
                                                  
            

                    

C O M P A R I S O N  T H E O R Y  F O R  R I C C A T I  E Q U A T I O N S

by

J.-H. E s c h e n b u r g  and E. Hein tze

We give  a sho r t  new p r o o f  for t he  c o m p a r i s o n  theo ry  of  t he  m a t r i x  va lued  R icca t i

e q u a t i o n  B'q-B2q-R=O with  s i n g u l a r  in i t i a l  values .  A p p l i c a t i o n s  to R i e m a n n i a n

g e o m e t r y  are  brief ly i nd i ca t ed .

Let E be a finite dimensional real vector space with inner product  (,) and
S(E) the space of self adjoint linear endomorphisms of E . For a given smooth
coefficient curve R : ]R --. S(E) we consider solutions B : (0,t0) --* S(E) of the
Riccati differential equation (cf.[R])

( R ) B t + B 2 + R = 0 .

In Pdemannian geometry, this is the evolution equation for the shape operators
of a familiy of parallel hypersurfaces if R denotes the curvature tensor in normal
direction. It has been used to est imate principal curvatures and volumes of spheres
an~i tubes (cf. [Gn], [HE], [Eb], [Eli, [HIH], [K1], [GM], [Gr], [Gv], [K2], [E2]). If
two coefficient curves R1,R2 : lit ---* S(E) with R1 >_ R2 (i.e. R1 - R 2  positive
semidefinite) are given, one may compare solutions B~, B2 : (0, to) --* S(E) of

with suitable initial conditions. This has been done in [E2] by first assuming
R1 > R2 and then passing to the limit. But the method was not good enough to
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discuss equality. In this paper, we give a different and more natural proof of the
comparison theorem including the equality discussion.

T h e o r e m .  Let R I , R 2  : ]R --~ S ( E )  be smooth with RI >__ R2 . For j = 1,2 , let
Bj  : (0, t j)  --, S ( E )  be a solution of (R i )  with maximed t j  E (0, oo] , such that
U :=  B2 - B1 has  a continuous extension to 0 with U(O) > 0 . Then t I ~ t 2 and
B 1 • S 2 on (0, t l )  . Moreover ,  d( t )  : =  d i m k e r ( U ( t ) )  is monotoneousJy decreasing
on (0, t l )  . In particular, l f  B l ( s )  = B2(s)  t'or some s E (0, t , )  , then B1 = B2 and
R1 = R2 on [0, s] .

Proof. Let t0 = min{t~ , t2}  . By ( R x ) , ( R 2 ) ,  U satisfies

(~) v ' = x . u + v . x + s

on (0, t0) where X 1 , = - ~ ( B 2  + B1) and  S = R1 - R2 >_ 0 . Since Bj  is bounded
from below (B~ > - R j )  , we get tha t  X is b o u n d e d  from above near  0 , i.e.
X _ < a .  I f o r  s o m e a  C I R .

Let g : (0, to) ~ E n d ( E )  be  a nons ingu la r  solut ion of the  homogeneous  equa-
t ion

(2) g' = X . g  .

In  fact,  any ma t r ix  solut ion g of (2) which is nons ingu la r  at some So E (0, t0)  is
nons ingu la r  everywhere  on  (O, to)s ince  the solut ion ~ : (0, t0)  --, E n d ( E ) o f  the
ini t ia l  value p rob lem

~' = - ~ .  x ,  ~ ( s 0 )  = ~ ( s 0 ) - '

satisfies (g#)'  = 0 .  Now any solut ion U of (1) is ob ta ined  as

U = g . V . g  t

where V : (0 , t0)  ~ S ( E )  satisfies

(3) v'  = g-~. s .  (g-~) ' .

From S > 0 we get V'  > 0 on (0, t0)  .

Next  we have to show tha t  l imV( t )  exists and  is posi t ive semidefinite.  We
t---*0

have
(Vx,  x) = ( g - l . U . ( g - 1 ) t x ,  x) = ( U . h x ,  hx)

for any  x E E , where  h = (g-1)r , and  therefore,

I<V~,~)l ~ t l U I I .  I I h~ l l  ~ �9
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This  is bounded  near  0 : F rom ( g - I ) ,  = _ ( g - l ) .  X we get  h'  = - X  �9 h and

therefore  the  func t ion  f = ]lhxll 2 is bounded  near  0 since it satisfies

f ' =  2(h'x, hx) = - 2 { X . h x ,  hx} >_-2a .  f .

Consequent ly ,  since (V(t )x ,  x} is m o n o t o n e  in t ,  the  l imit  V(0)  = } i~  V(t )  exists.

Moreover ,  there  exists a sequence sk ---* 0 such tha t  yk :=  h(sk)x  converges to

some y E E as k --~ oo . Thus

(V(O)x , r  = l im(U(xk)ya,yk)  = (U(O)y,y) >_ O .

Now f rom V(0) > 0 and V '  > 0 we get V > 0 and hence U > 0 . Thus  B1 < B2

on (0 , to)  . If  t2 < oo , t hen  ( R 2 ) i m p l i e s  tha t  (B2( t )x , z}  ~ -oo  for some x as

t --+ t2 , and  therefore,  t l  > t2 is impossible .  Hence to = t l  _< t2 �9

Since V(t)  is mono tonous ly  decreasing,  so is d im ker Y ( t ) ,  but  d im ker Y( t )  =
d im ke rU( t )  = d(t) .

R e m a r k  1. Of  course, the  way we solved (1) is the  well  known var ia t ion  of cons tan t

me thod .  In  general ,  this  can  be  s t a t ed  as follows. Let  V be  a vec tor  space and

e : G ~ Au t  (V)  a represen ta t ion  of  a (ma t r ix )  Lie group G on V wi th  Lie a lgebra

G �9 Let X : I --* G and s : I --* V be  s m o o t h  curves, where  I is some real  interval .

T h e  solut ions u : I ~ V of the  l inear O D E

(1)' u' = o . ( X ) u + s

can be wr i t t en  as u = p(g)v where v : I ~ V is s m o o t h  and g : I --* G be a

solut ion of  the  homogeneous  equa t ion

(2) ' g '  = X �9 g .

(This  is m a t r i x  no ta t ion .  For an  abs t rac t  Lie group,  X �9 g has to be  replaced  by

( R g ) . Z  where  R 9 denotes  the  r ight  t rans la t ion . )  Since o(g) '  = o . ( X ) o ( g ) ,  we get

u' = g . ( X ) u  + o(g)v' �9 Hence  u is a solut ion if and only if o(g)v' = s , i.e. iff

(3) ' v ' = Q ( g - 1 ) s .

We  have appl ied  this  to the  vec tor  space V = S (E)  and  the  Lie group G = A u t  ( E )

wi th  the  r ep resen ta t ion  o(g)u = g . u . g t  where u E V , g E G . No te  tha t

e . ( X ) u  = X . u  + u .  X* for X e G ,  u e V . Thus  (1) has t he  form (1)' .

R e m a r k  2. Acutal ly ,  an a rb i t r a ry  solut ion B of (R)  in (0 , t0)  has  the  following

behav io r  at  0 :

B(t )  = P / t  + C(t)
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where P is an orthogonal  project ion (i.e. P E S ( E )  , p 2  = p )  and  C ( t )  extends
continuously at  t = 0 with im P C ker C(0) (see the following proposit ion).  Thus,
the ini t ial  condit ion of the theorem may be s ta ted  as follows:

P1 = P2 and C2(0) >_ C1(0)

where B j ( t )  = P j / t  + C j ( t ) .  This fits nicely to the geometric s i tuat ion al luded to
in the introduct ion.  In fact, if we interpret  B ( t )  as the shape opera tor  of the tube
of distance t around some submanifold L along a geodesic 7~ perpendicular  to L
in some Riemannian manifold, then N = im P is the normal  space perpendicular
to v and T = k e r P  the tangent  space of L , and C(O)IT is the shape opera tor  of
L in the direction v .

P~mark :~. A slight modification of the proof of the theorem shows that  the  conti-
nnity of U at  0 is not necessary to assume: Let u( t )  be the smallest eigenvalue of
U(t )  . Then we may replace the assumption U(0) >_ 0 by

lira inf u( t )  >_ 0 .
t ~ 0

Thus, in the geometric applicat ion where B j  corresponds to a submanifold L~ ,
one can also t reat  cases where dim L1 _> dim L2 �9

P r o p o s i t i o n .  Le t  B : (0, t0) ---* S ( V )  be a so lu t ion  o f  (R )  . T h e n  there is a

p r o j e c t i o n  P E S ( V )  , p 2  = p , such t h a t

c ( t )  : =  B(t) - P / t

has  a c o n t i n u o u s  ex t ens ion  to t = 0 , and  im P C ker C(O) .

Proof. Let so e (0, t0) and Y :  (0,t0) --~ End (V) the solution of

Y '  = B "  Y , Y ( s o )  = I .

Then Y has inverse r - x  ___ Z which is the solution of

Z '  = - Z .  B , Z ( s o ) =  I .

Thus B -- y i y - 1  . Differentiating (R) we see tha t  Y also satisfies

Y "  + R .  Y = O,  Y ( s o )  = I ,  Y ' ( s o )  = B ( s o )  ,

and so Y extends smoothly  to all of tR ,  and

Y(t)  : Y(0) + t .  V ( t )
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where V is smooth with V(0) = Y'(0)  . Since y t  . y ,  = y t  . B �9 Y is symmetric,
it vanishes on W := k e r ( Y ) .  Thus Y ( W  • _L Y ' ( W )  and consequently Y ( W  • +
Y ' ( W )  = E .  (Since Y solves a second order equation, we have ker (Y)A ker(Y')  =
0 .) Now for an or thonormal  basis q , . . .  , e ,  of E , where e l , . . . , e k  is a basis of
W(0)  = ker Y(0) , we have that

t - k .  det Y( t )  = d e t ( V ( t ) q , . . . ,  V(t)ek,  Y ( t )gk+l , . . .  , Y(t)e,~)

has smooth extension to 0 with nonzero limit. Thus t k. Y - l ( t )  and hence t k. B( t )
have smooth extensions to 0 . So there are B 1 , . . . , B ~  ~ S ( E )  and a smooth
C :  [0, t0) --+ S ( E )  such tha t

B ( t )  = t - k .  B k ~ - . . .  ~ - t  - 1  �9 1~ 1 -t- C ( t )  .

Using (R) to compare coefficients we see tha t  only B1 is nonzero, and moreover,

B~ = B , ,  B1 .  c ( o )  + c ( o )  . BI = o .

Thus, P := B1 is a projection,  and Co := C(0) vanishes on the image of P since
y = CoPx is in the ( - 1 ) -  eigenspace of P which is zero (note that  Py  = PCox =
- C o P x  = - y )  .
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