COMPARISON THEORY FOR RICCATI EQUATIONS

by

J.-H. Eschenburg and E. Heintze

We give a short new proof for the comparison theory of the matrix valued Riccati equation $B'+B^2+R=0$ with singular initial values. Applications to Riemannian geometry are briefly indicated.

Let *E* be a finite dimensional real vector space with inner product \langle, \rangle and S(E) the space of self adjoint linear endomorphisms of *E*. For a given smooth coefficient curve $R : \mathbb{R} \to S(E)$ we consider solutions $B : (0, t_0) \to S(E)$ of the Riccati differential equation (cf.[R])

(R)
$$B' + B^2 + R = 0$$
.

In Riemannian geometry, this is the evolution equation for the shape operators of a familiy of parallel hypersurfaces if R denotes the curvature tensor in normal direction. It has been used to estimate principal curvatures and volumes of spheres and tubes (cf. [Gn], [HE], [Eb], [E1], [HIH], [K1], [GM], [Gr], [Gv], [K2], [E2]). If two coefficient curves $R_1, R_2 : \mathbb{R} \to S(E)$ with $R_1 \geq R_2$ (i.e. $R_1 - R_2$ positive semidefinite) are given, one may compare solutions $B_1, B_2 : (0, t_0) \to S(E)$ of

$$(R_j) \qquad \qquad B'_j + B_j^2 + R_j = 0$$

with suitable initial conditions. This has been done in [E2] by first assuming $R_1 > R_2$ and then passing to the limit. But the method was not good enough to

discuss equality. In this paper, we give a different and more natural proof of the comparison theorem including the equality discussion.

Theorem. Let $R_1, R_2 : \mathbb{R} \to S(E)$ be smooth with $R_1 \ge R_2$. For j = 1, 2, let $B_j : (0, t_j) \to S(E)$ be a solution of (R_j) with maximal $t_j \in (0, \infty]$, such that $U := B_2 - B_1$ has a continuous extension to 0 with $U(0) \ge 0$. Then $t_1 \le t_2$ and $B_1 \le B_2$ on $(0, t_1)$. Moreover, $d(t) := \dim \ker(U(t))$ is monotoneously decreasing on $(0, t_1)$. In particular, if $B_1(s) = B_2(s)$ for some $s \in (0, t_1)$, then $B_1 = B_2$ and $R_1 = R_2$ on [0, s].

<u>Proof.</u> Let $t_0 = \min\{t_1, t_2\}$. By $(R_1), (R_2)$, U satisfies

(1)
$$U' = X \cdot U + U \cdot X + S$$

on $(0, t_0)$, where $X = -\frac{1}{2}(B_2 + B_1)$ and $S = R_1 - R_2 \ge 0$. Since B'_j is bounded from below $(B'_j \ge -R_j)$, we get that X is bounded from above near 0, i.e. $X \le a \cdot I$ for some $a \in \mathbb{R}$.

Let $g:(0,t_0)\to \operatorname{End}(E)$ be a nonsingular solution of the homogeneous equation

$$(2) g' = X \cdot g \; .$$

In fact, any matrix solution g of (2) which is nonsingular at some $s_0 \in (0, t_0)$ is nonsingular everywhere on $(0, t_0)$ since the solution $\bar{g} : (0, t_0) \to \text{End}(E)$ of the initial value problem

$$\bar{g}' = -\bar{g} \cdot X \ , \ \bar{g}(s_0) = g(s_0)^{-1}$$

satisfies $(g\bar{g})' = 0$. Now any solution U of (1) is obtained as

$$U = g \cdot V \cdot g^t$$

where $V: (0, t_0) \to S(E)$ satisfies

(3)
$$V' = g^{-1} \cdot S \cdot (g^{-1})^t .$$

From $S \ge 0$ we get $V' \ge 0$ on $(0, t_0)$.

Next we have to show that $\lim_{t\to 0} V(t)$ exists and is positive semidefinite. We have

$$\langle Vx,x\rangle = \langle g^{-1} \cdot U \cdot (g^{-1})^t x,x\rangle = \langle U \cdot hx,hx\rangle$$

for any $x \in E$, where $h = (g^{-1})^t$, and therefore,

$$|\langle Vx,x\rangle| \leq ||U|| \cdot ||hx||^2 .$$

This is bounded near 0 : From $(g^{-1})' = -(g^{-1}) \cdot X$ we get $h' = -X \cdot h$ and therefore the function $f = ||hx||^2$ is bounded near 0 since it satisfies

$$f' = 2\langle h'x, hx \rangle = -2\langle X \cdot hx, hx \rangle \geq -2a \cdot f$$
.

Consequently, since $\langle V(t)x, x \rangle$ is monotone in t, the limit $V(0) = \lim_{t \to 0} V(t)$ exists. Moreover, there exists a sequence $s_k \to 0$ such that $y_k := h(s_k)x$ converges to some $y \in E$ as $k \to \infty$. Thus

$$\langle V(0)x,x\rangle = \lim \langle U(x_k)y_k,y_k\rangle = \langle U(0)y,y\rangle \ge 0$$

Now from $V(0) \ge 0$ and $V' \ge 0$ we get $V \ge 0$ and hence $U \ge 0$. Thus $B_1 \le B_2$ on $(0, t_0)$. If $t_2 < \infty$, then (R_2) implies that $\langle B_2(t)x, x \rangle \to -\infty$ for some x as $t \to t_2$, and therefore, $t_1 > t_2$ is impossible. Hence $t_0 = t_1 \le t_2$.

Since V(t) is monotonously decreasing, so is dim ker V(t), but dim ker $V(t) = \dim \ker U(t) = d(t)$.

<u>Remark 1.</u> Of course, the way we solved (1) is the well known variation of constant method. In general, this can be stated as follows. Let V be a vector space and $\rho: G \to \operatorname{Aut}(V)$ a representation of a (matrix) Lie group G on V with Lie algebra \underline{G} . Let $X: I \to \underline{G}$ and $s: I \to V$ be smooth curves, where I is some real interval. The solutions $u: I \to V$ of the linear ODE

$$(1)' u' = \varrho_*(X)u + s$$

can be written as $u = \varrho(g)v$ where $v: I \to V$ is smooth and $g: I \to G$ be a solution of the homogeneous equation

$$(2)' g' = X \cdot g \; .$$

(This is matrix notation. For an abstract Lie group, $X \cdot g$ has to be replaced by $(R_g)_*X$ where R_g denotes the right translation.) Since $\varrho(g)' = \varrho_*(X)\varrho(g)$, we get $u' = g_*(X)u + \varrho(g)v'$. Hence u is a solution if and only if $\varrho(g)v' = s$, i.e. iff

$$(3)' v' = \varrho(g^{-1})s$$

We have applied this to the vector space V = S(E) and the Lie group G = Aut(E)with the representation $\varrho(g)u = g \cdot u \cdot g^t$ where $u \in V$, $g \in G$. Note that $\varrho_*(X)u = X \cdot u + u \cdot X^t$ for $X \in \underline{G}$, $u \in V$. Thus (1) has the form (1)'.

<u>Remark 2.</u> Acutally, an arbitrary solution B of (R) in $(0, t_0)$ has the following behavior at 0:

$$B(t) = P/t + C(t)$$

where P is an orthogonal projection (i.e. $P \in S(E)$, $P^2 = P$) and C(t) extends continuously at t = 0 with im $P \subset \ker C(0)$ (see the following proposition). Thus, the initial condition of the theorem may be stated as follows:

$$P_1 = P_2$$
 and $C_2(0) \ge C_1(0)$

where $B_j(t) = P_j/t + C_j(t)$. This fits nicely to the geometric situation alluded to in the introduction. In fact, if we interpret B(t) as the shape operator of the tube of distance t around some submanifold L along a geodesic γ_v perpendicular to L in some Riemannian manifold, then N = im P is the normal space perpendicular to v and $T = \ker P$ the tangent space of L, and C(0)|T is the shape operator of L in the direction v.

<u>Remark 3.</u> A slight modification of the proof of the theorem shows that the continuity of U at 0 is not necessary to assume: Let u(t) be the smallest eigenvalue of U(t). Then we may replace the assumption $U(0) \ge 0$ by

$$\lim_{t\to 0} \inf u(t) \ge 0 \; .$$

Thus, in the geometric application where B_j corresponds to a submanifold L_j , one can also treat cases where dim $L_1 \ge \dim L_2$.

Proposition. Let $B : (0,t_0) \to S(V)$ be a solution of (R). Then there is a projection $P \in S(V)$, $P^2 = P$, such that

$$C(t) := B(t) - P/t$$

has a continuous extension to t = 0, and im $P \subset \ker C(0)$.

<u>Proof.</u> Let $s_0 \in (0, t_0)$ and $Y: (0, t_0) \to$ End (V) the solution of

$$Y' = B \cdot Y$$
, $Y(s_0) = I$.

Then Y has inverse $Y^{-1} = Z$ which is the solution of

$$Z' = -Z \cdot B$$
, $Z(s_0) = I$.

Thus $B = Y'Y^{-1}$. Differentiating (R) we see that Y also satisfies

$$Y'' + R \cdot Y = 0$$
, $Y(s_0) = I$, $Y'(s_0) = B(s_0)$,

and so Y extends smoothly to all of \mathbb{R} , and

$$Y(t) = Y(0) + t \cdot V(t)$$

where V is smooth with V(0) = Y'(0). Since $Y^t \cdot Y' = Y^t \cdot B \cdot Y$ is symmetric, it vanishes on $W := \ker(Y)$. Thus $Y(W^{\perp}) \perp Y'(W)$ and consequently $Y(W^{\perp}) + Y'(W) = E$. (Since Y solves a second order equation, we have $\ker(Y) \cap \ker(Y') = 0$.) Now for an orthonormal basis e_1, \ldots, e_n of E, where e_1, \ldots, e_k is a basis of $W(0) = \ker Y(0)$, we have that

$$t^{-k} \cdot \det Y(t) = \det(V(t)e_1, \dots, V(t)e_k, Y(t)e_{k+1}, \dots, Y(t)e_n)$$

has smooth extension to 0 with nonzero limit. Thus $t^k \cdot Y^{-1}(t)$ and hence $t^k \cdot B(t)$ have smooth extensions to 0. So there are $B_1, \ldots, B_k \in S(E)$ and a smooth $C: [0, t_0) \to S(E)$ such that

$$B(t) = t^{-k} \cdot B_k + \ldots + t^{-1} \cdot B_1 + C(t)$$

Using (R) to compare coefficients we see that only B_1 is nonzero, and moreover,

$$B_1^2 = B_1 , \ B_1 \cdot C(0) + C(0) \cdot B_1 = 0$$

Thus, $P := B_1$ is a projection, and $C_0 := C(0)$ vanishes on the image of P since $y = C_0 P x$ is in the (-1)- eigenspace of P which is zero (note that $Py = PC_0 x = -C_0 P x = -y$).

References

- [Eb] P. Eberlein: When is a geodesic flow Anosov? I. J.Differential Geometry 8, 437 - 463 (1973)
- [E1] J.-H. Eschenburg: Stabilitätsverhalten des Geodätischen Flusses Riemannscher Mannigfaltigkeiten. Bonner Math. Schr. 87 (1976)
- [E2] J.-H. Eschenburg: Comparison theorems and hypersurfaces. Manuscripta math. 59, 295 - 323 (1987)
- [Gr] A. Gray: Comparison Theorems for the volume of tubes as generalizations of the Weyl tube formula. Topology 21, 201 - 228 (1982)
- [Gn] L.W. Green: A theorem of E. Hopf. Mich. Math. J. 5, 31 34 (1958)
- [GM] D. Gromoll & W. Meyer: Examples of complete manifolds with positive Ricci curvature. J. Differential Geometry 21, 195 - 211 (1985)
- [Gv] M. Gromov: Structures metriques pour les variétés riemanniennes. Cedic-Nathan 1981

- [HE] S.W. Hawking, G.F.R. Ellis: The Large Scale Structure of Spacetime. Cambridge 1973
- [HIH] E. Heintze & H.C. Im Hof: Geometry of horospheres. J. Differential Geometry 12, 481 - 491 (1977)
- [K1] H. Karcher: Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30, 509 - 541 (1977)
- [K2] H. Karcher: Riemannian Comparison Constructions. S.S. Chern (ed.) Global Differential Geometry, M.A.A. Studies in Mathematics vol. 27
- [R] W.T.Reid: Riccati Differential equations. Academic Press 1972