis-
tributed controls (section 2.2) including the first order optimality conditions
(Theorem 2.2 in section 2.3). Chapter 3 is devoted to the primal mixed for-
mulation of the optimality system which results from a reformulation of the
second order elliptic equation as a first order system. Its operator theoretic
formulation gives rise to a bounded linear, bijective operator which implies
unique solvability of the optimality system as well as continuous dependence
on the data (Theorem 3.2). Moreover, given any conforming approximation of
the optimality system, the error can be bounded from above in terms of as-
sociated residuals (Corollary 3.3). In chapter 4, we deal with the mixed finite
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element approximations of the optimality system by means of the lowest order
Raviart-Thomas elements with respect to a shape regular family of simplicial
triangulations of the computational domain. Algebraically, this gives rise to a
block-structured linear algebraic system of saddle point type. The numerical
solution of that saddle point problem by a preconditioned Richardson-type
iteration is addressed in chapter 5. In particular, we present Uzawa-type pre-
conditioners which can be derived by appropriately chosen left and right trans-
forms. The following chapter 6 is concerned with the derivation of a residual-
type a posteriori error estimator and the proof of its reliability (Theorem 6.1).
For three representative examples, chapter 7 contains a documentation of nu-
merical results illustrating the performance of the adaptive approach. Some
concluding remarks are given in the final chapter 8.



Chapter 2

Optimally controlled elliptic
problems

We consider optimally controlled linear second order elliptic PDE with a
quadratic tracking type objective functional and distributed controls. In this
contribution, we only study the unconstrained case, i.e., constraints are neither
imposed on the control nor on the state.

2.1 Notations and preliminaries

We use standard notation from Lebesgue and Sobolev space theory [59]. In
particular, given a bounded Lipschitz domain 2 C R d € N, with boundary
[ =09, for D C Q. We refer to LP(D),1 < p < oo as the Banach spaces
of p-th power integrable functions (p < 0o) and essentially bounded functions
(p = 00) on D with norm || - ||z»(p). We denote by LP(D), the positive cone
in LP(D), i.e., LP(D)y :={v € LP(D) | v > 0 a.e. in D}. In case p = 2, the
space L*(D) is a Hilbert space whose inner product and norm will be referred
to as (-,-)r2(py and || - || 2(py. For m € Ny, we denote by W™P(D) the Sobolev
spaces with norms

(= 1Dl ) i p < 0o

|||l wme(py := |a|<m
‘Ir|1ax | D*v|| Lo (py , if p = 00
<
where a = (a1, -+, aq)” € Ny with |a] := 327 ay, and refer to | - lwm.p (D) as

the associated seminorms. For p < oo and s € R,,;s = m+o,m € Ny, 0 <
o < 1, we denote by W#P(D) the Sobolev space with norm

[Du(x) — Du(y)|? v
ollwesy = (IolBymooy + 3 / / |X_ e axay)

la|= =m




We refer to Wi*(D) as the closure of C§°(D) in W2P(D). For s < 0, we denote
by W=P(D) the dual space of W, *¥(D),p~' + ¢~! = 1. In case p = 2, the
spaces W#2(D) are Hilbert spaces. We will write H*(D) instead of W#2(D)
and refer to (-, ) gs(py and ||-|| +(p) as the inner products and associated norms.
In the sequel, for two quantities A and B we will use the notation A < B,
if there exists a positive constant C' > 0 only depending on the data of the
problem such that A < CB.

2.2 Elliptic optimal control problem with dis-
tributed controls

We assume 2 C R? to be a bounded polygonal domain with boundary I' = 952
and denote by A the linear second order elliptic differential operator

(2.1) Ay = -V -aVy + ¢y,

where a = a(x),xz € Q, is a symmetric, uniformly positive definite matrix-
valued function and ¢ = ¢(x), z € , stands for a scalar nonnegative function.
Given a desired state y? € L?(2), a shift control u? € L*(Q2), and a regular-
ization parameter o > 0 as well as a forcing term f € L*(€2), we consider the
following elliptic optimal control problem:

Find (y,u) € V x W, where V := H}(Q) and W := L*(Q), such that

(2.2a) inf J(y,u),

Y, u

1 2 @ dj|2
(2.20) Tww) = Ly =" + Sl — 30,
subject to
(2.2¢) Ay=f+u inQ,
(2.2d) y=0 onl.

The existence and uniqueness of an optimal solution can be easily shown (cf.,
e.g., [25, 50, 60]).

Theorem 2.1 Under the above assumptions on the data of the problem, the
distributed elliptic optimal control problem (2.2a)-(2.2d) admits a unique solu-
tion (y,u) € V.x W.

Proof. Introducing G : W — V as the control-to-state operator which assigns
to a control u € W the solution y = G(u) of the state equation (2.2¢),(2.2d),
the control reduced form of the optimal control problem (2.2a)-(2.2d) reads as
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follows:
Find v € W such that

(2.3) ir&f Jrea(1),  Jrea(w) == J(G(u),u).

Let (un)n, un € W,n € N, be a minimizing sequence, i.e., Joeq(t,) — infy, Jyeq(u)
as n — 0o. Due to the boundedness of (u,,)y there exist a subsequence N’ C N
and u* € W such that u, — u* in W as N 3 n — oo. Since the objec-
tive functional J..4 is lower semi-continuous and convex, it is weakly lower
semi-continuous and hence, we have

w - lim infnGN’ Jred(”n) Z Jred(U*)v

which shows that u* solves (2.3). The uniqueness follows readily from the
strict convexity of Jy.eq. O

2.3 Optimality conditions

Due to the convexity of the objective functional (2.2b) the first order necessary
optimality conditions are sufficient as well.

Theorem 2.2 Let (y,u) € V x W be the unique solution of (2.2a)-(2.2d).
Then, there exists an adjoint state p € V' such that the triple (y,u,p) € V X
W x 'V satisfies the optimality system

(2.4a) Ay= f+u inQ,
(2.4b) y=0 onl,

(2.4¢) Ap=y®—y inQ,
(2.4d) p=0 onl,

(2.4e) p=au—u?) in Q.

Proof. Denoting by J/ ,(u) € W* the Gateaux derivative of J,.4 in the optimal
control u € W, the necessary optimality condition for (2.3) reads

(2.5)  (Jea(w), w)w-w = (G(u) =y, G(w))oa + a(u —u?,w)oo
= (G*(G(u) —y") + alu —u?),w)oq =0, weW.
Setting p = —G*(G(u) — y¢) and observing y = G(u) as well as G* = G, the

optimality condition (2.5) implies that p € V satisfies (2.4¢)-(2.4e), whereas
y € V satisfies (2.4a),(2.4b) by definition of G. O

If we substitute u in (2.4a) by means of (2.4e) according to u = a~'p+u?, the
operator-theoretic form of the optimality system can be stated as

(2.6 (7 ()-8
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Chapter 3

Primal mixed formulation of the
optimality system

Both the state equation (2.4a) and the adjoint state equation (2.4c) are lin-
ear second order elliptic equations that can be formally written as first order
systems. In particular, introducing the fluxes

(3.1) Ay i =aVy, X, :=aVp,

the optimality system (2.6) reads

allI -V 0 0 Ay 0

V- o 0 —all Y | fHu
(32) 0 0 a'l -V SV
0 I -V cl P y?

We refer to (3.2) as the primal mixed formulation of the optimality system
(2.6). Setting Q := L?*(Q)?, its weak form amounts to the computation of
(A, ¥ App) € QxV xQxV such that for all ¢ € Q and v € V the following
system of variational equations holds true:

(3.3a) ap(Ay. q) — bp(q,y) = (1(q),
(3.3b) bp(Ay,v) + cp(y,v) — a ldp(p,v) = ly(v),
(3.3c) ap(Ap,q) — bp(q, p) = (3(q),
(3.3d) bp(Ap,v) + cp(p,v) +dp(y,v) = l4(v).
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Here, the bilinear forms ap(-,-) : Q x Q — R, bp(+,-) : Q x V — R, ep(-, ) :
VxV =R, and dp(,-) : V x V — R are given by

(3.4a) ap(p, q) == /a‘lp ‘qdx, p,qeQ,
Q
(3.4b) bp(p,v) = /p Vvdx, peQ,vevV,
0
(3.4¢) cp(v,w) := /cvw dx, v,weV,
0
(3.4d) dp(v,w) = /vw dx, v,weV,
Q

whereas the functionals f5,_1 : Q = R, /5, : V — R, 1 < v < 2, read as follows

(3.5a) ly1(q):=0, qeQ, 1<v <2,
(3.5b) lo(v) = /(f +ubw dx, wveV,
0
(3.5¢) ly(v) = /ydv dx, veV.
Q

We denote by Ap: Q - Q*Bp:V - Q" Cp:V = V* and Dp: V — V*
the operators associated with the bilinear forms ap,bp,cp, and dp. More-
over, we set z = (z,,2,)7, where z, == (A, y)7,2, := (A,,p)7, and ¢ :=
(01,05,05,0,)T. Then, the operator-theoretic form of the optimality system
(3.32)-(3.3d) is given by

(3.6) Kz =¢.
Here, IC stands for the operator-valued 2 x 2 matrix
L —a M
(3.7) K= ( M r ) ,
where £L: Q XV —- Q*xV*and M : QxV — Q* x V* denote the operators
([ Ap —DBp (0 0
o () me(10)

We will show that the operator K : (Q x V)? — (Q* x V*)? is a continuous
linear operator which is bijective. Consequently, for any ¢ € (Q* x V*)? the
optimality system (3.6) admits a unique solution z which continuously depends
on the data. As a preliminary result, we will prove a similar statement for the
operator L.
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Proposition 3.1 The operator L : Q x V. — Q* x V* as given by (3.8) is a
continuous linear and bijective operator. Hence, for any {; € Q" and {5 € V*

the operator equation
A 0
L -
(y) <&>

admits a unique solution (X,y) € Q x V and there holds

(3.9) X y)llaxv S (4 L)l Qe xve-

Proof. The linearity and continuity of £ are obvious. In order to prove bijec-
tivity, in view of the fact that the coefficient functions a and ¢ are uniformly
positive definite and non-negative, respectively, for any (A,y) € Q x V we
have (cf. [17])

1

AW axv A =Vy, 2y)llaxv

1
< =(Ixla + Iyllv) (IAle +3llyllv)
< IS+ Iyl S (L) = Ty, 2y).

(3.10)

This implies an inf-sup condition and hence, we deduce bijectivity by the
generalized Lax-Milgram lemma (cf., e.g., [10, 12]). The estimate (3.9) is an
immediate consequence of the fact that £7! is a bounded linear operator. [

Theorem 3.2 The operator K : (Q x V)? — (Q* x V*)? defined by (3.7) is a
continuous linear and bijective operator. Consequently, for any £ € (Q* x V*)?
the optimality system (3.6) has a unique solution z € (Q x V)? and there holds

(3.11) Izl @xvyz S [1ell@exveye-

Proof. Evidently, the operator I is linear and continuous. For the proof of
its bijectivity, we choose left and right transforms

at21 0 a 21 0
;cL._< . _[>, /cR._( S0,

where I stands for the identity in the respective function space. We consider
the transformed operator

- c —a~12M
K::KLKKR::<_&1/2M O‘_E )
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It suffices to verify bijectivity of K. For any z, := (A, %)7, 2, := (A, p)7, we
choose w, := (A, — Vy, 2y)T and w, :== —(A, — Vp,2p)T. It follows that

(3.12) (K(2y, 2p)) (wy, w,) =
(L, 9)(Ay — Vy, 2y) — a7 2 (M(A, p)) (A — Vy, 2y)
+ O‘_I/Q(M(Aya y))(()‘p — Vp, 2]9) + (’C()‘pvp»(}‘p — Vp, 2p).

Due to (3.8) we have

(M(Xp,0))( Ay — Vy,2y) = 2(Dpp, y)v+v,
(M(Xy, 9))(Ap — VD, 2p) = 2(Dpy, p)v-v-

Observing (Dpp, y)v+v = (Dpy,p)v+y and (3.10), from (3.12) we deduce

1
= (15l Iy = V9. 29) v

+ 1w D)ll@xv [l =V, 2P)!|va) < (K(zy: 7)) (wy, wy).

As in the proof of Proposition 3.1 this implies bijectivity of K. 0

The previous theorem provides error estimates of approximate solutions of the
optimality system (3.6) in terms of the associated residuals.

Corollary 3.3 Let z, = (%, 25, )" with z5, = (Xy,, 9n)" and z5, = (Np,, Pn)"
be an approzimation of the solution z = (2, 2,)" of the optimality system (3.6)
with z, = (A, y)T and z, = (Ap,p)*. Then, there holds

(313) ||Z — EhH(va)Q S “RGSH(Q*XV*)27
where the residual Res is given by
(3.14) Res = (Resy, Resy, Ress, Resy)”,

and the residuals Res,,1 < v <4, read as follows

3.15a)  Resi(q) := Gi(a) —ap(Ag,, @) +bp(a,5n),  a€Q,
) Resy(v) := la(v) — bP(A_gh,U) — cp(Gn,v) + a tdp(pn,v), vEYV,

(a) :== £3(q) — ap(Ap,, ) +bp(q,pr), q€Q,
) = La(

=ty U) — bp()\ﬁh,v) — Cp(ﬁh,v) — dp(ﬂm?)), veV.

Proof. The proof is an immediate consequence of Theorem 3.2. 0
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Chapter 4

Mixed finite element
approximation of the optimality
system

We consider a shape regular family (75,(2))nen of simplicial triangulations
of the computational domain 2 where H is a null sequence of positive real
numbers. We refer to N, (D) as the set of vertices and to &£,(D) as the set
of edges in D C ). For T' € T,(Q2), we denote by hr the diameter of T and
set h := max{hr | T € Ty(Omega)}, and for E € &,(2) we denote by hg
the length of the edge E. P(D),k € Ny, stands for the set of polynomials of
degree < k on D. From now on we will assume that the coefficient functions
a and ¢ in (2.1) are elementwise constant with respect to the triangulations

Tn(Q2), h € H.
We refer to

Vi i= {un, € Co(Q) | valr € PU(T), T € TH(Q)}
as the finite element space Vj, C V of P1 conforming finite elements and to
Wi, = {wn € L*(Q) [ walr € Ro(T), T € Tu()}

as the linear space W) C W of elementwise constants with respect to the
triangulation 7,(£2). We further denote by

Q= {an € H(div; Q) | aqn|r € RTo(T), T € Tu(Q)}

the lowest order Raviart-Thomas space RT(2; 75(£2)) with respect to 7,(£2),
where RT(T") stands for the lowest order Raviart-Thomas element

RTy(T) = {qn(x) =a+bx, ac REbER, xe T}
We set
Ng = card(E,(2)), Ny :=card(N,(Q)), Nw = card(Tx(Q)),
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and denote by ¢; € Qp,1 <7 < Ng, ¢; € Vj,,1 <i < Ny, and ¢; € Wy, 1 <
i < Ny, the canonical basis functions of Qp, V4, and W), respectively, i.e.,

Qh = Span(cph e a‘PNQ)7 Vh = Span<§017 e aSONv)7 Wh = Span(wlv e 7¢NW)

The mixed finite element approximation of the optimality system (2.6) is based
on the primal-dual mixed formulation: Find (A, y, A,, p) € (H(div; Q) x W)?
such that for all q € H(div;2) and w € W there holds

(4.1a) ap(Ay,q) +bp(a,y) = {i(a),
(4.1Db) bp(Ay, w) — cp(y,w) + a tdp(p,w) = — lo(w),
(4.1c) ap(Ap, ) +bp(q, p) = (3(q),
(4.1d) bp(Ap, w) — cp(p,w) — dp(y, w) — ly(w).

(4.2a) ap(p,q) := a'p-qdx, p,q¢€ H(div; ),

(4.2b) bp(p,w):= [ V-pwdx, pe€H(iv;Q), weW,

(4.2d) dp(v,w):= [ vwdx, v,weW,

Q/
Q/
(4.2¢) cp(v,w) == /cvw dx, v,weW,
Q
Q/

whereas the functionals ly,_1 : H(div; Q) — R, ly, : W — R/ 1 < v < 2, are
given by

(4.3a) ly1(q):=0, qeH(div;), 1 <r <2
(4.3b) lH(w) == /(f +uw dx, weWw,

)
(4.3¢) ly(w) = /ydw dx, weW.

Q

We denote by f, € W, the elementwise constant function with
fh‘T = ’T’il / f dX, T e E(Q),
T

and define y¢ € W), and uf € W), analogously. Then, the mixed finite element
approximation of the optimality system (2.6) amounts to the computation of
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()\yha Yn, )\ph ) ph) €

holds

where the functionals ¢ 9,1 :

(Qn x W3)? such that for all q, € Q

CLD( yhaqh) + bD(qh7yh) =

bo(My,, wn) — cp(yn, wn) + dp(pp, wy) =

ap(Ap,,dn) + bp(an, pn) -
( ) —

bo(Xp,, wn) — cp(ph, wp) — dp(yn, wp) =

v < 2, are given by

(4.5a)

(4.5b)

(4.5¢)

fh,zu—l(Qh) = 52u—1(‘lh>> qn € wa 1 S v

Q, — R, 1<v <2 and {9, :

and wy, € W), there

W, =R, 1<

<2

Oha(wn) == / (o + )y dx, w, € W,

Cpa(wy) = yiwy, dx,  w, € W,

D\D

It follows readily from (4.4b) and (4.4d) that

(4.6a)
(4.6b)

(V- —cyn + o oy + f +U;ll)|T =0,
(V- Xp, = con = Yn + Yl = 0,

T € Th(9),
T e Th(Q).

We denote by A, € RVeNe B, ¢ RVexNw C, ¢ R¥W*Nw_ and D, €
RNwXNw the matrices with entries

and we refer to by, as the block vector by, = (bp.1,bp2, bz, bra)?,

(An)ij = ap(ep;, p;), 1 <i,j < Ng,
(Bh)ij == bp(eiv;), 1 <i< Ng, 1<j< Ny,
(Ch)ij = cp(¥i,vy), 1 <4, < N,
(Dr)ij = dp(¥i,5), 1 <14,5 < Ny,

where

(brav—1)i == lhov-1(p;), 1 <i< Ng, 1 <v <2

(bh,Zu)i =

—lho(¥), 1<i< Ny, 1<v <2,

We further identify X,,,A,, with vectors in R¥@ and yy, p, with vectors in

R™  and we set z, =

(Ayha Yh, )‘ph ) ph)T-

Then, the mixed finite element

approximation (4.4a)-(4.4d) represents a linear algebraic system of saddle point

form

(4.7)

KhZh = bh.
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The saddle point matrix K; has the block structure

. L, Oz_th
" o (T Y,

where Lj;, and M;, are the 2 x 2 block matrices

([ Ay By (0 0
o e (8B ) me (D0,

19



Chapter 5

Numerical solution of the
discretized optimality system

We will solve the linear algebraic system (4.7) by the preconditioned Richard-
son iteration [3]

(51) Zgﬂrl) = Zgj) — K;l <KhZ§LV) — bh>, Ve No,

where K, is an appropriate preconditioner for K, and zgo) is a given initial
iterate. The preconditioner K; will be constructed by means of left and right
transforms.

5.1 Left and right transforms

Let Ky 1, Kp g be regular matrices. Then, (4.7) can be equivalently written as

(5.2) Kh,LKhKh,RKﬁgZh =K, by,

Assuming Kh to be a suitable preconditioner for K}, 1 KK, r, we consider the
transforming iteration

(5.3) K qz, ) = K,;Ezg’) - K <Kh,LKhZ§LV) - Kh,Lbh>-

Backtransformation yields

(54) Z;Ll/+1) = Zg/) — Kh,RK}ZlKh,L<KhZ§ly) — bh)
(5.5) =2, — (K [ KiK; )~ Kz, — by).
Consequently,

(5.6) K, =K, [ KiK L
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is an appropriate preconditioner for Kj,.

We note that transforming iterations have been used as smoothers within
multigrid methods [63] as well as for the iterative solution of KKT systems
in PDE constrained optimization [42, 43, 44, 57, 58|.

5.2 Construction of a preconditioner

As far as the construction of a preconditioner for K, is concerned, we choose a
left transform Kj, 1, and a right transform K, r as the following block-diagonal
matrices

al?T 0 a Y21 0
(57) Kh,L = ( 0 1 > , Kh,R = ( 0 I ) .

We thus obtain the symmetric block matrix

L —1/2\
Kh,LKhKh,Rz( oo h).

a”2M,  -L,

The Schur complement associated with Kj, ;KK r is given by
Sy =Ly +a "M, L, "M,

Consequently, we have

L —1/2\
Kh,LKhKh,Rz( g “ h )

a 2My, =S, + o IM,L; My,
With f;h as a preconditioner for L, and
(5.8) S = 7! diag(Ly, + a 7'M, L;'M,,), 7> 0,
as a symmetric Uzawa preconditioner for K, 1K, K}, r we choose

ko (B Y

a *M;, =S, +a ML, "M,

Backtransformation yields
(5.9 K= (Kno) KnKnp) " = ( _If\}&h - aa:\l/\l/;f% . ) |

We thus arrive at the following preconditioned Richardson iteration:
Algorithm (Preconditioned Richardson Iteration)

Step 1 (Initialization)

Choose an initial iterate Zgo), prescribe some tolerance TOL > 0, and set v = 0.
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Step 2 (Iteration loop)

Step 2.1 (Computation of the residual)

Compute the residual with respect to zgj):

4 = Kz — by,

Step 2.2 (Implementation of the preconditioner)
Solve the linear algebraic system

L h a "M, (v) (v)
510 A A A = d .
( ) ( _Mh Sh — ()é_thh;th > Zh h

Step 2.3 (Computation of the new iterate)
Compute

ZEZVH) = zgf) + Azé”).

Step 2.4 (Termination criterion)

If
(v+1) ()
th (u+1)Zh | TOL,
lz, |

stop the algorithm. Otherwise, set v := v + 1 and go to Step 2.1
Consider the linear system (5.10) in the form

< L, a~'M, ) Az \ [ d)
M, S, —a'M,L;'M, Az a” |-

)

Elimination of Azgﬁ results in the Schur complement system
SnAzy) = dy) + M,L;'d)).

Hence, the solution of (5.10) can be reduced to the successive solution of the
three linear systems

ShAZE:% = d;:’% + Mhﬁzgﬁ,
LAz = d)Y) — o 'M,Az)).

As far as an appropriate preconditioner Ly, for the saddle point matrix Lj, (cf.
(4.9)) is concerned, preconditioners for such matrices have been extensively
studied in the literature. We refer to [14, 23, 45, 55].
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Chapter 6

Residual-type a posteriori error
estimation

This section deals with the derivation of a residual a posteriori error estimator
and the proof of its reliability within the framework of a unified a posteriori er-
ror control [17]. As prerequisites we need some appropriate quasi-interpolation
and reconstruction operators.

6.1 Quasi-interpolation and reconstruction op-
erators

We first recall the definition of Clément’s quasi-interpolation operator and
state its stability and local approximation properties (cf., e.g., [61]).

For a € N, () we denote by ¢, the nodal basis function with supporting point
a, and we refer to D, as the patch

D, = | {TeTu(Q) | acNu(T)}.

We refer to m, as the L?-projection onto Py (D,), i.e., m,(w),w € W is given
by

(Wa(w)>Z)L2(Da) = (’CU,Z)L2(DE), z € Pi(D,).

Then, Clément’s interpolation operator Pg is defined as follows

Pow = Z Ta(W) @q-

aGNh(Q)
For T € T,(Q2) and E € &,(2) we denote by Dr and Dg the patches

Dr = [ J{T' € Tu() | Nu(T)NNG(T) # 0},
Dp = | J{T' € Ta(Q) | Nu(T')NNW(E) # 0}.
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Then, for v € V and T' € T,(0), E € &,(2) there holds

(6.1a) 1Pcvllor S vllo.prs
(6.1b) 1Pevllos < [vllops,
(6.1c) IVPcollor S IIVUllo.ors
(6.1d) lv = Pevllozr < he [[v]l1,0,
(6.1e) lv = Povllo.g S kg’ [vlli.ps-

Further, due to the finite overlap of the patches Dy and Dg we have

1/2
(6.2) (> o) Slelle, 0<p<t,
TeTh(R)
1/2
(6.2b) (> Wln,) " Slhlle, 0<p<t.
E€&L(Q)

The mixed finite element approximation (4.1a)-(4.1d) is a nonconforming ap-
proximation of the optimality system (3.3a)-(3.3d), since y, € W), ¢ V and
prn € Wy, & V. In order to be able to apply Corollary 3.3, we need approxima-
tions g, € V of y, and p, € V of p,. These can be provided by a reconstruction
operator

(63) R:Wh—H/hCV,
defined as follows

(6.4) (Rwp)(a) = N,* Y wylr,  wy, € Wy,

TeTh(Da)

where D,,a € N,(2), denotes the patch
Dy = | H{T € Ta(Q) | a € Nu(T)},
and N, := card(7,(D,)). As can be shown (cf., e.g., [18]), we have

(6.5) |Rwy —willyy S Y b [|[walellf g,
Een(Q)

where [wy|p, E =T, NT_, Ty € T,(Q), stands for the jump of w, € W), across
FE according to

(6.6) (wh) g = wp|r, — wi|7_
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6.2 The residual a posteriori error estimator
and its reliability
The residual a posteriori error estimator
(6.7)
1/2
o= (D WO+ Y () )+ (n)

TETH(Y) Ee&L(Q)

consists of element residuals 7y (X, ), nr(A,, ), edge residuals ng(Xy, ), ne(yn)
and ng(Ap, ), ne(pr). In particular, the element residuals residuals are given
by

(6.80) ) = e llewl (@ Ay)lor, T € Th(S),
(6.8b) nr(Xp,) == hr |curl (G_IAph)Ho,T, T € Trh(Q).

The edge residuals read as follows

(6.92) ne(Ny,) = hil? lts - (a7 N )ellos, B € E(Q),
(6.9b) ne(un) = hi” [lwnlellon.  E € En(Q),
(6.9¢) ne(Np,) = hil” lts - (a7 N)elos, B € E(Q),
(6.9d) ne(pn) = hil” llpwlellos,  E € E(S),

where t ; stands for the tangential unit vector on £ € &£,(Q) and [tg-(a™* Ay, )5
and [yp] g refer to the jumps of the tangential component of a='A,, and of y,
across E =T, NT_, Ty € T,(Q) according to

[tE ’ (a_lAyh)]E = (tE ’ (a_lAyh))|T+ - (tE ’ (a’_lAyh)”Tf?
WnlE = yh\ﬂ — Ynlr_-

and (6.6). We note that [tz - (a7'A,, )] and [py]r are defined analogously.
The a posteriori error analysis further involves data oscillations

(6.10) oscp = < Z (osca(f + u?) + Osc%(yd))>1/2,
TeT ()

where for data g € L*(Q) the local term oscr(g) is given by

(6.11) CMWWZMM—MMDQWIWI/QW-

T
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Theorem 6.1 Let z := (A, y, Ap,0)" € (QxV)? and z, := (Ay, Yns Apy, 0n) "
€ (Qn x Wh)? be the solutions of the optimality system (3.3a)-(3.3d) and its
mized finite element approzimation (4.1a)-(4.1d). Further, let n, and oscy, be
the residual a posteriori error estimator and the data oscillations as given by

(6.7) and (6.10), respectively. Then there holds
(6.12) |2 = znll@xwyz S mpp + osc;.

Proof. An application of Corollary 3.3 with A;, = X,,, A5, = Ap,, and

yn = Ryn,pn = Rpp, where R : W;, — Vj, C V is the reconstruction operator
(6.4), yields

(6.13) |2z = znlli@xwyz S 12 = Zulliguryz + 1120 — 2nll{quwy2
< IRes(Zn) 1ge w2 + 1RYyn — ynllsy + | Ron — palliy-

In particular, we have

(6.14a) 1A = Ay, lIg S IResi[[g-,
(6.14b) ly — gl < [Resallg
(6.14c) 1A = A Mg S [IResslg-
(6.14d) lp = palliy < [Resallg--

As far as Res; is concerned, for q € Q there holds
(6.15) Resi(q) = / (a‘l)\yh - ngh> q dx.
Q

By the Helmholtz decomposition (cf., e.g., [30]) there exists a function 5 €
H'(Q) such that

(6.16a) a”'A,, = Vi, + curl 3,
(6.16b) leurl Blloo = inf la™* A, — Vvlloq-

Using (6.16a) in (6.15), it follows that

(6.17) || Resy |

Q- S [leurl Bljo.
Since curl § and Vg, are orthogonal with respect to (-, -)o.q, we have

(6.18)

||curl B||37Q = /curl g - (Curl B+ ngh> dx = /curl B-a"'A, dx,
Q Q
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where we have used again the Helmholtz decomposition (6.16a). Now, for any
By € Vj, there holds curl 8, € W2 which implies

(6.19) V.curl Bulr =0, T € Tn(2).

Using curl j;, as a test function in (4.1a) and observing (6.19), we obtain

/curlﬁ a'Ay, dx= > /curl (B = Bn)-a" '\, dx

Q TeTr(Q
Z /B B) curl (a”'Ay,) dx+/(5 Br) - tor - (@' Ay,) ds)
TeTh(Q) oT
= - ) /(5 — Bp) curl (@7'A,,) dx+ Y (B=Bu) [te - (a7 Ay,)]e-
TeTh() 7 EE&L(Q)

We choose B, = P8 where P stands for Clément’s quasi-interpolation opera-

tor. Then, straightforward estimation and (6.1d),(6.1e) as well as (6.2a),(6.2b)
result in

(6.20) \/curl B-a'A,, dx| <
Z helleurl(a™ Ny, ) o hz' 118 = PoBllor
TeTh(R)
+ > P te - (a7 A ellos [1he"? 118 = PoBllos
Ee&r(Q)
wum( Z W lleurl(a™' Ay, )5 )"
TeTL(Q
Z hi H (@ AElR ) ).
Ee&r (22

In view of (6.16b), we have || 3|10 S [[Ay—Ay,
and (6.20) imply

0.o- Hence, (6.14a),(6.17),(6.18),
(6.21) X =Alia S Do mr )+ D mp(A):
TeTHL(Q) Ec&r ()

As far as Resy is concerned, observing (3.15b) and (4.6a), for v € V and
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v, € Wy, with vy|p = [T [ v dx, T € T,(Q), we find

Resy(v) = /(f+u)vdx—/)\yh~Vvdx—/cyhdx+ozl/ﬁhvdx
Q

Q Q Q

= /(fh—i—ufll)v dx+/V-)\yhv dx—/cyh dx—i—oz_lfphv dx
Q Q

Q Q

n /(f—fh+ud—uz>v dx+/c<yh—yh>v dx+a—1/<ph—ph>v dx

Q Q

- Z /f o+l —uh)(v—vh)dx—l—/ c(yn — yn)v dx

TeTh()

+ ot /(ph — Pp)V dx).

T

Straightforward estimation yields

(6.22) [Resy(v)| S D hr (Hf—tho,T+ Hud—uiHo,T> h' lv = vallor
TeTh()

+ > (Hyh—ﬂh||o,T+ ||ph—15hHo,T) [[v]lo,7-
TeTR()

Using the Poincaré inequality

v = vpllor S hr [VVllor S hr o)1,

and (6.5), from (6.14b) and (6.22) we deduce

623)  ly—wlieS Y (bl +umen)+ Y osdh(f +u?).

Eec&L(Q) TeTh()

The residuals Ress and Res; can be estimated from above in much the same
way yielding

(6.24) I = Albe S Do mn)+ D ),
TET;(9) E€&,(Q)
as well as
625 lp-mlies Y () +nkmn)+ Y osdy).
Ee&n(Q) TeTn()
Finally, combining (6.21),(6.23),(6.24), and (6.25) gives the assertion. O]
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In the step MARK of the adaptive cycle we use Dorfler marking [22]. In
particular, given a universal constant 0 < © < 1, we determine a set of
elements M7 and a set of edges Mg such that

(6.26)

O (i +os) < 3 (nh(A) +1h(Ny,) + 0 (f +u?) + osch(y") )
TeMr

+ Y (n%(Ayh) + 15 (yn) + np(Ap,) + n?E(ph))

EeMg

The Dorfler marking can be realized by a greedy algorithm (cf., e.g., [36]).
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Chapter 7

Numerical results

In this section, we provide a detailed documentation of numerical results for
three examples illustrating the performance of the adaptive mixed finite ele-
ment method (AMFEM).

In the following examples, we are interested in a comparison of the conver-
gence rate between the AMFEM and uniform method, the discretization er-
rors, residual-type a posteriori error estimators, and the local behavior of the
a posteriori error estimators.

Let ||z — z1]|(qxw)2 denote the total error.

(7.1)

2 2 2 2 \/?
|z — ZhH(QXw)2 = (H)‘y - )‘yh”Q + 1y — thW + H>‘p - AthQ +[lp — thW) .
The element residuals

(72) = o)

TeTh()

(73 = (2 mow) "

TeTh ()
The edge residuals

(7.4) = (X 0RO +rpm)

EEgh(Q)

(75) o= (X ) i)
EE&(Q)

and the data oscillations osc;, as given by (6.10).
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Example 1: L-shaped domain.

We choose 2 = (—1,+1)2\(0,+1) x (=1,0) and a = ¢ = 1, as well as

2
y? = (1+0.01)r%? sin(?go) (in polar coordinates)
uwl=0,f=0.

The exact solution reads:

2

/P sin( ),

y:u:?”

2
p = 0.017%/3 sm(%").

Figure 7.1: Example 1: Generated state y (left) and control u (right) after 20

cycles of the adaptive algorithm
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Figure 7.2: Example 1: Adaptively refined triangulations after 15 cycles(left)
and 20 cycles(right) of the adaptive algorithm

10° ; ; ,
—+— adaptive(6=0.3)
—&— uniform
B
X
=4
= 10} 1
N
|
N
10—2 - L . L . L Z 5
10 10 10 10 10
number of DOFs

Figure 7.3: Example 1: Adaptive versus uniform refinement for the total error

Figure 7.3 provides a comparison between adaptive and uniform refinement.
On a logarithmic scale, the decrease in the total error ||z — z3|(qxw)2 is shown

as a function of the degrees of freedom (DOF).
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Table 7.1: Example 1: Convergence history of the AMFEM, Part I: Discretiza-
tion errors for the flux of the state, the state, the control, the flux of the adjoint

state, and the adjoint state

£ || Npor | [Ay = Ayulloe | Iy —¥nlloe | [lu—unllon | [Ap —Ap.lloe | [P — Pnlloo
0 38 2.57e-01 2.50e-01 4.08e-01 8.21e-03 4.08e-03
1 124 2.32e-01 1.66e-01 2.05e-01 3.85e-03 2.05e-03
2 266 1.82e-01 1.23e-01 1.29e-01 2.00e-03 1.29e-03
3 408 1.51e-01 1.17e-01 1.18e-01 1.46e-03 1.18e-03
4 490 1.33e-01 9.05e-02 9.35e-02 1.42e-03 9.35e-04
5 632 1.14e-01 8.97e-02 9.09e-02 1.19e-03 9.09e-04
6 858 1.02e-01 7.85e-02 7.95e-02 1.07e-03 7.95e-04
7 1062 9.21e-02 7.04e-02 7.18e-02 9.98e-04 7.18e-04
8 1344 8.32e-02 6.61e-02 6.69e-02 8.73e-04 6.69e-04
9 1620 7.55e-02 5.41e-02 5.46e-02 7.82e-04 5.46e-04
10 2002 6.79e-02 5.14e-02 5.17e-02 6.98e-04 5.17e-04
11 2698 5.77e-02 4.22e-02 4.24e-02 5.87e-04 4.24e-04
12 3166 5.35e-02 4.06e-02 4.08e-02 5.44e-04 4.08e-04
13 4178 4.69e-02 3.32e-02 3.33e-02 4.76e-04 3.33e-04
14 4942 4.27e-02 3.19e-02 3.20e-02 4.31e-04 3.20e-04
15 6358 3.76e-02 2.91e-02 2.91e-02 3.78e-04 2.91e-04
16 7748 3.41e-02 2.54e-02 2.55e-02 3.43e-04 2.55e-04
17 9586 3.06e-02 2.27e-02 2.28e-02 3.07e-04 2.28e-04
18 || 13230 2.64e-02 1.88e-02 1.88e-02 2.65e-04 1.88e-04
19 || 16110 2.37e-02 1.73e-02 1.73e-02 2.37e-04 1.73e-04
20 || 20048 2.12e-02 1.57e-02 1.57e-02 2.12e-04 1.57e-04
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Table 7.2: Example 1: Convergence history of the AMFEM, Part II: Element

and edge residuals, data oscillations

¢ | Npor o1 h 2 1 Mo osch
0 38 0.00e4-00 | 0.00e4-00 | 1.15e+00 | 2.04e-02 | 8.18e-01
1 124 3.93e-17 | 0.00e+00 | 9.53e-01 | 8.95e-03 | 2.69e-01
2 266 5.72e-17 3.91e-19 7.57e-01 | 6.86e-03 | 1.82e-01
3 408 7.11e-17 8.82e-19 6.76e-01 | 6.43e-03 | 1.79e-01
4 490 6.69e-17 9.45e-19 5.79e-01 | 5.28e-03 | 9.56e-02
5 632 6.15e-17 6.55e-19 5.36e-01 | 5.09e-03 | 9.55e-02
6 858 7.35e-17 5.94e-19 4.82e-01 | 4.61e-03 | 5.56e-02
7 1062 7.46e-17 6.53e-19 4.31e-01 | 4.09e-03 | 5.30e-02
8 1344 7.20e-17 6.61e-19 3.97e-01 | 3.80e-03 | 4.94e-02
9 1620 8.04e-17 7.52e-19 3.58e-01 | 3.45e-03 | 3.19e-02
10 2002 7.30e-17 7.31e-19 3.28e-01 | 3.17e-03 | 2.96e-02
11 2698 6.94e-17 6.39e-19 2.75e-01 | 2.71e-03 | 1.99e-02
12 3166 6.24e-17 6.49e-19 2.59e-01 | 2.56e-03 | 1.80e-02
13 4178 6.22e-17 6.65e-19 2.26e-01 | 2.23e-03 | 1.15e-02
14 4942 6.65e-17 6.33e-19 2.09e-01 | 2.07e-03 | 1.09e-02
15 6358 7.48e-17 7.14e-19 1.85e-01 | 1.84e-03 | 9.45e-03
16 7748 7.95e-17 7.40e-19 1.67e-01 | 1.66e-03 | 7.10e-03
17 || 9586 7.25e-17 7.38e-19 1.50e-01 | 1.49e-03 | 5.79e-03
18 | 13230 | 6.42e-17 6.62e-19 1.29e-01 | 1.28e-03 | 3.78e-03
19 || 16110 | 7.17e-17 6.57e-19 1.16e-01 | 1.16e-03 | 3.28e-03
20 || 20048 | 7.47e-17 6.96e-19 1.05e-01 | 1.04e-03 | 2.69e-03
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Table 7.3: Example 1: Convergence history of the AMFEM, Part III: Average
values of local a posteriori error estimators and data oscillations

£ || Npor | 7it(Ay,) Ar(Apn) | TEAy,) | ME(YR) | TE(Ap.) | 7E(Ph) oScr
0 38 0.00e+-00 | 0.00e+00 | 2.75e-01 | 2.05e-01 | 7.12e-03 | 2.56e-03 | 3.26e-01
1 124 2.52e-18 0.00e+00 | 1.18e-01 | 7.18e-02 | 1.05e-03 | 7.45e-04 | 5.34e-02
2 266 2.50e-18 1.52e-20 | 5.54e-02 | 3.36e-02 | 4.78e-04 | 3.41e-04 | 1.63e-02
3 408 2.94e-18 3.68e-20 | 3.87e-02 | 2.21e-02 | 3.56e-04 | 2.23e-04 | 9.70e-03
4 490 2.29e-18 3.46e-20 | 3.21e-02 | 1.88e-02 | 2.84e-04 | 1.90e-04 | 6.52e-03
5 632 1.65e-18 1.87e-20 | 2.61e-02 | 1.46e-02 | 2.39e-04 | 1.47e-04 | 4.95e-03
6 858 1.36e-18 1.24e-20 | 2.01e-02 | 1.09e-02 | 1.90e-04 | 1.10e-04 | 3.19e-03
7 1062 2.16e-18 1.72e-20 1.63e-02 | 8.91e-03 | 1.53e-04 | 8.95e-05 | 2.29e-03
8 1344 1.52e-18 1.53e-20 1.31e-02 | 7.06e-03 | 1.24e-04 | 7.09e-05 | 1.67e-03
9 1620 1.58e-18 1.63e-20 | 1.08e-02 | 5.85e-03 | 1.04e-04 | 5.87e-05 | 1.15e-03
10 2002 1.10e-18 1.34e-20 | 8.82e-03 | 4.76e-03 | 8.50e-05 | 4.77e-05 | 8.82e-04
11 2698 9.05e-19 9.09e-21 6.53e-03 | 3.57e-03 | 6.40e-05 | 3.58e-05 | 5.34e-04
12 3166 7.43e-19 8.39e-21 | 5.63e-03 | 3.05e-03 | 5.54e-05 | 3.05e-05 | 4.37e-04
13 4178 7.57e-19 8.68e-21 | 4.27e-03 | 2.31e-03 | 4.21e-05 | 2.32e-05 | 2.73e-04
14 4942 7.47e-19 7.71le-21 3.62e-03 | 1.96e-03 | 3.57e-05 | 1.96e-05 | 2.21e-04
15 6358 7.11e-19 7.13e-21 2.79e-03 | 1.54e-03 | 2.76e-05 | 1.54e-05 | 1.54e-04
16 7748 7.03e-19 7.07e-21 | 2.30e-03 | 1.25e-03 | 2.28e-05 | 1.25e-05 | 1.12e-04
17 9586 5.64e-19 6.08e-21 | 1.85e-03 | 1.02e-03 | 1.84e-05 | 1.02e-05 | 8.03e-05
18 || 13230 | 4.14e-19 4.46e-21 1.35e-03 | 7.38e-04 | 1.34e-05 | 7.39e-06 | 4.82e-05
19 || 16110 | 4.45e-19 4.00e-21 | 1.10e-03 | 6.04e-04 | 1.10e-05 | 6.04e-06 | 3.65e-05
20 || 20048 | 4.32e-19 4.12e-21 | 8.89e-04 | 4.85e-04 | 8.86e-05 | 4.85e-06 | 2.65e-05
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Example 2: Slit domain.

Let Q be the hexagon with corners (+1,0), (+1, ‘/75), (£3, —‘/73) and a slit along

y =0 and z > 0. The data of the prroblem are chosen according toa =c=1
as well as

y? =(1+0.01)r"/4 sin(%) (in polar coordinates)
u? =0, f = 0.

The exact solution reads:

A Sin(_)a

p=0.01r/4 sin(%).

Yy=u=r

Figure 7.4: Example 2: Generated state y (left) and control u (right) after 20
cycles of the adaptive algorithm
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Figure 7.5: Example 2: Adaptively refined triangulations after 15 cycles(left)
and 20 cycles(right) of the adaptive algorithm

10° ; ; ,
—+— adaptive(6=0.3)
—&— uniform
B
X
c
= 10"} 1
N
|
N
10—2 - L . L . L ; 5
10 10 10 10 10
number of DOFs

Figure 7.6: Example 2: Adaptive versus uniform refinement for the total error

Like in Example 1, Figure 7.6 provides a comparison between adaptive and

uniform refinement. On a logarithmic scale, the decrease in the total error
|2 = 21| (@xw)2 is shown as a function of the degrees of freedom (DOF).
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Table 7.4: Example 2: Convergence history of the AMFEM, Part I: Discretiza-
tion errors for the flux of the state, the state, the control, the flux of the adjoint

state, and the adjoint state

£ || Npor | [Ay = Aywlloe | [y —ynlloe | lu—unlloe | [Ap — Apulloe | [P — Pulloe
0 38 3.09e-01 1.27e-01 2.52e-01 7.03e-03 2.52e-03
1 86 3.15e-01 1.05e-01 1.90e-01 5.37e-03 1.90e-03
2 204 3.16e-01 7.85e-02 1.89e-01 6.36e-03 1.89e-03
3 346 3.03e-01 6.10e-02 1.26e-01 4.72e-03 1.26e-03
4 488 2.85e-01 5.58e-02 8.94e-02 3.60e-03 8.94e-04
5 630 2.69e-01 5.42e-02 7.20e-02 3.03e-03 7.20e-04
6 772 2.56e-01 5.38e-02 6.40e-02 2.72e-03 6.40e-04
7 992 2.33e-01 4.93e-02 5.60e-02 2.46e-03 5.60e-04
8 1230 2.10e-01 4.08e-02 4.41e-02 2.14e-03 4.41e-04
9 1428 1.96e-01 4.06e-02 4.28e-02 1.99e-03 4.28e-04
10 1680 1.85e-01 4.05e-02 4.18e-02 1.86e-03 4.18e-04
11 2032 1.73e-01 3.90e-02 4.03e-02 1.74e-03 4.03e-04
12 2534 1.59e-01 3.32e-02 3.41e-02 1.60e-03 3.41e-04
13 2972 1.49e-01 2.84e-02 2.92e-02 1.49e-03 2.92e-04
14 3812 1.31e-01 2.58e-02 2.61e-02 1.31e-03 2.61e-04
15 4538 1.21e-01 2.49e-02 2.52e-02 1.21e-03 2.52e-04
16 5512 1.12e-01 2.24e-02 2.29e-02 1.13e-03 2.29e-04
17 6986 1.00e-01 1.99e-02 2.01e-02 1.00e-03 2.01e-04
18 8486 9.17e-02 1.95e-02 1.96e-02 9.16e-04 1.96e-04
19 || 10444 8.35e-02 1.65e-02 1.65e-02 8.33e-04 1.65e-04
20 || 12962 7.58e-02 1.41e-02 1.41e-02 7.58e-04 1.41e-04
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Table 7.5: Example 2: Convergence history of the AMFEM, Part II: Element
and edge residuals, data oscillations

£ || Npor 1 h 2 1 T 0sch
0 38 4.68e-17 | 1.01e-18 | 9.01e-01 | 9.70e-03 | 6.03e-01
1 86 5.60e-17 | 1.33e-18 | 1.05e+00 | 1.07e-02 | 5.12e-01
2 204 1.10e-16 | 9.48e-19 | 1.02e+00 | 1.26e-02 | 2.50e-01
3 346 1.35e-16 | 1.35e-18 | 9.98e-01 | 9.69e-03 | 8.94e-02
4 488 1.19e-16 | 1.32e-18 | 9.87e-01 | 8.88e-03 | 7.47e-02
5 630 1.27e-16 | 1.29e-18 | 9.81e-01 | 8.85e-03 | 7.40e-02
6 772 1.27e-16 | 1.19e-18 | 9.78e-01 | 8.94e-03 | 7.40e-02
7 992 1.21e-16 | 1.36e-18 | 9.00e-01 | 8.41e-03 | 5.81e-02
8 1230 | 1.29e-16 | 1.54e-18 | 8.26e-01 | 7.89e-03 | 3.61e-02
9 1428 | 1.46e-16 | 1.37e-18 | 7.85e-01 | 7.55e-03 | 3.61e-02
10 1680 | 1.37e-16 | 1.62e-18 | 7.51e-01 | 7.26e-03 | 3.60e-02
11 2032 | 1.45e-16 | 1.26e-18 | 7.12e-01 | 6.90e-03 | 3.40e-02
12 2534 | 1.47e-16 | 1.63e-18 | 6.58e-01 | 6.43e-03 | 2.61e-02
13 2972 | 1.57e-16 | 1.62e-18 | 6.20e-01 | 6.08e-03 | 2.01e-02
14 3812 | 1.48e-16 | 1.71e-18 | 5.49e-01 | 5.40e-03 | 1.76e-02
15 4538 | 1.67e-16 | 1.65e-18 | 5.10e-01 | 5.02e-03 | 1.65e-02
16 5512 | 1.76e-16 | 1.69e-18 | 4.72e-01 | 4.66e-03 | 1.31e-02
17 6986 | 1.69e-16 | 1.76e-18 | 4.23e-01 | 4.20e-03 | 1.02e-02
18 8486 | 1.72e-16 | 1.64e-18 | 3.88e-01 | 3.85e-03 | 1.01e-02
19 || 10444 | 1.62e-16 | 1.77e-18 | 3.53e-01 | 3.51e-03 | 6.59e-03
20 || 12962 | 1.68e-16 | 1.76e-18 | 3.22e-01 | 3.20e-03 | 4.89e-03
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Table 7.6: Example 2: Convergence history of the AMFEM, Part III: Average

values of local a posteriori error estimators and data oscillations

£ || Npor | ft(Ay,) | Ir(Apy) | TE(Ay,) | ME(YR) | TE(Ap.) | 7E(Ph) oScr
0 38 1.26e-17 | 2.62e-19 | 3.15e-01 | 8.98e-02 | 3.04e-03 | 1.48e-03 | 2.29e-01
1 86 1.03e-17 | 1.62e-19 | 2.03e-01 | 4.83e-02 | 1.84e-03 | 6.92e-04 | 7.97e-02
2 204 9.48e-18 | 9.35e-20 | 1.02e-01 | 2.13e-02 | 1.10e-03 | 3.36e-04 | 1.73e-02
3 346 9.35e-18 | 9.63e-20 | 7.24e-02 | 1.34e-02 | 6.96e-04 | 1.72e-04 | 6.13e-03
4 488 7.27e-18 | 7.00e-20 | 6.00e-02 | 9.79e-03 | 5.50e-04 | 1.12e-04 | 3.73e-03
5 630 6.77e-18 | 7.04e-20 | 5.26e-02 | 7.72e-03 | 4.82e-04 | 8.37e-05 | 2.78e-03
6 772 5.90e-18 | 5.70e-20 | 4.72e-02 | 6.37e-03 | 4.38e-04 | 6.69e-05 | 2.25e-03
7 992 5.19e-18 | 5.61e-20 | 3.91e-02 | 4.92e-03 | 3.70e-04 | 5.13e-05 | 1.54e-03
8 1230 4.82e-18 | 5.77e-20 | 3.34e-02 | 4.03e-03 | 3.21e-04 | 4.15e-05 | 1.05e-03
9 1428 | 5.09e-18 | 4.57e-20 | 2.98e-02 | 3.48e-03 | 2.89e-04 | 3.56e-05 | 8.95e-04
10 1680 | 4.36e-18 | 4.93e-20 | 2.63e-02 | 2.98e-03 | 2.56e-04 | 3.03e-05 | 7.57e-04
11 2032 4.14e-18 | 3.80e-20 | 2.24e-02 | 2.45e-03 | 2.19e-04 | 2.49e-05 | 5.90e-04
12 2534 | 3.60e-18 | 3.95e-20 | 1.86e-02 | 2.03e-03 | 1.83e-04 | 2.06e-05 | 4.34e-04
13 2972 | 3.58e-18 | 3.81e-20 | 1.63e-02 | 1.73e-03 | 1.60e-04 | 1.75e-05 | 3.26e-04
14 3812 3.15e-18 | 3.44e-20 | 1.29e-02 | 1.37e-03 | 1.28e-04 | 1.38e-05 | 2.32¢e-04
15 4538 3.07e-18 | 3.01e-20 | 1.10e-02 | 1.16e-03 | 1.08e-04 | 1.17e-05 | 1.89e-04
16 5512 | 3.01e-18 | 2.84e-20 | 9.15e-03 | 9.49e-04 | 9.06e-05 | 9.54e-06 | 1.37e-04
17 6986 | 2.43e-18 | 2.63e-20 | 7.25e-03 | 7.50e-04 | 7.21e-05 | 7.52e-06 | 9.56e-05
18 8486 2.42e-18 | 2.37e-20 | 6.00e-03 | 6.21e-04 | 5.97e-05 | 6.23e-06 | 7.66e-05
19 || 10444 | 2.09e-18 | 2.18e-20 | 4.91e-03 | 5.02e-04 | 4.89e-05 | 5.03e-06 | 5.20e-05
20 || 12962 | 1.86e-18 | 1.96e-20 | 4.00e-03 | 4.06e-04 | 3.98e-05 | 4.07e-06 | 3.63e-05

Tables 7.4,7.5,7.6 document the convergence history of the AMFEM for Ex-
ample 2 with the same legends as for Example 1.
Finally, Figure 7.6 displays the performance of the AMFEM in comparison to
uniform refinement.
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Example 3: Solution with a boundary layer.

We choose 2 = (0,+1)? and a = 1,c = 99, as well as

y? = (1+0.01)(2cosh(10))! (cosh(lel) + cosh(10x2)>,
u? =0, f =0.
The exact solution reads:
y = (2cosh(10))~* (cosh(lel) + cosh(10x2)),

u= — (2cosh(10))* (cosh(lel) + cosh(loxz)),

p= —0.01(2cosh(10))~" (cosh(lO:vl) + cosh(10x2)>.

Figure 7.7: Example 2: Generated state y (left) and control u (right) after 20
cycles of the adaptive algorithm
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Figure 7.8: Example 2: Adaptively refined triangulations after 15 cycles(left)
and 20(right) cycles of the adaptive algorithm

10 T T
—+— adaptive(6=0.3)
—&— uniform

100

12 =2, 1l gy

-1

¢ 10

10_2 1 2 3
10 10 10
number of DOFs

Figure 7.9: Example 2: Adaptive versus uniform refinement for the total error

Similarly, Figure 7.9 provides a comparison between adaptive and uniform re-
finement. On a logarithmic scale, the decrease in the total error ||z —z4|(@xw)2

is shown as a function of the degrees of freedom (DOF).

42



Table 7.7: Example 3: Convergence history of the AMFEM, Part I: Discretiza-
tion errors for the flux of the state, the state, the control, the flux of the adjoint

state, and the adjoint state

£ || Npor | [Ay = Ayulloe | Iy —¥nlloe | [lu—unllon | [Ap —Ap.lloe | [P — Pnlloo
0 14 2.01e+00 2.65e-01 2.54e-01 2.08e-02 2.54e-03
1 48 1.28e+-00 1.76e-01 1.78e-01 1.28e-02 1.78e-03
2 152 7.28e-01 9.48e-02 9.80e-02 7.43e-03 9.80e-04
3 316 4.95e-01 6.85e-02 6.93e-02 5.07e-03 6.93e-04
4 816 2.74e-01 3.55e-02 3.59e-02 2.78e-03 3.59e-04
5 908 2.49e-01 2.85e-02 2.86e-02 2.52e-03 2.86e-04
6 1664 1.73e-01 2.20e-02 2.20e-02 1.75e-03 2.20e-04
7 1928 1.50e-01 1.96e-02 1.96e-02 1.51e-03 1.96e-04
8 2156 1.43e-01 1.68e-02 1.68e-02 1.44e-03 1.68e-04
9 3368 1.24e-01 1.49e-02 1.49e-02 1.24e-03 1.49e-04
10 4842 9.86e-02 1.23e-02 1.23e-02 9.87e-04 1.23e-04
11 5730 8.94e-02 1.10e-02 1.10e-02 8.95e-04 1.10e-04
12 7120 7.96e-02 1.01e-02 1.01e-02 7.97e-04 1.01e-04
13 8348 7.42e-02 8.80e-03 8.80e-03 7.43e-04 8.80e-05
14 || 10732 6.87e-02 8.12e-03 8.12e-03 6.88e-04 8.12e-05
15 || 14486 5.87e-02 7.28e-03 7.28e-03 5.88e-04 7.28e-05
16 || 16496 5.50e-02 6.93e-03 6.93e-03 5.50e-04 6.93e-05
17 || 20604 4.85e-02 6.24e-03 6.24e-03 4.86e-04 6.24e-05
18 || 26860 4.19e-02 5.20e-03 5.20e-03 4.19e-04 5.20e-05
19 || 30440 3.94e-02 4.86e-03 4.85e-03 3.94e-04 4.85e-05
20 || 35532 3.67e-02 4.59e-03 4.59e-03 3.67e-04 4.59e-05
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Table 7.8: Example 3: Convergence history of the AMFEM, Part II: Element

and edge residuals, data oscillations

£ || Npor h 1 2 M1 Mo OSCh
0 14 0.00e+00 | 0.00e+00 | 6.46e-01 | 6.15e-02 | 9.02e-01
1 48 0.00e+00 | 0.00e+00 | 2.47e+00 | 2.54e-01 | 2.54e-01
2 152 1.57e-16 1.23e-18 | 2.59e+00 | 2.74e-02 | 9.59e-02
3 316 5.03e-17 1.47e-19 | 1.86e+00 | 1.92e-02 | 4.45e-02
4 816 1.02e-16 9.21e-19 | 1.13e+00 | 1.15e-02 | 1.64e-02
5 908 1.08e-16 7.48e-19 | 1.06e+00 | 1.08e-02 | 7.27e-03
6 1664 1.03e-16 1.02e-18 7.40e-01 | 7.46e-03 | 5.24e-03
7 1928 1.11e-16 1.09e-18 6.39e-01 | 6.41e-03 | 4.46e-03
8 2156 9.24e-17 9.69e-19 6.13e-01 | 6.14e-03 | 3.31e-03
9 3368 9.94e-17 1.08e-18 5.31e-01 | 5.31e-03 | 2.86e-03
10 4842 1.00e-16 1.01e-18 4.23e-01 | 4.24e-03 | 1.84e-03
11 5730 9.43e-17 9.25e-19 3.84e-01 | 3.84e-03 | 1.36e-03
12 7120 9.94e-17 1.07e-18 3.41e-01 | 3.41e-03 | 1.23e-03
13 8348 1.02e-16 1.02e-18 3.16e-01 | 3.16e-03 | 9.83e-04
14 || 10732 | 9.52e-17 1.03e-18 2.92e-01 | 2.92e-03 | 8.01e-04
15 || 14486 | 9.75e-17 1.10e-18 2.50e-01 | 2.51e-03 | 6.75e-04
16 || 16496 | 9.51e-17 1.14e-18 2.35e-01 | 2.35e-03 | 5.99e-04
17 || 20604 | 1.00e-16 1.02e-18 2.06e-01 | 2.07e-03 | 5.36e-04
18 || 26860 | 1.08e-16 9.83e-19 1.79e-03 | 1.79e-03 | 3.76e-04
19 || 30440 | 1.03e-16 9.97e-19 1.68e-01 | 1.69e-03 | 3.10e-04
20 || 35532 | 9.86e-17 1.01e-18 1.57e-01 | 1.57e-03 | 2.85e-04
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Table 7.9: Example 3: Convergence history of the AMFEM, Part III: Average

values of local a posteriori error estimators and data oscillations

£ || Npor | 7it(Ay,) Ar(Apn) | TEAy,) | ME(YR) | TE(Ap.) | 7E(Ph) oScr
0 14 0.00e+-00 | 0.00e+00 | 1.57e-16 | 2.00e-01 | 1.96e-18 | 2.00e-03 | 6.38e-01
1 48 2.52e-18 0.00e+00 | 4.90e-01 | 6.28e-02 | 4.95e-03 | 6.30e-04 | 7.46e-02
2 152 7.93e-18 6.20e-20 | 2.09e-01 | 2.13e-02 | 2.21e-03 | 2.15e-04 | 1.02e-02
3 316 1.33e-18 5.45e-21 1.17e-01 | 1.15e-02 | 1.20e-03 | 1.15e-04 | 2.81e-03
4 816 2.26e-18 2.28e-20 | 4.65e-02 | 4.49e-03 | 4.73e-04 | 4.50e-05 | 5.81e-04
5 908 2.44e-18 1.74e-20 | 4.17e-02 | 4.06e-03 | 4.22e-04 | 4.06e-05 | 4.34e-04
6 1664 2.03e-18 1.87e-20 | 2.33e-02 | 2.26e-03 | 2.35e-04 | 2.26e-05 | 1.85e-04
7 1928 2.26e-18 2.07e-20 2.00e-02 | 1.97e-03 | 2.01e-04 | 1.97e-05 | 1.47e-04
8 2156 1.54e-18 1.67e-20 1.77e-02 | 1.74e-03 | 1.77e-04 | 1.74e-05 | 1.19e-04
9 3368 1.24e-18 1.32e-20 | 1.15e-02 | 1.13e-03 | 1.15e-04 | 1.13e-05 | 6.68e-05
10 4842 1.10e-18 1.06e-20 | 7.99e-03 | 7.92e-04 | 8.00e-05 | 7.92e-06 | 3.65e-05
11 5730 8.95e-19 8.82e-21 6.63e-03 | 6.65e-04 | 6.64e-05 | 6.65e-06 | 2.71e-05
12 7120 7.83e-19 9.23e-21 | 5.25e-03 | 5.35e-04 | 5.26e-05 | 5.35e-06 | 1.99e-05
13 8348 7.19e-19 7.51e-21 | 4.39e-03 | 4.54e-04 | 4.39e-05 | 4.54e-06 | 1.52e-05
14 || 10732 | 5.35e-19 6.13e-21 | 3.34e-03 | 3.52e-04 | 3.35e-05 | 3.52e-06 | 1.04e-05
15 || 14486 5.55e-19 6.15e-21 2.53e-03 | 2.62e-04 | 2.53e-05 | 2.62e-06 | 6.94e-06
16 || 16496 | 4.98e-19 5.99e-21 | 2.22e-03 | 2.31e-04 | 2.22e-05 | 2.31e-06 | 5.70e-06
17 || 20604 | 4.78e-19 4.70e-21 | 1.75e-03 | 1.85e-04 | 1.75e-05 | 1.86e-06 | 4.14e-06
18 || 26860 | 4.09e-19 3.77e-21 1.32e-03 | 1.41e-04 | 1.32e-05 | 1.41e-06 | 2.74e-06
19 || 30440 | 3.68e-19 3.38e-21 | 1.15e-03 | 1.25e-04 | 1.16e-05 | 1.25e-06 | 2.22e-06
20 || 35532 | 3.13e-19 3.09e-21 | 9.79e-04 | 1.07e-04 | 9.80e-06 | 1.07e-06 | 1.77e-06
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Chapter 8

Conclusions

For the numerical solution of optimal control problems with distributed con-
trols for linear second order elliptic boundary value problems we have devel-
oped, analyzed, and implemented an adaptive mixed finite element method
based on the mixed formulation of the associated optimality system. We have
focused on

e the iterative solution of the resulting algebraic saddle point problem by a
preconditioned Richardson-type iterative scheme featuring precondition-
ers constructed by means of appropriately chosen left and right trans-
forms,

e the derivation of a reliable residual-type a posteriori error estimator
within the framework of a unified a posteriori error control.

Numerical results have confirmed the theoretical findings and thus documented
the feasibility of the adaptive approach.

So far we have only considered the unconstrained case, i.e., we have imposed
neither constraints on the control nor on the state. Future work will be devoted
to the application of the adaptive approach to control constrained as well as
to state constrained optimally controlled elliptic problems.
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