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Abstract. - The dissipative tunnelling in a sine-Gordon chain driven by a weak external bias is
investigated with special focus on the quantum-mechanical effects at higher temperatures
where thermal activation still dominates over quantum tunnelling. Quantum-mechanical
corrections to the nucleation process enhance the rate above its classical value for any intensity
of the damping mechanism. However, contrary to the single-particle case, quantum effects
enter the result for the nucleation rate in lowest order in h, instead of h2, and it exhibits a
nonanalytic dependence on the quantum scale.

The dynamics of a sine-Gordon (SG) chain provides a conventional picture for a variety of
phenomena taking place in condensed matter, e.g., dislocations in crystals, charge density
waves in Peierls dielectrics and tunnelling in long Josephson junctions. A problem of crucial
relevance is the nucleation of soliton-antisoliton pairs driven by an external d.c.-bias field
which breaks the symmetry of the SG potential. Whatever the circumstances of the
nucleation process, a chain ditting in a trough of the tilted SG potential generates a soliton-
antisoliton pair only after an appreciable portion of it (critical nucleus) has overcome the
potential barrier which separates two adjacent troughs. The energy associated with such
unstable configuration is the activation energy of the process.

The calculation of the relevant nucleation rate F. (defined as the number of pairs created
per unit of length and time) has been carried out under diverse physical conditions and
approximations:

i) Classical regime. In ref. [l-61 the nucleation rate r has been determined under the
assumption that the damping constant is much larger than any other characteristic
frequency of the system. The temperature is taken high enough to neglect quantum-
mechanical contributions, while thermal fluctuations per unit of length are always assumed
to be much smaller than the activation energy. The critical nucleus grows to infinity for
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vanishingly weak external biases. The interaction among nucleating pairs may not be
disregarded in such a limit 13-51.

ii) Quantum-mechanical regime. In this case one distinguishes two threshold
temperatures, To and T,. For T<To the critical nuclei are separated and have their
temporal dependence determined mainly by their instrinsic width, whereas for T > To the
critical nuclei coalesce and the temporal scale h,!3 strongly affects their dynamics. The
exponential factor of the nucleation rate has been determined in this temperature regime for
both vanishingly small damping [6-9] and very large damping [7,8]. For T > T,, the shape of
the nucleus solution ceases to possess a temporal dependence. At T > T ,  the thermal
activation dominates the exponential factor of r with quantum-mechanical corrections
affecting the prefactor only. A complete account of dissipation effects proved a difficult task:
in ref. [91 the prefactor of r has been determined at zero damping, whereas the treatment of
ref. [6-81 is only viable for calculating the exponential factors.

In the present letter we outline new analytical results for the dissipative nucleation rate
in a SG chain at thermal eqauilibrium, restricted, for the time being, to the case of high
temperatures T > T,. Corrections due to the presence of both quantum-mechanical and
dissipative effects are determined explicitly in the limit of very small external bias.

For the sake of convenience we adopt notations of ref. [9]. In dimensionless units, the
unperturbed, undamped SG equation reads

and admits of static localized solutions

x

with arbitratry centre of mass xo and classical energy Eo = 2a = 4/z. & are termed soliton
and antisoliton, respectively. For the quantization of the nonlinear-field theory we follow
the standard scheme [lo], i.e. in the quantum case the normal product of the SG potential
U[+] = 1/4 : cos z#: is understood in order to regularize the ultraviolet divergence [lo]. For
the following, the quantity y E [ U"(0)]'n = x/2 is the so-called plasma frequency.

The dissipative SG chain is described by the equation

(3)

The phenomenological Ohmic friction term - q j t  is equivalent in our treatment to the
effective dissipation arising from coupling the chain to a heat bath of bilinearly coupled
oscillators [7,8,11]. The d.c.-field F must be smaller than U[O] - U[1] = 1/2, in order for
localized solutions to exist. Moreover, throughout this report, F is assumed to be sufficiently
small, so that the F-dependence of the quantum-mechanical corrections is negligible. For
this reason, following ref. [9], we use F = 0 whenever a finite value of F would lead to a mere
next-to-leading order correction. The effects of the external bias on the activation energy
and the prefactor of the nucleation rate have been determined explicitly for the classical
limit in ref. [3] and 141.

For temperatures above the critical value T, (which depends here on the dissipation T ,
see eq. (8)), the nucleation rate can be calculated in terms of the imaginary part of the
relevant free energy [3,12,13] per unit of length, Im S, according to the formula 1141,

7c&- $= +z  sin^$ = - F - q$t .
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r = - (2TJT) Im S By use of dimensionless quantities including the dimensionless time [9],
the nucleation rate can be written as

where T and g are dimensionless quantities proportional to (h)-l.
Before we proceed, we should comment oq the regime of validity of eq. (4). By use of the

I m S  approach one implicitly neglects nonequilibrium kinetics which, in principle, is of
importance in the weak-friction regime [15,16]. In contrast to a zero-friction study 193,
however, in the presence of moderate-to-strong dissipation p ,  eq. (4) yields the physically
correct nucleation rate. In this regime, nonequilibrium kinetics does not affect the rate and,
furthermore, the dissipative rate coincides with a multidimensional transition state theory
(TST) in full phase space of all degrees of freedom of system plus environment[16].
Presently, there is no chance to work out a dynamical theory for the underdamped regime,
q + 0, of a nonlinear metastable field problem. Thus far, even the simple case of a single
particle moving classically in a finite-dimensional metastable potential has not been entirely
solved [16]. From this viewpoint our explicit results in the weak-friction regime given
below, as well as the zero-friction study in ref. [SI, must be interpreted as the TST-estimate
to the true nucleation rate, i.e. in the underdamped regime the given results present a truly
upper limit to  the physical nucleation rate.

The contribution b/T in the exponential function of eq. (4) denotes the divergent counter-
term generated by the normal product, and cancels the ultraviolet divergence inherent in
the prefactor R(T, q). The prefactor R(T, q )  is defined as

where det’ON omits the zero eigenvalues,

$ N ( ~ )  denotes the critical nucleus. In the limit of a weak field, F << 1/2, $N(x) is approximated
with a linear superposition of a soliton and an antisoliton placed at the relative distance
( 2 ~ ) ~ ’  ln(16y2/x2F) [2-4,6]. The eigenvalues {ANpo} of the opeators {ONvo} can be ordered as
follows:

AzO(n) = (ZxTn)2 + (2xT In/) q + Sz0, n = 0, f 1, f 2, . . . , (6)

where SZo denote the small-amplitude fluctuation modes about the critical nucleus, $ N ( x ) ,
and the solitonless configuration, $o(x) = 0, respectively. The part {Sg} of the spectrum is
purely continuous, i.e. Sz = S,O = y2 + k2. On the other hand, the fluctuations about the
critical nucleus + N ( ~ )  allow for three discrete eigenvalues A2 (n = 0) = SE, m = 0, 1,2; and a
continuum. There exist a negative eigenvalue (the unstable mode)

1A
A F ( O ) = S ~ = - ( ~ ~ F T Z ) ~ ,  T $ = L ( g )  x 2a , (7)
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olie zero eigenvalue Sy=O (the so-called Goldstone mode) and only one further discrete
mode, S,">O, which for vanishingly small F merges into the continuous spectrum
S," + S," = y2 + k2. The negative eigenvalue A f ( 0 )  is linear in F ,  thus implying that the decay
process is driven right by the external bias, i .e.  by the mechanism which breaks the
symmetry q5 + - q5 of the system. The F-dependence of the remainder of the spectra {ANpo}
only yields next-to-leading order corrections which we agreed to neglect on the first place.
In particular, we set S," = y2 and ignore the F-dependence of the density of states for ONio.
Thus the dependence on the potential asymmetry Fq5 enters our results only through the
parameter T: = Tc(q = 0). Tc(q) is determined by the condition that there exists only one
unstable mode, A:(O)<O. From the inequality A # ( l ) s O  we obtain for the crossover
temperature TC($ from A r ( 1 )  = 0 the result

The zero eigenvalue Ay(0) is omitted in det' ON and has been taken care of separately in the
prefactor of (4).

On replacing det ON*O with the product of the relevant eigenvalues (6), and working out
the product over the discrete index n, explicitly, we arrive at much simpler an expression
for R(T, q),  i .e.

ip (s$)'n ip r[l- n?(n)Ir[l-  nN(n)I
m 9 (9)

where the indices in the products run over both the discrete and the continuum branches of
the corresponding spectra of the operators ONio, and

m=O n=OR(T,,i)=
IS,"l" n: r[l-n:(m)lr[l-n!?(m)l

n=0,#1 m=O

Next, remembering that Sr = 0 and S," may be approximated by y2, we finally obtain after
some cumbersome algebra

* exp11 dk[po(k) - iN(k)l Insk - lnF[l-  n+(k)] - l n r [ l -  n-(k)]
L -1

pN,O(k) denote here the density of states {SZO}, Sk = y2 + k2 and n,(k) are as in (10) after
replacing SZo with sk. Further explicit calculations have been carried out on making use of
the relation [lo] p&) - pN(k) = 2ISk.

As a first check on our general result (11) we see immediately that both limiting cases for
h=O and for q = O  are reproduced correctly. In the classical regime (h=O), the

regularization counterterm 3 1.1 dk S," is identically zero, R(T, q)  = id2T$, whence
To



                                             

from eq. (4)
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In the overdamped limit, q>>y, (12) reduces to the relevant result of ref. [3], see eq. (21)
therein, provided that one approximates the activation energy 2EN(F) to 2Eo=4a, as
agreed above.

In the quantum-mechanical zero-friction case ( p = O ,  h#O) our determination for r
coincides with Ivlev and Melnikov's, see eq. (40) of ref. [9]. Taking the limit of that result for
l/T+ 0 yields

r(0) = rd(0) exp - In T + - ,[; 4
where I ,  = 1.65.

In the underdumped case (q  << y, h # 0) dissipation effects on the quantum-mechanical
corrections to rd($ show up at the order TIT. Indeed, on expanding the factor R(T, p ) ,
eq. (111, in powers of p ,  we obtain

where r(0) is given in eq. (13) and I2 = ( l / n v w ) ,  which for y = x12 yields

I2 = 0.54. The validity of eq. (14) is restricted by the conditions that q << y and IS8 1 lB << T.
In the overdumped case (q  >> y, h # O), instead, the quantum corrections enhance the rate

(13), i.e.

2 n = l

which with h + 0 exhibits a nonanalytical dependence on h of the form h lnh ('1.
In conclusion, the quantum effects on the sine-Gordon nucleation rate at high tempera-

tures T > T, produce a series of interesting features. In the single-particle case quantum
corrections to the classical expressions usually enter in order of h2 [17,18], since the
underlying quantum dynamics is governed by operation equations involving the quantity ih.
The h-dependence inherent in eqs. (13)-(15) thus represents a nonanalytic dependence on the
quantum scale.

Moreover, quantum-mechanical corrections in the presence of dissipation always enhance
the nucleation rate above its classical value. This latter finding resembles the behaviour of
the quantum corrections for a single particle [15,16]. In particular, we remark that strong
dissipation does suppress the tunnelling rate by lowering T,, T,(q + 00)  + 0, but also leads to
a large quantum prefactor, as shown in eq. (15). These new results given here are also
hoped to be of relevance in future experiments on extended Josephson-junction systems for
which the quantum effects at finite temperatures may not be negligible.

(l) Recall that T denotes a dimensionless temperature scale being proportional to [91.
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